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Introduction 

Enhanced landfill mining1 (ELFM) could optimise the economics of landfill 

remediation. Landfill exploration is considered as a key aspect of ELFM as it can 

contribute to evaluating the amounts and properties of waste material. Geophysical 

measurements carried out at the landfill surface offer a non-invasive, non-destructive 

and rapid approach to the identification of subsurface structures. In contrast to most 

geophysical studies on landfill sites described in literature, this study does not focus 

on determining the environmental risks arising from disposed waste. Instead, the 

ELFM potential of disposed waste is investigated. The aim of this work is to explore 

the suitability of surface measurements with frequency-domain electromagnetic 

induction (FDEM) and ground penetrating radar (GPR) measurements for 

characterising waste layers, and more in particular their geometry and electric 

properties. The geophysical measurements were made with real-time GPS 

positioning,2 followed by trench excavation. Additional trench profile measurements 

were made to validate the electromagnetic property distributions derived from the 

surface measurements. 

Materials and Methods 

Site description The site is part of a former paint factory in Ghent, Belgium, which 

started its activities in 1958. From 1941, the site was the location of a textile 

production facility. The investigated area was covered by gravel and used for on-site 

traffic. On the described site, a transect with a length of 33 m was investigated. In the 

context of environmental site assessment, previously conducted soil investigations 

indicated a contamination with heavy metals and polycyclic aromatic hydrocarbons. 

 

FDEM survey The described site was surveyed using a FDEM sensor, in particular a 

DUALEM-421S3 (DUALEM Inc., Milton, Canada). This sensor incorporates six 
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transmitter-receiver coil combinations: three in a horizontal co-planar (HCP) 

configuration, with inter-coil distances of 1 m, 2 m, and 4 m, and three in 

perpendicular configuration (PRP), with inter-coil distances of 1.1 m, 2.1 m, and 4.1 

m. As a rule of thumb, HCP configurations sense the ground to a depth of around 1.5 

times the inter-coil distance, while for PRP configurations this factor is 0.5. However, 

also the electrical conductivity of the subsurface is a determining factor of the actual 

penetration depth. For surveying, the sensor was fixed on a sled towed by a quad 

bike. The exact position of the quad bike was recorded using a Trimble differential 

GPS. The GPS and geophysical data were logged synchronously at respective 

frequencies of 1 Hz and 4 Hz. 

 

FDEM data processing The recorded GPS data were translated into sensor position 

data according to the constraint method described in Delefortrie et al.4 The sensor 

data were then converted into apparent electric conductivity (ECa) data.5 

Subsequently, the surface data were inverted to obtain a distribution of true 

electrical conductivity, based on the forward formulations given by Ward and 

Hohmann.6 A new FDEM-inversion approach was developed based on the application 

of an update step of the Ensemble Kalman Filter algorithm,7 with a one-dimensional, 

multi-layer conductivity model. From the Bayesian standpoint, the algorithm starts 

with given prior estimations of electric conductivities in the form of Gaussian 

probability distributions. The electrical conductivity is constraint to positive values by 

using logarithmic prior distributions. To avoid abrupt conductivity variations, the 

conductivity value in a single layer was assigned a minimum correlation with the 

corresponding values in neighbouring layers. In the update step, measurement data 

are used to invert the profile or, in Bayesian terminology, to compute samples of the 

posterior distributions. The mean of the posterior distribution is taken as the final 

estimate for the inverted, true conductivity; the variance of the posterior distribution 

serves as a measure of the uncertainty on the estimated conductivity. Using the 

outlined one-dimensional approach all measurement locations were inverted 

independently.  

 

GPR survey For the GPR survey, a dual-frequency, time-domain system was used, 

more specifically a Utility Scan DF impulse GPR, with 300 and 800 MHz as centre 

frequencies (Geophysical Survey Systems, Inc., Nashua, New Hampshire, USA). A 

transmitter antenna emits short electromagnetic pulses and, as contrasts in material 

properties are encountered during propagation into the subsurface, energy is 

reflected to the surface and recorded at a receiver antenna.8 The reflections are 

recorded with their corresponding arrival time. A two-dimensional representation of 

multiple time series is called a radargram. The GPR survey was conducted along the 

same transect as the EMI survey. 
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GPR data processing In a first step, a correction for the so-called time zero, i.e. the 

travel time required for the radar pulse to enter the subsurface after leaving the 

antenna, was made. Secondly, the recorded travel times were transformed into 

depths using an estimation for the propagation velocity.9 Afterwards, a background 

removal was applied to the GPR data to reduce background noise.9 As a final step, 

the amplitudes of all arrival times were normalised by automatic gain control.9 

 

Validation data After the surface measurements, a trench of approximately 1 metre 

depth was excavated along the survey area. A profile description was made based on 

visual observations. The profile (Figure 3a) showed various, though distinct, layers of 

different materials, of which seven main types were discriminated. The material 

occurring at the bottom of the trench (type 3) was identified as, presumably burnt, 

municipal solid waste. The origin of the above-lying sandy material (type 2) was 

unclear. Most likely, this waste had an industrial origin, but no further (standard 

waste material) characterisation was conducted. Three augerings were made in the 

bottom of the trench (near 2 m, 19 m and 31 m distance along the profile in Figure 3) 

which allowed to derive the thickness of the municipal solid waste layer and indicated 

the underlying natural material consisted in clay. Afterwards, additional profile 

measurements of electrical conductivity (ECp) and relative dielectric permittivity 

(RDP) were made with a UGT UMP-1 handheld-sensor (Umwelt-Geräte-Technik 

GmbH, Muencheberg, Germany) at the locations indicated in Figure 3b and 3c. Since 

a measurement with the UGT UMP-1 requires penetration of electrodes, not all 

materials could be investigated. 

Results and discussion 

The inverted profile and the recorded apparent electric conductivities are shown in 

Figure 1. Negative values and distinct peaks in the ECa-data are possibly caused by 

near-surface metal pieces. Such effects are clearly visible in the inversion result (e.g. 

at 16 m, Figure 1), but are neglected for the overall evaluation of the subsurface 

structure. For further descriptions of the results, the profile is considered as two 

separate parts. The part showing complex layering, from 0 m to approximately 10 m 

distance, and the homogenous part from 10 m to the end of profile, showing three 

distinct layers. From 0–10 m along the profile, a relatively high electrical conductivity 

was estimated for the top layers. Below 0.6 m, a layer of lower conductivity is seen, 

while the conductivity rises again for the bottom layer (approx. at 1.2 to 1.3 m depth). 

The conductivity at the pit bottom appears to be slightly higher on the homogeneous 

part of the profile. This observation is consistent with the shape of the ECa-signal of 

the HCP2 coil configuration (Figure 1a). The layer of high conductivity at the bottom 

corresponds to the occurrence of the municipal waste (Figure 3a). The higher 

conductivity of this waste material was confirmed by the profile measurements of 
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electrical conductivity, as shown in Figure 3b. According to the inversion results, in 

the homogenous part of the profile, roughly three layers can be discriminated, which 

agrees with the layering of material 1, 2 and 3 in the profile description (Figure 3a). 

Additionally, the ECa signal for the 4 m HCP coil configuration (Figure 1a) suggests 

that the conductivity at a depth larger than the excavated trench is more 

homogeneous than at the exposed part. From 2–2.5 m depth downwards, natural 

clay was found which can be assumed to be more homogeneous. 

 

The results of the GPR survey are shown in Figure 2. For the first 10 meters of the 

profile, the GPR signal shows strong attenuation as from 0.2–0.3 m depth, indicating 

the presence of relatively high conductive material. This is consistent with the 

electrical conductivity distribution estimated from the FDEM inversion. From 10 m 

onwards, a strong reflection can be observed at a depth of around 0.6 m, slightly 

inclined towards to the centre of the profile. This strong reflector seems to 

correspond with the layer boundary between the sandy material and the municipal 

waste (Figure 3a). A similar RDP contrast was shown by the profile measurements. 

The boundary between the top layer (type 1) and the sandy layer does not show in 

the GPR profile, likely because of the similar RDP of the materials. 

 

 
Figure 1: a) FDEM measurement data used for the inversion (PRP2 and PRP4 data neglected 

to reduce metal artefacts in the inversion results) b) Smoothed inversion results for the 

electric conductivity 

 

The contrast observed in both RDP and electric conductivity between the sandy 

material and the municipal waste allows making a good estimation of depth of the 

waste material type (type 3). This illustrates that both FDEM and GPR can contribute 

to the characterisation of the spatial distribution of disposed waste materials. The 

more complex organisation of disposed materials in the first part of the profile could 
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only partly be reconstructed as only the strong contrasts in material properties can 

be resolved from the surface measurements. The FDEM measurements, 

representative of relatively large subsurface volumes here appear to provide 

insufficient (vertical) resolution to discriminate the complex sequence of disposed 

materials. For GPR, the high-conductive material in the upper 50 cm prohibited to 

retrieve detailed information from RDP variations at larger depths.  

 

The outlined approach, combining GPR and FDEM measurements with targeted 

processing, allowed a localisation of different material by relative electric properties 

and therefore, it is assumed that the approach presents a contribution to determine 

the ELFM potential of a site. 

 

 
Figure 2: GPR data from the 300 MHz antenna after processing (data from 800 MHz antenna 

not shown here for brevity) 

 

 
Figure 3: Schematic representation of the profile description made, indicating the main types 

of material discriminated (c), and profile measurements of electric conductivity ECp (a) and 

RDP (b) made with a UGT UMP-1 BT soil moisture meter 



50 4th International Symposium On Enhanced Landfill Mining  |  Mechelen  |  05-06/02/2018 

Future steps 

The EMI data were inverted using only a rough estimate of the subsurface electric 

conductivity as obtained from the profile measurements. Notwithstanding promising 

results were achieved using the profile measurements as calibration data, the 

collection of reliable calibration and validation data sets for FDEM inversion presents 

an important topic for future research, particularly considering the generally complex 

subsurface context of landfill sites. Furthermore, FDEM inversion could be optimised 

by including data of other subsurface properties, such as the magnetic susceptibility. 
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