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Preface

This dissertation contributes to the ongoing effort of understanding the origins
and applications of real-space renormalization group methods in tensor network
representations of classical and quantum many-body systems.

First, we construct a matrix product operator ansatz to coarse-grain real-space
transfer matrices of matrix product state descriptions of one-dimensional quantum
spin chains. By treating the physical spin as an impurity, we unravel the virtual
entanglement degrees of freedom of matrix product states into a layered structure to
reveal an inherent renormalization group scale [1].

Secondly, we rephrase tensor network renormalization for two-dimensional
classical lattice models in a manifestly nonnegative way. The resulting real-space
renormalization group flow preserves positivity and hence yields an interpretation in
terms of Hamiltonian flows, reconciling modern real-space tensor network renor-
malization methods with traditional block-spin approaches [2].

Thirdly, we study non-local symmetries in tensor networks by expressing two-
dimensional classical partition functions in terms of strange correlators of judiciously
chosen product states and string-net wave functions [3]. We exhibit and exploit the
emerging non-local symmetries of the partition function at criticality and highlight
parallels between topological sectors and conformal primary fields in the shared
framework of matrix product operator symmetries. Additionally, we provide a
complementary perspective on real-space renormalization by recognizing known
tensor network renormalization methods as the approximate truncation of an exactly
coarse-grained strange correlator.
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CHAPTER ONE

Prelude

“Universality makes physics possible.”

1.1 General introduction

The development of renormalization group theory by Kenneth. G. Wilson and his
contemporaries in the early 1970s has arguably been one of the most influential
developments in post-war theoretical physics. By focusing on theories defined at
different length scales, Wilson introduced the notions of flows, fixed points, and
universality to understand the behavior of physical systems under a change of scale.

Tensor network states owe their numerical origin to the astonishing accuracy of
the density-matrix renormalization group algorithm for one-dimensional quantum
spin chains, developed in 1992 by Steve White, a former student of Wilson. Over
the years, insights from entanglement theory and condensed-matter physics have
helped establish tensor networks as a natural framework for studying the physics of
(quantum) many-body systems.

In this dissertation we contribute to the ongoing effort of understanding the
origins and applications of real-space renormalization group methods in tensor
network representations of classical and quantum many-body systems.

1.2 Overview

We have split this dissertation into two parts for the reader’s convenience. The first
part consists of two preliminary chapters on renormalization group theory and tensor
network states, which experts can skim-read or read selectively when referred back
to from the three chapters in the second part containing our main results. The wide
range of topics covered in the introductory chapters is reflective of a style which sets
out to be broad and inclusive rather than deep.

Chapter 2 provides a comprehensive, pedagogic overview of renormalization
group theory from the point of view of statistical physics and critical phenomena.
After introducing the problems with physical systems exhibiting correlations across
many length scales, we discuss phase transitions, criticality, scaling, and homogeneity.
By going over Landau’s theory of symmetry breaking and its saddle-point approxi-
mation, we get an idea of why fluctuations on all length scales are troublesome for

1



1. PRELUDE

mean-field theory and set the stage for Wilson’s groundbreaking contributions to
renormalization group theory. We go on to introduce the core ideas of the renor-
malization group: flows, fixed points, and universality. We emphasize how these
insights are shared between the lattice and the continuum by discussing effective
field theories and perturbative RG using the seminal example of the ε-expansion.
We then provide a succinct introduction to conformal field theory and its relation to
classical partition functions, which is of crucial importance to understand the physics
of critical statistical-mechanical lattice models in two dimensions. We conclude with
a sketch of Wilson’s numerical renormalization group and some explicit examples of
historical real-space renormalization schemes.

Chapter 3 introduces tensor network states as a lingua franca for understanding
(quantum) many-body physics. We trace their origins to the renaissance of quantum
entanglement in the nineties and discuss basic properties of matrix product states
(MPS), projected-entangled pair states (PEPS), and the multi-scale entanglement
renormalization ansatz (MERA). Focusing on their renormalization properties, we
highlight a natural real-space RG transformation for MPS and examine the entangle-
ment structure of scale invariant MERAs in scale space. After demonstrating how
to encode classical partition functions as tensor networks, we show how real-space
RG transformations on the level of tensor networks lead to numerical algorithms
such as the tensor renormalization group (TRG) and tensor network renormalization
(TNR) which vastly outperform the old-school methods discussed in Chapter 2.
We conclude by summarizing TRG and TNR in terms of RG flows in the space of
tensors.

Chapter 4 describes a matrix product operator (MPO) ansatz to coarse-grain
real-space transfer matrices associated to MPS descriptions of one-dimensional
quantum spin chains. We interpret MPS truncation as an application of Wilson’s
numerical renormalization group along the imaginary time direction appearing in
the path integral representation of the quantum state. Treating the physical spin as
an impurity, we identify a uniform MPS representation which takes the entanglement
degrees of freedom that are relevant to the impurity into account. We numerically
show that the layered decomposition of the MPS bond dimension obtained in this
way is related to a renormalization group scale by probing the spectrum of elementary
excitations using a restricted variational excitation ansatz.

Chapter 5 rephrases tensor network renormalization for two-dimensional clas-
sical lattice models in a manifestly nonnegative way using nonnegative matrix fac-
torization. The resulting real-space renormalization group flow preserves positivity
and hence yields an interpretation in terms of RG flows of effective Hamiltonians,
reconciling modern real-space tensor network renormalization methods with tradi-
tional block-spin approaches. We derive algebraic relations for fixed point tensors,
calculate critical exponents, and benchmark our method on the Ising model and the
six-vertex model.

Chapter 6 studies non-local symmetries in tensor networks by expressing two-
dimensional classical partition functions in terms of strange correlators of judiciously
chosen product states and topological string-net wave functions. We show how the

2



1.2. Overview

topological properties of the string-net ensure that (part of ) the emerging non-local
symmetries of the scaling limit of the classical partition function at criticality are
already present at the ultraviolet level, highlighting parallels between topological
sectors and conformal primary fields in the shared framework of MPO symmetries.
In particular, we numerically identify the emergent anyonic excitations in finite-size
conformal field theory spectra of twisted partition functions on the torus. Addi-
tionally, we provide a complementary perspective on real-space renormalization by
recognizing known tensor network renormalization methods as the approximate
truncation of a coarse-grained strange correlator.

* * *
Regarding the scope of this dissertation, we would like to remind the reader of
Freeman Dyson’s binary classification of mathematicians (or of creative human
activities in general for that matter) into frogs and birds [4]:

“Some mathematicians are birds, others are frogs. Birds fly high in
the air and survey broad vistas of mathematics out to the far horizon.
They delight in concepts that unify our thinking and bring together
diverse problems from different parts of the landscape. Frogs live in the
mud below and see only the flowers that grow nearby. They delight in
the details of particular objects, and they solve problems one at a time.”

Since we are interested in numerical methods to approximate the explicit RG flows
leading from the muddy short-distance physics of lattice models to their universal
long-distance behavior, the work in this dissertation is, in many ways, most definitely
froggy. We apologize in advance to any high-flying birds who might feel offended
by our dragging them back down to the dirt, to the origin of any tree carrying food
for birds.
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CHAPTER TWO

Renormalization group theory

In this chapter1, we provide a pedagogic overview of renormalization group (RG)
theory with a bias towards equilibrium statistical physics, critical phenomena, and
statistical field theory. After a brief summary of the difficulties posed by many-body
systems exhibiting correlations across many length scales, we introduce essential
points of phase transitions, criticality, and mean-field theory. Next, we highlight
the idea of the renormalization group approach and enumerate its core concepts:
scaling, flows, fixed points, and universality. One of the main goals in this chapter
is to firmly instil the notion that quantum field theory is completely and utterly
unnecessary to understand renormalization group theory. Even though knowledge
of renormalization in quantum field theory surely complements our discussion and
is extremely useful in its own right, familiarity with its techniques is useful only to
the extent that one is interested in swiftly doing perturbative calculations involving
Feynman diagrams.

Throughout, we often resort to the Ising model as a guiding example, which,
despite its simplicity2, captures the gist of a considerable amount of questions
physicists ponder when they study many-body systems with an infinite amount of
degrees of freedom. What are the possible phases? What is the nature of transitions
between these phases and what are the universal properties of these transitions?
What does the ground state in each of these phases look like? What about excitations,
correlation functions, order parameters, and the interplay between field theory and
lattice models? We conclude this chapter with a short introduction to conformal
field theory, the numerical renormalization group, and a selection of some historical
real-space implementations of the renormalization group, without resorting to tensor
networks just yet.

2.1 Problems with many length scales

The reductionist mantra of physics tries to explain macroscopic phenomena in terms
of (possibly complex) microscopic behavior. In simple cases, such as hydrodynamics,

1The material in this chapter does not contain original research and is an amalgamation of articles
[5–7], reviews [8], notes [9, 10], textbooks [11–15], and other sources duly cited.

2The Ising model was actually one of the “theorist’s laboratories” Wilson used to shape his ideas
on renormalization [16]. Additionally, in the context of real-space renormalization, the Ising model’s
simplicity ought to discourage us from succumbing to any form of hubris: as of today, it has still not been
truly satisfactorily renormalized in three dimensions.

7



2. RENORMALIZATION GROUP THEORY

microscopic fluctuations are seen to average out when considering systems at larger
length scales, allowing for an adequate description in terms of continuum equations.
Luckily, it seems that length scales in nature have the tendency to decouple to the
extent that atomic fluctuations are not important for describing macroscopic fluids.

There however exist numerous phenomena where many scales of length are
equally important and fluctuations occur on all scales up to macroscopic wavelengths.
One of the most tangible3 examples is critical opalescence, which occurs in the study
of critical phenomena and second-order phase transitions. At its critical point, water
can no longer boil and the distinction between liquid and gas disappears. Near
criticality, density fluctuations develop at all possible length scales, and in particular
also at the length scales responsible for strong light scattering. The result is that
an otherwise transparent fluid suddenly looks milky and opaque near criticality. In
the Kondo effect, electrons of all wavelengths in the conduction band of a metal
interact with the magnetic moments of impurities, leading to a strongly-correlated
electron system. Other examples include turbulence, where a cascade of eddies spans
all length scales down to the millimetre level until viscosity damps the turbulent
fluctuations, and quantum field theory, where fluctuations at all momentum scales
appear in calculations.

The common trait of these problems is the presence of a lot of strongly coupled
degrees of freedom. Originally, renormalization referred to the ad hoc removal of
ultraviolet divergences encountered in the Feynman diagrams of quantum electrody-
namics [17]. The solution was to introduce an artificial cutoff in the integrals over
momenta of virtual particles, and then removing all dependence on the unwanted
cutoff by expressing the bare parameters e0 and m0 in terms of finite, experimentally
accessible quantities e and m. The renormalization group concept was introduced
by Gell-Mann and Low [18] to propose a family of parameters eλ relating the
behavior of quantum electrodynamics at an arbitrary momentum scale λ as a means
to interpolate between the physical charge e and the bare charge e0. The high-
energy behavior of the differential equations for eλ derived by Gell-Man and Low
served as an inspiration for the development of the renormalization group theory as
a conceptual framework by Wilson4.

Meanwhile, in the field of critical phenomena, people noticed experimentally
that a multitude of physical systems at criticality could be grouped into universality
classes with similar critical exponents describing the continuous phase transitions. At
criticality, the correlation length in a system diverges and fluctuations proliferate at
all length scales. It was noted that Landau’s mean-field theory of critical phenomena
could not describe the universal large-distance behavior of these transitions for
spatial dimensions d < 4, since it yielded predictions for critical exponents that
were incompatible with, for example, the known exact solution of the Ising model

3In practice, these experiments are done with binary fluid mixtures whose critical point can be
reached at much lower pressures. In the case of water, seeing critical opalescence requires a glass window
capable of withstanding 218 atm at 647 K.

4Here, and elsewhere in this dissertation, the term “Wilsonian” refers not to Wilson per se but to the
combined work of many physicists culminating in the current view on renormalization. Wilson himself
was rather modest about his own achievements, and was of the opinion that most of his work would have
been discovered sooner or later by his contemporaries [16].

8



2.1. Problems with many length scales

for d = 2 and experimentally measured exponents for d = 3. The existence
of universality classes led to scaling laws involving critical exponents and scaling
hypotheses for the singular part of thermodynamic quantities. Kadanoff developed a
qualitative, but not completely satisfactory, explanation of the scaling hypothesis in
terms of coarse-graining spins by assuming that the diverging correlation length was
the only relevant length scale at criticality [19].

Renormalization group theory thus has its roots both in particle physics and
critical phenomena. It took a physicist familiar with, and, more importantly, ap-
preciative of both disciplines to truly recognize the deep implications of the theory
and the unified view on quantum field theory and statistical mechanics it is capable
of providing. From a modern point of view, the renormalization group is a set of
ideas containing a mathematical procedure to gradually transfigure a physical theory
into one with different, effective degrees of freedom, yet in such a way that identical
answers are obtained in a certain asymptotic regime of interest. This procedure
sounds very impractical, but Wilson discovered that most long-distance physics
becomes remarkably simple due to universality, and can be completely characterized
by just a few (renormalized) parameters. The clue is to consider the short-distance
lattice spacing a of a lattice model (or the momentum cutoff Λ of a quantum field
theory) as an integral part of any physical theory. According to Wilson, we should
adjust the parameters of the theory in such a way that the long-distance physics
survives the coarse-graining procedure when gradually letting the lattice cutoff grow
(or momentum cutoff shrink). As we will see, universality is explained in terms
of the existence of fixed points in theory space, and the discrete set of universality
classes correspond to different realizations of how a system can be scale invariant.
Long-distance physics is to a large extent insensitive to what happens at short dis-
tances, but the way this decoupling arises is much more subtle and refined than in
classical theories.

In practice, there is no single equation. The abstract ideas of the framework
have to be adapted to fit the structure of the problem at hand. When a renor-
malization group approach fails on a particular problem, the qualitative picture of
renormalization is most likely not to blame but rather a lack of imagination on
the part of the practitioner. The general strategy however amounts to focusing
on degrees of freedom that control the asymptotic behavior, which often requires
physical intuition. In the presence of a Fermi surface for example, it turns out that
the relevant degrees of freedom live close to the Fermi momentum kF rather than at
the origin in momentum space [20]. Even though precise quantitative calculations
can and have been carried out, the generality of the framework suggests that it is
not even wrong to regard the idea of renormalization as a kind of meta-theory, an
overarching physical concept useful to many areas in physics. It is also possible to
think about renormalization as nothing more than a computational tool, an efficient
way to calculate the partition function one piece at a time5.

An important concept implicit in Wilson’s work is the notion of an effective field
theory. All quantum field theories (or all statistical mechanical models, since taking

5Going further along this insubstantial utilitarian path, we can regard the partition function as
nothing more than a computational device and physics boils down to a counting game.
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2. RENORMALIZATION GROUP THEORY

the continuum limit of a field theory with a cutoff is equivalent to a second-order
phase transition) should not be regarded as beautiful, final theories of everything but
rather as approximate, equally beautiful theories, which are however only valid in a
certain regime. Feeling the need to get rid of ultraviolet divergences is the result of
holding on to the absurd notion that field theories should be valid up to arbitrarily
short distances. In this light, taking the continuum limit by sending the momentum
cutoff to infinity becomes a vacuous statement: by definition of the RG procedure
we want the effective theory describing the low-energy physics to be insensitive to
what happens at the cutoff scale.

We would like to end this introductory section with a digression that should
be kept in the back of one’s mind when transitioning from renormalization group
theory to tensor network states in Chapter 3. With computational physics being
ubiquitous today, it is perhaps hard to imagine that Wilson’s work was done in a time
when the bulk of theoretical physicists only resorted to computer calculations for
work involving the Department of Defense. Using computers to make fundamental
progress in theoretical physics was considered a sign of bad taste. Reading Wilson’s
original papers as well as his popular scientific writing [21], it is striking that he
was not only concerned with the physical implications of his work, but also cared
a lot about its numerical translation, with numerical insights feeding back into
his theoretical work. He devoted a great deal of attention to massaging physical
problems into models amenable to practical computer simulations. Wilson himself
had access to a $5 million CDC 7600, which, with its 36.4 MHz CPU, was considered
the fastest digital computing machine from 1969 up until 1975. Incidentally, the
primary reason he even bothered to seriously implement his numerical RG solution
for the Kondo problem [5] was to a large extent driven by technological advances, as
evident from this interview excerpt [22]:

Q: And looking at the Kondo effect at that stage, does the stimula-
tion for that come from Phil Anderson [23]?

KW : No. It comes from my utter astonishment at the capabilities
of the Hewlett-Packard pocket calculator6, the one that does exponents
and cosines. And I buy this thing and I can’t take my eyes off it and I
have to figure out something that I can actually do that would somehow
enable me to have fun with this calculator . . . What happened was that
I worked out a very simple version of a very compressed version of the
Kondo problem, which I could run on a pocket calculator. And then I
realize that this was something I could set up with a serious calculation
on a big computer to be quantitatively accurate.

In a 1975 article [24], Wilson explicitly stated that, in his mind, “the renormalization
group is a numerical approach”, and he concluded that same article as follows:

“Where the renormalization group approach has been successful a
lot of ingenuity has been required: one cannot write a renormalization

6The Hewlett-Packard HP-35 was the first handheld electronic pocket calculator and was released in
1972.
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group cookbook. (In contrast, Feynman diagrams techniques can be
reduced to simple strict rules.) Even if one succeeds in formulating the
renormalization group approach for a particular problem, one is likely
to have to carry out a complicated computer calculation, which makes
most theoretical physicists cringe.”

Anecdotally though these stories may be, we believe they identify a hands-on style
of doing physics that has been (sub)consciously absorbed by the tensor network
community, and that the primarily Wilsonian roots of this vision all too often goes
unacknowledged.

2.2 Collective behavior, criticality, and phase transitions

To understand how the renormalization group, among other things, corrects Landau’s
mean-field theory of critical phenomena, it is useful to first of all remind ourselves
of some canonical results on phase transitions, criticality, and scaling.

2.2.1 Equilibrium statistical mechanics
The emergence of collective macroscopic properties from the intricate microscopic
dynamics of many degrees of freedom lies at the core of statistical mechanics. A
macrostate is characterized by a few phenomenological variables (volume, pressure,
temperature, entropy, . . . ) and often corresponds to a large number of microstates
which all contribute to the same macrostate. Rather than trying to derive the
macroscopic from the microscopic, statistical mechanics connects both descriptions
in a probabilistic way. For example, in the canonical ensemble7 at temperature
T , each microstate µ gets assigned a probability through the Boltzmann weight
exp(−βH({µ}))/Z, where β denotes the inverse temperature 1/kBT , H({µ}) the
Hamiltonian, and where the normalization is given by the partition function Z =∑
µ exp(−βH({µ})). Thermodynamic information about the macroscopic state

can then be extracted from suitable derivatives of the free energy F = −kBT lnZ,
where kB denotes Boltzmann’s constant.

The microscopic interactions for realistic systems are often however too com-
plicated for an ab initio approach, so that it may prove worthwhile to consider
averaging out over sufficiently many degrees of freedom to see if one ends up with a
simpler description. In this hydrodynamic limit, the averaged variables are no longer
a discrete set of degrees of freedom on the lattice but slowly varying continuous
fields, leading to the study of statistical mechanics of fields. Phenomenological
field approaches are thus of a mesoscopic nature and require a coarse-graining pro-
cedure to average out over thermal fluctuations with characteristic wavelengths
λ > λ(T ) ≈ v~/kBT � a, where v~/kBT is the de Broglie wavelength and a the

7Rather than relying on the ergodic hypothesis, we can motivate the introduction of statistical
ensembles with a mesoscopic approach. By dividing a system into lots of mesoscopic parts, where
each part is assumed to be described by a microstate reflecting the complexity of the whole system, the
properties of the entire system follow from a spatial rather than a temporal averaging over all subsystems
[13].
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2. RENORMALIZATION GROUP THEORY

lattice spacing. By considering an interval a� dx� λ(T ) around a point x, we can
define an average deformation field φ(x) which varies slowly over dx. Note that even
though we describe φ(x) as being a continuous field, it does not vary over distances
comparable to the lattice spacing, i.e. the remnants of the discrete lattice are still
present since there is a physical cutoff given by the lattice spacing. The key principles
to construct a phenomenological field theory are locality, translational symmetry,
and stability. Since interactions between particles are short-range in most situations,
translation invariance constrains the effective interactions to only involve derivatives
∂φ/∂x, ∂2φ/∂2x, . . . . Locality then signifies that higher derivative terms are less
important. We also require stability since we want to describe fluctuations around
an equilibrium solution, which excludes linear terms in φ or its derivatives.

2.2.2 A selection of simple discrete and continuum models
The mother of all discrete models is the Ising model, which is defined on a lattice of
spins σi, each spin taking the value −1 or 1. For a lattice of N sites there is a total
of 2N different spin configurations or microstates. The Hamiltonian (or the energy
for a given configuration {σ}) is given by

H[σ] = −J
∑

〈ij〉
σiσj − h

∑

i

σi, (2.1)

where 〈ij〉 indicates nearest-neighbor summation, J denotes ferromagnetic (J > 0)
or antiferromagnetic (J < 0) coupling, and h is an external magnetic field. The
Ising model can be generalized to the q-state Potts model

Hq[σ] = −Jq
∑

<ij>

δσiσj , (2.2)

where each spin σi now takes one of q possible values, coinciding with the Ising
model in zero magnetic field for q = 2. This model has a permutation symmetry Sq
of the spin labels. The q-state clock model is defined in terms of spins having values
among the q-th roots of unity eiφ, where qφ ∈ 2πZ. The Hamiltonian

Hc[φ] = −Jc
∑

<ij>

cos(φi − φj), (2.3)

has a Zq symmetry under φi → e2πi/qφi and a spin-flip symmetry φi → −φi.
As an example of statistical models with continuous degrees of freedom, let us

generalize the local spin to be a unit vector n, with Hamiltonian

H[n] = −J
∑

<ij>

ni · nj −
∑

i

h · ni, (2.4)

which is called the classical O(n) vector model if the vector n is taken to have
n components. The O(n) model contains respectively the Ising model and the
XY -model for n = 1 and n = 2. Going from the lattice to the continuum results

12
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in a continuum Hamiltonian of the form

H[n] =

∫
ddx (J∂in · ∂in− h · n) , (2.5)

where we have introduced the fields n(x) and h(x). By replacing the unit vector
constraint n2(x) = 1 at every position by

1

V

∫
ddx n2 = 1, (2.6)

we obtain the spherical model. We can also achieve the same effect by adding a
quartic potential as a penalty term to the Hamiltonian, leading to

H[n] =

∫
ddx

(
1

2
∂in · ∂in +

µ2

2
n2 +

u

4
(n2)2

)
. (2.7)

The energy minimum as a function of |n| depends on the relative values of the
couplings µ2 and u. Note that if n = 1, i.e. if n only has a single component φ, we
recover the φ4 model

H[φ] =

∫
ddx

(
1

2
(∇φ)2 +

µ2

2
φ2 +

u

4
φ4

)
, (2.8)

which, for u = 0 reduces to the exactly solvable Gaussian model.

2.2.3 Phase transitions and criticality
An important consequence of interactions among many degrees of freedom is the
possibility of new phases of matter whose collective behavior does not correspond in
any way to that of a few particles. A phase transition8 occurs when one macroscopic
phase transforms to a different one, which involves pronounced changes in various
response functions. The point in the phase diagram at which this happens is called
the critical point. Note that for a finite system of N spins, the number of terms 2N

in the partition function is obviously finite, which ensures the analyticity of the free
energy. Phase transitions, and non-analytic behavior in general, can thus only truly
take place in the thermodynamic9 limit N →∞.

First-order or discontinuous transitions are characterized by a finite jump in
thermodynamic quantities. Two (or more) phases on either side of the critical point
coexist exactly at the critical point. Slightly away from the critical point, there usually
exists a unique phase whose properties can be continuously connected to one of

8For the subsequent discussion on criticality and renormalization, we will concern ourselves with
thermal phase transitions driven by thermal fluctuations as opposed to quantum phase transitions. The
latter are driven by the purely quantum mechanical competition between ground states at zero temperature
when tuning a parameter in the Hamiltonian (see also Section 2.2.4).

9For lattice models, we take the thermodynamic limit to refer to N,V → ∞ while keeping the
density N/V = a−d fixed, where a denotes the lattice spacing. In quantum field theory, this limit
corresponds to an infinite system with an ultraviolet cutoff.
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FIGURE 2.1: Qualitative pressure-temperature and pressure-specific volume phase diagrams
of the liquid-gas phase transition. The free energy is analytic except for a branch cut along
the phase boundary.

the co-existent phases at the critical point. The discontinuities in thermodynamic
quantities thus result from going from one stable phase to another stable phase. Ad-
ditionally, the correlation length, which measures the distance over which fluctuations
are significantly correlated, generally remains finite in first-order phase transitions.

At a second-order (or continuous) transition, the correlation length effectively
becomes infinite and fluctuations are correlated across all length scales. This forces
the whole system to be in a unique, critical phase, and phases on either side of the
critical point must converge to that same critical phase at the critical point. There
are no jumps in thermodynamic quantities since differences like energy density have
to smoothly go to zero at the critical point. The derivatives of thermodynamic
quantities however, such as the specific heat or the susceptibility, are discontinuous
or singular at the critical point. Crucially, the symmetry of one phase, which is
usually the low-temperature one, is a subgroup of the symmetry of the other. We
will come back to the important concept of symmetry breaking in Section 2.4.5.

Let us consider two simple examples in parallel to illustrate the above points: the
condensation of a gas into a liquid (see Fig. 2.1) and the phase transition between
paramagnetic and ferromagnetic phases in simple magnets (see Fig. 2.2). In both
cases, the first-order transition happens along a coexistence line that terminates at a
critical point, where the isotherms exhibit singular behavior. In the vicinity of the
critical point, the difference between the densities of the coexisting liquid and gas
phases vanishes, while the isothermal compressibility κ = −(∂V/∂P )|T /V →∞
as T → Tc. Close to criticality, the fluid looks cloudy due to critical opalescence, which
signals that the collective density fluctuations occur at long enough wavelengths
to scatter visible light. For the ferromagnet, it is the zero-field susceptibility χ =
(∂M/∂H)|H=0 which diverges as T → Tc.

In the vicinity of a critical point, the singular behavior is characterized by a set
of critical exponents, which describe the non-analyticity of various thermodynamic
functions. For the case of the ferromagnet10, let us introduce the reduced temperature
t = (T−Tc)/Tc, where Tc denotes the Curie temperature, together with the reduced

10Due to universality, the critical exponents at the gas-liquid critical point are actually identical with
those of simple ferromagnets we consider here.
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FIGURE 2.2: Qualitative external field-temperature and magnetization-external field phase
diagrams for a simple magnet.

external magnetic field h = H/(kBT ). In the limit t → 0, any thermodynamic
quantity is assumed to decompose into a regular part that remains finite (but can be
discontinuous), and a singular part, which diverges or has diverging derivatives. The
power-law behavior11 of these singular parts is listed below:

α The heat capacity is the thermal response function, with singularities at zero
field described by an exponent α,

C(T, h = 0) ∝ |t|−α. (2.9)

A positive value of α corresponds to a divergence, while a negative α entails a
finite heat capacity, possibly with a cusp.

β The order parameter (see Sec. 2.4.5) is given by the magnetization

m(T ) =
1

V
lim
h→0+

M(T, h), (2.10)

which, close to the critical point, behaves as

m(T, h = 0) ∝ (−t)β , (2.11)

for T < Tc (it is zero for T > Tc).

γ The susceptibility is the response of the order parameter to its conjugate field,
and diverges as

χ(T, h = 0) ∝ |t|−γ . (2.12)

Assuming a local order-parameter density m(r) such that

M =

〈∫
d3r m(r)

〉
, (2.13)

11We tacitly assume that the same singularity governs both sides of the transition, so that, for example,
the identification α+ = α− ≡ α holds.
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it is straightforward to show that, for the connected correlation functions

Γc(r) = 〈m(r)m(0)〉 − 〈m(r)〉 〈m(0)〉 , (2.14)

the following special case of the fluctuation-dissipation theorem holds:

χ =
V

kBT

∫
d3r Γc(r), (2.15)

which relates a bulk response function to microscopic fluctuations. If g
then denotes a typical value of the correlation function for |r| < ξ, we find
kBT/V < gξ3, i.e. a diverging susceptibility implies a diverging correlation
length. If we imagine a spin system near the critical point as an aggregate of
droplets of different magnetizations, we can already appreciate that spins have
to fluctuate over all length scales from the lattice spacing up to the (diverging)
correlation length. Indeed, if this were not the case, the connected correlation
function would have a peak near |r| ∼ ξ and be small below that scale.

δ At T = Tc, the magnetization vanishes along the critical isotherm as

m(T = Tc, h) ∝ |h|1/δ. (2.16)

ν, η Let us assume the Ornstein-Zernike form for the asymptotic correlation
functions near criticality,

Γc(r) ∼ e−|r|/ξ

|r|p , t→ 0. (2.17)

The critical exponent ν associated to the correlation is defined by

ξ(T, h = 0) ∝ |t|−ν , (2.18)

while for t = 0, where ξ =∞, there is no longer exponential but power-law
decay of correlations with

p = d− 2 + η, (2.19)

where η is the critical exponent associated to the power-law decay of correla-
tions at the critical point.

Note that the significance of the critical exponents was, at first, wholly experimental.
Series of experiments on widely different systems, with critical temperatures orders
of magnitude apart, could be grouped into classes which shared approximately the
same critical exponents. We mention this because the definitions of {α, β, γ, δ}
given above are rooted in experimental convenience. We will see later on in Sec. 2.6
and Sec. 2.8 that other linear combinations of the critical exponents are actually a
lot more fundamental from a theoretical perspective.
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2.2.4 Quantum criticality and quantum-to-classical mapping
In the previous sections, we have focused on critical behavior in classical systems
described by statistical mechanics for reasons of clarity. At finite temperatures,
thermal fluctuations usually dominate quantum effects, but there are of course many
scenarios where quantum effects do become of fundamental importance, e.g. in
low dimensional strongly-correlated quantum systems12 and in most quantum field
theory applications. Classical statistical mechanics however remains important as
a very good approximation to quantum statistical mechanics when the correlation
length exceeds the typical de Broglie wavelength of the system. In that case, there is
no need to invoke quantum mechanics13. For system with a characteristic velocity v
(speed of light, Fermi velocity, . . . ), the de Broglie wavelength at temperature T is
λT = v~/kBT ∝ β, so that, for large enough temperatures or very close to a finite
temperature critical point where ξ � λT , classical statistical mechanics takes over.

Mathematically, the formalism for describing quantum field theories and sta-
tistical mechanics of continuous phase transitions is very similar. For statistical
mechanical models defined in the continuum, the analogy with quantum field the-
ory is particularly manifest. For example, consider the partition function of the
Hamiltonian for the φ4-model given in Eq. (2.8),

Z =

∫
Dφ exp

(
−β
∫

ddx

(
1

2
(∇φ)2 +

µ2

2
φ2 +

u

4
φ4

))
, (2.20)

The partition function of this d-dimensional statistical model is a sum over all
possible configurations of a field, i.e. a functional integral entirely analogous to the
Euclidean generating functional of a quantum field in d space-time dimensions. By
rescaling the field as φ→ √βφ and the φ4-coupling as u→ (1/β)u, we can even
remove the explicit temperature dependence,

Z =

∫
Dφ exp

(
−
∫

ddx

(
1

2
(∇φ)2 +

µ2

2
φ2 +

u

4
φ4

))
, (2.21)

so that changing the temperature is seen to correspond to rescaling the field and
adjusting couplings appropriately.

The partition function of a d-dimensional quantum system described by a density
operator14 ρ = exp (−βH) follows from the path integral formalism by a Wick
rotation t→ −iτ and restricting Euclidean time τ to a finite strip of extent β,

Z = Tr (exp (−βH)) =

∫
[Dφ(τ)]e−SE(φ(τ)). (2.22)

At zero temperature, the extent of the additional dimension becomes infinite and
12We will touch upon some aspects of the critical behavior of quantum systems at zero temperature

when discussing matrix product state renormalization in Chapter 4. Quantum criticality is intimately
related to the existence of gapless excitations in the system, i.e. a continuum of excited states arbitrarily
close in energy to the ground state.

13This is an example of the decoupling of scales we mentioned in Sec. 2.1.
14The quantum Hamiltonian generally depends on non-commuting operators.
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we recover the generating functional in Euclidean time. At finite temperatures,
the quantum partition function of a d-dimensional system looks like that of a
(d+ 1)-dimensional classical system defined on a strip of width β. This quantum-
to-classical mapping is quite general, but apart from a few special cases, it is less
illuminating than one might think because there is usually no “easier” side to the
mapping. Related to the above is the transfer matrix formalism15, which is the
statistical mechanical analogue of the operator formalism in quantum field theory.
Recognizing the transfer matrix T as an evolution operator U(a) acting over a
lattice spacing a in the temporal direction allows for the definition of a Hamiltonian
operator given by T = exp(−aH). The correlation length ξ is then related to the
mass gap m of the associated Euclidean quantum field theory by

ξ =
1

ma
. (2.23)

A diverging correlation length in the vicinity of a critical point thus corresponds to
the field theory’s renormalized mass going to zero for a fixed lattice cutoff a, i.e. a
critical system is equivalent to a massless quantum field theory, if the lattice spacing
a remains finite. Let us rephrase this statement slightly differently. Removing the
cutoff by taking the continuum limit of a field theory with a cutoff is equivalent to
taking the limit in which the correlation length is infinitely large compared to the
cutoff: the continuum limit is a second-order phase transition [25].

2.3 Scaling and homogeneity

To explain the scaling behavior of thermodynamic quantities near the critical point,
the scaling hypothesis postulates that the correlation length ξ is the only important
length scale near criticality, in terms of which all other lengths must be measured.
The singular form of the free energy density (and any other thermodynamic quantity
for that matter) in the neighborhood of the critical point is then assumed to be given
by a homogeneous function of its parameters,

f(t, h) ∼ |t|2−αF
(

h

|t|∆ , . . . ,
gj
|t|φj , . . .

)
, (2.24)

where F is a scaling function (see next paragraph). The gap exponent ∆ = β + δ
determines how h scales with t, while the φj are the cross-over exponents for possible
other conjugate-variable pairs in the theory16. The homogeneous form of f(t, h) has
been chosen to reproduce the singularity of the heat capacity at h = 0, since C ∼
−∂2f/∂t2 ∼ |t|−αC(h/t∆), where C(h/t∆) denotes the homogeneous function
resulting from differentiating Eq. (2.24) twice.

15We will come back transfer matrices in Sec. 2.10.1.1 and in the context of tensor network states,
where these objects are of crucial importance (see Chapter 3 and Chapter 4).

16In RG parlance, the cross-over exponents control the relative importance of these fields near t = 0
in the vicinity of a particular critical point. In original scaling formulations, these additional exponents
were absent because they more often than not correspond to irrelevant operators (see Sec. 2.5.3).
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Before sketching the implications of this ansatz, let us introduce a short inter-
mezzo to explain homogeneous functions and their intimate relation to power laws.
A function f(x) of one variable x > 0 is called homogeneous if f(λax) = λf(x)
for all λ > 0, and a power law if f(x) = x1/af(1) with exponent 1/a, where f(1)
is the value of the function evaluated at x = 1. It is easy to show that a function
is homegeneous if and only if it is a power law, with the important property that
the relative change f(λax)/f(x) = λ is a constant independent of x. A function
f(x, y) of two variables is called a generalized homogeneous function if

f(λax, λby) = λf(x, y), for all λ > 0, (2.25)

and if it satisfies a scaling form with exponent 1/a if

f(x, y) = |x|1/aF±
(
y/|x|b/a

)
, (2.26)

where F±
(
y/|x|b/a

)
= f(±1, y/|x|b/a) is called the scaling function, which eval-

uates the function f(x, y) at x = ±1 and rescaled variable y/|x|b/a. One can
show that f(x, y) is a generalized homogeneous function Eq. (2.25) if and only
if it can be rewritten in the scaling form Eq. (2.26), satisfying the property that
f(λax, λby)/f(x, y) = λ is independent of x. Even without knowing the ex-
plicit functional form f(x, y), it is possible to check if f(x, y) is a generalized
homogeneous function by plotting the transformed function x−1/af(x, y) versus
the rescaled argument y/xb/a and checking if the data collapses onto the scaling
function F .

The fact that the correlation length is the most important length scale at criti-
cality and solely responsible for singular contributions to thermodynamic quantities
actually determines the leading singular behavior of the free energy. Let us divide
a system of linear size L into approximately independent components of size ξ.
Because lnZ(t, h) is extensive and dimensionless, it must look something like

lnZ =

(
L

ξ

)d
gξ + . . .+

(
L

a

)d
ga, (2.27)

where a is the lattice spacing, and gξ and ga are non-singular functions of dimen-
sionless parameters. The first term determines the leading singular behavior, so
that

fs(t, h) ∼ lnZ

Ld
∼ ξ−d ∼ |t|dνg

(
h

|t|∆
)

(2.28)

where we have made use of the more fundamental assumption that the correlation
length is a homogeneous function, i.e. ξ(t, h) ∼ |t|−νg(h/|t|∆). Identifying the
expression for the singular part of the free energy with Eq. (2.24) immediately yields
a first example of a scaling law: 2− α = dν ( Josephson’s law).

Other scaling laws follow from identifying critical exponents in thermodynamic
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quantities calculated using Eq. (2.24). The magnetization equals

m(t, h) ∼ ∂f

∂h
∼ |t|2−α−∆M

(
h

|t|∆
)
. (2.29)

In the limit x→ 0,M(x) is a constant, so that

m(t, h = 0) ∼ |t|2−α−∆ −→ β = 2− α−∆. (2.30)

For x→∞ on the other hand, we haveM(x) ∼ xp and

m(t = 0, h) ∼ |t|2−α−∆

(
h

|t|∆
)p

, (2.31)

which, since this limit should be independent of t, requires 2− α−∆ = ∆p, hence

m(t = 0, h) ∼ h(2−α−∆)/∆ −→ δ =
∆

β
. (2.32)

Similarly, the susceptibility yields

χ(t, h = 0) ∼ ∂f

∂h

∣∣∣∣
h=0

∼ |t|2−α−2∆ −→ γ = 2∆− 2 + α. (2.33)

Together, these relations lead to α+2β+γ = 2 (Rushbrooke’s law) and γ = β(δ−1)
(Widom’s law). Another scaling law is obtained from looking at the decay of the
correlations functions at criticality, which is governed by η. Since we have seen that

Γ(x) ∼ 1

|x|d−2+η
, (2.34)

we can integrate the connected correlation functions to get an additional exponent
identity

χ ∼
∫

ddx Γ(x) ∼
∫ ξ ddx

|x|d−2+η
∼ η2−η ∼ |t|−ν(2−η), (2.35)

namely γ = ν(2− η) (Fisher’s law).

2.4 Landau free energies and mean-field theory

Let us now come back to phenomenological field theories and consider the example
of a ferromagnet17 to discuss the mean-field theory predictions for critical behavior.
As we will see, mean-field theory is the saddle point approximation to the Landau-
Ginzburg partition function. More generally, Landau theory is a phenomenological

17Even though the origin of magnetism is quantum mechanical, a phenomenological Landau theory
of magnetism considers only the long-wavelength, collective excitations of spins to be important close to
the phase transition.
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field approach primarily suited to be used in the vicinity of a critical point, where
the order parameter is small. Note that the importance of the contributions of
Landau theory to physics is of far greater significance than the brief exposition below
suggests.

2.4.1 Landau theory

Consider an n-component coarse-grained order parameter field ~m(x) living in a
d-dimensional space. As already mentioned in Sec. 2.2.1, we should think of ~m(x)
as a mesoscopic coarse-grained quantity with an implicit cutoff (since it contains no
fluctuations smaller than the lattice spacing a). The key idea is that, by going from
the microscopic to a mesoscopic scale, non-analyticities associated with microscopic
degrees of freedom are washed out, and the probability distribution for the coarse-
grained degrees of freedom ~m(x) close to the critical point can be obtained by an
analytic expansion in powers of ~m. Non-analyticities at the macroscopic scale are
also avoided as these involve an infinite number of degrees of freedom, which we
steer clear of by adhering to the mesoscopic regime.

It will become clear that the dimensionality of the order parameter together with
the spatial dimension are important in distinguishing universality classes. The case
n = 1 includes liquid-gas transitions, binary mixtures, as well as the uniaxial magnets
we have been considering as an example. The case n = 2 captures superfluidity,
superconductivity, and planar magnets while n = 3 corresponds to classical magnets.
While most down-to-earth situations occur in d = 3, phenomena on surfaces
(d = 2) and chains or wires (d = 1) are also of interest. We should also not forget to
mention the case d = 4, which includes relativistic quantum field theories.

Explicitly, coarse-graining amounts to a change of variables from the original
microscopic degrees of freedom to the field ~m(x) by integrating over all allowed
configurations to construct new, effective probabilities for the field configurations.
This mesoscopic perspective suggests the introduction of an effective reduced18

Hamiltonian

βH[~m(x),~h(x)] =

∫
ddx Ψ[~m(x),~h(x)], (2.36)

where ~h(x) = β ~H(x) denotes the reduced magnetic field conjugate to the order
parameter and where Ψ is the Landau free energy19 [26]. Close to the critical point,
where ~m can be safely assumed to be small, we expect to be able to expand the

18Note that while the probability of a particular configuration is indeed given by the Boltzmann
weights exp(−βH[~m(x)]), this does not imply that all terms in the exponent are actually proportional
to β. Such a dependence only holds for the true microscopic Hamiltonian; in general the mesoscopic
parameters will be analytic functions of the external parameters such as temperature. This, in a way, is
exactly the whole point of the Landau approach.

19By including the work against the external field, we are actually dealing with the Gibbs canonical
ensemble. We will continue to write F though.
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effective free energy as something resembling

Ψ[~m(x),~h(x)] =
1

2
(∇~m)2 − ~m(x) · ~h(x) +

1

2
r0m

2(x) + s0m
3(x) + u0m

4(x) + . . . ,

(2.37)

where we assumed the external field to be weak by only introducing a linear coupling.
In principle, any term compatible with the symmetries of the system is allowed, since
microscopic symmetries survive the coarse-graining process and constrain the effec-
tive Hamiltonian. Together with the usual assumptions of locality and uniformity,
this enumeration of constraints limits the number of possible interactions.

To describe rotationally invariant magnetic systems, it is sufficient to include
only a few terms, leading to the Landau-Ginzburg Hamiltonian

βH = βF0 +

∫
ddx

(
t

2
~m2(x) + u~m4(x) +

K

2
(∇~m(x))2 + . . .− ~h · ~m(x)

)

(2.38)

where the constant term βF0 is an analytical contribution to the free energy com-
ing from the integration over short-range degrees of freedom. The couplings
{t, u,K, . . .} are phenomenological parameters obtained after coarse-graining the
microscopic degrees of freedom while constraining their average to ~m(x). These
parameters are non-universal functions of both microscopic interaction parameters
and external parameters20.

2.4.2 Saddle point approximation and mean-field theory
In principle, we can now calculate various thermodynamic functions (and their
singularities) from the partition function

Z =

∫
[d~m(x)]e−βH[~m(x)], (2.39)

where H[~m(x)] corresponds to the Landau-Ginzburg Hamiltonian Eq. (2.38).
Even though we have a well-defined lattice spacing a, this functional integral is
still hard to do. Mean-field theory boils down to considering the saddle point
approximation by replacing the functional integral by the maximum value of the
integrand, which corresponds to the most probable field configuration of ~m(x).
Since the interactions favor keeping the magnetization vectors parallel, the parameter
K is expected to be positive and any variation in magnitude or direction of ~m(x)
will result in an energy penalty from the term K(∇~m)2/2. This suggests that the
field is uniform in its most probable configuration for constant ~h, so that

Z ≈ e−βF0

∫
d~m exp

(
−V

(
t

2
m2 + um4 + . . .− ~h · ~m

))
, (2.40)

20See footnote 18.
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t < 0

0

Ψ[m]

m

t > 0

t = 0

m̄−m̄

FIGURE 2.3: Sketch of the Landau free energy Eq. (2.42) at different temperatures. A
second-order phase transition at t = 0 leads to spontaneous symmetry breaking for t < 0.

where V is the volume of the system. For V →∞, this integral is dominated by the
saddle point ~m which maximizes the exponent of the integrand. The saddle point
free energy is then

βF = − lnZ ≈ βF0 + V min
~m

[
t

2
m2 + um4 + . . .− ~h · ~m

]

︸ ︷︷ ︸
Ψ[~m,~h]

, (2.41)

where we have identified the appropriate Landau free energy Ψ[~m,~h] for this
theory. The most probable magnetization is obtained by picking a magnetization
~m = m̄~h/‖~h‖ aligned to the external field, with a constant magnitude m̄. Let us
now choose to only take the following terms into account:

Ψ[m,h] =
t

2
m2 + um4 − hm, (2.42)

where we, from now on, restrict to the scalar case of n = 1 for simplicity. The
behavior of this quartic function is plotted in Fig. 2.3. The magnitude m̄ is obtained
from

∂Ψ

∂m
= tm̄+ 4um̄3 − h = 0, (2.43)

To match our model with the experimental phase diagram of a ferromagnet, we
now have to impose physical conditions on the phenomenological parameters. Since
the parameters are assumed to be analytic functions of temperature in the vicinity of
the critical point, they can be expanded as

t(T, . . .) = a0 + a1(T − Tc) +O((T − Tc)2), (2.44)
u(T, . . .) = u+ u1(T − Tc) +O((T − Tc)2). (2.45)

The parameter t should be a monotonic function of temperature which vanishes at
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Tc, so that a0 = 0 and a1 = a > 0. Stability of the ferromagnetic phase requires
u > 0 (recall that we also assumed K > 0). Note that these constraints are the
most minimal and natural ones. This remarkably simple model can qualitatively
describe second-order21 phase transitions and illustrates how a phase transition from
a regime where m̄ = 0 to a regime where m̄ 6= 0 can be captured by a continuous
function Ψ. For h = 0, the Landau free energy is invariant underm→ −m, but this
symmetry is spontaneously broken when t < 0 (see Sec. 2.4.5). A crucial observation
is that a perfectly regular Landau free energy Ψ[m,h, T ] can lead to singularities in
the saddle point free energy. The point is that the value m̄ which minimizes Ψ is
allowed to be a singular function of h and T , i.e. the singularities are introduced by
the non-analytic minimization procedure.

Let us now derive the mean-field predictions for the critical exponents:

α The saddle point free energy Eq. (2.42) for h = 0 is given by

βF = βF0 + VΨ(m̄) = βF0 + V

{
0 for t > 0

− t2

16u for t < 0
(2.46)

where we have used that t = a(T − Tc) up to leading order. In that case, we
also have that ∂/∂T ≈ a∂/∂t, so that in the vicinity of Tc we find

C(h = 0) = −T ∂
2F

∂T 2
≈ −Tca2 ∂

2kBTcβF

∂T 2
= C0 + V kBa

2T 2
c ×

{
0 for t > 0
1

8u for t < 0

(2.47)

Since the saddle point predicts a discontinuity instead of a divergence, insisting
on the power law form t−α suggests α = 0. For all spatial dimensions, mean-
field theory predicts that no divergence occurs.

β For h = 0, we can obtain the magnitude of the magnetization directly from
Eq. (2.43), which has real solutions

m̄(h = 0) =

{
0 for t > 0

±
√

a
4u (Tc − T )1/2 for t < 0

(2.48)

so that β = 1/2.

γ Differentiating Eq. (2.43) with respect to m̄ at h = 0 gives the inverse
longitudinal susceptibility,

χ−1 =
∂h

∂m̄

∣∣∣∣
h=0

= t+ 12um̄2 =

{
t for t > 0

−2t for t < 0.
(2.49)

21This is a second-order phase transition because m̄ is continuous at t = 0, as can be seen from
Eq. (2.48).
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Table 2.1: Critical exponents for the Ising model universality class (n = 1).

Critical exponents Ising d = 2 Ising d = 3 [27] Mean field d ≥ 4
α 0 0.11008 0
β 1/8 0.326419 1/2
γ 7/4 1.237075 1
δ 15 4.78984 3
ν 1 0.629971 1/2
η 1/4 0.036298 0

Identifying χ ∝ |t|−γ predicts γ = 1.

δ At t = 0, Eq. (2.43) gives

m̄(t = 0) =

(
h

4u

)1/3

, (2.50)

yielding δ = 3.

ν, η The correlation length can be obtained by considering small fluctuations on
top of the (Gaussian) mean-field solution, yielding the asymptotic solutions
for the connected correlation function Γc(x) ∼ x2−d for x� ξ and Γc(x) ∼
ξ(3−d)/2 exp(−x/ξ)/x(d−1)/2 for x� ξ, where ξ ∼ (at)−1/2 for t > 0 and
ξ ∼ (−2at)−1/2 for t < 0. We thus identify ν = 1/2 and η = 0.

The critical exponents for the Ising universality class are summarized in Table 2.1.
Note that the mean-field predictions contain a flair of universality since they do not
depend on microscopic details. They are however too universal in the sense that
there is no differentiation between spatial dimensions. In the next sections, we will
argue why mean-field theory fails for d < 4.

2.4.3 The neglected importance of fluctuations on all scales
Recall that mean-field theory is the saddle-point approximation to a theory char-
acterized by a Landau free energy. Below the so-called upper critical dimension du,
mean-field theory is no longer reliable because fluctuations start modifying the
saddle-point conclusions22. For d less than the lower critical dimension (dl = 2 for
continuous symmetries and dl = 1 for discrete symmetries) fluctuations are strong
enough to destroy the ordered phase. In between dl < d < du, they are strong
enough to invalidate saddle point results, but not sufficiently powerful to completely
destroy the ordered phase.

The importance of fluctuations can be roughly estimated by comparing fluctua-
tions of m(x) over a distance ξ with its average value m̄. If fluctuations are small,

22Note that the value of the upper critical dimension depends on the nature of the critical point,
e.g. for a tricritical point we have du = 3.
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then

Γ(ξ)

m̄2
=

ξ2−d

−at/4u � 1, (2.51)

or, using ξ ∼ (−at)−1/2, we find u(a|t|)(d−4)/2 � 1. We see that this particular
instance of the Ginzburg criterion can be fulfilled for t → 0 only if d > 4. More
generally, long wavelength fluctuations dominate the critical behavior in spatial
dimensions d < 4, and it is exactly these fluctuations which are ignored in mean-field
theory when the correlation length diverges. To properly deal with long-wavelength
fluctuations, one must average step-by-step, accounting for all length scales.

Put differently, Landau theory fails for d < 4 because it only considers fluctua-
tions with wavelengths λ < L where L is a mesoscopic averaging scale a ≤ L ≤ ξ.
Since the average magnetization m(x) is averaged over a region of size L, one can
average over microscopic variations in the magnetization only if the average m(x)
remains unchanged. So fluctuations with wavelengths λ < L can be taken into
account statistically, but those for which L < λ ≤ ξ are left out of the picture. It is
of course these fluctuations which proliferate as one approaches the critical point
where ξ → ∞. In this sense, Landau theory is a compromise between statistical
mechanics and hydrodynamics [28]. We will see in Sec. 2.5 that the renormalization
group tries to solve this problem by taking all wavelengths a ≤ L ≤ ξ into account.
The difference will turn out to be that the couplings t and u, which were constant
in Landau theory, now actually have to depend on the coarse-graining scale L for
a ≤ L ≤ ξ. More precisely, the couplings have to flow if we want physical results to
be independent of L, and since ξ → ∞ at criticality, all intermediate wavelength
fluctuations have to be taken into account.

2.4.4 Mean-field theory and anomalous dimensions

By restricting to mean-field theory in this section, we might have given the wrong
impression that the Landau free energy prescription leads to macroscopic theories
which yield physical answers without any reference to the lattice cutoff a. We would
like to stress that, except for the mean-field approximation, the limit a→ 0 cannot
be taken straightforwardly because it can be shown to lead to ultraviolet divergences
in the free energy. In Sec. 2.7.2, we will discuss the Gaussian model, which is almost
identical to the mean-field theory described before. There, it will become clear
that the correct procedure to deal with these divergences is to let the couplings flow.
Note that the fact that ultraviolet divergences do not affect infrared singularities
only happens in trivial models like the Gaussian model. This is important to keep
in the back of one’s mind, since critical exponents are determined by the nature of
infrared divergences.

Another way to understand the dangers of boldly sending lattice spacings to
zero is by considering dimensional analysis. The scaling hypothesis boils down to
measuring any quantityX with dimensions [X] = L−y , whereL denotes a length, to
be proportional to ξ−y in the vicinity of the critical point. Since βF is dimensionless,
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βF/V = βf has dimension L−d, and, from Eq. (2.34), [Γ(x)] = L2−d−η, so that

[M/V ] = [〈m(x)〉] = L(2−d−η)/2. (2.52)

The dimension of m(x) is however [m(x)] = L(2−d)/2. The naïve conclusion
is that ensemble averaging should not change the dimension, and hence η = 0.
Ensemble averaging does however change the dimension in a subtle way because it
introduces a length scale into the problem: the ultraviolet cutoff a. Indeed, under
a scale transformation x′ = x/b, we have that m(x/b) = b(2−d)/2m(x), while an
anomalous contribution arises for

〈m(x/b)〉 ≡ f(x/b; a/b) = b(2−d−η)/2f(x; a). (2.53)

Anomalous dimensions have their origin in the changes to the finite, effective
cutoff under a scale transformation. In models more complicated than (Gaussian)
mean-field theory, the arbitrary RG scale set by the lattice spacing influences the
infrared singularity at t = 0, leading to anomalous dimensions η 6= 0, which we will
encounter in Sec. 2.7.4 and Sec. 2.8.

2.4.5 Symmetry-breaking phases
A cornerstone of the Landau-Ginzburg paradigm is the intimate relation between
phase transitions and the concept of symmetry breaking. Spontaneously broken
symmetries are symmetries of the Hamiltonian (or of the action) which are no
longer reflected in the macrostate of the statistical system (or in the ground state
of the quantum system). Broken symmetries can be either discrete (e.g. Z2 spin-
flip invariance in the Ising model) or continuous (e.g. rotation in O(n) scalar field
theory). In both cases, symmetry-breaking phases of matter are characterized by an
order parameter which captures a quantity that is not invariant under the symmetry
under consideration and has a non-zero expectation value in the broken phase. The
phase with broken symmetry is often referred to as the ordered phase, since it
establishes a long-range order, while the unbroken, high-temperature phase is called
the symmetric phase. Note that we have seen in Eq. (2.21) that the analogue of
temperature in field theories is some nonlinear coupling constant. In the context
of symmetry breaking, this implies that phase transitions in field theory occur as a
function of a coupling constant instead of the temperature. The resulting physics is
however indistinguishable.

As an example for the discrete case, consider the breaking of the spin-flip sym-
metry σi → −σi in the Ising model in the limit of zero external field. The order
parameter is given by 〈σi〉 since the magnetization is nonzero in the low-temperature
phase where the symmetry is broken. The case of continuous symmetries is rather
more interesting because spontaneously breaking a continuous symmetry is inti-
mately tied to the presence of gapless excitations. These so-called Nambu-Goldstone
modes are associated with long-wavelength fluctuations of the order parameter. Fa-
miliar examples include phonons in crystals breaking translation invariance, spin
waves in ferromagnets breaking rotational invariance, and Higgs modes breaking
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local gauge symmetry in superconductors and electro-weak theory. At finite tem-
perature, long-wavelength thermal fluctuations of the order parameter destroy the
long-range order, and prevent spontaneous symmetry breaking from happening
in one- and two-dimensional systems with short-range interactions. This is the
content of the Mermin-Wagner-Coleman theorem. The implications for quantum
systems23 follow from the analogy between a quantum system in d spatial dimensions
and a classical system in d + 1 dimensions, where the additional imaginary time
dimension has an extent determined by the inverse temperature β. For any non-zero
temperature, there exist fluctuations of the continuous order parameter at length
scales greater than vβ, where v denotes the characteristic velocity of the system24,
and these fluctuations are governed by classical statistical mechanics. The Mermin-
Wagner-Coleman theorem thus implies that no continuous symmetry can be broken
in two dimensions except at zero temperature, i.e. two-dimensional systems with a
continuous symmetry cannot be ordered at finite temperature. For one-dimensional
quantum systems, such breaking can remain impossible even at zero temperature
due to quantum fluctuations restoring the symmetry. This behavior confirms the
trend that as we go to lower dimensions, fluctuations become more proficient at
destroying any potential order.

Interestingly, there are ways to avoid the ruthless Mermin-Wagner-Coleman the-
orem. A famous and Nobel-prize winning example is the infinite-order Berezinskii-
Kosterlitz-Thouless (KT) phase transition in the two-dimensionalXY -model, which
is the n = 2 case of the O(n) model defined by

H = −J
∑

<ij>

cos(θi − θj)−
∑

j

hj cos θj , (2.54)

where we have parametrized the unit-length rotor of Eq. (2.4) as ni = (cos θ, sin θ).
In contrast to the continuous phase transitions we have discussed up to now, the
KT-transition does not break any symmetry. If we were to take the spontaneous
magnetization as the local order parameter, we would find that 〈ni〉 = 0 at both
sides of the transition. At any finite temperature T > 0, there is no true long-
range order but there still appears to be a phase transition for a critical temperature
Tc, separating a low-temperature quasi-ordered phase with algebraically decaying
correlation functions, where the power law depends on the temperature, from a high-
temperature disordered phase with exponentially decaying correlation functions. The
relevant degrees of freedom turn out to be vortices, stable topological defects, which
are bound in pairs below Tc and deconfined above that temperature, rendering the
KT-transition the epitome of a topological phase transition.

23Note that we implicitly consider infinite quantum many-body systems since the “breaking” inherent
to spontaneous symmetry breaking requires all degenerate ground states to be orthogonal to each other in
the infinite volume limit, leading to super-selection sectors.

24Here we have again invoked the de Broglie wavelength as a measure of the applicability of classical
statistical mechanics.
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2.5 Renormalization: concepts and ideas

Having provided a sufficient background to understand the task ahead, let us now
introduce the Wilsonian concepts and ideas of the renormalization group.

2.5.1 Kadanoff ’s block-spin renormalization group
The success of the scaling hypothesis Eq. (2.24) in predicting scaling relations
between critical exponents strongly suggests that the only relevant length scale close
to the critical point is the (diverging) correlation length ξ. In this sense, critical
behavior is determined by statistically self-similar fluctuations up to the scale set by
ξ →∞.

In 1966, Kadanoff exploited this insight to derive the known scaling relations
(and new hyperscaling25 relations involving the spatial dimension d) by mapping a
near-critical system onto itself while reducing the amount of effective, correlated
degrees of freedom [19]. Following Kadanoff, we consider the Ising Hamiltonian,

H = −J
∑

<ij>

σiσj − h
∑

i

σi, (2.55)

on a hypercubic d-dimensional lattice with lattice spacing a. Actually, we will be
interested in the reduced Hamiltonian,

H[{σ}; t, h] ≡ βH = −J
∑

<ij>

σiσj − h
∑

i

σi, (2.56)

where J ≡ J/(kBT ) and h ≡ h/(kBT ) are now understood to be reduced couplings.
We have also introduced a dimensionless variable t = (J − Jc)/Jc to measure the
deviation from criticality, so that the tuple (t, h) = (0, 0) tunes the Hamiltonian
to criticality. We now treat all bd spins σi in a block I of linear size ba as a single
effective spin ΣI and rescale the system back to its orginal scale x′ = x/b. After
one step, the number of spins N is reduced by a factor of b−d. Crucially, we then
assume that after the coarse-graining26 and rescaling in this way, the near-critical
system can be equally well described by a nearest-block-neighbor Hamiltonian of
the same form,

H ′[{Σ}; t′, h′] = −J ′
∑

<IJ>

ΣIΣJ − h′
∑

I

ΣI , (2.57)

but with different couplings (t′, h′). For this equivalence to be of any value, we
need to be able to relate the “bare” couplings (t, h) to the “renormalized” couplings

25Hyperscaling relations are however not generally valid for d > 4, which was only later understood
via RG arguments. For d > 4, a dangerously irrelevant variable (see footnote 36) appears whose influence
forces d ≡ (2− α)/ν to remain at 4 for d > 4 [29].

26In practice, the coarse-graining procedure can be implemented for example using a simple majority
rule ΣI = b−d

∑
i∈I σi or a decimation rule ΣI = (central spin ∈ I), but note that the explicit

details of the coarse-graining map are of no importance here (see Sec. 2.10 for several explicit real-space
RG prescriptions).
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(t′, h′). Kadanoff achieved this by arguing that this is plausible since we assume that
b � ξ/a, i.e. the block size is larger than the lattice spacing but smaller than the
correlation length. Indeed, because ξ → ∞ at criticality, we can, asymptotically,
choose the value of our blocking parameter b rather arbitrarily. This idea was an
absolutely crucial insight. In particular, Kadanoff argued, we can choose it such that
the coupling of the magnetic field h to a block ΣI of bd spins is approximately equal
to the coupling to bd average spins,

ΣI '
1

bdζ(b)

∑

i∈I
σi, (2.58)

where ζ(b) is a renormalization factor ensuring that the variations of the fluctuations
of the effective spins match those of the original ones27. Introducing a similar,
thermal renormalization factor θ(b), we arrive at the approximate recursion relations,

t′ ≈ θ(b)t, h′ ≈ bdζ(b)h, (2.59)

Starting slightly away from criticality, the initial system has a finite but large cor-
relation length ξ(t, h), which is reduced by a factor b after a single iteration due to
the spatial rescaling. The renormalized Hamiltonian is then even less critical and
the above recursion relations continue to push the parameters further away from the
origin. The scaling factors θ(b) and ζ(b) thus have to be positive. In fact, we can
even deduce their functional form, since we have the trivial no-scaling expression
θ(1) = 1 and the semigroup property t′′ = θ(b2)t′ = θ(b2)θ(b1)t = θ(b1b2)t. The
unique functional solution of these equations is a power law θ(b) = bλ, so that

t′ ≈ bλt, h′ ≈ bd−ωh, (2.60)

where we have similarly rewritten the magnetic scaling factor ζ(b) = b−ω. What
Kadanoff actually assumes here is that t′(t, h) is an analytic function of t, even at
criticality, hoping that only spins in the neighborhood of the block are of any im-
portance in calculating t′. In this way, non-analyticities can only arise for quantities
involving the entire lattice [25].

Note that the assumptions of Kadanoff ’s picture leading to Eq. (2.60) already
allow us to derive the scaling form of the free energy, of correlation functions, and of
other bulk quantities derived from the free energy. We will however postpone these
derivations to Sec. 2.6, where it will become clear that λ = 1/ν and ω = β/ν =
(d−2 +η)/2. Using these results, all six critical exponents can be expressed in terms

27Using the metaphor of a pixelated image, coarse-graining corresponds to decreasing the resolution
by changing the pixel size, rescaling restores the original resolution, and the renormalization step changes
the contrast of the image so that it matches the original [15].
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of just two independent ones (ν and η):

α = 2− νd, (2.61)
β = ν(d− 2 + η)/2, (2.62)
γ = ν(2− η) (2.63)
δ = (d+ 2− η)/(d− 2 + η). (2.64)

To accentuate the importance of Wilson’s contribution to renormalization group
theory, it is crucial to emphasize that Kadanoff ’s block-spin picture does not explain
why the renormalized Hamiltonian should resemble the original one at all. This
assertion only holds exactly for the one-dimensional Ising model, and quickly fails
in higher dimensions as demonstrated in Sec. 2.10. Spins have to be allowed to
fluctuate at many length scales at once, and a single effective coupling is flagrantly
insufficient. The Kadanoff picture however correctly suggests that a small, fixed
number of couplings is sufficient to capture the scaling behavior near criticality, but,
again, provides no explanation. There also seems to be no inherent reason why the
power-law scaling factors λ and ω cannot be completely different for every physical
system.

It is becoming painfully clear that we have been rather schizophrenic up to now by
tacitly assuming and simultaneously avoiding to explain the notion of universality28.
Let us now elucidate the general Wilsonian framework which not only supports and
explains the intuition behind Kadanoff ’s heuristic scaling picture, but also paves the
way for quantitative RG calculations.

2.5.2 Manifolds and flows

Consider yet again a spin system in d dimensions consisting of N spins denoted by
σ(x). Instead of calculating the partition function in one fell swoop, we will split the
set {σ(x)} into two parts: N ′ = N/bd spins {σ<(x)} which we leave untouched as
fluctuating variables and N −N ′ remaining spins {σ>(x)} which we integrate (or
sum) over. This separation of degrees of freedom entails a coarse-graining procedure
without explicitly specifying any details. In this way, the partial trace implicitly
defines an effective Hamiltonian

eHeff [{σ<}] = Trσ>N−N ′
(

eH[{σ<}∪{σ>}]
)
, (2.65)

28At the risk of spoiling the remainder of this chapter: some people are of the opinion that Wilson’s
formalism also does not truly explain universality (whatever truly explaining something might mean),
and that the underlying assumptions have merely shifted to assumptions on the topology of an infinite
parameter space: the existence of critical surfaces, flows, and fixed points. We find this judgement to be a
sign of bad taste.
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where we have defined the reduced Hamiltonian29 as

H[{σ(x)}] ≡ −H[{σ(x)}]
kBT

. (2.66)

This transformation is exact; if we trace over the renormalized spins, we recover the
original partition function again, since

ZN ′ [H
′] = Trσ

′

N ′

(
eH[{σ′}]

)
= Trσ<N ′

(
eHeff [{σ<}]

)

= Trσ<N ′
(

Trσ>N−N ′
(

eH[{σ<}∪{σ>}]
))

= TrσN

(
eH[{σ}]

)
= ZN [H], (2.67)

where {σ} = {σ<} ∪ {σ>} contains all spins. Note that the definition Eq. (2.65)
implies not only that the partition functions (which are numbers) remain the same,
but also that the probability distributions of quantities which only depend on coarse-
grained spins are preserved. These include correlations between the long-wavelength
degrees of freedom, so that the formal RG procedure leaves the large-scale physics of
the system intact. One can of course always conjure up some arbitrarily complicated
effective Hamiltonian resulting from the coarse-graining, but a tacit assumption of
the renormalization group is that the dominant interactions of effective Hamiltonians
will always be short-ranged30.

If we now rescale spatial coordinates by x′ = x/b and relabel σ′(x′) ≡ σ<(x),
we get a renormalized Hamiltonian H ′[σ′] ≡ eHeff [{σ<}]. Formally, this procedure
defines an explicit renormalization group transformation with spatial rescaling factor
b,

H ′[{σ′}] = Rb (H[{σ}]) , (2.68)

which can be iterated to generate a sequence of renormalized reduced Hamiltonians
H(s), recursively given by

H(s) = Rb
(
H(s−1)

)
= Rbs

(
H(0)

)
, (2.69)

whereH(0) ≡ H andH(1) ≡ H ′ in the previous notation. Essentially, the operation
Rb describes the effect of a scale transformation on the Hamiltonian of the system
when coarse-graining over blocks of size ba where a denotes the lattice spacing

29Note that the same remark as in the case of the effective Landau-Ginzburg Hamiltonian in
Sec. 2.4.1 applies here as well: only in the microscopic Hamiltonian do the couplings, which are implicit
in our notation, scale with the temperature T .

30Long-range interactions lead, among other things, to corrections to the discussion below and to
different universality classes [12]. We will not consider long-range interactions.
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cutoff. Note that we have made use of the semi-group property31

RbRb′ = Rbb′ = Rb′Rb (2.70)

to connect subsequent transformations.
Because we have rescaled and relabeled the renormalized spins after the exact

coarse-graining, we expect them to be completely equivalent to the original variables.
Upon closer inspection, it is easy to see that this assumption fails, and we cannot
expect the original form of the Hamiltonian to be reproduced. For an initial Ising
Hamiltonian in zero magnetic field with a (reduced) nearest-neighbor interaction
K1 = J/(kbT ), the effective Hamiltonian eventually involves an infinite number of
non-vanishing spin couplings for every conceivable and allowed interaction between
local products of spins.

Let us illustrate Wilson’s solution [6, 7] to this conundrum for the case of the
Ising model. The key idea is to initially already introduce an infinite number of
couplings by considering generalized Ising models

H = K0N +K1

∑

〈ij〉
σiσj +K2

∑

〈〈ij〉〉
σiσj +K3

∑

plaquettes

σiσjσkσl + . . . ,

(2.71)

where K0 is a constant coupling term, which acts as a physically immaterial yet
important free energy offset. These Hamiltonians are characterized by a tuple
K = (K1,K2, . . . ), marking a point on the manifold of (infinite) reduced couplings
associated to that family of Hamiltonians. The familiar Ising model is recovered by
setting K = (K1, 0, 0, . . .). In the infinite coupling space, the discrete RG flow can
then be described by iterating

K ′ = Rb (K) . (2.72)

After one iteration, the generalized Ising model looks like

H ′ = K ′0N
′ +K ′1

∑

〈IJ〉
σIσJ +K ′2

∑

〈〈IJ〉〉
σIσJ +K ′3

∑

plaquettes

σIσJσKσL + . . . ,

(2.73)

where we have summed over all configurations {σi} consistent with {σI}.
It is this remarkable insight of Wilson which eliminates the absurdity inherent

in Kadanoff ’s block-spin idea: we should not be surprised that an infinite number of
interactions show up when coarse-graining, since they have been there all along (their
initial couplings were just set to zero). The renormalization group transformation
Eq. (2.72) takes us out of the way too small submanifold of nearest-neighbor Ising
models and allows an infinite number of couplings to flow and adjust during the

31Renormalization group transformations are not necessarily invertible, i.e. it is not always possible to
unambiguously retrace one’s steps when coarse-graining. In this sense, RG transformations generically
only constitute a semi-group (and a discrete one on the lattice).
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coarse-graining process. Additionally, the picture of flows in theory space explains
how sharp non-analytical phase transitions can emerge from smooth, analytic initial
data by iterating a well-behaved recursion formula an infinite number of times.

2.5.3 Fixed points and universality

The smoothness of the RG transformation is the consequence of the fact that at
every iteration we only consider a finite number of degrees of freedom, and implies
that universal critical properties are preserved under renormalization. It also helps
ensuring that the critical point of the original Hamiltonian maps onto that of every
subsequent effective Hamiltonian. In this way, critical trajectories can emanate from
a physical critical point, whose topology could in general be horrifically complicated.
For well-designed RG transformations however, it seems to be the case that critical
trajectories asymptotically terminate in a fixed point reduced Hamiltonian H∗ whose
reduced couplings we will denote by K∗ = (K∗1 ,K

∗
2 , . . . ), a point on the previously

introduced manifold of (infinite) reduced couplings.
Fixed points32 are solutions of the fixed-point equation

K∗ = Rb(K∗), (2.74)

and correspond to Hamiltonians describing statistically self-similar configurations.
The correlation length ξ(K), which is a function of the parameters in the Hamil-
tonian, behaves as ξ(K) = bξ(Rb(K)), which implies that the correlation length
at a fixed point must either be zero or infinity. Correlation length ξ(K∗) = 0
fixed points are either trivial, corresponding to independent fluctuations at each
point which describe either complete disorder (infinite temperature) or complete
order (zero temperature), or are topologically ordered33. A non-trivial fixed point
with ξ(K∗) =∞ describes a critical point and defines a universality class of critical
behavior which attracts all systems whose critical trajectories eventually end up in
the fixed point K∗.

The stability of the fixed point can be studied by using the analyticity of the RG
transformation to linearize the recursion relations in the neighborhood K∗ + δK of
the fixed point,

Rb(K∗ + δK) = K∗ + δK ′(K) = K∗ + [Rb]δK, (2.75)

where we have defined the matrix

[Rb]αβ =
∂K ′α
∂Kβ

∣∣∣∣
K∗

. (2.76)

32Note that fixed points are but the simplest kind of asymptotic behavior of RG flows. Other
asymptotic behavior, such as limit cycles, can also occur and has been studied [30].

33Similar to symmetry-breaking phase transitions, there also exist topological phase transitions
between topological phases or between a topological phase and a trivial phase. Additionally, topological
phases can be further characterized based on their interplay with symmetries (see Sec. 2.7.5).
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Close to K∗, the RG flow thus boils down to

K ′α −K∗α =
∑

β

[Rb]αβ(Kβ −K∗β). (2.77)

Diagonalizing Rb yields left34 eigenvectors {ei} and corresponding eigenvalues
{λi(b)}. The scaling fields ui =

∑
α e

i
α(Kα −K∗α) are made up of linear combina-

tions of the deviations from the fixed point and transform multiplicatively close to
the fixed point:

u′i =
∑

α

eiα(K ′α −K∗α) =
∑

α,β

eiα[Rb]αβ(Kβ −K∗β) (2.78)

= λi(b)
∑

β

eiβ(K ′β −K∗β) = λi(b)ui (2.79)

The semi-group property Eq. (2.70) additionally implies that the linearized
matrices Rb for different b commute and can thus be diagonalized simultaneously,
i.e. the eigenvectors {ui} are actually independent of the rescaling factor b. It also
implies that

uiRbRb′ = λi(b)λi(b′)ui = uiRbb′ = λi(bb′)ui, (2.80)

which, together with the condition λb(1) = 1 for b = 1 (no scaling), yields a power
law form λi(b) = byi for the eigenvalues, so that

u′i = byiui. (2.81)

The {yi} are called renormalization group eigenvalues or anomalous dimensions, and
will turn out to be related to the critical exponents. Even though quantities such
as critical exponents should be independent of the arbitrary scaling factor b, it is
important to note that approximate values obtained from approximate RG flows
such as block-spin RG (see Sec. 2.10) or tensor network renormalization methods
(see Sec. 3.5) may contain a weak dependence on b and other details of the RG
transformation.

Assuming35 that yi ∈ R, there are three cases for the flow behavior of the {ui}
near the fixed point:

• yi > 0 (relevant): the deviation of the fixed point along the direction ui
increases under scaling since byi > 1; the RG flow is driven away from the
fixed point

34The linearised RG flow matrix [Rb]αβ is not necessarily symmetric so its left eigenvectors need not
coincide with its right eigenvectors.

35Complex eigenvalues can occur since Rb is not symmetric in general, but these lead to RG strange
trajectories which spiral around the fixed point, either converging if Re(yi < 0) or diverging if Re(yi >
0).

35



2. RENORMALIZATION GROUP THEORY

• yi < 0 (irrelevant36): the deviation of the fixed point along the direction ui
decreases under scaling since byi < 1; the RG flow is driven towards the fixed
point

• yi = 0 (marginal): the linearised equations are insufficient to determine the
flow behavior since byi = 1; higher order terms are necessary to determine
whether the ui is marginally relevant, marginally irrelevant, or exactly marginal

H(0) = H(t, h) H(1) = H(t′, h′)

fixed point H∗

h

t

h′
t′

physical critical point

renormalized critical point

critical surface

critical trajectory

FIGURE 2.4: Renormalization group flow of a critical theory along the critical trajectory
towards the fixed point on the critical surface in infinite coupling space.

Consider a fixed point with k relevant eigenvalues and a total number of cou-
plings k′ (which is actually infinite). Near the fixed point, the codimension-k
subspace spanned by the (k′ − k) irrelevant eigenvectors is called the critical surface
of the fixed point K∗ and contains all nearby points with ξ(Kc) = ∞ which are
attracted to the fixed point37. In order to end up on the critical surface, one has
to tune the k relevant couplings to zero. The resulting RG flow then guarantees
that the long-distance properties of all points on the critical surface are determined
by the same fixed point K∗ in the infinite coupling space (see Fig. 2.4). This is
the origin of universality, namely that Hamiltonians which only differ in terms of
irrelevant operators will give rise to identical critical behavior. More realistic systems
have more complicated phase diagrams, including multiple non-trivial fixed points,
tricritical fixed points, and intricate RG flows which can exhibit cross-over behavior:
at different length scales, different fixed points influence the properties of the same
physical system. Note that critical fixed points can act as ultraviolet or infrared fixed
points depending on the RG trajectories. Non-critical fixed points however always
act as infrared sinks because they do not support relevant directions.

36Irrelevant operators can also be dangerously irrelevant, meaning that, notwithstanding their irrelevant
nature, their effects can still be felt close to the fixed point [31]

37For a point Kc on the critical surface, ξ(Kc) =∞ since ξ(K) decreases under the RG flow and
ξ(K∗) =∞.
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Example: Ising model

At the risk of being tedious, let us provide a very explicit example of the general
framework. For the critical short-range Ising model, we have k = 2 relevant
eigenvalues, corresponding respectively to the thermal and symmetry-breaking
magnetic eigenvalue yt and yh with scaling fields u1 = t = (T − Tc)/Tc (reduced
temperature) and u2 = h = H/(kBTc) (reduced magnetic field). All remaining
scaling fields are irrelevant but vitally important. Indeed, for an RG trajectory to
lay on the critical surface, we must tune t and h to zero. Note that this in itself
does not constitute an RG flow, we are merely tuning the temperature and external
magnetic field “knobs” of our microscopic model. The flow will then be confined to
the critical surface and the system will be attracted to the non-trivial fixed point as
the irrelevant variables vanish. Any RG trajectory that starts close to but not quite
on the critical surface also flows towards the non-trivial fixed point as the irrelevant
variables decrease at longer length scales. However, the increasing importance of the
relevant scaling fields at even longer length scales will eventually drive the flow away
from the critical surface to either the low-or high-temperature fixed point where
ξ(K) = 0.

K1

K3

K2

critical surface: ξ(K) = ∞

Kc = (Kc
1 , 0, . . .)

Kc = (Kc
1 ,K

c
2 , . . .)

low-temperature f.p.

high-temperature f.p.
(0, 0, . . .), ξ(K∗) = 0

(∞,∞, . . .), ξ(K∗) = 0

non-trivial f.p.
ξ(K∗) = ∞

FIGURE 2.5: Projection of the infinite coupling space K = (K1,K2, . . .) onto three cou-
plings. The critical surface is shaded in blue and two critical points, corresponding to the
nearest-neighbor Ising model and the generalized Ising model, are indicated with a cross.
Both flow along the critical surface spanned by all irrelevant couplings of the non-trivial fixed
point. For the nearest-neighbor Ising model, two other flows are drawn which are obtained
by tuning the temperature away from Tc and which respectively lead to the trivial low-and
high-temperature fixed points.

To really understand what is going on, let us consider the familiar Ising model
in zero magnetic field with just one relevant variable for clarity (see Fig. 2.5). As
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the temperature is varied, we find the tuple Kc = (Kc
1, 0, 0, . . .) in the infinite

coupling space as the intersection of K1 with the codimension-1 critical surface.
The associated correlation length is ξ(Kc) = ∞, and the model flows along the
critical surface under the RG transformation to the fixed point K∗. Note that
the temperature acts as some kind of rescaling with respect to the origin in the
coupling space. A generalized Ising model in zero magnetic field becomes critical at
a completely different intersection point Kc = (Kc

1,K
c
2,K

c
3, . . .) when varying the

temperature. Under the RG transformation along the critical surface, this critical
generalized model flows to the exact same fixed point K∗ in the infinite coupling
space. We can thus appreciate that the critical point of any microscopic model
in the same universality class is generically found some finite distance away from
the universal attractive fixed point in infinite coupling space and differs in terms
of couplings to irrelevant operators. Away from criticality, initial points flow to
the respective trivial low-or high-temperature sinks38 (∞,∞, . . .) and (0, 0, . . .),
depending on the position with respect to the critical surface, which acts as a
separatrix.

2.6 Scaling behavior and critical exponents

After a finite number of iterations of the analytic RG transformation, the values ui
should still depend analytically on the deviations (t, h) of the original theory from
its critical point. The relevant variables must also vanish when t → 0, h → 0, so
that, by symmetry, the leading order parameter transformation is given by

u′t(t, h) = bytt+ . . . (2.82)
u′h(t, h) = byhh+ . . . ., (2.83)

coinciding with Kadanoff ’s scaling proposal Eq. (2.60).

2.6.1 Scaling of free energy

Because of the preservation Eq. (2.67) of the partition function under RG, we can
consider the flow of the reduced free energy per site

f({K}) = −N−1 lnZ, (2.84)

which gives

e−Nf({K}) = e−Ng({K})−N ′f({K′}), (2.85)

where N ′ = b−dN . The constant term Ng({K}) corresponds to the free energy
offset encountered in Eq. (2.71) and contains integrated-out short-range correla-
tions within each block. We thus see that the complete free energy transforms

38Or in terms of the coupling strength: strongly- or weakly-coupled fixed points.
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inhomogeneously under the renormalization group,

f({K}) = g({K}) + b−df({K ′}), (2.86)

but that the singular part (the second term) does transform homogeneously,

fs({K}) = b−dfs({K ′}). (2.87)

In the vicinity of the fixed point, we can write the above equation explicitly in terms
of the scaling fields,

fs(ut, uh) = b−dfs(b
ytut, b

yhuh), (2.88)

where we have ignored39 the irrelevant fields u3, . . . . Let us now iterate the RG
transformation n times

fs(ut, uh) = b−ndfs(b
nytut, b

nyhuh), (2.89)

until |bnytut| = ut0, where ut0 is arbitrary but sufficiently small so that the linear
approximations in Eq. (2.82) and Eq. (2.83) remain valid. We find the homogeneous
function

fs(ut, uh) = |ut/ut0|d/ytfs
(
±ut0,

uh
|ut/ut0|yh/yt

)
, (2.90)

which, in terms of t and h looks like

fs(t, h) = |t/t0|d/ytF±
(

h/h0

|t/t0|yh/yt
)
, (2.91)

where F± = fs

(
h/h0

|t/t0|yh/yt

)
is a universal scaling function. All non-universal

dependence resides in the scale factors t0 and h0. Note that we have recovered
Widom’s scaling ansatz Eq. (2.24).

2.6.2 Scaling of correlation functions

The renormalization group preserves not only the partition function, but also the
probability measure of all long-wavelength degrees of freedom and thus the large-
distance behavior of correlation functions. The spin-spin correlation function in the
Ising model40

G(x1 − x2, H) = 〈σ(x1)σ(x2)〉H − 〈σ(x1)〉H 〈σ(x2)〉H (2.92)

39As we cannot assume that the initial constant u0
3 in the Taylor expansion of an irrelevant eigenvalue

in terms of t and h is zero, a non-nonzero value u0
3 can lead to non-universal corrections to the asymptotic

universal scaling behavior.
40We have explicitly denoted dependence of the ensemble on (the couplings in) the Hamiltonian H .
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can be obtained from the free energy by adding a source term −∑x h(x)σ(x) to
the Hamiltonian and differentiating,

G(x1 − x2, H) =
∂2

∂h(x1)∂h(x2)
lnZ[h]|h(r)=0 (2.93)

Assuming short-range interactions and a block-spin renormalization, we can ignore
the fact that h(r) is actually slowly varying and regard it as a weak uniform field.
This suggests that the renormalized Hamiltonian is of the same form

H ′(σ′)−
∑

x′

h′(x′)σ′(x′) (2.94)

with h′(x′) = byhh(x). Since the renormalization group preserves the partition
function, we must have

∂2 lnZ ′[h′]
∂h′(x′1)∂h(x′2)

=
∂2 lnZ[h]

∂h′(x′1)∂h(x′2)
. (2.95)

The left hand side is simply G((x1 − x2)/b,H ′). The right hand side involves
infinitesimally changing h′(x′1)→ h′(x′1) + δh′(x′1) within the block labelled by
x′
1, which boils down to changing all local fields h(x) acting on the fine-grained

spins within that block by an amount δh(x) = b−yhδh′(x′). The right hand side is
thus equal to

b−2yh 〈(σx′1
1 + σ

x′1
2 + . . .)(σ

x′2
1 + σ

x′2
2 + . . .)〉H , (2.96)

where one includes all bd spins in each block labelled by x′1 and x′2 on the coarse-
grained lattice. If |x1 − x2| � b, all of these b2d two-point correlations should be
almost identical. Close to the fixed point, we thus find

G((x1 − x2)/b,H ′) = b2(d−yh)G(x1 − x2), H). (2.97)

Note that this kind of reasoning is very similar to the operator product expansion we
will encounter in Sec. 2.8. For large enough distances and isotropic interactions, the
correlator depends only on the distance x = |x1 − x2|. Near the critical point, we
let h→ 0 and find

G(x, t) = b−2(d−yh)G(x/b, bytt). (2.98)

Iterating the RG transformation n times until bnytt = t0, we end up with

G(x, t) =

∣∣∣∣
t

t0

∣∣∣∣
2(d−yh)/yt

G
(

x

|t/t0|−1/yt

)
. (2.99)

40



2.6. Scaling behavior and critical exponents

2.6.3 Critical exponents from RG eigenvalues
From the scaling of the singular part of the free energy Eq. (2.91), one can obtain the
critical exponents {α, β, γ, δ} for the Ising universality class by taking appropriate
limits of derivatives of the singular part of the free energy and identifying the powers
in the resulting power laws,

α = 2− d

yt
, β =

d− yh
yt

, γ =
2yh − d
yt

, δ =
yh

d− yh
. (2.100)

From the scaling of the spin-spin correlation function, the exponents {ν, η} can
be obtained as follows. Away from criticality, we expect the correlation function
Eq. (2.99) to decay as e−r/ξ for large r (where t is also large and mean-field theory
is valid), leading to the identification ξ ∝ |t|−1/yt . At the critical point t = 0, we
iterate Eq. (2.98) until r/bn = O(r0), where r0 is a fixed distance much larger than
the lattice spacing a or the range of the interactions, so that G(r) ∝ r−2(d−yh).
Identifying the critical exponents, we find

ν =
1

yt
, η = d+ 2− 2yh. (2.101)

All of the above critical exponents are given in terms of the RG eigenvalues yt
and yh, which naturally explains the scaling relations between critical exponents
we encountered in Sec. 2.3. What were once magical relations between universal
numbers, turn out to be trivial algebraic identities involving RG eigenvalues.

2.6.4 Scaling operators and scaling dimensions
Before moving on, we want to point out an important subtlety. Near the fixed point,
the scaling fields ui constructed from the eigenvectors are linear combinations of the
deviations (Kα −K∗α) of the couplings from their fixed point values. Perturbing
a relevant scaling field ui for example, thus corresponds to changing the couplings
in front of the corresponding linear combination of operators in the Hamiltonian.
The latter corresponds to a set {Sα} of local products of spins σ(x) for the effective
Hamiltonian of the Ising model or to monomials of the fields in the effective action
of a quantum field theory. Simple-looking operators in the effective Hamiltonian
(like a nearest-neighbor spin interaction) could very well consist of a complicated
arrangement of many different RG eigenoperators.

Having a continuum limit of a statistical mechanical model in mind, we can
introduce scaling operators {φi} which couple to the scaling fields ui. As |x1−x2| →
∞, one can show that their correlation functions behave as41

〈φi(x1)φi(x2)〉 ∝ |x1 − x2|−2∆i (2.102)

41Note that pure power law behavior only applies to scaling operators at the fixed point and not at the
critical point. As we have seen, the critical point differs from the fixed point in terms of irrelevant operators,
whose presence leads (among other effects) to corrections of the form |x1 − x2|−∆i−∆j−

∑
k |yk|,

where the sum over k runs over a subset of irrelevant operators [12].
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where we have defined the scaling dimension

∆i = d− yi. (2.103)

Indeed, in the vicinity of the fixed point one can perturb by

∑

i

ui

∫
ddx

ad
φi(x)

RG flow−−−−−→
∑

i

byiui

∫
ddx

(ba)d
φi(x), (2.104)

which leaves the partition function invariant if we require that

φi(x)→ b∆iφi(x), (2.105)

where ∆i denotes the scaling dimension defined in Eq. (2.103). This definition of
the scaling dimension relates the RG eigenvalue yi of a scaling field to the asymptotic
behavior of the two-point correlation function of the scaling operator to which that
field couples, and corrects the naïve classical scaling dimension. The idea behind
scaling operators and scaling dimensions will become more clear in connection to
Sec. 2.8 for conformal field theories, where we will shift our attention from critical
exponents to scaling dimensions and their associated scaling operators, which seem
even more fundamental since all critical exponents follow from the values of the
scaling dimensions.

2.7 Perturbative RG and effective field theories

“The ideas of this paper can be applied to relativistic quantum field
theory. So the ideas of this paper are not special to the problem of critical
phenomena. The basic problem causing the difficulties in understanding
critical phenomena is the problem of the infinite number of degrees of
freedom. This problem is also the bottleneck in quantum field theory
and in many of the stubborn problems in solid-state physics.”

K. G. Wilson, 1971 [7]

Before sketching the results of the ε-expansion, let us first qualitatively connect
the framework introduced in the previous sections to renormalization in quantum
field theory (QF T). If we consider infinitesimal RG transformations where b =
exp(l) ≈ 1 + δl, then the couplings of the action in the infinite coupling space will
also transform infinitesimally,

K ′α(b) = Kα(1 + δl) = Kα + δl
dKα

dl
+O(δl2). (2.106)

Expanding the recursion relations up to first order in δl, we thus find at a set of
differential RG equations for the couplings,

d

dl
Kα = βα (K) , (2.107)
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where the β-functions are components of the vector field generating the RG flow.
These are called renormalization group beta functions in quantum field theory, where
they usually differ by a sign and are expressed in momentum space rather than real
space. The fixed points now correspond to the zeroes of the beta functions, and
the RG eigenvalues yi are the eigenvalues of the matrix ∂βa/∂Kβ , evaluated at
the zeroes of the beta functions. We can actually repeat the formal development
of the previous sections by substituting the Hamiltonian for the action S[φ; gi] of
a field φ(x) whose interactions are captured by a set of running couplings {gi}.
In particular, the discussion about scaling operators Eq. (2.105) translates to the
breakdown of naïve dimensional analysis.

Note that the scale invariance of a classical action certainly does not imply scale
invariance at the quantum level. A quantum field theory makes no sense without
a regularization prescription, which necessarily introduces a length scale into the
theory. This regularization scale breaks the dilatation symmetry (or conformal
symmetry, see Sec. 2.8), except at very particular points in the coupling space, where
the theory becomes truly scale invariant (or conformally invariant) even in the
presence of interactions. These points coincide with RG fixed points.

2.7.1 Universality in quantum field theories
For Wilson, the action of a generic QF T involves all types of operators, including
irrelevant ones, and thus resides somewhere off the critical surface. The irrelevant
operators are however quickly suppressed under the RG flow while the relevant ones
become more important, which suggests that the flow of a generic QF T, if it starts
off in the right basin of attraction, is very much attracted to the critical trajectory
emanating from a fixed point. Its infrared behavior will resemble that of a fixed
point theory perturbed by relevant operators. This is just another manifestation of
universality, assuring us that properties of theories in the infrared are determined by
a few relevant couplings. This brings us to the notion of an effective field theory. In
fact, we have already encountered examples in Sec. 2.4, since the family of Landau-
Ginzburg Hamiltonians can of course be regarded as an effective description of
a wide variety of phenomena. In condensed-matter physics applications of field
theory, it is generally very natural to construct effective actions by guessing the
low-energy degrees of freedom and appropriate symmetries of the physical system
under consideration. Even beyond the Landau-Ginzburg paradigm of symmetry
breaking (see Sec. 2.7.5), the idea of effective actions survives in the sense that
topological states of matter can be described using unitary topological quantum field
theories which capture the low-energy behavior.

The situation seems reversed in the context of high-energy physics, where it
is more conventional to start from a short-distance description that is potentially
extremely complicated, even if we are solely interested in describing long-distance
physics accessible to experiment42. Appreciating the concept of effective field

42Here, we think of arbitrarily convoluted microscopic field theories and not of string theory, which
might very well invalidate this point of view. Note that we do not reject the idea of grand mathematical
theories of everything, and the statements in this paragraph carry no such indictments; they are purely
pragmatic and in line with the theme of renormalization.
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theories in high-energy physics boils down to acknowledging the fact that there can
be no infinities arising from UV-divergent loop diagrams if we respect the ultraviolet
cutoff for what it is: a limitation on the validity of field theories. There are of course
examples of UV-complete quantum field theories, such as asymptotically free gauge
theories in four dimensions. Quantum chromodynamics is well-defined at arbitrarily
short distance scales since asymptotic freedom allows it to be traced back to a free
field theory in the ultraviolet, where it can then be perturbed by a relevant operator.
But this is of course a purely mathematical conclusion; physically, there are valid
reasons to suspect new structure at sufficiently short length scales.

2.7.2 The Gaussian fixed point

Let us now apply the renormalization group framework to the Gaussian model,
paving the way for the ε-expansion. The Gaussian model for an n-component field
~m(x) is obtained by keeping only the quadratic terms in the Landau-Ginzburg
expansion Eq. (2.38), leading to the partition function

Z =

∫
D~m(x) exp

(
−
∫

ddx

(
t

2
m2 +

K

2
(∇m)2 +

L

2
(∇2m)2 + . . .− ~h · ~m

))
,

and is only defined for t ≥ 0 since there is no quartic term to guarantee stability43.
The phase transition is thus approached from the disordered side t→ 0+.

For perturbative calculations involving continuum models, momentum-space
renormalization techniques are preferred. Defining the Fourier modes

~m(q) =

∫
ddx eiq·x ~m(x), (2.108)

the partition function becomes

Z ∼
∫
D~m(q) exp

(
−
∫ Λ

0

ddq

(2π)d

(
t+Kq2 + Lq4 + . . .

2

)
|~m(q)|2 + ~h · ~m(0)

)
,

where the hypercubic Brillouin zone is approximated by a hypersphere of radius Λ,
which implements the cutoff.

Instead of removing fluctuations at scales a < x < ba, we now remove Fourier
modes in the momentum shell Λ/b < q < Λ to implement the coarse-graining.
By splitting the momenta into two subsets {~m(q)} = { ~̃m(q<)} ⊕ { ~̃m(q>)}, the

43For t < 0, a quartic term um4(x) with u > 0 is required to ensure a finite magnetization.
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partition function decouples trivially,

Z ∼ exp

(
−n

2
V

∫ Λ

Λ/b

ddq

(2π)d
ln
(
t+Kq2 + Lq4 + . . .

)
)
×
∫
D ~̃m(q)

× exp

(
−
∫ Λ/b

0

ddq

(2π)d

(
t+Kq2 + Lq4 + . . .

2

)
| ~̃m(q)|2 + ~h · ~̃m(0)

)
.

The rescaling step q′ = bq then restores the cutoff to its original value, leading
to the following rescaled partition function (up to a constant)

Z ∼
∫
D ~̃m(q′) exp

(
−
∫ Λ

0

ddq′

(2π)d
b−d

(
t+Kb−2q′2 + Lb−4q′4 + . . .

2

)
| ~̃m(q′)|2 + ~h · ~̃m(0)

)
,

Finally, we renormalize44 the modes according to ~m′(q′) = ~̃m(q′)/z, leading to

Z ∼
∫
D~m′(q′) exp

(
−
∫ Λ

0

ddq′

(2π)d
b−dz2

(
t+Kb−2q′2 + Lb−4q′4 + . . .

2

)
|~m′(q′)|2 + z~h · ~m′(0)

)
,

We can now read off the renormalized parameters

t′ = z2b−dt, h′ = zh, K ′ = z2b−d−2K, L′ = z2b−d−4L, . . . (2.109)

The Gaussian fixed point (t, h) = (0, 0) is mapped to itself if we make sure that
the remaining terms stay fixed, which can be done by choosing the renormalization
factor as z = b1+d/2. In that case, K ′ = K, and all remaining parameters scale to
zero under repeated iteration. From the scaling of the two relevant directions

t′ = b2t, h′ = b1+d/2h, (2.110)

we can infer that yt = 2 and yh = 1 + d/2, from which we can calculate the critical
exponents45 using Eq. (2.100),

α =
4− d

2
, β =

d− 2

4
, γ = 1, δ =

d+ 2

d− 2
, ν =

1

2
, η = 0. (2.111)

44This renormalization step corresponds to rescaling spins with ζ(b) in the block-spin approach of
Sec. 2.5.1 (“changing the contrast of the image”).

45The critical exponent β is actually not physical in the Gaussian model since the ordered phase
t < 0 is not stable.
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Note that all critical exponents immediately follow from the infinitesimal RG trans-
formation, which expresses the rate of change of the coupling constants. Looking
back at the mean-field theory critical exponents in Table 2.1, we observe that the
value of α only agrees with mean-field theory for d = 4. This disagreement again
indicates that we cannot ignore fluctuations for d < 4 (see Sec. 2.4.3).

2.7.3 Real-space perturbations

The fixed point Hamiltonian for the Gaussian model in real space (with lattice cutoff
a) looks like

βH∗ =
K

2

∫
ddx (∇m)2. (2.112)

Under a combined spatial (x → x′) and field rescaling ~m(x) → ζ ~m′(x′), scale
invariance can be achieved by choosing ζ = b1−d/2. This tells us that a small
perturbation with a general power of ~m(x) close to the fixed point behaves as

βH∗ + uk

∫
ddxmk RG flow−−−−−→ βH∗ + ukb

dζk
∫

ddx′m′k, (2.113)

which suggests

u′k = bdbk(1−d/2)uk, (2.114)

so that we find RG eigenvalues yk = k − d(k/2− 1). This formula reproduces yh
and yt respectively for k = 1 and k = 2, and indicates that the majority of operators
are irrelevant at the Gaussian fixed point for d > 2. The operator we will now focus
on is associated to y4 = 4− d, which is irrelevant for d > 4 but relevant for d < 4.

2.7.4 Perturbing the Gaussian fixed point: the ε-expansion

Let us now describe Wilson and Fisher’s perturbative RG method that was among
the first to quantitatively produce non-classical critical exponents by combining
perturbation theory and renormalization group theory [25, 32]. The idea is to
approach the Landau-Ginzburg Hamiltonian by perturbing the Gaussian model.
We consider the reduced Hamiltonian with only lowest order Gaussian terms in
zero magnetic field,

βH0 + U =

∫
ddx

(
t

2
m2 +

K

2
(∇m)2

)
+ u

∫
ddxm4 + . . . . (2.115)

Even though higher order interactions will be generated by the flow, we do not
include any higher order Gaussian terms nor higher powers and derivatives of m
since we make use of the a posteriori information that all of these interactions will
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turn out to be perturbatively irrelevant46.
Carefully calculating Feynman diagrams up to second order in u leads to a coarse

grained Hamiltonian containing several new interactions proportional to m2, m4,
and m6, i.e. the parameter space (K, t, u) is not closed at this order. Given the
remark in the previous paragraph however, we will pretend that this is not the case,
and immediately state the resulting differential equations governing the RG flow47:

dt

dl
= 2t+

4(n+ 2)KdΛ
d

t+KΛ2
u−A(t,K,Λ)u2, (2.116)

du

dl
= (4− d)u− 4(n+ 8)KdΛ

d

(t+KΛ2)2
u2, (2.117)

where Kd = 2πd/2/((2π)dΓ(d/2)) and A(t,K,Λ) is a numerical prefactor of u2

in the coarse-grained Hamiltonian. The step from recursion relations to differential
equations was done using the infinitesimal flow recipe given in the introduction of
Sec. 2.7. The renormalization factor

z = b1+d/2+O(ε2) (2.118)

is actually unmodified up to second order in ε = 4− d and is again chosen such that
K ′ = K. In addition to the Gaussian fixed point u∗ = t∗ = 0, we now find the
Wilson-Fisher fixed point48 at

u∗WF =
K2

4(n+ 8)K4
ε+O(ε2) (2.119)

t∗WF = − (n+ 2)

2(n+ 8)
KΛ2ε+O(ε2), (2.120)

which has been expanded to first order in ε = 4 − d. Linearizing around this
non-trivial fixed point leads to a positive eigenvalue

yt = 2− (n+ 2)

(n+ 8)
ε+O(ε2), (2.121)

and a second eigenvalue

yu = −ε+O(ε2), (2.122)

which is negative for d < 4. The critical surface associated to the Wilson-Fisher
fixed point is thus codimension-1 (one relevant eigenvalue) and can capture phase
transitions. In Fig. 2.6, we schematically depict the topology of the second-order

46One can do a perturbative stability analysis around the non-trivial Wilson-Fisher fixed point to
show that, at least to first order in ε = 4− d, all additional interactions are irrelevant.

47Note that the perturbation parameter u is not dimensionless and has dimensions [u] = Ld−4.
48Even though the ε-expansion was a major breakthrough in the study of critical phenomena, this was

not the direction Wilson intended to develop his formalism for he considered it a return to perturbation
theory [33].
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FIGURE 2.6: Schematic perturbative RG flows for d < 4. The critical surface of the Wilson-
Fisher fixed point is the separatrix between trivial low-and high-temperature fixed points.

perturbative RG flows. Note that all dependence on microscopic parameters such as
K and Λ has vanished from the final eigenvalues, which depend only on the number
of components n of the field and the spatial dimension d = 4− ε. These eigenvalues
characterize the universality class of rotational symmetry breaking in d < 4 for
systems with short-ranged interactions. For d > 4, the non-trivial fixed point is
unstable since both scaling fields are relevant. In that case, the approximation breaks
down because the fixed point lies in the unphysical u < 0 region, signifying that we
need to include the m6 term to stabilize the system. The fixed point associated to
the m6 interaction then suggests an expansion in ε = 3− d.

The critical exponents ν and α can then be straightforwardly calculated from
the RG eigenvalues:

ν =
1

yt
=

1

2
+

1

4

n+ 2

n+ 8
ε+O(ε2), (2.123)

α = 2− dν =
4− n

2(n+ 8)
ε+O(ε2). (2.124)

By adding a term −~h · ~m(q = 0) to the initial Hamiltonian, we can obtain the
renormalized coupling h of the symmetry breaking field from h′ = zh = b1+d/2h
since the term is not affected by coarse-graining or rescaling, so that

yh = 1 +
d

2
+O(ε2) = 3− ε

2
+O(ε2). (2.125)

The critical exponents β and γ are then given by:

β =
d− yh
yt

=
1

2
− 3

2(n+ 8)
ε+O(ε2), (2.126)

γ =
2yh − d
yt

= 1 +
n+ 2

2(n+ 8)
ε+O(ε2). (2.127)

The anomalous dimension η only becomes non-zero when going to higher orders
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[8],

η =
(n+ 2)

2(n+ 8)2
ε2 +O(ε3). (2.128)

We would like to end this discussion with a few remarks. Since the original work
of Wilson and Fisher, the ε-expansion has been carried out to fifth order using more
advanced field theoretical RG schemes involving dimensional regularization and
resummation methods. The pertubative results do however not necessarily get better
by adding more orders, which is indicative of the non-convergent behavior of an
asymptotic series expansion. Even though the predictions of the ε-expansion might
not be numerically accurate per se, they are useful in the sense that they determine
what types of universality classes one can expect in different dimensions. The crucial
point is that the topology of flow diagrams such as Fig. 2.6 does not change when
moving away from the upper critical dimension du = 4, since it is determined by the
signs of the RG eigenvalues. This robustness also explains why it is not completely
unreasonable to substitute d = 3 and even d = 2 into an ε = (4− d)-expansion.

2.7.5 Beyond the Landau-Ginzburg paradigm
When Wilson mentioned that the ε-expansion is an example of renormalization
group theory yielding results beyond Landau, it should be noted that he was referring
to the possibility of obtaining non-classical critical exponents beyond the mean-field
values obtained in Sec. 2.4.2 [28]. In recent years however, the phrase beyond Landau
has taken on quite a different meaning. Since the observation of the fractional
quantum Hall effect [34, 35], it has become clear that not all phases and phase
transitions can be classified according to order parameters, symmetry breaking, and
long-range correlations. Indeed, in terms of entanglement, all states associated to
symmetry-breaking fixed points described by local order parameters are basically
product states. Even in the absence of a global symmetry, gapped quantum phases at
zero temperature are seen to break up into inequivalent classes, which correspond
to distinct topologically ordered phases that cannot be connected to product states
using local unitary transformations.

Topological phases of matter can then be defined through an equivalence class
of local Hamiltonians [36, 37] whose low-energy physics is captured by a unitary
topological quantum field theory (TQF T) [38, 39]. Systems with intrinsic topological
order can exhibit a topological ground state degeneracy, protected gapless excitations
on the edge, and anyonic excitations. In the presence of a global symmetry, symmetry-
protected topological (SPT) phases can arise when no symmetry-preserving local
unitary transformation is able to connect the state to a product state. Even though
these SPT states do not possess intrinsic topological order, they cannot be treated in
the Landau-Ginzburg framework of symmetry breaking since distinct SPT phases
can have the same symmetry. The interplay between global symmetries and intrinsic
topological order leads to so-called symmetry-enriched topological (SET) phases.
We will come back to topological order in the context of tensor network states in
Sec. 3.3.2 and in Chapter 6 where we will, quite surprisingly, relate the overlaps
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of two quantum wave functions to the real-space RG flow of a classical partition
function.

2.8 Operator product expansion and conformal field theory

Let us now shift our attention to the development of conformal field theory (CF T),
which signified a major advance in the understanding of QF T and its applications to
critical phenomena. For our purposes, we will be mainly interested in unitary minimal
models, which are a particular class of analytically tractable (1+1)-dimensional CF Ts
corresponding to the scaling limit of statistical-mechanical models with Hermitian
transfer matrices. In particular, we will see that conformal invariance and unitarity
(or reflection positivity for statistical systems) puts strong constraints on the possible
values of the critical exponents [40].

The important dynamical principle in CF T is the associativity of the operator
algebra rather than Hamiltonians and Lagrangians. Indeed, the structure of CF Ts
allows one to define theories that are based solely on symmetry properties of correla-
tion functions, without reference to any action or path integral. The key question is
then to find a set of local operators which transform among themselves under con-
formal transformations. This point of view is already present in the operator product
expansion (OPE), which, given a set of local operators, states that the product of two
local operators can be rewritten as a (possibly infinite) linear combination of other
local operators49

φi(x)φj(y) =
∑

k

Ckij(x− y)φk(y), (2.129)

where theCkij(x−y) are expansion coefficients. We can interpret singularities in this
formula as a manifestation of the infinite fluctuations which occur at short distances
as x→ y. Conformal bootstrap methods use OPE equations to constrain and solve
CF Ts, which has been very successful in two dimensions. Recently, this program
has witnessed a revival in higher dimensions with the determination of extremely
accurate critical exponents of the CF T capturing the critical three-dimensional Ising
model [27].

Since it is not our intention to provide a full introduction to the topic of confor-
mal field theories nor to overindulge in formalism we will not use later on, we will
restrict ourselves to the most elementary notions.

2.8.1 Conformal invariance and quantum fields
We have already seen in previous sections that the invariance of a system under
dilatation symmetry leads to the notions of scale invariance and self-similarity. In
contrast to other symmetries, it is hard to see how dilatation symmetry constrains

49Similar ideas were developed around the same time by (at least) Polyakov [41], Wilson [42, 43] and
Kadanoff [44]. Note also the similarity to the reasoning in Sec. 2.6.2 where we estimated the behavior of
correlation functions under block-spin RG.
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the effective Hamiltonian. One exception occurs in two dimensions, where Polyakov
[45] showed that a two-dimensional system which is invariant under translations,
rotations, and global dilatations, is also automatically locally scale invariant, i.e. in-
variant under the larger class of angle-preserving conformal transformations x→ x′

leaving the metric tensor g′µν(x′) = Λ(x)gµν(x) invariant up to a local scale factor
corresponding to nonuniform rescaling and rotation.

A (1+1)-dimensional conformal field theory is described in terms of correlation
functions of a set of conformal fields φ(z, z̄), where z = x1 + ix2 and z̄ = x1 − ix2

denote complex coordinates. Invariance under local conformal transformations can
be thoroughly exploited because the local conformal group coincides with the set of
all, not necessarily invertible, holomorphic mappings. Under any conformal map
z → w(z), z̄ → w̄(z̄), primary50 fields φ(z, z̄) transform as

φ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄), (2.130)

where we have introduced the holomorphic conformal dimension h and its anti-
holomorphic counterpart h̄. These fields can be interpreted as operators and their
correlation functions as vacuum expectation values. The two-point correlation
function of two primary fields is constrained by conformal symmetry to be of the
form

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
, (2.131)

where h1 = h2 = h and h̄1 = h̄2 = h̄ and where C12 is a constant coefficient. In
particular,

〈φ(reiθ, re−iθ)φ(0, 0)〉 = r−2(h+h̄)e−2iθ(h−h̄), (2.132)

so that

∆ = h+ h̄, s = h− h̄, (2.133)

where ∆ denotes the scaling dimension and s the conformal spin associated to the
primary field φ. Note that from Eq. (2.132), we can identify the critical exponent
associated to the algebraic decay of correlation functions at criticality with

η = 2∆, (2.134)

which is consistent with the definition of the (anomalous) scaling dimension in
Eq. (2.103) in terms of RG eigenvalues.

50All primary fields are quasi-primary but not all quasi-primary fields are primary. Indeed, a field
may transform like Eq. (2.130) only under (an element of ) the global conformal group SL(2,C).
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2.8.2 The power of the Virasoro algebra

From an algebraic point of view, local conformal transformations on the CF T Hilbert
space are generated by the Virasoro operators Ln and L̄n. In particular, the operators
L−1, L0, and L1 (together with their antiholomorphic counterparts) generate the
global conformal transformations. For example, L0 + L̄0 generates dilatations
(z, z̄)→ λ(z, z̄) (which amount to time translations in radial quantization so that
L0 + L̄0 is proportional to the Hamiltonian of the system), while L0− L̄0 generates
rotations. The Virasoro operators satisfy L†n = L−n and L̄†n = L̄−n, and obey the
commutation relations of the famous Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.135)

[Ln, L̄m] = 0 (2.136)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0, (2.137)

where the conformal (or central) charge c is a model-dependent constant describing
the particular realization of conformal symmetry. It appears as the central term in
the Virasoro algebra and its nature is determined by the short-distance behavior
of the theory. It is also called the conformal anomaly since it reflects how a system
responds when introducing a macroscopic length scale (see Sec. 2.8.4).

The vacuum state |0〉 must invariant under global conformal transformations, so
it should be annihilated by L−1, L0, L+1 and their antiholomorphic counterparts.
Additionally, the vacuum should be annihilated by all the lowering operators Ln,
L̄n, n > 0, implying Ln |0〉 = 0 and L̄n |0〉 = 0 for n ≥ −1. Primary fields φ
acting on the vacuum create lowest-weight eigenstates |h, h̄〉 = φ(0, 0) |0〉 of the
Hamiltonian L0 + L̄0 satisfying L0 |h, h̄〉 = h |h, h̄〉 and L̄0 |h, h̄〉 = h̄ |h, h̄〉. Since
the holomorphic and antiholomorphic parts form identical commuting Virasoro
algebras, we can restrict to the holomorphic case. A basis for the excited states in
the N-th level can be obtained by successively applying the raising operators L−n,
n > 0 to the state |h〉 in all possible ways, leading to

L−k1 , . . . L−km |h〉 , (2.138)

where 1 ≤ k1 ≤ . . . ≤ km and
∑
i ki = N . These states are eigenstates of L0 with

eigenvalue h′ = h+
∑
i ki = h+N , and are called descendants of the asymptotic

state |h〉 with the integer N labeling the level of the descendant.

The number of linearly independent states at level N is the number P (N) of
partitions of N . Together with its infinite tower of descendants, a primary field φ
constitutes a conformal family [φ] whose states transforms among themselves, i.e. a
subspace of the full Hilbert space which is closed under the action of the Virasoro
generators and forms a lowest weight representation, or Verma module V (c, h)
of the Virasoro algebra, where c denotes the central charge and h the conformal
dimension of the primary field. The total Hilbert space of physical theories is then
constructed out of tensor products of holomorphic and antiholomorphic modules.
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2.8.3 Unitary minimal models
In two dimensions, rational conformal field theories (RCF Ts) are CF Ts with a finite
number of conformal families where all conformal dimensions (and the central
charge) are rational numbers that can be calculated from consistency conditions.
The most famous examples are the so-called minimal models. For these models, the
Verma modules V (c, h) can be shown to contain null states, which can be quotiented
out to arrive at irreducible representations M(c, h), the building blocks of minimal
models. They are important for our purposes because they capture familiar statistical
mechanical models (e.g. the Ising model, the tricritical Ising model, the Potts model,
. . . ) at their critical points.

For values of the central charge c < 1, unitarity restricts the allowed values of
the central charge to [40]

c = 1− 6

m(m+ 1)
, m = 2, 3, 4, . . . (2.139)

and the associated primary field dimensions for these values of c can be shown to be
rational numbers restricted to

hr,s =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
, 1 ≤ r < m− 1, 1 ≤ s < m− 1. (2.140)

A generic Hilbert space for a minimal model looks like

H =
⊕

h,h̄

M(c, h)⊗ M̄(c, h̄). (2.141)

However, the particular way of combining the components of a minimal model
into the physical tensor product theory is not obvious. Modular invariance provides
the connection between decoupled holomorphic and antiholomorphic sectors and
physically sensible theories defined in terms of modular invariant partition functions.
We will come back to modular invariance and partition functions on a torus in
Sec. 2.8.5. A simple way of taking the tensor product is to associate the corre-
sponding antiholomorpic module to each holomorphic module, leading to so-called
diagonal models

H =
⊕

r,s

M(c, hr,s)⊗ M̄(c, h̄r,s). (2.142)

The critical Ising model corresponds to the simplest nontrivial unitary minimal
model m = 3 with central charge c = 1/2. It contains the identity operator 1 and
two local scaling operators: the Ising spin σ (a continuum version of the lattice spin
σi), and the energy density ε (a continuum version of the lattice energy σiσi+1).
The conformal dimensions are given by

(h, h̄)1 = (0, 0), (h, h̄)σ = (
1

16
,

1

16
), (h, h̄)ε = (

1

2
,

1

2
), (2.143)
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consistent with h1,1 = h2,3 = 0, h2,1 = h1,3 = 1/2, and h2,2 = h1,2 = 1/16. The
non-trivial fusion rules are given by

σ × σ = 1 + ε, (2.144)
σ × ε = σ, (2.145)
ε× ε = ε, (2.146)

which are compatible with the Z2 symmetry σi → −σi of the Ising model. The
critical exponents η and ν are defined by the critical behavior of the correlators

〈σiσi+n〉 =
1

|n|η , 〈εiεi+n〉 =
1

|n|4−2/ν
. (2.147)

2.8.4 Finite-size scaling on the cylinder
The conformal map w = (L/2π) log z maps the complex z-plane with a punctured
origin to an infinitely long cylinder with circumference L. Writing w = t + iu,
we can think of imaginary time t running along the cylinder and u as compactified
space. The Hamiltonian on the cylinder, which generates infinitesimal translations
in t, looks like

H =
2π

L

(
L0 + L̄0

)
− πc

6L
=

2π

L

(
L0 + L̄0 −

c

12

)
(2.148)

Similarly, the momentum operator, which generates infinitesimal translations in u
takes on the form

P =
2π

L

(
L0 − L̄0

)
(2.149)

Although straightforward at first sight, these formulas relate the scaling dimensions
of primary fields to the spectra of H and P on the cylinder. For lattice models with a
lattice spacing a whose scaling limit is described by a CF T, diagonalizing the transfer
matrix T ≈ 1− aH thus gives direct numerical access to the scaling dimensions, up
to finite-size corrections in (a/L) [46]. In particular, the lowest eigenvalue of H (or
the dominant eigenvalue of the transfer matrix) corresponds to

E0 =
2π

L

(
∆0 −

c

12

)
(2.150)

where ∆0 denotes the lowest possible scaling dimension. For unitary CF Ts, this
scaling dimension corresponds to the identify field h = h̄ = 0, yielding an estimate
for the central charge c from the finite-size scaling behavior in L.

2.8.5 Modular invariance
In Sec. 2.8.2, we found the algebraic description of CF Ts in terms of a set of ground
states |h, h̄〉 = φ(0, 0) |0〉 for the holomorphic and antiholomorphic Virasoro alge-
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bras to act upon. Which combinations of ground states actually occur in physical
theories is not immediately clear, even for the minimal models discussed in Sec. 2.8.3
where we know what primary fields might appear. To determine which fields will
actually appear requires the physical consistency condition of modular invariance on
the torus.

0 1

τ τ + 1

(2.151)

By making use of symmetry considerations, we can specify a torus by imposing
periodic boundary conditions on a parallellogram (0, 1, τ + 1, τ) with vertices in the
complex plane, where the modular parameter τ is a complex number with positive
imaginary part. Starting from a finite cylinder of circumference L = 1 and length
Im(τ), we can twist one end by Re(τ) and glue the ends together to get a torus.
This torus is invariant under the transformations T : τ → τ + 1 and S : τ → −1/τ ,
where S interchanges space u and imaginary time t. These transformations satisfy
(ST )3 = S2 = 1 and generate the modular group

τ → aτ + b

cτ + d
, ad− bc = 1, (2.152)

for a, b, c, d ∈ Z.

The scaling limit of the partition function of a lattice model on the torus should
be invariant under reparametrizations of the torus and should hence be modular
invariant. The non-trivial part of this statement is that the partition function can be
expressed in terms of the spectrum of scaling dimensions of the CF T in a way which
is not manifestly modular invariant [10]. Constructing the partition function on the
torus by twisting the cylinder and gluing the ends together leads to

Z = Tr e−Im(τ)H+iRe(τ)P . (2.153)

Substituting the previously stated expressions for H and P for L = 1 gives a general
definition of CF T partition functions,

Z = eIm(τ)πc/6 Tr e2πiτL0e−2πiτ̄ L̄0 , (2.154)
= (qq̄)−c/24 Tr qL0 q̄L̄0 , (2.155)

where q ≡ e2πiτ . Note that this definition does not involve Lagrangians but only
the Virasoro operators. The trace sums over all eigenvalues of L0 and L̄0, i.e. over
all scaling fields of the CF T. As we have seen in Sec. 2.8.2, these can be grouped
into irreducible representations of the Virasoro algebra of the form (h+N, h̄+N)
where h, h̄ correspond to primary fields and the non-negative integers N , N̄ label
the levels of the descendants. In this way, the partition function can be written as a
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sesquilinear form,

Z =
∑

h,h̄

Mh,h̄χh(q)χh̄(q̄), (2.156)

where Mh,h̄ is the multiplicity of primary fields with lowest weights labelled by
(h, h̄), and where we also introduced the characters, which effectively trace over all
descendants,

χh(q) = q−c/24+h
∞∑

N=0

dh(N)qN , (2.157)

where dh(N) denotes the degeneracy of the representation at level N . Modular
invariance under T implies that all fields must have integer conformal spin51, since
the characters, expressed in terms of τ , transform as

χh(τ + 1) = e2πi(h− c
24 )χh(τ). (2.158)

In matrix form this looks like

χh(τ + 1) =
∑

h̄

Thh̄χh̄(τ), (2.159)

where T is a diagonal matrix containing phases. Invariance under S entails that
Z can equally well be expressed as a power series in q̃ = e−2πi/τ and ¯̃q instead,
resulting in

χh

(
−1

τ

)
=
∑

h̄

Shh̄χh̄(τ), (2.160)

where S is a unitary and symmetric matrix. The conditions for modular invariance
of the partition function can be expressed in terms of the matrix equations

[M,T ] = [M,S] = 0, Mh,h̄ ∈ Z, Mh,h̄ ≥ 0, (2.161)

with the additional requirement that there is a unique vacuum labelled by 0 so
that M00 = 1. The trivial solution is given by Mh,h̄ = δh,h̄, which, applied to
the minimal models of Sec. 2.8.3, leads to the diagonal models Eq. (2.142). The
diagonal modular invariant partition of the Ising model is obtained by choosing
the three ground states |0, 0〉, | 12 , 1

2 〉, and | 1
16 ,

1
16 〉. Using the state-operator corre-

spondence, these correspond to three primary fields that create the ground states
from the vacuum, which we referred to as 1, ε and σ previously. Other non-diagonal
combinations for the Ising model also exist, whose modular invariant partition
functions we will encounter in Chapter 6.

51This holds for periodic boundary conditions. For other kinds of boundary conditions on the torus,
topological corrections to the conformal spin modify the possible values (see Sec. 6.3.2).
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2.8.6 Renormalization group flows and CF T

Operators in a given CF T are classified as relevant, marginal, or irrelevant according
to their scaling dimension Eq. (2.133). The RG flow close to the critical fixed point
is then determined by deformations by these operators, and leads to conformal
perturbation theory. Knowledge of the behavior of correlators away from criticality
is also very important to compare predictions with experimental data, since no
real physical system is ever tuned exactly to the critical point52. In the context
of CF Ts, it is interesting to perturb by a marginal operator because this preserves
conformal symmetry at zeroth order. Exactly marginal operators can even genuinely
perturb the CF T without breaking conformal invariance. This special class of
perturbations constitute a whole family of CF Ts near the original fixed point, with
RG flows connecting the different fixed points on a conformal manifold in the space
of couplings.

We should also mention Zamolodchikov’s result for two-dimensional CF Ts on
the existence of a positive real function c(g), depending on the coupling constants
g = {gi}, which decreases monotonically under the RG flow,

d

dl
c =

∑

i

βi(g)
∂

∂gi
c(g) ≤ 0. (2.162)

This flow quantifies the irreversibility of the renormalization group and takes on the
value of the central charge c(g∗) = c at the RG fixed point, where βi(g) = 0 [47].

2.8.7 Operators on the lattice and in the continuum
Let us conclude this succinct introduction to CF Ts with a comment on the correspon-
dence between microscopic operators on the lattice and their emergent large-distance
continuum fields. Even though the connection between lattice and continuum de-
scriptions alluded to in Sec. 2.6.4 is a little less vague for systems that can be
described in terms of two-dimensional CF Ts, i.e. for one-dimensional quantum
critical points with a linear dispersion relation and two-dimensional rotationally
invariant statistical mechanical systems, it remains hard to make the correspondence
truly precise in general [48]. The problem involves figuring out how to expand
microscopic lattice operators in terms of continuum fields at criticality, or, conversely,
which combination of microscopic lattice operators yields a particular primary field
as the dominant contribution in such an expansion. In particular, relating lattice
operators to chiral continuum fields is notoriously difficult [49, 50].

For the Ising model, we identified the ultraviolet lattice and the infrared con-
tinuum operators in Sec. 2.8.3 by symmetry considerations. The spin field σ is
the most relevant operator which is odd under a global spin flip, so that the micro-
scopic spin operator has the field σ as its leading contribution in the continuum
limit. The only symmetry-preserving relevant operator is the thermal field ε, whose

52Nor does the correlation length ξ really tend to infinity, as impurities and inhomogeneities in most
materials limit ξ to the order of a few thousand sites (which, apparently, is enough to observe near-critical
behavior in experiments).
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lattice incarnation perturbs the classical Ising model away from the critical point
by changing the temperature. Additionally, the non-local chiral operators ψ and
ψ̄ can be understood in terms of a product of spin and disorder operators on the
lattice since they are non-interacting [51]. More complicated theories than the
Ising model leave room for multiple continuum operators behaving similarly under
discrete conformal transformations. Lattice operators are then inevitably made up of
some linear combinations of continuum operators, which obscures any identification.
In Chapter 6, we will come back to aspects of this conundrum.

2.9 Numerical renormalization group

“My work on the Kondo problem is the work that seems least
likely to have been produced by someone else if I had not done it. To
my knowledge, no one else was thinking about the momentum slice
approach to the renormalization group, let alone developing the skills
needed to mount a large-scale computation based on it.”

K. G. Wilson, 2004 [16]

In light of our digression on the interplay between theoretical physics and
numerics in Sec. 2.1 and the MPS impurity picture of transfer matrix renormalization
to be discussed in Chapter 4, we cannot leave out a short discussion on Wilson’s
numerical renormalization group (NRG) [5, 52]. Wilson’s solution to the Kondo
problem provides a prime example where the renormalization group framework has
been successfully carried out in all of its non-perturbative glory and has led to the
development of a whole field devoted to the study of quantum impurity problems.

In quantum impurity problems, a small system with very few degrees of freedom
is coupled to a large non-interacting system which acts as an environment. Crucially,
both systems have to be treated quantum mechanically. For the case of the Kondo
effect, the impurity is magnetic and interacts with the conduction electrons of
nonmagnetic metals. Hence the environment consists of a quasi-continuum over a
wide range of energy scales, from a high-energy cut-off down to arbitrarily small
excitations. The defining energy scale of the problem, the Kondo temperature TK ,
marks the cross-over point below which perturbation theory in the spin-exchange
coupling J between impurity and conduction band electron spins is no longer
trustworthy due to the appearance of diverging lnT terms in the perturbative
expansion. The Kondo problem then boils down to finding a (non-perturbative)
solution which does not break down in the low temperature regime.

Building on scaling ideas of Anderson [23], Wilson wrote the single-impurity
Anderson model down in a way which allowed for a tractable logarithmic discretiza-
tion of the conduction band. After introducing a discretization parameter Λ to
define a set of points Λ−n, n = 0, 1, 2, . . . in the continuous bath spectrum, the
intervals inbetween these points can be approximated by a single representative state.
In this way, an effective, discretized Kondo model is mapped onto a semi-infinite
chain with the impurity at the first site the chain. Going along the chain corresponds
to decreasing energy scales with hopping matrix elements tn ∝ Λ−n/2.

58



2.10. Real-space renormalization

This effective quantum impurity model is then iteratively diagonalized by suc-
cessively adding sites to the chain, starting from a small exactly solvable lattice.
Each step, the effective Hamiltonian H(L), associated to the lattice with size L, is
numerically diagonalized and only the D lowest energy eigenstates are kept. Next,
the D-dimensional reduced Hilbert spaceH(L) is constructed from the linear span
of theD eigenvectors and operators are projected ontoD×D-dimensional operators
having support onH(L). At the end of each step, a lattice site is added so that the
Hilbert space for the next step looks likeH(L+1) = H(L) ⊗Hsite. This process is
then iterated with L → L + 1, where the new Hamiltonian H(L+1) is retrieved
from an RG equation relating H(L+1) to H(L) [5]. Convergence is obtained at a
fixed point where the lowest energy eigenvalues of the Hamiltonian H(L) become
independent of the lattice size L.

In essence, the NRG method boils down to recursively diagonalizing the Hamil-
tonian from large to small energies, meaning that the low-energy modes are affected
by their high-energy counterparts but not the other way around. In this way, very
accurate results can be produced for systems with a clear separation of energies,
such as quantum impurity problems, where the interaction strength decreases expo-
nentially along the chain. The NRG algorithm quickly breaks down as soon as the
strongly-correlated physics of the total system cannot be captured by iteratively re-
stricting to isolated subsystems. This problem was solved by White’s density-matrix
renormalization group (DMRG) [53], which paved the way for the tensor network
states we will discuss in Chapter 3.

2.10 Real-space renormalization

In the previous sections, we have seen glimpses of the power of perturbative RG,
where one rejoices in exploiting the presence of small parameters to construct
asymptotic series expansions in the vicinity of a Gaussian fixed point. In real space
however, much less has been achieved because real-space RG schemes require the
construction of explicit, intrinsically non-perturbative transformations that can be
reliably and accurately iterated. For two-dimensional critical phenomena, one could
argue that, luckily, conformal field theory is powerful enough to provide exact results
for a collection of universality classes associated to critical points of lattice models (see
Sec. 2.8). Unfortunately, we are not only interested in the infrared fixed points and
small perturbations around those fixed points, but also in formulating approximate
yet accurate RG flows which explicitly take us from the intricate short-distance
physics of a critical lattice model to its universal long-distance behavior in a tractable
way.

We would therefore like to conclude this chapter on renormalization group
theory with an introduction to the Delphic art of designing sensible real-space RG
transformations53. As should become clear from the historical examples below,
there is no obvious way to systematically improve the obtained results nor is there a
rigorous mathematical explanation for why these methods ought to give reasonable

53This may be a bit too strong of a hyperbole, as most practitioners of real-space RG are not deliberately
obscure. Yet most are not particularly clear on why their methods work either.
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results at all. In Chapters 3, 5, and 6, we will discuss how tensor networks can be of
help in making progress on some of these issues.

2.10.1 Kadanoff ’s block-spin RG

2.10.1.1 One dimension

In one spatial dimension, Kadanoff ’s block-spin decimation is an exact real-space
RG transformation. Consider a b = 2 decimation acting on the one-dimensional
ferromagnetic Ising partition function for an N-spin chain

ZN =
∑

{σi}
exp


K

N∑

〈ij〉
σiσj + h

N∑

i=1

σi


, (2.163)

where K = J/(kBT ) denotes the reduced nearest-neighbor coupling and h the
reduced external magnetic field. Let’s study the flow in the transfer matrix picture,
where

ZN = Tr
(
TN
)
, T =

(
eJ+h e−J

e−J eJ−h

)
. (2.164)

Blocking two sites then corresponds to a trivial rewriting of the partition function,

ZN = Tr
(
TN
)

= Tr
((
T 2
)N/2)

. (2.165)

Introducing the short-hand notation x = e−J (0 ≤ x ≤ 1) and y = e−h (0 ≤ y ≤
1), the coarse-grained transfer matrix is

T ′ = T 2 =

( 1
xy

1
x

1
x

y
x

)2

=

(
x2 + 1

x2y2 y + 1
y

y + 1
y x2 + y2

x2

)
. (2.166)

If we now demand that T ′ is of the same form as the original T up to an overall
factor,

T ′ ≡ C
(

1
x′y′

1
x′

1
x′

y′

x′

)
, (2.167)

we find the coarse-grained parameters

u′ =

√
v + v−1

(u4 + u−4 + v2 + v−2)
1/4

, (2.168)

v′ =

√
u4 + v2

√
u4 + v−2

, (2.169)

C =
√
v + v−1

(
u4 + u−4 + v2 + v−2

)1/4
, (2.170)
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mapping (u, v) → (u′, v′). The line of ξ = 0 fixed points u = 1 is stable and
corresponds to zero interaction and any external field whatsoever. Even though the
ξ = ∞ fixed point (0, 1) is unstable (corresponding to an infinite interaction and
zero external field), it is not a critical point since there is no way to reach it.

2.10.1.2 Two dimensions

Consider now the d = 2 Ising model on a square lattice of N sites in zero external
field with partition function [54],

Z =
∑

{σi}
exp


K1

N∑

〈ij〉
σiσj


, (2.171)

where K1 = J/(kBT ) denotes the reduced nearest-neighbor coupling. Let us
now coarse-grain explicitly by summing over every other spin in the lattice. As a
consequence of this decimation, the remaining spins form a square lattice rotated
over 45◦ with lattice spacing a′ = ba =

√
2a, so that all length scales have to be

reduced by a factor b =
√

2 to arrive at a renormalized lattice model with N ′ = N/b
spins (see Fig. 2.7).

We can isolate the summation over each decimated spin as follows,

Z =
∑

{σi}∈�

∑

{σi}∈�
exp


K1

∑

〈ij〉
σiσj




=
∑

{σi}∈�

∑

{σi}∈�
. . . exp

(
K1σ

�
5

(
σ�

1 + σ�
2 + σ�

3 + σ�
4

))
. . .

=
∑

{σi}∈�
. . . 2 cosh(K1

(
σ�

1 + σ�
2 + σ�

3 + σ�
4

)
) . . . , (2.172)

where we have focused on a single decimated spin σ5. Even though the tuple
(σ1, σ2, σ3, σ4) can be in 24 microstates, the symmetry of the Boltzmann weight
only implies three distinct values,

2 cosh(K1 (σ1 + σ2 + σ3 + σ4))

=





2 cosh(4K1) if σ1 = σ2 = σ3 = σ4

2 cosh(2K1) if





−σ1 = σ2 = σ3 = σ4

σ1 = −σ2 = σ3 = σ4

σ1 = σ2 = −σ3 = σ4

σ1 = σ2 = σ3 = −σ4

2 if





σ1 = −σ2 = −σ3 = σ4

σ1 = σ2 = −σ3 = −σ4

σ1 = −σ2 = σ3 = −σ4.

(2.173)
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By introducing four renormalized coupling constants K ′0, K ′1, K ′2, and K ′3, we
can reinterpret these weights as

2 cosh(K1 (σ1 + σ2 + σ3 + σ4)) =

exp

(
K ′0 +

K ′1
2

(σ1σ2 + σ2σ3 + σ3σ4 + σ1σ4) +K ′2 (σ1σ3 + σ2σ4) +K ′3σ1σ2σ3σ4

)
.

The coarse-graining generates a constant coupling term K ′0 which acts just as a
free energy offset, a renormalized nearest-neighbor coupling K ′1, but also effective
interaction terms K ′2 and K ′3 representing respectively next-nearest-neighbor and
plaquette interactions. We can solve for the values of these effective couplings by
using Eq. (2.173), which leads to four equations for four unknowns. The algebraic
solution in terms of K1 is given by

K ′0 = ln
(

2
√

cosh 2K1 (cosh 4K1)
1/8
)

(2.174)

K ′1 =
1

4
ln (cosh 4K1) (2.175)

K ′2 =
1

8
ln (cosh 4K1) (2.176)

K ′3 =
1

8
ln (cosh 4K1)− 1

2
ln (cosh 2K1) . (2.177)

After relabeling the remaining spins, the renormalized partition function looks like

Z = exp (N ′K ′0)
∑

{ΣI}
exp

(
K ′1
∑

〈IJ〉
ΣIΣJ +K ′2

∑

〈〈IJ〉〉
ΣIΣJ (2.178)

+K ′3
∑

plaquettes

ΣIΣJΣKΣL

)

= exp (N ′K ′0)Z(K ′1,K
′
2,K

′
3, N

′). (2.179)

σ1

σ2 σ4

σ3

K1

K1

K1

K1

σ1

σ2 σ4

σ3

K′
1K′

1

K′
1 K′

1

K′
2

K′
2

K′
3

FIGURE 2.7: One decimation step.
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It now becomes painfully clear that iterating Kadanoff ’s block-spin method leads to
ever more additional renormalized coupling constants associated to all possible spin
interactions allowed by the symmetry of the system. In this case, only interactions
involving an even number of spins are allowed due to the Z2 invariance under spin
flips σi → −σi, suggesting we should consider a generalized Ising model involving
an infinite number of (even) interactions. The conceptual usefulness of regarding
the Hamiltonian description of a physical system as occupying only a small corner in
the larger space of all possible Hamiltonians becomes particularly clear now.

Let us check what happens when we truncate the couplings. Ignoring all
generated couplings by setting K ′2 = K ′3 = . . . = 0, we get

K ′0 = ln
(

2
√

cosh 2K1 (cosh 4K1)
1/8
)

(2.180)

K ′1 =
1

4
ln (cosh 4K1) . (2.181)

This RG flow is similar to the exact one previously obtained in one dimension
and has only two fixed points: an unstable zero-temperature ordered fixed point
K∗1 =∞ with infinite correlation length due to spontaneous magnetization and a
stable infinite-temperature disordered fixed point at K∗1 = 0 with zero correlation
length, which acts as a sink. Any finite interaction thus renormalizes to zero, so
there will always be disorder at sufficiently long length scales. Because only the low-
and high-temperature fixed points survive the truncation, we obtain the incorrect
prediction that no phase transition takes place in the Ising model for any finite
temperature in two dimensions.

Including only K ′2, the flow becomes

K ′0 = ln
(

2
√

cosh 2K1 (cosh 4K1)
1/8
)

(2.182)

K ′1 =
1

4
ln (cosh 4K1) (2.183)

K ′2 =
1

8
ln (cosh 4K1) (2.184)

Because both K ′1 and K ′2 are both positive and favor the alignment of spins, we
can roughly approximate54 the flow by introducing an effective nearest-neighbor
coupling constant K̃ ′1 = K ′1 +K ′2, obeying

K̃ ′1 =
3

8
ln
(

cosh 4K̃1

)
. (2.185)

We now find that both low-and high temperature fixed points K̃∗1 =∞ and K̃∗1 = 0
are stable fixed points with zero correlation length, with a non-trivial fixed point
K̃∗1 ≈ 0.507 in between55.

54This not completely unreasonable because there are 2N ′ pairs of different nearest-neighbor and
next-nearest-neighbor interactions on the square lattice, which, for a system of fully aligned spins, have a
total energy E = 2N ′(K′1 +K′2).

55The exact value of the critical temperature is βc = log(1 +
√

2)/2 ≈ 0.441.
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2.10.2 Migdal–Kadanoff bond moving approximation

For the Ising model on the square lattice, we can also construct a RG scheme with
b = 2 which decimates every other row/column of spins. To compensate for the
generation of new interactions, one can choose to remove the bonds which are
not connected to the retained spins, leaving only nearest-neighbor interactions
between renormalized spins. But as we have seen previously, this kind of approxi-
mation reduces the problem to similar recursion relations as in the one-dimensional
case, which contains no critical fixed point. To avoid this breakdown, Migdal and
Kadanoff proposed to strengthen the bonds that are left behind by absorbing the
unwanted bonds, leading to double bonds of strength 2K1 ≡ 2K between the
retained spins [55]. The decimation then yields

K ′1 =
1

2
ln (cosh(4K)) , (2.186)

which has stable fixed points for K̃∗ = 0 and K̃∗ =∞. The basins of attraction of
the above sinks are separated by a third non-trivial fixed point located at K̃∗ ≈ 0.305.

This approach can be generalized to higher dimensions, but gives progressively
worse results. For a hypercubic lattice in d dimensions, the bond moving step
multiplies the coupling with a factor 2d−1, so that after decimation we find

K ′ =
1

2
ln
(
cosh(2dK)

)
. (2.187)

The high- and low-temperature sinks are stable because K ′ ≈ 22(d−1)K2 �
K, for K � 1, and K ′ ≈ 2d−1K � K, for K � 1. The unstable fixed point
K = K∗ in between corresponds to the non-trivial fixed point. Let us now illustrate
a simple application of the general theory by extracting the the critical exponent ν
from the behavior of the flow

K ′ = R(K) =
1

2
ln
(
cosh(2dK)

)
(2.188)

close to the non-trivial fixed point K∗. For (K − K∗) small, we make use of
the assumed differentiability of the RG transformation to linearize the flow near
K = K∗,

K ′ ≈ R(K∗) +R′(K∗)(K −K∗) = K∗ + 2yt(K −K∗), (2.189)

where we have introduced yt = lnR′(K∗)/ ln 2. In particular, we have

2yt =
∂K ′

∂K

∣∣∣∣
K=K∗

= 2d−1 tanh(2dK∗). (2.190)

The correlation length scales as ξ(K) ∝ (K − K∗)−ν near criticality, so that,
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together with ξ(K) = 2ξ(K ′), we obtain

(K −K∗)−ν = 2(K ′ −K∗)−ν = 2 (2yt(K −K∗))−ν , (2.191)

implying ν = 1/yt. This simple example based on block-spin RG demonstrates
that the existence of critical exponents crucially follows from the assumption of
differentiability of the RG transformation at the fixed point.

2.10.3 Niemeijer-van Leeuwen cumulant approximation

For the Ising model on a triangular lattice, Niemeijer and van Leeuwen [56]
constructed a b =

√
3 transformation by grouping three spins into a cell I as

{σI1 , σI2 , σI3} and then renormalizing the cell using a majority rule

σ̃I = sgn(σI1 + σI2 + σI3). (2.192)

The renormalized interactions between the renormalized spins σ̃I are then obtained
from the constrained sum

e−βH
′[{σ̃I}] =

∑

{σIi }→{σ̃I}
e−βH[{σI}]. (2.193)

To truncate the number of interactions, Niemeijer and van Leeuwen used pertur-
bation theory to decompose the renormalized Hamiltonian into βH = βH0 + U ,
where

−βH0 = K
∑

I

∑

<ij>
i,j∈I

σIi σ
I
j , (2.194)

which involves only intracell interactions between decoupled cells. The perturbation
involves the remaining intercell interactions,

−U = K
∑

<IJ>

∑

<ij>
i∈I,j∈J

σIi σ
J
j . (2.195)

Invoking the cumulant expansion to write the expectation value of the exponential
as the exponential of expectation values,

〈eU 〉0 = exp

(
〈U〉0 +

1

2

(
〈U2〉0 − 〈U〉

2
0

)
+ . . .

)
, (2.196)

we find

βH ′[{σ̃I}] = − lnZ0[{σ̃I}] + 〈U〉0 −
1

2

(
〈U2〉0 − 〈U〉

2
0

)
+ . . . (2.197)
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where 〈. . .〉0 refers to the expectation value with respect to βH0, with fixed σ̃I , and
Z0[{σ̃I}] denotes the corresponding partition function. This partition function is
independent of σ̃I since it is a product of contributions from independent cells, and
can be evaluated to

Z0[{σ̃I}] =
(
e3K + 3e−K

)N/3
. (2.198)

The first cumulant 〈U〉0 can also be explicitly calculated,

〈U〉0 = 2K

(
e3K + e−K

e3K + 3e−K

)2 ∑

<IJ>

σ̃I σ̃J + . . . , (2.199)

so that up to first order56

βH ′[{σ̃I}] =
N

3
ln
(
e3K + 3e−K

)
+ 2K

(
e3K + e−K

e3K + 3e−K

)2 ∑

<IJ>

σ̃I σ̃J + . . . .

(2.200)

The nearest-neighbor coupling yields the recursion relation

K ′ = 2K

(
e3K + e−K

e3K + 3e−K

)2

, (2.201)

which has the usual high-temperature (K∗ = 0) and low-temperature (K∗ =∞)
zero correlation length sinks. The unstable fixed point in between is given by

K∗ =
1

4
ln
(

1 + 2
√

2
)
≈ 0.336, (2.202)

to be compared with the exactly known value of K∗ = 0.2747 for the triangular
lattice.

Since the fixed point occurs for h∗ = 0, we can easily add an external mag-
netic field term h

∑
I

∑
i∈I σ

I
i to the Hamiltonian because it can also be treated

perturbatively, leading to the flow equation

h′ = 3h

(
e3K + e−K

e3K + 3e−K

)
. (2.203)

In the vicinity of the fixed point (K∗, 0), the RG flow can be linearized as
(
δK ′

δh′

)
=

(
byt 0
0 byh

)(
δK
δh

)
, (2.204)

with byt = 1.624 and byh = 2.121. From these relevant eigenvalues and using

56Niemeijer and van Leeuwen actually went to second order, resulting in a three-parameter space
with two additional interactions between neighboring spins. The qualitative behavior remains identical.
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b =
√

3, the critical exponents are then predicted to be

α (0) β (1/8) γ (7/4) δ (15) ν (1) η (1/4)
−0.27 0.72 0.84 2.17 1.13 1.26

Even though the obtained critical exponents differ significantly from the mean-field
results in Table 2.1 (which is a good thing), the difference between the predictions
and the known exact exponents is rather shocking. This is the result of neglecting
higher-order terms in the cumulant expansion Eq. (2.197). Including more terms
would however require more couplings to be included in the approximation if we
want the effective Hamiltonian to have the same form as the original Hamiltonian.
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CHAPTER THREE

Tensor network states

In this chapter1, we introduce tensor network states and describe how they relate
to the renormalization group in a way that is relevant for our purposes. In the last
decade, tensor networks have emerged as a comprehensive framework capable of
providing a fresh perspective on (quantum) many-body physics, mostly due to their
focus on states rather than Hamiltonians. Although initially confined to condensed
matter and quantum information communities, tensor networks today constitute
a lingua franca capable of capturing an enormous amount of interesting physics in
the same unifying framework of local tensors and their mathematical properties,
which are closely related to the physical properties of the model under consideration.
The numerical roots of tensor networks lie in the spectacular accuracy of the density
matrix renormalization group (DMRG) for one-dimensional quantum spin chains,
which was developed as a generalization of Wilson’s numerical renormalization
group for the Kondo problem [53]. From an analytical and a numerical perspective,
tensor network states provide both concise models of classical and quantum many-
body systems and efficient variational ansätze for the classical simulation of these
systems. Their success can be traced back to the fact that they have been intentionally
designed to capture the entanglement and correlation structure of physical states
using virtual entanglement degrees of freedom.

Given that there exist many recent, excellent reviews on tensor networks and
their applications, theoretical underpinnings, and optimization algorithms, we will
not attempt to provide an exhaustive introduction and refer the reader to Refs. [57–
64] and the references contained therein.

3.1 The renaissance of quantum entanglement

In the last twenty years, the perception of entanglement in quantum mechanics has
shifted from an obscure spukhafte Fernwirkung to one of the most important concepts
in contemporary physics. Rather than a mysterious bottleneck, the entanglement
structure of quantum states has become an essential characteristic in classifying
quantum phases of matter. Because entanglement has always been present in the
postulates of quantum mechanics and the theory itself has also not changed since
its conception, it looks like the delay was due to the usual slow and contingent

1Most of the material in this chapter is not original research apart from some tiny unpublished
findings in Section 3.4.
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3. TENSOR NETWORK STATES

adaptation of human inventiveness. It took physicists more than half a century
to realize that entanglement can be used as a resource to do things considered
impossible in classical physics, ultimately leading to the development of the thriving
fields of quantum information and quantum computation, and an awakening of the
aspiration to build a large-scale quantum computer.

We will be concerned with entanglement in the context of quantum many-body
systems, where it is closely related to the curse of dimensionality. Consider the
specific example of a one-dimensional spin chain of N sites, where each physical
site is associated with a local Hilbert space Cd. A generic variational ground state
wave function then has a tensor product structure

|Ψ〉 =

d∑

i1,...,iN=1

ci1,...,iN |i1, . . . , iN 〉 =
ci1,i2,...,iN

i1 i2 iN. . .

(3.1)

where the coefficients ci1,...,iN ∈ (Cd)⊗N are seen to grow exponentially with
the length of the chain. The quantum many-body problem then boils down to
how to deal with variational parameters which grow exponentially with the system
size. Fortunately, there are good reasons for the practical mind to regard these
exponentially large Hilbert spaces as fictitious constructs.

First of all, recall from Chapter 2 that physical Hamiltonians are more often than
not short-ranged, i.e. they can be written as a sum of few-body terms H =

∑
i hi.

While ground states associated to arbitrarily long-range Hamiltonians can of course
explore the exponentially large Hilbert space at will, ground states of local Hamilto-
nians are naturally less inclined to do so. Secondly, the overwhelming majority of
states in the Hilbert space of all quantum many-body states that can be generated
by arbitrary time-dependent local Hamiltonians are not physical because they can
only be reached after an exponentially long time [65]. Thirdly, the entanglement
structure of interacting quantum systems is sculpted by the area law. To see this,
let us consider the von Neumann entropy S(ρA) = −Tr ρA log(ρA) of the reduced
density matrix ρA of a region A, which quantifies the bipartite entanglement be-
tween region A and its complement (the rest of the system). For a random quantum
state, we generically find a volume law scaling S(ρA) ∼ |A| log d, where |A| denotes
the number of spins in region A, or, effectively, the volume of region A. Ground
states of local Hamiltonians however exhibit an area law S(ρA) ∼ |∂A|, where |∂A|
denotes the boundary of region A, with possible corrections that are logarithmic in
the volume for gapless Hamiltonians [66]. The fact that S(ρA) scales as the bound-
ary of ρA suggests that the entanglement between region A and its complement is
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concentrated along the boundary between the two regions.

H

A A

From a modern point of view, tensor networks can be regarded as efficient parametriza-
tions of the small, physical corner in Hilbert space which contains the relevant
low-energy states for quantum many-body systems. Building on the previous entan-
glement insights, we will now parade a few variational ansätze for quantum states
which have been designed with a specific entanglement structure in mind. Unless
explicitly stated otherwise, we will always be interested in the low-energy behavior
of translation invariant systems in the thermodynamic limit N →∞. Since there
are few cases where explicit tensor network equations provide more insight than
clear diagrams for our considerations, we will henceforth make extensive use of
graphical notation to denote tensor contractions and operations. Not doing so would
be nothing short of obfuscation.

3.2 Matrix product states

3.2.1 Ansatz and properties

Matrix product states span the manifold of ground states and low-lying excitations of
one-dimensional gapped Hamiltonians. Let us derive their entanglement structure
from the general variation wave function Eq. (3.1), which is parametrized in terms
of a rank-N tensor ci1,...,iN . Isolating the first physical index from the rest and
doing a singular value decomposition (SVD) gives the Schmidt decomposition

|Ψ〉 =
∑

i

λi |Li〉 ⊗ |Ri〉 =
L

. . .

Rλ (3.2)

where the singular values λi are called Schmidt values and the |Li〉 and |Ri〉 or-
thonormal basis vectors. The Schmidt values quantify the entanglement across the
cut. Repeating this decomposition for the whole chain and absorbing the diagonal
λi matrices into the local tensors, we get the general form of an MPS with open
boundary conditions,

|Ψ[A]〉 =
. . .A[1] A[2] A[N ] (3.3)
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Note that we have not really done anything to mitigate the exponential growth so
far. From the area law, we however expect the entanglement entropy for any region
to be bounded by a constant in one dimension. This implies a fast decay of the
Schmidt values across any cut, so that only D � exp(N) non-zero singular values
have to be taken into account. In that case, the MPS representation of the state
is guaranteed to be an arbitrarily good approximation with a bond dimension D
that scales polynomially with N [67]. For translation invariant systems, we can
even parametrize the entire wave function in the thermodynamic limit in terms of a
uniform MPS which is built out of a single tensor generically containing O(dD2)
parameters.

We will now give a different construction of MPS, which has the advantage that it
can be straightforwardly generalized to higher dimensions. Consider a lattice where
each physical site corresponds to a local Hilbert space Cd. Let us now additionally
associate two virtual subsystems with bond dimension D to each physical site. We
then introduce maximally entangled states |ω〉 =

∑D
i=1 |ii〉, where mean-field

theory corresponds to taking product states (D = 1). Projecting onto the physical
level with a judiciously chosen linear map Ps =

∑
i,α,β A

[s]
i,αβ |i〉 〈α, β| , we obtain

Cd

|ωD〉 |ωD〉

CD CD

P1 P2 P3

(3.4)

so that the total state of chain is given by

|Ψ〉 = (P1 ⊗ P2 ⊗ . . .⊗ PN ) |ω〉⊗N (3.5)

=
∑

i1,...,iN

Tr
[
A

[1]
i1
A

[N ]
iN

. . . A
[N ]
iN

]
|i1, . . . , iN 〉 . (3.6)

This construction satisfies the area law since there are always exactly two maximally
entangled states crossing any cut, bounding the entanglement entropy by the constant
value 2 logD. We end up with the general form of a periodic MPS,

|Ψ[A]〉 = . . .A[1] A[2] A[N ] (3.7)

For example, if we pick the entangled state |ω〉 = |00〉 + |11〉 and the projector
P = |0〉 〈00|+ |1〉 〈11|, or, equivalently, the MPS tensor

A0 =

(
1 0
0 0

)
, A1 =

(
0 0
0 1

)
, (3.8)

we get the Greenberger-Horne-Zeilinger state |GHZ〉 = |00 . . . 0〉+ |11 . . . 1〉.

Any MPS has a gauge freedom in the sense that for any matrix Xs with right-
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inverse2 X−1
s , the transformation

A
[s]
i → A

[s]
i Xs, A

[s+1]
i → X−1

s A
[s+1]
i , (3.9)

leaves the state invariant. This property is exploited in numerics for stability to recast
an MPS in either left, right, or mixed canonical gauge. For example, an MPS in left
gauge has the useful property that its tensors are left-isometric when contracted,

d∑

i=1

A†iAi =

A

Ā

= , (3.10)

which enables an efficient calculation of expectation values. Note that matrix product
states can be generalized from pure states to density matrices by adding an additional
physical leg to the local tensors, leading to so-called matrix product operator (MPO)
representations of many-body operators,

O O O. . . . . . (3.11)

The importance of these objects cannot be overstated since they are ubiquitous in
many-body physics: from statistical mechanics (see Sec. 3.5.1), where they appear as
transfer matrices to the study of topological quantum phases of matter, where they
characterize topological symmetries on the virtual level of projected entangled pair
states (see Sec. 3.3.2).

3.2.2 Transfer matrix and correlations

A central object in tensor network theory is the transfer matrix or transfer operator.
For MPS, it is constructed by contracting the physical indices of ket and bra,

TA =

d∑

i=1

A⊗ Ā =
A

Ā

(3.12)

The transfer matrix uniquely defines the MPS matrices A up to a local unitaries.
Let us now consider a single site operator Oi at site i and calculate its two-point

2The matrix Xs can thus be rectangular and alter the bond dimension.
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function through the following tensor network contraction3,

〈Ψ[A]|OiOj |Ψ[A]〉 =

A

Ā

O

A

Ā

A

Ā

A

Ā

O

A

Ā

A

Ā

. . .

. . .

. . .

. . . . . .

. . .

(3.13)

where we have introduced a modified transfer operator

TA[O] =

d∑

i,j=1

〈j|O|i〉A⊗ Ā =

A

Ā

O (3.14)

In the thermodynamic limitN →∞, we assume TA to have a unique maximal eigen-
value λ1, which we normalize to λ1 = 1, with associated eigenvectors |l〉 and |r〉.
In that case, T NA → |r〉 〈l|, and Eq. (3.13) converges to 〈l|TA[O]T |i−j|A TA[O]|r〉.
Substituting the expansion T kA = |r〉 〈l| + ∑α≥2 λ

k
α |rα〉 〈lα|, where we assume

|λα| < 1 for α ≥ 2, we find that

〈Ψ[A]|OiOj |Ψ[A]〉 = 〈l|TA[O]|r〉 〈l|TA[O]|r〉+
∑

α≥2

λ|i−j|α 〈l|TA[O]|rα〉 〈lα|TA[O]|r〉 .

(3.15)

The two-point function thus decays exponentially with the distance |i−j| separating
the operators and is wholly determined by the spectral properties of the transfer
matrix TA. Specifically, the correlation length measured in units of lattice spacing is
given by

ξ = − 1

ln
∣∣∣λ2

λ1

∣∣∣
, (3.16)

and is related to the gap of the (parent) Hamiltonian. For degenerate largest
eigenvalues, the correlation function consists of a long-range part that does not decay
together with other contributions which still decay exponentially. It is important to
stress that the entanglement structure of MPS is incapable of capturing algebraically
decaying correlations. Numerically, it is of course possible to approximate critical
ground states. Typically, one observes that the Schmidt values decay much more
slowly than off criticality and that the correlation length remains large but finite,
since power law correlations are approximated by a sum of exponentials.

Even though we will not further elaborate on the analytical aspects of MPS,
note that they can be used as a framework to construct solvable models whose
properties can be understood analytically. In particular, MPS have been used to

3Note that these contractions can be evaluated efficiently. For finite MPS, they scale as O(ND3) for
open boundary conditions and as O(ND5) for periodic boundary conditions, while for uniform MPS the
dependence on N drops out.

74



3.2. Matrix product states

classify one-dimensional gapped quantum phases of matter [37, 68–70].

3.2.3 Renormalization by blocking

Let us now discuss a simple real-space RG transformation for MPS wave functions,
following Ref. [71]. The approach is reminiscent of the block-spin approach dis-
cussed in Sec. 2.10, but here we consider a quantum version, and, in line with the
spirit of tensor networks, we act on the state instead of the Hamiltonian. Recall that
we can write any one-dimensional translation invariant state in its MPS form

|Ψ[A]〉 =

d∑

i1,...,iN=1

Tr
[
Ai1AiN . . . AiN

]
|i1, . . . , iN 〉 , (3.17)

where the set of matrices {Ai|i = 1, . . . , d} parametrizes the state and the bond
dimension D ≤ dN/2 is left undetermined. We can now define a quantum coarse-
graining procedure which maps two neighbouring spins to a single, effective block
spin on the level of the MPS tensors. After blocking two tensors [A(ij)]βγ ≡
[AiAj ]βγ and grouping the physical and virtual indices together, we do a singular
value decomposition

[A(ij)]βγ ≡ [AiAj ]βγ =

min(d2,D2)∑

α=1

(U†)(ij)
α ΛαV αβγ . (3.18)

Graphically, the coarse-graining procedure looks like

Ai Aj

V α

Λα

(U †)α

Ãα

=

(U †)α
(3.19)

The coarse-grained MPS tensor Ãα = ΛαV α is determined up to an isometry U
which selects a representative for the equivalence class of the wave function since |ψ〉
is only defined up to local unitaries, i.e. |ψ′〉 ∼ |ψ〉 if |ψ′〉 = U ⊗ U ⊗ . . .⊗ U |ψ〉,
where the d2 × d2 unitary matrix U singles out a local basis. Note that iterating
the blocking scheme Eq. (3.18) leads to a bounded physical dimension of the spins.
Once the effective physical dimension reaches D2, it stays at that value, which
implies that we can exactly coarse-grain finite-dimensional matrix product states.
For small bond dimensions, we can even enumerate the exact fixed points of the
RG flow. Product states, which have bond dimension D = 1 and look like A1 = 1,
Ak = 0 for k = 2, . . . , d, are a fixed point of the RG transformation and correspond
to the infrared fixed points of massive theories. The GHZ state Eq. (3.8) is also a
fixed point, with U = |0〉 〈00| + |1〉 〈11|, and corresponds to symmetry-breaking
infrared fixed points.
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We can get rid of the arbitrary local basis by considering the transfer matrix

TA =

d∑

i=1

Ai ⊗ Āi =

Ai

Āi

(3.20)

so that the local unitaries automatically drop out when coarse-graining,

Ai Aj

Ãα

(U †)α

Āi Āj

¯̃A
α

Uα

Ãα

¯̃A
α

= (3.21)

and the RG flow in terms of transfer matrices becomes TA → TÃ = T 2
A . Fixed points

then boil down to characterizing the class of operators {T ∞A } = {limn→∞ T nA }
which have the structure of an MPS transfer matrix. Since TA corresponds to a
completely positive map φ, which acts as φ[TA](ρ) =

∑
iA

iρA†i, one can use
quantum information theory results on the classification of these maps to classify all
D = 2 fixed points of the coarse-graining transformation [71].

For injective4 MPS, we can always choose the largest non-degenerate eigenvalue
of TA to be equal to one, and bring the MPS into left gauge to find

T kA = ρ +O(|λ2|k) (3.22)

where ρ denotes the full-rank right fixed point and the second eigenvalue |λ2| < 1
of the transfer matrix involves subleading corrections. At the fixed point, the trivial
scale-invariant state can thus be written in terms of two virtual spin degrees of
freedom, which are entangled with their neighbors,

√
ρ. . .

√
ρ

√
ρ . . . (3.23)

The resulting system has zero correlation length and belongs to the trivial fixed
points we encountered in the previous chapter. This confirms the fact that MPS are
well-suited to capture gapped systems but much less so for gapless systems. Indeed,
the fixed point can be completely disentangled by a finite-depth local quantum

4An MPS is said to be injective if there exists a length k such that, after blocking k sites, the map
X 7→∑

Tr[Ai1 . . . AikX] |i1, . . . , ik〉 is injective, meaning that every choice X maps onto a unique
physical state associated to that block.
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circuit by constructing a unitary U which acts as

√
ρ. . .

√
ρ

√
ρ

√
ρ

√
ρ

√
ρ

U U U U U U

. . .

(3.24)

in such a way that the resulting MPS is equal to the product state |00 . . . 0〉. All
injective MPS are thus in the same trivial topological phase as a product state. Note
that the real-space transformation for matrix product states we have discussed above
has recently been extended to matrix product density operators [72].

3.2.4 Variational optimization

Let us now turn to the numerical side of matrix product states. By now, it is
understood that the DMRG algorithm amounts to a variational optimization over the
manifold of quantum states parametrized by MPS [73, 74]. Explicitly, the ground
state of a Hamiltonian is found variationally by solving

arg min
|Ψ〉∈M

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (3.25)

whereM denotes a variational manifold embedded in the physical Hilbert space,
which we here restrict to that of (uniform) matrix product states. Using the gauge
freedom of MPS in a clever way, the tensor contractions can be efficiently evaluated
and the problem for a single tensor reduces to a (generalized) eigenvalue equation.
Usually, one optimizes a single tensor at a time and sweeps back and forth until
the cost function converges. In this sense, MPS algorithms are greedy, i.e. by
locally optimizing for a single tensor at a time we hope to find a global optimum.
Numerically, this appears to be the case and the strategy works almost without failing
for matrix product states.

There currently exist many ways to optimize MPS wave functions. A particularly
elegant one is obtained by a careful adaptation of Dirac’s time-dependent variational
principle (TDVP) to the language of MPS, which introduces differential geometric
notions into the variational optimization procedure [75–77]. The best variational
approximation then corresponds to the relentless projection of the quantum state
onto the MPS manifold of a given bond dimension. Given a properly optimized
ground state |Ψ[A]〉, the tangent space properties of TDVP additionally suggest
a natural excitation ansatz which implements particle-like excitations on top of
the ground state [78, 79]. We will make use of these algorithms, as well as their
formulation involving MPOs instead of Hamiltonians [63], in Chapters 4, 5, and 6.
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3.3 Projected entangled pair states

3.3.1 Ansatz and properties

The construction Eq. (3.4) for MPS can be generalized to higher dimensions to yield
the variational class of projected entangled pair states (PEPS) [80]. For two dimensions,
we instead introduce a (possibly site-dependent) linear operator Ps : (CD)⊗4 →
Cd,

Ps =
∑

i,α,β,γ,δ

A
[s]
i,αβγδ |i〉 〈α, β, γ, δ| , (3.26)

so that

|Ψ[A]〉 = , (3.27)

which has an entanglement structure compatible with the area law.

Algebraic decay of correlations

As opposed to MPS, PEPS are believed to be able to capture algebraic decay of (ther-
mal) correlations [81]. Suppose we were to consider a classical model H[s1, . . . , sN ]
with a thermal phase transition such as the by now all too familiar Ising model. If
we can relate a PEPS to the classical model’s partition function Z, then the algebraic
decay of (thermal) correlations at the critical inverse temperature βc ought to be mir-
rored in the corresponding PEPS description. This is demonstrated by constructing
an unnormalized pure state

|ψ〉 =
∑

{s1,...,sN}
e−

β
2H[s1,...,sN ] |s1, . . . , sN 〉 , (3.28)

whose overlap 〈ψ|ψ〉matches the partition functionZ =
∑
{s1,...,sN} e

−βH[s1,...,sN ].
The key insight is that the state Eq. (3.28) has a PEPS representation, which, for the
Ising model, looks like

i
α

β

γ
δ

= e−
β
4 (sisα+sisβ+sisγ+sisδ), (3.29)

where the Boltzmann weights are encoded in the correlations between virtual spins.
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3.3.2 Topological order and MPO algebras

Topologically ordered phases of matter (see Sec. 2.7.5) are wildly popular in con-
densed matter literature nowadays due to their potential role in realizing large-scale
quantum computers by means of topological quantum computation. The idea is to
encode qubits using robust, topological degrees of freedom, which are effectively
isolated from local interactions with the environment and thus inherently resilient
against errors.

In the last few years, it has become clear that two-dimensional nonchiral topolog-
ical phases of matter can be understood in terms of PEPS by generalizing injectivity
conditions to include MPOs acting as generalized symmetries on the virtual level
[82–84]. As already noted in Sec. 2.7.5, the interplay of global symmetries with triv-
ial and non-trivial topological phases leads to the possibilities of symmetry-protected
topological (SPT) [83] and symmetry-enriched topological (SET) phases [85]. Both
of these generalizations can be captured in a unified tensor network formalism which
lends itself to numerical simulations [86, 87] due to its focus on states rather than
Hamiltonians. It should be noted that the tensor network approach has its origins in
local commuting projector Hamiltonians such as Kitaev’s toric code [88] and Levin
and Wen’s string-net models [89, 90], which, in turn, are Hamiltonian realizations
inspired by known topological quantum field theories (TQF Ts).

In Chapter 6, we will introduce parts of the MPO algebra formalism relevant to
the specific problem of representing classical partition functions as the overlap of a
product state with the PEPS representation of a symmetry-enriched string-net wave
function.

3.3.3 Variational optimization

It is important to note that the contraction of PEPS tensor networks can no longer be
carried out exactly [91]. Contrary to MPS, there is also no obvious canonical gauge
which simplifies calculations. The norm 〈Ψ[A]|Ψ[A]〉 is given by sandwiching bra
and ket,

〈Ψ[A]|Ψ[A]〉 = , (3.30)

and has to be approximately calculated using MPS techniques [63, 80], corner transfer
matrices [92–95], or tensor network renormalization methods (see Sec. 3.5.2). Let
us focus on the approximate contraction method which recycles MPS techniques,
even though all of them boil down to more or less the same idea. The trick is to
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collapse the double-layer tensor network, so that the top view of Eq. (3.30) resembles

〈Ψ[A]|Ψ[A]〉 = , (3.31)

where we have defined the PEPS transfer matrix as

TA = (3.32)

Since PEPS expectation values cannot be contracted exactly, even the tensor
network contractions appearing in variational optimization schemes have to be
approximated. So not only do we approximate the quantum state by a PEPS wave
function, we also have to approximate the PEPS approximation itself when calculating
any kind of overlap. By using the honed tools of Sec. 3.2.4, we can calculate the
approximate (uniform) MPS fixed point coming from the top,

≈ λ , (3.33)

and similarly for the bottom. The contraction problem is then reduced to one
dimension5,

〈Ψ[A]|Ψ[A]〉 ≈ (3.34)

so that with the leading left and right eigenvectors of the transfer matrix object
inside the bounding box, we can evaluate the tensor network to be

〈Ψ[A]|Ψ[A]〉 ≈ ρRρL TA (3.35)

5Note that we have ignored eigenvalues and normalizations for clarity here.
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This general procedure is referred to as calculating the environment of a PEPS tensor
and appears in any optimization algorithm which takes the full environment into
account. Variational algorithms for PEPS also try to solve Eq. (3.25), but with
the variational manifold now corresponding to the class of PEPS wave functions.
Most PEPS algorithms (simple-update [96], full-update [97], or fast-full-update
[98]) resort to imaginary-time evolution to evolve an initial PEPS state, leading to a
projection onto the ground state for long times. This is done by applying quantum
gates resulting from the Trotter-Suzuki decomposition of the operator exp(τH) (see
Sec. 4.2) to the PEPS, which enlarges the bond dimension and requires truncation.
For simple-update, the truncation environment is approximated by a product state,
while full-update takes the full environment into account, requiring matrix inverses
of possibly badly conditioned effective environments. In Ref. [99], a novel conjugate-
gradient algorithm was proposed to directly optimize the global energy functional
on the PEPS variational manifold, similar in spirit to the tangent space methods for
MPS. It should be noted however that the numerical side of PEPS unfortunately
remains shrouded in an air of prohibitive numerical cost, especially for systems close
to criticality.

3.4 Multi-scale entanglement renormalization ansatz

In contrast to MPS and PEPS, the multi-scale entanglement renormalization ansatz
(MERA) is tailored to capture gapless (critical) ground states in one [100] and two
dimensions [101] and implements a real-space RG transformation on quantum states.
We will restrict ourselves to the one-dimensional case below.

3.4.1 Ansatz and properties
The MERA has a built-in additional dimension which plays the role of a coarse-
graining scale, grouping its tensors in layers. These tensors can either be disentan-
glers, which are unitary disentangling gates, or isometries, which reduce the number
of degrees of freedom. For example, a binary MERA looks like

|Ψ〉 = (3.36)

where the physical ultraviolet lattice corresponds to the tensor legs at the bottom
and the dotted lines indicate coarse-grained effective lattices at larger length scales.
The tensors are constrained to be respectively isometries and unitaries,

= and = (3.37)
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which leads to considerable simplifications when computing local expectation values
and correlation functions. For states with a finite correlation length, we can cap
the network with a top tensor after s ≈ log2(N) layers since all correlations should
be dealt with at that point. To impose translation invariance, all disentanglers and
isometries of every layer are taken to be identical, even though the ansatz itself is
even then clearly not translation invariant. Gapless ground states with a diverging
correlation length are expected to be scale invariant, which the MERA can capture
by furthermore choosing all layers to be identical6. In this way, MERA is able to
describe gapless ground states in terms of just a single disentangler and isometry.

Even though most of the literature on MERA is numerically motivated, there have
been numerous (semi-)analytical advances over the past few years. Example include
recent work on anomalies and entanglement renormalization [102], the construction
of an analytical MERA for the quantum Ising model [103], and the connection
between entanglement renormalization and wavelets [103, 104]. Even though we
will not discuss the continuous generalization of MERA (cMERA) for Gaussian
models [105], we would like to mention that there appear to be many low-hanging
fruits left. Looking back at Section 2.7.4, it seems clear that a straightforward
step from the known Gaussian solutions towards interacting cMERAs would be to
first of all try to reproduce the perturbative RG results for the Wilson-Fisher fixed
point. This would rephrase known and well-understood perturbative results in terms
of Hamiltonian flows and entanglement renormalization. The key technical step,
which makes the deriviation nontrivial, is the use of the framework of quasi-adiabatic
evolution [36, 106] to treat the unitary (dis)entangling operators perturbatively.
From the explicit expression of the coarse-grained Hamiltonian, one should be able
to identify the perturbative flow of the couplings.

Algebraically decaying correlations

Let us first of all demonstrate how the tensor constraints Eq. (3.37) simplify the
calculation of two-point correlation functions for the ternary MERA,

〈Ψ|OiOi+N |Ψ〉 = (3.38)

6In actual numerics, one adds a few transitional layers to flow closer to the fixed point and its
associated universal behavior.
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3.4. Multi-scale entanglement renormalization ansatz

Making use of the constraints, we find

〈Ψ|OiOi+N |Ψ〉 = (3.39)

Indeed, all tensors outside the causal cone (see also Sec. 3.4.2) of the support of the
operators under consideration drop out of the contraction, so that the MERA maps
local operators to local operators7. After s ≈ logN iterations, two operators which
were initially a distance N apart have become nearest-neighbors. From that point
on, the scaling behavior of a local operator is completely determined by (a particular
instance of ) the ascending superoperator

S(φ) = φ (3.40)

which is a completely positive, unital map with eigenvalues |λ| ≤ 1 [107]. The
two-point correlators of eigenoperators φi with eigenvalues λφi of this map behave
as

〈φi(0)φj(x)〉 ∼ 〈φi(0)φj(1)〉λlog3 x
φi

λ
log3 x
φj

∼ 〈φi(0)φj(1)〉
|x|∆i+∆j

(3.41)

where we have defined the scaling dimensions ∆i = − log3(λφi) ≥ 0. Note
the uncanny similarity of the above equations to Sec. 2.8 on conformal field theory.
Indeed, the eigenoperators of the superoperator S can be identified with approximate
lattice representations of the CF T primary fields (and their descendants). We will
demonstrate some of these features in Sec. 3.4.2.

The previous discussion on correlators suggests that we can interpret the action
of MERA as a sequence of unital, completely positive maps acting on local operators.
In terms of real-space RG transformations, the MERA approximately conserves the
expectation value

〈Ψ(0)|O|Ψ(0)〉 = 〈Ψ(s+1)|A(s) ◦ . . . ◦ A(0)(O)|Ψ(s+1)〉 (3.42)

for all scales s, where the ascending superoperatorA(s) at layer s is a coarse-graining
map from bN−s spins to bN−s−1 spins. Thermodynamic observables are then
identified as the operators corresponding to fixed points of superoperators in scale
space.

7This holds more generally, i.e. not only for the convenient choice of lattice positions we considered
here.
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3.4.2 Entanglement structure of MERA: correlations in scale space

Let us now study the entanglement properties of the one-dimensional MERA by
explicitly constructing effective reduced density matrices in scale space using the
causal cone structure. Using the iterative optimization methods developed for MERA
in Refs. [108, 109], we set out to numerically quantify the entanglement entropy
and mutual information in the auxiliary scale space. Additionally, the features
distinguishing MERA from MPS are clearly illustrated in a hands-on way.

3.4.2.1 Semi-infinite density matrix

Consider the problem of calculating the semi-infinite density matrix ρA of a wave
function parametrized in terms of a numerically optimized ternary MERA with bond
dimension χ. By contracting ket and bra to the right of an arbitrary origin, we
obtain the reduced density matrix defined on the real-space interval x ∈]−∞, 0[,
which looks like

s

The causal cone associated to the origin is drawn in red. All tensors to the right
of the causal cone of the origin site drop out due to the unitary and isometric
restrictions on the tensors. As we are only interested in the spectrum of ρA, the
remaining tensors outside the causal cone to the left amount to a big isometry which
does not affect the spectrum. So we end up with an effective reduced density matrix
along the scale dimension, which takes the form of a matrix product operator (see
Eq. (3.11)),

. . .

. . .

s

(3.43)

where the upper indices denote the ket and the lower the bra along the scale dimen-
sion. Each lattice site s in scale space is directly related to a real space length scale
3s. Of course, this semi-infinite MPO still does not allow us to calculate the full
semi-infinite density matrix ρA, which still grows exponentially in scale. We can,
however, calculate arbitrary reduced density matrices of sets of scales by tracing out
all other sites.

As an example, consider the reduced density matrix of two sites s and s + N .
Tracing everything to the left of s gives an identity matrix coming from the left
due to the isometric properties of the tensors. Tracing the sites s+ 1 to s+N − 1
amounts to acting with a scale transfer matrix, which is nothing but an instance of
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FIGURE 3.1: The transfer matrix in scale space is equivalent to a scaling superoperator, whose
dominant eigenvalues λi are related to the scaling dimensions ∆i = − log3(λi) of the critical
theory (quantum Ising model for bond dimension χ = 10). To show that a MERA with
χ = 10 is actually more accurate than what the scaling transfer matrix implies, we have also
plotted the eigenvalues of MERA’s average descending superoperator, which is defined on two
sites and incorporates the disentangler u [108, 109]. This indicates that, with an increased
numerical cost, we could take an (average) origin of two sites to obtain a more accurate scale
MPO.

the familiar MERA scaling superoperator we already encountered in Eq. (3.40),

=

s

s (3.44)

where we identify the left indices with the inner ones on the right, and the right
indices with the outer ones (as a matrix). Finally, the dominant eigenvector of the
above object acts as a fixed point coming from the right of site s + N , which is
nothing but the dual to the identity operator, i.e. the one-site fixed point reduced
density matrix in MERA numerics which represents all upper scales. It is also clear
that the entanglement entropy of the reduced density matrix associated to a single
scale is trivially constant due to the scale invariant ansatz and the isometric properties
of the tensors making up the MPO. Each scale yields a constant contribution to the
entanglement entropy by construction.

3.4.2.2 Scale transfer matrix properties

We will restrict ourselves to the scale invariant bulk part of the MPO. The transitional
layers drop out anyway due to the isometric properties of the tensors when calculating
reduced density matrices of regions having support only in the bulk. As mentioned
in Ref. [107] and shown numerically in Fig. 3.1 for an optimized MERA with bond
dimension χ = 10, the scale transfer matrix Eq. 3.44 is gapped with correlation
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length

ξ = −1/ log |λ2/λ1| ≈ 7.269 . . . , (3.45)

and its low-lying spectrum λi is directly related to the scaling dimensions ∆i of the
underlying conformal field theory by

∆i = − log3(λi). (3.46)

Reversing this reasoning, we expect the exact correlation length in scale space to
be −1/ log(3−∆σ ) = 1/(0.125 · log 3) ≈ 7.28 sites (in units of scale space lattice
spacing).

Let us now turn to Fig. 3.2 for the spectra of the reduced density matrices
associated to a continuous block of n sites in scale space ρn, pictorially represented
by

n

, (3.47)

as well as their associated entanglement entropy S(ρn) = −Tr(ρn log ρn). The
dominant eigenvalues appear to converge to something universal, and a huge amount
of irrelevant junk appears after each application of an invariant layer to increase
the block size. The trend of the entanglement entropy of a block appears to be
linear in scale, recovering the familiar logarithmic scaling with block size for a
(1+1)-dimensional CF T with central charge c = 1/2 (see Sec. 2.8). Recall that the
reduced density matrices of a block of size n in scale space are related to those of
blocks of size 3n in real space and that we are only discussing the spectra of the
reduced density matrices; the actual mapping between the support of operators in
scale space and real space involves the big spectrum-preserving isometry that we
discarded, and is highly non-trivial.

In Fig. 3.3, we plot the mutual information

I(A : B) = S(A) + S(B)− S(A ∪B) (3.48)

between two single-site (n = 1) and two two-site (n = 2) regions in scale space in
function of the distance N between them,

N

There is an obvious exponential decay with the distance, which immediately also
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FIGURE 3.2: Spectra (left) and entanglement entropy (right) of blocks of sites in scale space
of size n = 1, 2, 3, 4 for an optimized χ = 10 MERA and normalization Tr ρn = 1.

bounds the correlation functions of observables in scale space, since [110]

I(A : B) ≥ (〈OA ⊗OB〉 − 〈OA〉 〈OB〉)2

2||OA||2||OB ||2
. (3.49)

Note that the distanceN is measured in scale space, so in terms of real space intervals,
the decay is polynomial, which is to be expected for critical theories.

0 5 10 15 20 25

N
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100

I(
A
,B
)

n=1
n=2

FIGURE 3.3: Mutual information between two single-site (n = 1) and two two-site (n = 2)
regions in scale space in function of distance (in scale) N for an optimized χ = 10 MERA.

3.4.2.3 Musings on excitations in scale space

Let us conclude this section with an overview of the properties of MERA we have
encountered. We have seen that the gap of the scale transfer matrix, which is repre-
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sented as the trace of an MPO, is directly related to the first non-trivial local scaling
dimension. This is a highly non-trivial property of these numerically optimized ten-
sors, and immediately begs the question if studying their robustness using eigenvalue
and eigenvector perturbation theory might allow to infer their critical properties and
deduce conditions on the elements of the tensors themselves.

Additionally, we calculated the dispersion relation of the scale transfer matrix
MPO using the variational excitation ansatz of Sec. 3.2.4 adapted to matrix product
operators [63], and found a gapless excitation spectrum8. It is known that MPOs
with a linear dispersion relation are rare, since they correspond to an entanglement
Hamiltonian which has a linear (gapless) excitation spectrum. Choosing random
isometries in the MPO immediately destroys this linear dispersion relation. Only
numerically optimized MERAs can be interpreted as physical MERAs in the sense that
the scale transfer matrix MPO has the correct structure to reproduce the low-lying
CF T spectrum. Even though we did not study perturbations of the numerically
optimized tensors, one can already appreciate that the isometric tensors embedded in
the scale transfer matrix Eq. (3.44) must be carefully tuned for this spectral behavior
to occur.

The above observations suggest that it might be worthwhile to further study the
entanglement structure of MERA semi-analytically. Finding explicit conditions on
the MERA tensors to ensure a gapless entanglement Hamiltonian together with the
correct low-lying CF T spectrum, without having to resort to a black-box numerical
optimization procedure, would be quite the achievement.

3.4.3 Causal cone bounds for 1D isometric tensor networks
In this intermezzo, we derive an upper bound for the width of the causal cone in
one-dimensional isometric tensor networks which are built by stacking isometries
(m,n) which have n incoming legs and m outgoing legs

. . .

. . .

n

m

(m,n) (3.50)

Given an initial width xk of a certain region at layer k, the support of the causal
cone in these networks is seen to saturate to a fixed point of a simple Diophantine
equation.

Lemma 1 Consider a one-dimensional isometric tensor network constructed from indi-
vidual layers, where each layer is characterized by a single isometric tensorM . Letm ∈ N
and n ∈ N respectively denote the number of outgoing and incoming legs of the matrix M

8No dispersion relation is shown here, but see Fig. 5.4 for a very similar plot in the context of tensor
network renormalization.

88



3.4. Multi-scale entanglement renormalization ansatz

0 5 10

iteration

100

101

102

in
it
ia
l
ca
u
sa
l
co
n
e
si
ze

x
k

← 1

← 2

(m,n) = (1, 3)

(a)

0 5 10

iteration

100

101

102

in
it
ia
l
ca
u
sa
l
co
n
e
si
ze

x
k

← 9
← 12
← 15
← 18

(m,n) = (3, 4)

(b)

FIGURE 3.4: Fixed points of Eq. (3.54) for a series of initial causal cone sizes xk ∈ [1, 90]
and isometries (a) (m,n) = (1, 3) and (b) (m,n) = (3, 4).

and assume m < n. The worst-case flow for a given causal cone width xk at a layer k is
then given by the recursion relation

xk+1 =

(⌊
xk − 2

n

⌋
+ 2

)
m. (3.51)

As we are looking for upper bounds on the size of the causal cone, we only
consider the worst case scenario for every initial xk. One can easily check that the
largest number of isometries that fit into xk sites is equal to

⌊
xk + 2(n− 1)

n

⌋
, (3.52)

so that the causal cone grows according to the iterative relation

xk+1 =

(⌊
xk + 2(n− 1)

n

⌋)
m =

(⌊
xk − 2

n

⌋
+ 2

)
m. (3.53)

Lemma 2 The fixed point of Eq. 3.51 satisfies the Diophantine equation

xk
m
− 2 =

⌊
xk − 2

n

⌋
. (3.54)

In Fig. 3.4, we have plotted the fixed point behavior for two different configura-
tions of isometries, where one has to keep in mind that these fixed points indicate
the worst-case scenario. Like in MERA, there might exist special lattice sites whose
causal cone is smaller than expected.

89



3. TENSOR NETWORK STATES

3.5 Real-space renormalization and tensor network states

Let us now turn to real-space RG methods which rely on tensor network states. We
have seen that all examples of the old-school methods presented in Sec. 2.10 share
the same flaws in that their design is to a large extent model-dependent and there is
no obvious way to improve upon the results. One way to understand the breakdown
of these real-space RG approaches is through the mutual information Eq. (3.48),
which can be shown to satisfy an area law for classical spin systems [110],

I(A : B) ≤ |∂A| log d, (3.55)

where the mutual information is expressed in terms of the conditional entropy
H(A|B) = H(A)− I(A : B) and d denotes the local dimension. Merely blocking
spins will never change the tensor product structure between two regions A and
B so that more and more interaction terms will be required for the correlations to
keep satisfying an area law under blocking. Additionally, the requirement that a
coarse-grained theory should be again expressed in terms of degrees of freedom
with the same local dimension is too strong of a constraint on the coarse-graining
process. For example, if we are unable to introduce a sufficient amount of effective
interactions between Ising spin degrees of freedom, we should try to compensate
this lack of effective interactions with an increase in the local dimension, i.e. allow
for effective D-dimensional degrees of freedom.

In the upcoming sections, we will see how tensor network representations of
classical partition functions enable us to both reshape the tensor product structure
and to provide a natural way to let the local dimension grow.

3.5.1 Classical partition functions as tensor networks
There are many ways to represent a classical partition function,

Z = eβF = Tr{s1,s2,...} eβH(s1,s2,...), (3.56)

as a tensor network. Degrees of freedom can live on bonds, plaquettes, or vertices,
and we are free to construct a tensor network as long as its total contraction sums
over all degrees of freedom and matches the partition function.

Let us consider the explicit example of the Ising model on a two-dimensional
square lattice, where we associate the spins {si} to the vertices by means of a tensor

δijkl = =

{
1, if i = j = k = l,

0, otherwise
(3.57)

where i, j, k, l ∈ {0, 1}. Interactions between the spins live on the bonds in this
picture and are given by the matrix

a = eβ1+ e−βX =

(
eβ e−β

e−β eβ

)
, (3.58)
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so that we can construct the translation invariant partition function tensor9

Aijkl =
√
a

√
a

√
a√

a

A = (3.59)

to build the tensor network

Z[A] = tTr
⊗

Aijkl =

A A

A A

A A

A A

A A

A A

A A

A A

(3.60)

The tensor trace sums over all possible configurations of the spin degrees of freedom,
eventually resulting in the partition function. Real-space renormalization can now
be interpreted as constructing a sequence of tensor networks

Z[A0]→ Z[A1]→ . . .→ Z[As]→ . . . , (3.61)

where each partition function is defined on a coarser lattice, defining an RG flow in
the space of tensors (see Sec. 3.5.4). Pictorially,

space

R
G

scale

(3.62)

In Chapter 6, we will propose more sophisticated tensor network representations of
classical partition functions which manifestly encode the non-local symmetries of
the underlying CF T fixed point already at the ultraviolet level.

9Or the building block of the translation invariant matrix product operator representing the row-to-
row or column-to-column transfer matrix.
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3.5.2 Tensor renormalization group
The tensor renormalization group (TRG) by Levin and Nave [111] represented
arguably the first considerable progress in real-space renormalization in decades.
Drawing inspiration from the theory of quantum entanglement and its application
to MPS and DMRG, Levin and Nave constructed an improved b =

√
2 block-spin

method which is both simple and powerful and is completely based on the singular
value decomposition (SVD).

The algorithm is shown in Fig. 3.5, where we have considered a block of four
lattice sites. By regarding the partition function tensors as matrices according to the
division determined by the dashed diagonals, we can pull the tensors apart using two
SVDs,

=Λ
U

V †

≈ and =Λ
U

V †
≈ (3.63)

where the singular values can be truncated10 and where we have absorbed
√

Λ in
U and V †. The truncations determine the new bond dimension of the coarse-
grained partition function tensor, which is obtained by substituting the approximate
decompositions Eq. (3.63) respectively at every site of the �- and �-sublattices and
exactly blocking four half-sites to restore the isotropy of the lattice.

svds

≈ block
=

FIGURE 3.5: A single coarse-graining step of the TRG algorithm. Plaquettes containing
short-range correlations at the current length scale are denoted by shades of grey. Even
though TRG manages to remove some local correlations, its local SVD optimization leaves
short-range correlations behind at every step, leading to the failure of TRG at criticality. Away
from criticality, the presence of short-range correlations leads to fixed point tensors which
depend on microscopic details, challenging their interpretation as RG fixed points.

Like MPS, TRG works extremely well for gapped systems but less so for gapless
systems due to similar entanglement and area law constraints. In particular, applying
TRG to a critical partition function will not lead to a non-trivial fixed point since every
coarse-graining step leaves short-range correlations behind. Away from criticality,
these spurious correlations additionally lead to trivial fixed points which depend on
microscopic details. The RG flow induced by TRG can thus hardly be called a proper
RG flow, since it yields a continuum of trivial fixed points and breaks down when

10It should by now be clear that the presence of both classical correlations and quantum correlations
is reflected in tensor networks by non-zero singular values along bipartite cuts.
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tnr
≈ block

=

FIGURE 3.6: A single coarse-graining step of a generic TNR algorithm. Even though the
diagrams are most closely related to LOOP-TNR, the essential characteristics are shared by
all TNR algorithms. The plaquettes of the lattice are initially divided into an A-B structure.
A local optimization procedure then removes as many short-range correlations as possible
from inside the block (or inside the octagon). After removing local correlations from half
of the plaquettes in this way, the exact blocking procedure absorbs the remaining short-
range correlations inside the squares to the next coarse-graining scale, where they will be
subsequently dealt with.

approaching non-trivial fixed points. Still, extremely accurate critical exponents can
be obtained on finite systems using finite-size scaling (see Sec. 3.5.4).

Universal fixed points off criticality have been obtained by including an addi-
tional tensor entanglement filtering step before every TRG step, leading to tensor
entanglement filtering renormalization (TEFR) [112]. This enhanced TRG algo-
rithm can however still not get rid of short-range correlations at criticality. To
counteract the short-range correlation myopia of TRG, other approaches have in-
stead tried to include estimates of the environment. These methods include the
second renormalization group [113] and the higher-order renormalization group
[114], which all lead to more accurate free energy estimates and expectation values
than plain TRG. Crucially, however, none of these TRG-based improvements is
capable of yielding non-trivial points tensors at criticality [115].

3.5.3 Tensor network renormalization
Tensor network renormalization (TNR) was recently proposed by Evenbly and Vidal
as a real-space RG method capable of sustaining a proper RG flow which includes
both an approximate non-trivial fixed point tensor at criticality and unique trivial
fixed points off criticality [115]. Additionally, the algorithm yields better accuracies
of expectation values and scaling dimensions compared to TRG (see Sec. 3.5.4). Most
importantly, the development of TNR has contributed to a better understanding of
real-space RG methods in tensor networks.

Before highlighting some aspects of TNR algorithms, let us depict a generic
TNR algorithm in Fig. 3.6 in a way that allows for an easy comparison with TRG.
The crucial distinction between TRG and TNR is the proper removal of short-range
correlations at each length scale. The purely local SVD optimization of TRG is
improved by taking a block of four sites into account to determine the optimal
truncation. It is important to stress that this is done in an asymmetric way by
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removing as many correlations from every other plaquette as possible, so that any
remaining correlations are carried over to a larger length scale. Note that we only
depict short-range correlations in Fig. 3.5 and Fig. 3.6 since it is these correlations
which spoil the RG flow behavior. Long-range correlations, which are of crucial
importance at criticality, are assumed to be approximately preserved under the RG
transformations (see Sec. 2.6.2).

Let us now parade TNR in its original MERA-TNR incarnation as well as its
variations LOOP-TNR and GILT-TNR, both of which are different numerical imple-
mentations of the ideas already contained in MERA-TNR. All of them are depicted
side by side in Fig. 3.8. We will provide full details on an actual TNR coarse-graining
process when discussing TNR+ in Chapter 5, which is a nonnegative implementation
of LOOP-TNR.

3.5.3.1 MERA-TNR

As shown by Evenbly and Vidal, the real-space RG flow of TRG can be significantly
improved by thinking in terms of the disentanglers and isometries Eq. (3.37) familiar
from MERA [115]. Inserting disentanglers and isometries inbetween blocks of four
lattice sites gets rid of intrablock correlations, see Fig. 3.6(a). By numerically
optimizing the isometries and disentanglers such that the coarse-grained block
resembles the original block as close as possible, the adaptive truncation is able to
figure out which short-range correlations can be safely discarded with respect to the
block of four sites.

In terms of MERA-TNR, TRG is recovered by setting all unitaries equal to the
identity, leaving only local isometries behind. The disentangling power introduced
by the additional unitaries can also be appreciated by iterating MERA-TNR on the
tensor network representation of an Euclidean path integral in the presence of an
open boundary. Pictorially, one can show that this yields a MERA representation of
the ground state whereas TRG builds up a tree tensor network [116]. Since a tree
tensor network is equivalent to an MPS, the breakdown of TRG at criticality comes
as no surprise.

FIGURE 3.7: Smallest non-zero scaling dimension ∆σ = 1/8 of the untwisted Ising CF T
spectrum in function of linear system size. Figure from Ref. [115].
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by (a) introducing disentanglers, (b) optimizing a periodic MPS, (c) doing a GILT preconditioning step.
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To illustrate the improvement of MERA-TNR over TRG, we feature the stability
of the RG eigenvalues depicted in Fig. 3.7, where the scaling dimension ∆σ = 1/8
was obtained from diagonalizing the coarse-grained χ-dimensional transfer matrices
of the effective partition function at every step (see Sec. 5.8.6.1 for technical details).
Upon coarse-graining, TRG is seen to quickly break down whereas MERA-TNR
manages to flow closer to the critical fixed point for a considerably larger number of
RG steps.

3.5.3.2 LOOP-TNR

As shown in Fig. 3.6(b), LOOP-TNR consists of combination of the entanglement
filtering pre-processing step familiar from TEFR improvement of TRG and an
additional optimization over a “loop” of trivalent tensors. The key idea is to regard
the octagonal loop as a periodic MPS and reformulate the truncation procedure
in terms of a well-defined MPS optimization. Due to the sweeping nature of any
finite MPS optimization algorithm, correlations inside the loop can be detected and
safely discarded. The exact contraction of the squares, which now contain jointly
optimized tensors instead of the independently decomposed tensors of TRG, defines
the renormalized partition function tensors.

In Chapter 5, we will show that it is possible to implement LOOP-TNR in such a
way that the tensor network representation of the classical partition function retains
its interpretation in terms of Boltzmann weights, which we will achieve by explicitly
preserving nonnegativity in every step of the algorithm.

3.5.3.3 GILT-TNR

The recently developed GILT-TNR algorithm improves TRG by including a graph
independent local truncation before every coarse-graining step (see Fig. 3.6(c)).
This preconditioning algorithm step is able to locally reduce the bond dimension in
an arbitrary tensor network without changing its geometry and is computationally
cheaper than MERA-TNR and LOOP-TNR algorithms. Even though the actual
renormalization is just a plain TRG step, the accuracy and fixed-point behavior of
GILT-TNR matches that of other TNR algorithms (see Table 3.1). As anticipated in
Fig. 3.6, the findings of GILT-TNR further indicate that the asymmetric removal of
local correlations at every scale is the crucial step distinguishing TRG from TNR.

A most insightful plot is given in Fig. 3.9, where the flow of the singular values
across a cut of the partition function tensors Eq. (3.63) is examined along the TRG
(top) and GILT-TNR (bottom) flow for different initial temperatures. The upper half
of the plots clearly illustrates the shortcomings of TRG: there are no unique trivial
fixed points for T < Tc and T > Tc nor is there an approximate critical fixed point
for T = Tc. The GILT-TNR results in the lower half show unique trivial fixed points
which are identical for different initial temperatures. For T < Tc, the tensors contain
a two degenerate singular values (a GHZ state reflecting all spins up or all spins down)
or one singular value (a product state reflecting the independent fluctuations of the
spins). At criticality T = Tc, an approximate fixed point tensor emerges, which
is characterized by invariant singular values. Note that the window of criticality
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FIGURE 3.9: Comparison of the flow of TRG (top) and GILT-TNR singular values of the
coarse-grained Ising partition function tensor for different initial temperatures. Note the
difference in fixed point behavior both at and away from criticality T = Tc. Figure from
Ref. [118]

of the GILT-TNR fixed point tensor is actually consistent with that of MERA-TNR
in Fig. 3.7, since the fixed point is not maintained indefinitely. Eventually, the
approximate fixed point tensor flows to one of the two unique trivial fixed points
[119].

3.5.4 Real-space RG in the space of tensors
Let us now connect the tensor network renormalization group methods discussed
above to the general RG framework introduced in Sec. 2.5. It is clear that the
assumption on the locality of the dominant interactions under RG is explicit in the
tensor network structure. Effective interactions between local degrees of freedom are
captured by initially allowing the local dimension d to grow to a larger value χ. This
effective local dimension χ is then kept fixed by throwing away negligible entangle-
ment degrees of freedom, which are identified using singular value decomposition
(TRG) or a more refined optimization procedure (TNR). Taken together, these two
operations try to counteract the growth of interactions in block-spin methods by
enlarging the space the local degrees of freedom instead of insisting on keeping the
original spin degrees of freedom. This is analogous to the scale invariant MERA for
the quantum case (see Sec. 3.4), where one also first introduces transitional layers to
grow the local Hilbert space dimension. Only then, in this enlarged Hilbert space, a
scale invariant ansatz is imposed.

It is insightful to revisit RG flows but now in the space of tensors11. The
qualitative differences between the tensor network renormalization methods we have

11We assume that a similar infinite coupling space structure exists for the space of tensors. One
important and obvious complication in a more thorough treatment would be the existence of equivalent
tensor network representations of partition functions related by gauge transformations.
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exact crit
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FIGURE 3.10: Qualitative flow behavior of the TRG and TNR tensor network methods for
real-space renormalization. The goal is to stay as close as possible to the critical trajectory
towards the non-trivial RG fixed point and damp out all irrelevant operators (see Sec. 2.5.3).
The truncation steps of TRG and TNR differ in their ability to remove short-range correlations,
which is reflected in their fixed-point behavior and accuracy of CF T data.

discussed so far are pictorially indicated in Fig. 3.10. The sketches of TRG and TNR
trajectories actually lie in different submanifolds, depending on the bond dimension
χ, whose relationship is unclear but which intersect the exact critical surface at
least in the physical critical point. Recall that our starting point at criticality is
the physical critical point, which already encodes the CF T information of the fixed
point in a non-obvious way, spoiled by irrelevant interactions (see Sec. 2.6.4). We
also need to distinguish between fixed points of a particular finite bond dimension
RG transformation and the exact, infinite bond dimension CF T fixed point. Even
though corner-double line tensors are fixed points of TRG schemes while product
states and GHZ states can be fixed points of TNR schemes, it is unknown if these
schemes accommodate other, non-trivial fixed points for finite bond dimension.

The task of the RG flow along the critical surface is to wash out all irrelevant
operators and drive the partition function tensor to its fixed point tensor. Obviously,
this is only exactly possible for infinite bond dimension χ→∞ since the faithful
bond dimension has to grow exponentially under blocking. Because any truncation
simultaneously restricts both the effective local dimension and the range of the
effective interactions, truncating tensors truncates the coupling space in a way that
cannot be straightforwardly related to truncating interactions in a Hamiltonian
picture. This observation was the inspiration for the restriction of TNR to TNR+, a
manifestly non-negative implementation of TNR to be discussed in Chapter 5.

A more appropriate question is then how much of an error are we allowed to
make when succesively approximating the partition function tensor, given that any
truncation of the bond dimension induces a highly non-trivial truncation in the
infinite coupling space. The key feature of the recently developed TNR methods is
that they manage to steer the flow at criticality closer to the exact fixed point for
a longer period of time than any previous real-space RG method. Yet we should
stress that no TNR scheme is capable of producing a true critical fixed point, since
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Table 3.1: Critical exponents for the two-dimensional Ising model from exact diagonalization
of linear transfer matrices on finite (coarse-grained) systems [115, 118, 120]. Numbers in
brackets denote the (largest) bond dimension used in the respective numerical simulations.

exact TRG (120) MERA-TNR (24) LOOP-TNR (24) GILT-TNR (120)
α 0 -0.0004 -0.00018 -0.000012 -0.00004
β 0.125 0.1250180 0.1250117 0.12500085 0.12500265
γ 1.75 1.7503641 1.7501567 1.7500103 1.7500347
δ 15 15.0008961 14.9999488 14.9999872 14.9999808
ν 1 1.0002 1.00009 1.000006 1.00002
η 0.25 0.249986 0.2500008 0.2500002 0.2500003

truncations immediately lead to deviations from the exact critical surface, which
throw us off the path towards the fixed point.

However, there exists a window of approximate, critical fixed point behavior, and
this critical window is significantly larger in the case of TNR than TRG, where it
hardly exists at all. This behavior can also be attributed to the fact that a finite bond
dimension introduces a length scale into the system, which acts as an additional
relevant scaling variable pushing the flow away from the critical surface, similar in
spirit to the cross-over behavior familiar of finite-size scaling12. Even though every
coarse-graining step necessarily introduces a substantial truncation error, it turns
out that astonishingly accurate scaling dimensions can be obtained by diagonalizing
effective transfer matrices and using CF T finite-size scaling results on a torus (see
Sec. 5.8.6.1 and Sec. 6.3.2 for details). In Table 3.1, we compare critical exponents13

obtained for the d = 2 Ising model universality class. Even though TRG is unable to
yield fixed points, accurate critical exponents can still be obtained for finite systems.

In Chapter 6 we will present, among other things, a complementary view on
real-space RG which interprets TRG and TNR as different ways of truncating a
coarse-grained PEPS wave function. In doing so, it will become clear that the crux
of any TNR method is the proper removal of short-range correlations, and of short-
range correlations only. We stress the latter point because it runs counter to the usual
tensor network intuition where properly accounting for the full environment is of
crucial importance to determine an accurate ground state wave function. Coarse-
graining a tensor network however requires a different mindset since we want to
specifically get rid of short-range correlations.

12In MPS theory, the scaling of quantities at criticality in terms of the bond dimensionD forN →∞
is referred to as finite-entanglement scaling and leads to an effective correlation length ξ(D) ∼ Dκ,
where κ = 6/(c(

√
12/c+ 1)) with c the central charge [121, 122].

13The critical exponents have been obtained indirectly from the RG eigenvalues Eq. (2.100) via their
relation to the scaling dimensions Eq. (2.103).
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CHAPTER FOUR

Matrix product state renormalization

In this chapter1, we investigate the extent to which the MPS transfer matrix can be
interpreted as the result of a coarse-graining procedure on the infinite-dimensional
quantum transfer matrix originating from the imaginary time path integral represen-
tation of a one-dimensional quantum ground state.

4.1 Background and motivation

In recent years, tensor network states have emerged as powerful theoretical and
computational tools to investigate strongly correlated quantum many-body systems.
By focusing on states rather than Hamiltonians, tensor networks are purposely
designed in order to capture the entanglement structure inherent in physically
relevant quantum states. For gapped quantum systems, matrix product states (MPS)
[123, 124] are known to faithfully represent ground states in one spatial dimension
[67], and a plethora of numerical algorithms exist to variationally optimize MPS
over the manifold of low-energy states of local Hamiltonians [53, 57, 75, 76, 125,
126]. While local quantities can be approximated to very high precision, long-range
behavior is not necessarily captured as accurately due to the exponential decay of
correlations in MPS with finite bond dimension. This property is of particular
importance in the context of quantum phase transitions, where it has fostered studies
of finite entanglement scaling at criticality [122, 127–129].

The multi-scale entanglement renormalization ansatz (MERA) [100] is an alto-
gether different kind of tensor network tailored to the description of scale invariant
systems. By introducing unitary disentangling operators, its layered structure is able
to accommodate a proper and sustainable renormalization group (RG) flow along
the intrinsic scale dimension of the network, even at criticality. Recently, it has been
shown that MERA can be reinterpreted as stemming from a novel tensor network
renormalization (TNR) scheme for coarse-graining two-dimensional tensor networks
[115, 116, 130]. Unlike MPS, the MERA incorporates an explicit scale dimension
into its network structure, which renders its real-space coarse-graining properties
particularly explicit.

It is well known that the entanglement content of a translation invariant MPS
is entirely contained in the dominant eigenvector of its transfer matrix. In a recent

1The work presented here has been published in Ref. [1] and was done in collaboration with Marek
Rams, Valentin Zauner-Stauber, Jutho Haegeman, and Frank Verstraete.
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FIGURE 4.1: Two-dimensional tensor network representation of the Euclidean path integral
corresponding to the ground state of a local one-dimensional translation invariant lattice
Hamiltonian H . Horizontal slices are translation invariant matrix product operators built
from a local tensor O (blue circles), and correspond to imaginary time evolution with e−δH .
The MPS ground state |Ψ0〉 is obtained by successively applying e−δH onto an initial MPS |φ〉.
Vertical columns can then be interpreted as the MPS transfer matrix TA =

∑
iA

i⊗Āi, where
Ai and Āi respectively correspond to the translation invariant ket and bra MPS matrices.

publication [131], it was observed that the other eigenvalues of the MPS transfer
matrix contain additional useful information on the elementary excitations and
corresponding dispersion relation of the system, providing an intriguing connection
between the MPS transfer matrix and the spectral properties of the Hamiltonian. Put
differently, there appears to be a highly non-trivial relationship between the excitation
spectrum of a local translation invariant Hamiltonian and the local information and
static correlations present in its ground state.

In order to gain a better understanding of the origins of the MPS transfer
matrix, it was proposed in Ref. [131] to treat the physical spin of a MPS as an
impurity in the two-dimensional tensor network arising from the Euclidean path
integral representation of the ground state2. As depicted in Fig. 4.1, the transfer
matrix of an infinite bond dimension MPS can then be identified with the exact
quantum transfer matrix at zero temperature. By swapping the interpretation of
(Euclidean) time and space, static correlation functions in the MPS are seen to
correspond to temporal impurity correlations. The truncated finite-dimensional
MPS transfer matrix obtained from numerical simulations will therefore contain

2We refer to Appendix 4.9.1 for a brief summary of path integrals, wave functions, and quantum
states.
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only the degrees of freedom that are relevant to the impurity dynamics up to some
infrared cutoff. This perspective suggests that the state compression involved in
variational MPS techniques can be interpreted as an application of Wilson’s numerical
renormalization group (NRG) [5] (see Sec. 2.9) along the virtual (imaginary time)
dimension of the system.

In this chapter, we propose a variational ansatz based on matrix product operators
(MPOs) to explicitly coarse-grain transfer matrices and set out to numerically verify
the impurity picture proposed in Ref. [131], beyond the analytical results obtained
for the XY model in Ref. [132]. Having a layered decomposition of a MPS ground
state at our disposal, we benchmark our method on the Ising model, propose an
ansatz for the structure of MPS fixed point reduced density matrices, and study the
effect of restricting a variational MPS ansatz for elementary excitations to a subspace
of variational parameters. We furthermore translate our ansatz to the setting of
free fermions, which allows us to further corroborate our findings by exploiting the
additional free fermionic structure.

4.2 Exact and compressed MPS transfer matrices

Consider a one-dimensional lattice model and a local translation invariant Hamilto-
nian H =

∑
n∈Z hn,n+1 restricted to nearest-neighbour interactions. The transla-

tion invariant ground state of this system can be described by a uniform MPS

|Ψ[A]〉 =

d∑

i=1

v†L

(∏

n∈Z
Ain

)
vR |i〉 , (4.1)

where v†L and vR denote boundary vectors irrelevant for bulk properties. The state is
hence completely determined by specifying a single tensor Ai ∈ CD×d×D, where D
and d, respectively, denote the bond dimension of the virtual level and the physical
dimension of the local Hilbert space associated to each lattice site. To each MPS we
can associate a transfer matrix

TA =
∑

i

Ai ⊗ Āi =

A

Ā

, (4.2)

which is a key object in numerical simulations and is used to calculate static corre-
lation functions with respect to a uniform MPS ground state. We assume that the
MPS is injective and normalized such that the transfer matrix has a unique largest
eigenvalue equal to 1.

As is well known, a different perspective on the MPS transfer matrix can be
provided in terms of a two-dimensional tensor network associated to the uniform
MPS representation of the ground state of a local one-dimensional translation
invariant Hamiltonian [133–136]. For clarity, an overview of this construction is
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given in Fig. 4.1, where we consider the imaginary time evolution

|Ψ0〉 = lim
β→∞

e−βH |φ〉
||e−βH |φ〉 || , (4.3)

where |φ〉 is an initial state assumed to have non-zero overlap with the ground state
|Ψ0〉. Due to the locality of H , we can split β into small imaginary time steps δ and
use a Trotter-Suzuki decomposition e−δH ≈∏n e−δhn,n+1 to arrive at a translation
invariant MPO representation of e−δH (see, e.g., Ref. [137]). This approximation
introduces a controllable Trotter error depending on the order of the decomposition,
which renders the MPO representation quasi-exact. By grouping tensor contractions
along imaginary time, we can identify the exact MPS transfer matrix with a single
column of the network. Interpreting the tensor network in Fig. 4.1 as an Euclidean
path integral, the exact MPS transfer matrix thus coincides with the quantum
transfer matrix derived from the partition function Z∞ = limβ→∞ Tr

(
e−βH

)

at zero temperature. Note however that both these exact transfer matrices have
exponentially diverging bond dimensions, and thus differ from the truncated finite-
dimensional MPS transfer matrix TÃ =

∑
i Ã

i ⊗ ¯̃Ai defined before, which arises
in actual numerical simulations. Similarly, the exact MPS ground state tensor Ai
corresponds to a semi-infinite MPO in this picture, and represents the ground state
|Ψ0〉 up to some Trotter error, of which the truncated finite-dimensional MPS Ãi

is a compressed version. Stated in these terms, our goal is to shed light on the
relationship between the exact MPS Ai and its compressed version Ãi.

4.3 Coarse-graining transfer matrices

As it is our intention to coarse-grain a translation invariant MPO, defined by a local
tensorO having on-site operator dimension d and MPO bond dimensionD, a natural
way to proceed is to devise a coarse-graining strategy using MPOs in order to retain
the matrix product structure. To this end, we introduce an isometric coarse-graining
MPO denoted by G, which is characterized locally by a single five-index tensor g,

. . . . . . (4.4)

The tensor g is restricted to be an isometry defined by the map g : I⊗I⊗V→ O⊗V,
where I,V, andO, respectively, refer to the vector spaces of the incoming indices,
the virtual indices and the outgoing indices. As such, g satisfies g†g = 1O⊗V and
gg† = P , where P is a projector onto some subspace of I⊗ I⊗V. Let us denote
d = dim(I), χ = dim(V) and d′ = dim(O). The isometric constraints on the
local tensor g forces the MPO G as a whole to be isometric if d2 > d′, or unitary if
d2 = d′. Note that there are two different ways to group operator and virtual indices
of g, leading to two possible “gauge” choices, denoted pictorially by the following
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equations:

=

g†

g

or =

g

g†

. (4.5)

Let us now consider a finite set {Gs} of the kind of MPO isometries defined above,
and label them with a discrete scale label s = 1, 2, . . . , smax, where each Gs is
allowed to be different. By acting sequentially with each of the {Gs} together with
their conjugates {G†s} on the translation invariant MPO to be coarse-grained, we
arrive at the MERA-inspired tensor network:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

sc
a
le

(s
)

(4.6)

One way to optimize all of these coarse-graining MPOs, is to perform a single sweep
in scale from bottom to top. At each layer s, two tensors Os−1 of the previous layer
are blocked by acting with gs and g†s to construct

, (4.7)

which is a coarse-grained tensor that redistributes entanglement among virtual and
operator dimensions. Tracing over the outgoing indices, as depicted in Eq. (4.8),
we can interpret this object as a generalized transfer matrix with χ2

sDs-dimensional
fixed points (σL[gs]| and |σR[gs]), where we have emphasized the dependence
on the coarse-graining isometry in the notation. By locally maximizing the cost
function3

C(gs) =

(σ
L
[g
s
]| |σ

R
[g
s ])

(4.8)

3Like all tensor network optimization problems, there is no guarantee that a global optimal solution
will be found. For our purposes, the optimization procedure was seen to consistently converge to a local
optimum.
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for the isometry gs using a conjugate gradient algorithm adapted to unitary manifolds
[138], we then iteratively update the left and right fixed points of Eq. (4.7) until
convergence of Eq. (4.8) is attained up to some tolerance. The cost function
Eq. (4.8) is well-defined for Hermitian MPOs; a possible alternative strategy for
non-Hermitian MPOs would be to minimize the norm of the difference between two
tensors Os−1 and the same two tensors with the projector Ps = gsg

†
s applied to the

outgoing indices. The coarse-grained MPO tensor Os is obtained by truncating its
bond dimension to a fixed number Ds, or up to some tolerance, using conventional
MPS methods [139], such that

≈Ws W−1
s , (4.9)

where we have introduced the rank-reducing tensor Ws, with W−1
s denoting the

left inverse of Ws such that W−1
s Ws = 1 and WsW

−1
s projects onto the truncated

subspace. Note that the new on-site operator dimension of the coarse-grained
MPO is determined by the output dimension d′s of the gate gs. This constitutes the
optimization of one layer, and by repeating the above coarse-graining procedure until
the top level is reached, we obtain a set of effective MPO tensors {Os}, isometric
gates {gs} and truncation tensors {Ws} for s = 1, 2, . . . , smax. Both the tolerances
for the optimization of the cost function and for the truncations provide sensible
measures for the errors introduced along the way.

Although our main motivation in this chapter is to coarse-grain the MPOs
appearing naturally along the imaginary time direction in the Euclidean path integral
picture in Fig. 4.1, there is nothing preventing us from applying the above ansatz
along the spatial direction to renormalize, for instance, a Hamiltonian operator
or more general transfer matrices arising in two-dimensional lattice models. In
particular, local Hamiltonian terms can be seen to renormalize to a sequence of
semi-infinite MPO strings to the left or to the right depending on the gauge choice
in Eq. (4.5), which follows naturally from the one-sided causal cone structure that
arises due to the isometric nature of the coarse-graining gates.

4.4 From Euclidean path integral to uniform MPS

The pioneering work of Wilson on the numerical renormalization group showed
that the relevant low-energy subspace for an impurity problem could be obtained by
applying real-space RG transformations [5]. Recently, the theory of minimal updates
in MERA has related the success of NRG to the inherent causal cone structure of
MERA [140]. The causal cone of a region had been originally introduced as the part
of the MERA network that is geometrically connected to and able to exert influence
on the properties of the state in that region [100]. It has since been interpreted as
the collection of tensors that needs to be changed in order to account for a local
change of the Hamiltonian in that region, which is understood to be sufficient to
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FIGURE 4.2: Uniform MPS from coarse-graining the exact transfer matrix. Location of the physical spin, considered as an impurity at τ = 0, is denoted
with a red cross. (a) Bonds crossing the one-sided causal cone C of the impurity at τ = 0 identify degrees of freedom relevant to the physical spin, which
live on the Wilson chain LW defined along the boundary of C. The tensor network outside C renormalizes the exact transfer matrix TA into a new transfer
matrix TW along LW . (b) Contraction of the tensor network outside C renormalizes the ket, projecting the exact MPS Ai onto the subspace defined by
the relevant degrees of freedom along LW . (c) Insertion of approximate resolutions of the identity 1 ≈W1W

−1
1 . (d) Coarse-graining the semi-infinite

MPO string to the next layer leaves a single W1 tensor behind. (e)(f ) Repeating this procedure leads to the construction of the Wilson MPO. (g) After
introducing an infrared cutoff by capping the Wilson MPO with the fixed point of the uppermost coarse-grained tensor, we retrieve a finite-dimensional
MPS Ãi.
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capture the evolution of that region under successive coarse-graining transformations
while maintaining locality [140]. This property can be ultimately traced back to the
existence of distinct energy scales in the Hamiltonian. According to the principle of
minimal updates, an impurity initially localized in space thus remains localized under
coarse-graining, which leads to a very efficient MERA description of systems with
boundaries, impurities, or interfaces [141, 142]. The relevant degrees of freedom for
an impurity are found to be exactly those living at the boundary of the causal cone.

Although the MPS ansatz we are about to describe bears a resemblance to the
impurity MERA construction, the underlying motivation is entirely different. We
stress that the main motivation for our proposal is to be able to capture the physics
relevant for the physical spin degree of freedom of a quantum state, which, as we
will argue, precisely amounts to extracting the degrees of freedom relevant to the
spin treated as an impurity in the exact quantum transfer matrix.

Let us now apply the coarse-graining ansatz Eq. (4.6) to the vertical transfer
matrix TA obtained from the imaginary time evolution network in Fig. 4.1. Note
that the physical dimension and virtual dimension in Fig. 4.1 now correspond, re-
spectively, to the bond dimension and the operator dimension of the coarse-graining
MPO. We furthermore implicitly assume that TA = e−H̃ , i.e. the transfer matrix is
understood to originate from some Euclidean rotated effective local Hamiltonian H̃
[131]. In general, there is no reason to expect the Hamiltonian H̃ to be related to
the physical Hamiltonian H involved in the MPO description of the imaginary time
evolution e−δH .

To arrive at a uniform MPS, we will treat the physical spin connecting the exact
MPS representations of ket and bra at τ = 0 as an impurity in TA. The arbitrary
location of the physical index in imaginary time does not a priori introduce an
inhomogeneity in TA. However, for expectation values of local operators different
from the identity, the privileged nature of the physical spin becomes manifest,
and an operator insertion at τ = 0 leads to the modified transfer matrix T OA =∑
ij OijAi ⊗ Āj used in calculating MPS expectation values. As such, a static

correlation function between two operators separated by n sites in the physical
system corresponds to a “temporal correlator” of the impurity between two operators
separated by n steps of evolution with TA = e−H̃ , where H̃ again denotes not the
physical Hamiltonian H but the Euclidean rotated effective local Hamiltonian. We
will thus construct a truncated MPS representation Ãi by extracting the relevant
degrees of freedom for the “Euclidean dynamics” of the impurity from the exact
quantum transfer matrix TA.

In what follows, we will focus on the upper semi-infinite MPO describing the
ket part |Ψ[A]〉 of the transfer matrix TA, as depicted in Fig. 4.2, and refer to the
location of the physical spin as the impurity regardless of whether there is actually
an operator inserted at τ = 0. To explicitly construct the approximated ket tensor
Ãi associated to the uniform MPS |Ψ[Ã]〉 in Fig. 4.1, we first apply our ansatz to
the infinite quantum transfer matrix, and optimize for smax layers as if no impurity
were present. We then insert the impurity at τ = 0 and draw its causal cone C
in Fig. 4.2(a), where the inside of the causal cone stretches out to the left and to
the right, and the degrees of freedom affecting the impurity at τ = 0 arise from
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4.4. From Euclidean path integral to uniform MPS

contracting the network outside the causal cone. By ignoring the bottom half of the
network, we can identify the part of the coarse-graining network which acts on the
semi-infinite ket part of the MPO.

In retrospect, the impurity naturally suggests which isometric restriction in
Eq. (4.5) to impose on the coarse-graining tensors during the optimization, as the
entire tensor network surrounding the original semi-infinite transfer matrix can be
interpreted as a projector onto the dominant eigenvector subspace relevant to the
impurity, see Fig. 4.2(b).

It is clear that only one index of the MPO coarse-graining tensors crosses the
boundary of the causal cone for each layer. Together, these legs constitute the sites
of an effective lattice system LW defined along the boundary of the causal cone,
which is called the Wilson chain. Sites along this chain are labeled by the layer index
s = 1, 2, . . . , smax, where site s contains an effective renormalized description, for
d′ = d, of 2s sites of the original lattice located roughly at a distance 2s away from
the impurity. Moving along the Wilson chain thus corresponds to changing scale
and moving away from the impurity. Next, we insert approximate resolutions of the
identity at the lowest layer in Fig. 4.2(c) using the rank-reducing tensors W1W

−1
1

obtained during the optimization to reduce the bond dimension in the imaginary
time direction. As shown in Fig. 4.2(d), the semi-infinite MPO string is pushed
to the next coarse-graining layer, leaving a single tensor W1 behind. Repeating
this procedure for the next layer in Fig. 4.2(e)-(f ) leads to the emergence of an
inhomogeneous MPO along the imaginary time direction, which we will refer to
as the Wilson MPO, and which effectively amounts to a sequence of coarse-grained
Trotter steps. Even though the bond dimension

∏smax
s=1 χs of Ãi may become large for

large smax, we can efficiently contract the Wilson MPO sequentially and accurately
truncate its bond dimension to some value D. We could partly avoid this additional
truncation, which is a consequence of having MPOs corresponding to infinitesimal
Trotter times δ, by blocking MPOs initially such that they represent a bigger time
step. By introducing the fixed point of the uppermost coarse-grained tensor as an
infrared cutoff in Fig. 4.2(g), we arrive at a finite-dimensional approximate Wilson-
based MPS with an internal layered structure resulting in the uniform MPS tensor
Ãi.

The reason for this particular cutoff strategy can be traced back to interpreting
the transfer matrix TA as a thermal state (or more generally a mixed state) with
exponentially decaying correlations. We then expect the coarse graining network to
be able to disentangle this state into a product state using a finite number of layers,
similar as in the case of ground states of gapped Hamiltonians, such that, after a
finite number of layers, we can pictorially denote the RG flow by

..
.

..
.

..
.

..
.

(4.10)
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If we want the coarse-grained MPO tensor at the top to have a trivial bond dimension
Dsmax = 1, the optimal choice is given by the eigenvectors corresponding to the
largest eigenvalue of Eq. (4.7). For a critical MPO, we expect scale invariance to
direct the coarse graining process to a fixed point that needs to be iterated forever.
In that case, introducing the product state fixed point as an infrared cutoff explicitly
breaks the critical properties and can as such only be considered an approximation,
whose quality can be assessed by evaluating the energy with respect to the resulting
state. Note that all variational, finite bond dimension MPS approximations neces-
sarily contain an implicit infrared cutoff, and that different cutoff implementations
might yield different MPS tensors approximating the same gapless state, a point to
which we return in Sec. 4.7.1.

In the following two sections, we consider two immediate applications made
possible by the structure of our ansatz.

4.5 Structure of MPS fixed point reduced density matrices

From the layered structure of our MPS decomposition, it is straightforward to
associate a layered decomposition to the zero-dimensional fixed point reduced
density matrices ρL and ρR of the MPS transfer matrix Eq. (4.2) as well. To see
this, let us apply a truncation procedure to the transfer matrix TÃ constructed from
our ansatz, instead of working solely on the level of the ket |Ψ[Ã]〉. By sequentially
grouping indices across bra and ket for the truncation step at each layer, we eventually
arrive at the norm

〈Ψ[Ã]|Ψ[Ã]〉 =

..
.

..
.

...
...

...... . . . . . .

Ãi

¯̃Ai

ρL ρR, (4.11)

where the grey triangles denote the Wilson MPOs for ket and bra, and the red
triangles are now invertible rank-reducing tensors X−1

s (left) and Xs (right), for
s = 1, 2, . . . , smax, that can be obtained from lifting the impurity from bottom to
top and truncating the effective transfer matrix at each layer s by considering it as a
MPS,

T s−1
Ã

Ws

W †s

Xs X−1sT s
Ã ≈ . (4.12)

Note how we can approximately determine the fixed points of the transfer matrix in
a sequential manner without explicitly calculating them, and how only small bond
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dimensions are involved in the intermediate truncation processes. A potential appli-
cation of this insight lies in the problem of efficiently contracting two-dimensional
tensor networks, e.g. overlaps of projected entangled pair states [80], where one of
the main bottlenecks in variational ground state optimizations can be traced back
to calculating high-dimensional MPS fixed points of the MPO transfer matrices
needed for the calculation of environment tensors (see Sec. 3.3.3). The feedback of
information from high-energy to low-energy in our layered decomposition of these
fixed points might lead to a substantial reduction in computational resources, thus
allowing the approximation of otherwise intractable MPS fixed points.

Another application concerns scale invariant theories, for which we expect
to find a recursive relation, directly from the layered MPS decomposition, whose
eigendecomposition ought to contain the scaling operators and scaling dimensions
of the underlying conformal field theory (see Sec. 2.8). Suppose we have identified a
fixed point truncation tensor W ∗ and associated X∗ in the layered decomposition
of our MPS ansatz, characterizing the scale invariant fixed-point behavior. We can
then propose a “radial” superoperator

W ∗

W ∗†

X∗X∗−1 , (4.13)

whose eigenvalues and eigenvectors are expected to be related to the scaling di-
mensions and operators of the underlying conformal field theory (see Sec. 2.8).
Forgetting about the Wilson-based MPS origin of the ansatz, we can also build
concentric tensor networks from Eq. (4.13), which enforce scale invariance and can
be regarded as variational ansätze in their own right [143]. Similar superoperators
for extracting scaling fields were of course conceived in MERA [107, 144] and TNR
[115] (see Chapter 3), but not in a MPS setting. A partial approach to extract scaling
information from a MPS was investigated in Refs. [122, 127–129].

4.6 Restricted variational subspaces for excitations

Given the internal layered structure of the uniform MPS in Fig. 4.2(g), it is tempting
to ask how excitations can be interpreted in this framework. Following Wilson’s RG
interpretation of the Kondo impurity problem [5], we expect low-energy excitations
to live near the top of the Wilson MPO if the layered MPS decomposition obtained
from our ansatz can be interpreted as a true renormalization group scale. Note
that our ansatz retains translation invariance in space as we effectively construct
a uniform MPS, and that the scale dimension in our case refers to coarse-grained
imaginary time. We want to emphasize that, even though there is no explicit
spatial coarse-graining taking place (as the number of sites remains constant), spatial
correlations do arise naturally in our picture as we coarse-grain imaginary time to
grow the virtual bond dimension of the MPS. Despite the absence of an explicit
coarse-graining in space, the successive MPO layers labeled by s are non-unitary and
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FIGURE 4.3: Example of a restricted variational MPS excitation ansatz |Φ(A)
p (Bs)〉 at inter-

mediate layer index s, constructed to allow for targeting the variational parameters x residing
in an interval of layers [s, smax] (green triangles), while the tensors corresponding to layers
[1, s) are held fixed.

can therefore shrink the effective Hilbert space at every step. The idea is now to
expose this effective reduction of the Hilbert space at higher renormalization scales
by perturbing the tensors within the layered structure of the MPS and observing to
which part of the spectrum of the Hamiltonian a particular perturbation gives access.

In particular, exploiting the translation invariance which we still have at our
disposal, we can use the variational MPS ansatz for localized excitations developed
in Refs. [61, 78], given by

|Φ(A)
p (B)〉 =

∑

n∈Z
eipn

d∑

in=1

v†L

(∏

m<n

Aim

)
Bin

( ∏

m′>n

Aim′

)
vR |i〉 . (4.14)

Comparing with Eq. (4.1), it is clear that the excitation ansatz is constructed on
top of the ground state wave function by changing a single ground state tensor Ai
into a tensor Bi and taking a momentum superposition of this localized perturba-
tion. All variational freedom is contained within the tensor Bi, and the variational
optimization of the Rayleigh-Ritz quotient

min
B

〈Φ(A)
p (B)|H|Φ(A)

p (B)〉
〈Φ(A)

p (B)|Φ(A)
p (B)〉

. (4.15)

gives rise to a generalized eigenvalue problem. In order for this generalized eigen-
value problem to be well-defined, it will be necessary to project out so-called null-
modes, i.e. (almost) zero eigenvalues of the effective normalization matrix in the
right hand side of the generalized eigenvalue equation.

Let us now recast Eq. (4.14) pictorially and substitute our layered MPS decompo-
sition of the MPS ground state to arrive at the variational ansatz depicted in Fig. 4.3.
By fixing part of Bi to be equal to Ai using the layered decomposition, we can now
design a restricted excitation ansatz |Φ(A)

p (Bs)〉, for s = 1, 2, . . . , smax, which only
allows for variations with respect to an interval [s, smax] of tensors in the Wilson
MPO description of the full excitation ansatz. The restricted tensor Bis(x) ≡ Ξs(x)
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is defined in terms of a linear mapping

Ξs : C
∏smax
s′=s χs′×ds×

∏smax
s′=s χs′ → C

D×d×D, (4.16)

which glues the variational parameters x to the surrounding MPS ground state tensors
Ai ∈ CD×d×D. For different layers s, this tensor parametrizes different subspaces
of the full variational space4 spanned by the states |Φ(A)

p (B)〉 with unrestricted Bi.
Starting from Bismax , where only the variational degrees of freedom in the top tensor
are considered, we can gradually take all layers [1, . . . , smax] into account until the
ansatz culminates into the full Bi ≡ Bi1, incorporating all length scales.

Note that the role of our restricted ansatz is not so much in improving the
efficiency of numerically calculating excitations within the framework established
in Ref. [61], but in providing a novel and conceptually intriguing interpretation of
excitations within MPS in a way that explicitly tries to resolve the different energy
scales present in the MPS ground state tensor. In Sec. 4.7.2, we will verify that the
number of null-modes as function of layer index s and momentum p is intimately
tied to the effective reduction of the Hilbert space at higher renormalization scales.

4.7 Numerical results

To assess the validity of our ansatz, we performed numerical simulations using the
MPS ansatz introduced in Sec. 4.4 to discuss the transfer matrix and Schmidt spectra
of the resulting MPS ground states. We have also calculated dispersion relations
using the setup of Sec. 4.6 to illustrate that variational subspaces corresponding to
the upper layers of our MPS ansatz are effectively restricted to the low-energy part
of the spectrum. Additionally, we translate our method for compressing transfer
matrices to the setting of free fermions, where the additionally imposed structure on
the numerics allows us to highlight and further corroborate our findings.

4.7.1 MPS ansatz from Wilson MPO

Consider the quantum Ising model in a transverse field, which can be defined in
terms of the Hamiltonian

H = −
∑

i

σxi σ
x
i+1 − λ

∑

i

σzi , (4.17)

where λ determines the strength of the applied magnetic field. One can easily
show how to construct a translation invariant MPO representation[137] of the
Trotter-Suzuki decomposition of e−δH , to which we apply our ansatz along the
imaginary time direction. Comparing the ground state energy density of the MPS
resulting from our ansatz with the exact solution, we find relative energy errors

4Note that the restricted generalized eigenvalue problem is variational with respect to using the full
Bi, but not necessarily with respect to the exact problem. Although the reduced Bi(x) will always yield
excitation energies higher than those obtained by varying the full Bi, these energies might still be lower
than the exact excitation energies due to errors in the ground state MPS approximation [61].
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∆E = (E − E0)/E0 ∼ 10−6 both for the gapped (λ 6= 1) and gapless (λ = 1)
phases. Having obtained a uniform MPS from the Wilson MPO, we can further
quantify the accuracy of our ansatz by studying the spectrum of the transfer matrix
Eq. (4.2), and the Schmidt values of the MPS, which can be retrieved from the
spectrum of the dominant eigenvector of the transfer matrix Eq. (4.2). In Fig. 4.4
and Fig. 4.5, we show a comparison of low-lying transfer matrix spectra obtained
with respectively our coarse-graining method and a MPS that was variationally
optimized using the time-dependent variational principle [75].

For the gapped case depicted in Fig. 4.4, an excellent match is found for both
the TM eigenvalues λn and the Schmidt coefficients λα as soon as the number of
coarse-graining layers is chosen sufficiently large, which demonstrates the behavior
of the infrared cutoff as explained in Sec. 4.4.

For the gapless case in Fig. 4.5, the infrared cutoff can be recognized as a
very particular initial state in the effective imaginary time evolution induced by
the Wilson MPO, spoiling the relevant infrared data for critical models. From the
impurity point of view, there is a strong interaction between the different sites in the
Wilson chain LW , corresponding to degrees of freedom living at different energy
scales. Indeed, the infrared cutoff introduced after a finite number of layers at one
end of the Wilson chain, has a strong feedback on the physics of the impurity, which
is living at the other end of the Wilson chain. As argued in Sec. 4.4, different
implementations of the implicit infrared cutoff for gapless states, yield different
variational MPS approximations, which has recently been discussed in Ref. [132].

To illustrate this explicitly, we also studied the effect of further truncating the
Wilson based MPS to some specific bond dimensions using the standard MPS
recipe (i.e. throwing away the smallest Schmidt coefficients). While this has no
distinguishable effect on the remaining Schmidt coefficients of Fig. 4.5(b), the effect
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FIGURE 4.4: Comparison of transfer matrix (TM) spectra (left) and Schmidt spectra (right)
of the transverse Ising model Eq. (4.17) between our MPS ansatz |Ψ[Ã]〉 based on the Wilson
MPO (blue circles) and a variational MPS ground state |Ψ[A]〉 (red crosses) for λ = 1.1
(gapped) and D = 16. All MPO simulations were performed using a Trotter step δ = 0.001
and local dimensions ds, χs, d′s ∈ {2, 4} of the coarse-graining tensors with smax = 14
layers.
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FIGURE 4.5: Comparison of transfer matrix (TM) spectra and Schmidt spectra of the
transverse Ising model Eq. (4.17) between our MPS ansatz |Ψ[Ã]〉 based on the Wilson MPO
(black circles) and a variational MPS ground state |Ψ[A]〉 (crosses) with bond dimension
D = 12 (red), D = 24 (blue) and D = 50 (black) for λ = 1 (gapless). All MPO simulations
were performed using a Trotter step δ = 0.001 and local dimensions ds, χs, d′s ∈ {2, 4}
of the coarse-graining tensors with smax = 17 layers, and we also investigated the effect of
further truncating the MPO based ansatz to specific bond dimensions D = 12 (red circles)
and D = 24 (blue circles) based on the Schmidt coefficients.

on the nondominant part of the spectrum of the transfer matrix itself is significant,
as can be observed in Fig. 4.5(a). Nevertheless, when comparing to a variational
MPS with a particular bond dimension, we obtain a qualitative agreement that
matches the first few dominant Schmidt coefficients (see also Fig. 4.9b for analogous
entanglement spectra obtained for critical free fermions).

4.7.2 MPS excitation ansatz from Wilson MPO

Using the restricted variational subspace ansatz defined in Fig. 4.3, we have calculated
variational approximations to the dispersion relation of the transverse Ising model
Eq. (4.17) for all layers intervals [s, smax], for s = 1, 2, . . . , smax, of the Wilson
MPO. As depicted in Fig. 4.6, sweeping across layer intervals gradually allows less
layers to contribute to the variational optimization. We observe that restricting the
variational degrees of freedom to the top layers limits the momentum range of the
ansatz to such an extent that, within the accuracy of the ground state approximation
itself, momentum states corresponding to high-energy excitations can no longer be
captured. Diluting exponentially on their way down the network, momentum states
corresponding to high-energy excitations are seen to yield states with a norm that
effectively approaches zero, leading to ill-defined generalized eigenvalue problems
Eq. (4.15) as a function of layer index s and momentum p. This observation of
null-modes suggests an effective reduction of the Hilbert space of the momentum
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FIGURE 4.6: Variational approximations to the quantum Ising dispersion relation e(p) =
2
√

1 + λ2 − 2λ cos p (solid black line) in function of the layer index s for λ = 1.1, smax = 14
layers and bond dimension D = 16 using the restricted variational MPS excitation ansatz
of Fig. 4.3. Momenta near the minimum p = 0 of the dispersion relation are seen to be
fully captured by restricting the variational ansatz to the top tensor(s) of the Wilson MPO,
in contrast to momenta corresponding to high-energy excitations, which are observed to
correspond to null states with a norm effectively approaching zero. By varying the range of
the variational degrees of freedom in scale space from infrared towards the ultraviolet, we
recover the high-energy excitations.

states corresponding to high-energy excitations at coarser renormalization group
scales.

4.7.3 Free fermion ansatz
We now develop a very similar approach to coarse-graining transfer matrices using
free fermions. For the Ising model in Eq. (4.17), we can exploit the fact that it is
solvable by mapping it onto a system of free fermions to gain independent evidence
in support of our ansatz 5. The additional free fermionic structure will furthermore
allow us to study explicitly what happens to the transfer matrix on every coarse-
graining level at the level of the ferminionic modes, which is impossible to extract
from the MPO construction. To that end, we employ the modified version of the free
fermionic MERA [145, 146] to effectively construct the network of coarse-graining
MPOs appearing in Eq. (4.4).

5For the free fermionic examples we used a relatively large time-step δ = 0.1. We can, however,
precisely quantify the the resulting Trotter error. For λ = 1.1 we actually describe the ground state of the
XY model [132] with magnetic field g ' 1.0970 and anisotropy γ ' 0.9763. For λ = 1 we approach
the critical point with g = 1 and γ ' 0.9803.
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FIGURE 4.7: (a) Coarse-grained transfer matrix and (b) partially compressed transfer matrix,
obtained by application of s layers of coarse-graining MPO. The same isometry is used here
for the top part (i.e. ket) and the bottom part (i.e. bra) of the original MPS.

The renormalized transfer matrix T s is depicted in Fig. 4.7(a). At each renor-
malization scale s it can be diagonalized as

T s = exp

[
−
∑

m

εsmc
†
mcm

]
, (4.18)

where cm are free fermionic annihilation operators, and the spectrum is fully de-
termined by the single particle “energies” εsm. The coarse-graining MPOs are con-
structed layer by layer so as to properly describe the dominant low-energy part of
the spectrum of the virtual Hamiltonian H̃ . As such, the free fermionic nature
of the problem allows us to keep track of the spectrum of the transfer matrix at
each coarse-graining step, as presented in Fig. 4.8(a,b) for non-critical and critical
systems respectively. For technical details regarding the construction, as well as
further details, we refer to Appendix 4.9.2.

We then use the coarse-grained MPOs obtained above to sequentially compress
the transfer matrix, as depicted in Fig. 4.7(b). This allows us to observe how
the spectrum of the compressed transfer matrix T simp is gradually emerging with
growing s, where s = 0 marks the original transfer matrix and s = smax is a fully
compressed one, see Fig. 4.2(a) for comparison. We plot the single particle energies
εimp,sm , equivalent to Eq. (4.18), in Fig. 4.8(c,d) both for non-critical and critical
systems. The spectra consist of a continuous part which can be attributed to the
still-to-be-renormalized low-energy part of the spectrum, and discrete high-energy
modes corresponding to the impurity degrees of freedom. There are two such modes
emerging at each new layer (for χs = 21, one comes from the ket and the other one
from the bra). We can therefore argue that each fermionic mode, supported on the
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FIGURE 4.8: Single particle spectrum of (a,b) the coarse-grained transfer matrix T s in
Fig. 4.7(a), and of (c,d) the impurity transfer matrix T simp in Fig. 4.7(b), at different layers s.
In (c,d) the approximately continuous part of the spectrum is drawn with a solid line, while
pluses mark the discrete high-energy modes which are localized at, and can be associated
with, the impurity degrees of freedom. Results for non-critical λ = 1.1 (a,c) and critical
λ = 1 (b,d). The initial transfer matrix was obtained by applying 4096 layers of MPOs with
bond dimensions equivalent to χs = 21 and ds = d′s = 24.

Wilson chain, represents a different, exponentially shrinking momentum-window
(recall that the original problem was translationally invariant), analogous to Wilson’s
renormalization group picture of the impurity problem.

The spectrum of the compressed transfer matrix is then effectively given by

εimp,smax
m ≈ ε(kimp

m ), (4.19)

where ε(k) is the dispersion relation of the original transfer matrix TA , and kimp
m ∼

λm is a logarithmic discretization of momenta resulting from the RG scheme, at
least up to some infrared cutoff related to the finite length-scale inevitably appearing
in the problem. Most importantly, exactly the same structure of the transfer matrix
spectrum was observed resulting from the conventional MPS truncation procedure
[132]. Note, however, that here the parameter λ (λ =

√
2 in Fig. 4.8) is a constant

which depends on the geometry of the tensor network through the bond dimensions
ds, χs, d

′
s, while for the standard truncation [132] it depends non-trivially both on

the bond dimension of the MPS and correlation length appearing in the problem
(possibly as the result of finite entanglement scaling for the critical system). We
can thus expect that the geometry of the tensor networks limits the precision of the
ansatz in a similar way to using a finite bond dimension in MPS, which we discuss in
more detail in Appendix 4.9.2.

Finally, in order to provide direct evidence that our ansatz allows for effective
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FIGURE 4.9: Dominant part of the entanglement spectrum for increasing scale s. The
spectrum is preserved with good accuracy. Results for (a) λ = 1.1 and (b) λ = 1. Bond
dimensions equivalent to χs = 21 and (a) ds = d′s = 24, (b) ds = d′s = 28. The initial
transfer matrix was obtained by applying 4096 layers of MPOs. See the text for further
discussion.

compression of the transfer matrix, we show that it is reproducing the entanglement
spectrum with good accuracy. To that end, the reduced density matrix of the
dominant eigenvector of T simp can be expressed as [147]

ρs =
1

Z
exp

[
−2
∑

m

δsmf
†
mfm

]
, (4.20)

where fm are fermionic annihilation operators, Z is the normalization factor, and the
entanglement spectrum is determined by δsm. Consequently, the Schmidt coefficients,
up to normalization, are given by 1, e−δ

s
1 , e−δ

s
2 , e−(δs1+δs2), . . .. In Fig. 4.9 we plot

the dominant part of the spectrum for growing s, both (a) for the non-critical
system λ = 1.1 and (b) the critical one λ = 1. Notice that for the non-critical
case s = smax = 10 corresponds to truncating down to 10 fermionic modes, and
the plot shows 7 dominant modes in the entanglement spectrum, proving that the
compression is quite effective. For the critical case we stop at s = 8, just before
applying the top tensor. As mentioned in Sec. 4.7.1, simple top tensors limit the
number of modes describing the state too quickly, which can significantly affect the
resulting spectrum. We can further increase the precision by changing the geometry
of the tensor network, either by increasing χ, or equivalently, by compressing slower,
which amounts to increasing d′ for fixed d.

4.8 Conclusion

In this chapter, we have shown how the state compression inherent to variational MPS
techniques can be interpreted as resulting from a renormalization group procedure
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applied to the Euclidean path integral description of a quantum system. By treating
the location of the physical spin as an impurity, we were able to construct a uniform
MPS representation that takes into account the degrees of freedom relevant to the
impurity. The MPO structure of the coarse-graining ansatz led to a natural proposal
for the structure of the MPS fixed point reduced density matrices. Furthermore,
we explicitly related the different layers in the decomposition with energy scales by
studying a restricted variational ansatz for excitations, which shows that perturbations
at the high layers only give access to elementary excitations with a momentum near
the minimum of the dispersion relation, whereas perturbations with other momenta
get washed out by the subsequent layers below it. We also formulated a free fermion
version of our coarse-graining ansatz that is in agreement with the results of the
MPO ansatz.

Having arrived at a conceptually suggestive picture of the renormalization group
structure inherent to matrix product states, we can look at the possibility of concep-
tual advantages in calculating correlation functions, scattering matrices, and other
quantities. Further study of the behavior of excitations at this boundary between
MPS and entanglement renormalization might yield insight into how to develop a
proper excitation ansatz for MERA. Finally, as our Wilson-based MPS furthermore
suggests that the burden of entanglement can be shifted to manageable correlations
between energy scales, it would be interesting to explore the possibility of continuum
generalizations of our ansatz in terms of the continuous MERA [105], and to study
its applicability to the numerical optimization of two-dimensional quantum lattice
systems using projected entangled pair states [80, 148].

4.9 Appendices

In these appendices, we discuss some basic notions of path integrals and their relation
to wave functions in Sec. 4.9.1, details on the free fermion construction in Sec. 4.9.2,
and the relation between the MPO ansatz and MERA in Sec. 4.9.3.

4.9.1 Path integrals, wave functions, and quantum states

The boundary data of Euclidean path integrals define transition amplitudes under
evolution by e−βH as

〈φ2|e−βH |φ1〉 =

∫ φ(τ=β)=φ2

φ(τ=0)=φ1

Dφ e−SE [φ]. (4.21)

The interpretation of this path integral depends on the topology of space, with fixed
boundary data in imaginary time. The transition amplitude defines a wavefunction
in the Schrödinger picture, which for some state

|Ψ〉 = |φ1(τ)〉 = e−τH |φ1〉 (4.22)
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is equal to the overlap

Ψ[φ2] = 〈φ2|Ψ〉 = 〈φ2|e−τH |φ1〉 . (4.23)

The above implies that we can formally think of a path integral with one set of
boundary conditions as a quantum state, where we leave the spatial slice associated
to one cut unspecified. Put differently, the quantum state

|Ψ〉 = e−βH |φ1〉 (4.24)

can be interpreted as the path integral

|Ψ〉 =

∫ φ(τ=β)=?

φ(τ=0)=φ1

Dφ e−SE [φ], (4.25)

which is a functional mapping field data 〈φ2| into complex numbers 〈φ2|Ψ〉. More
generally, any path integral with an open cut Σ defines a quantum state on Σ, with
density matrices having two open cuts.

States defined by an Euclidean path integral are of course also states in the
Hilbert space of the Lorentzian theory. Thus forward time evolution on some state
|X〉 = |X(0)〉 will result in a state |X(t)〉 = e−iHt |X〉 that is part Euclidean
and part Lorentzian. Unnormalized ground states |0〉 can be obtained by doing an
Euclidean path integral that extends to infinity in one direction. The vacuum-to-
vacuum amplitude 〈0|0〉 is then obtained by gluing upper and lower parts together
at τ = 0.

4.9.2 Free fermion construction
4.9.2.1 Transfer matrix

In order to construct the tensor network representation of the ground state of the
quantum Ising model in Eq. (4.17), as depicted in Fig. 4.1, we start with the
second-order Suzuki-Trotter decomposition of an operator e−δH ,

V = V
1/2
1 V2V

1/2
1 , (4.26)

V1 = exp

(
δλ
∑

i

σzi

)
(4.27)

V2 = exp

(
δ
∑

i

σxi σ
x
i+1

)
, (4.28)

for some small6 time-step δ. Here, V represents a single row in the two-dimensional
network in Fig. 4.1. It appears naturally as the transfer matrix operator in the
solution of the two-dimensional classical Ising model and as such was extensively
studied, see e.g. the Review [149]. Relevant for us, V has a simple representation in

6See footnote 5.
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4. MATRIX PRODUCT STATE RENORMALIZATION

terms of a MPO with bond-dimension 2 (see e.g. Ref. [137]), which allows us to
directly obtain the full transfer matrix TA [132](a single column in Fig. 4.1), of the
same form as the V above,

TA = W
1/2
1 W2W

1/2
1 , (4.29)

W1 = exp

(
K1

2L∑

l=1

τzl

)
(4.30)

W2 = exp

(
K2

2L−1∑

l=1

τxl τ
x
l+1

)
, (4.31)

where τx,zl are standard Pauli matrices acting on the virtual degrees of freedom
labeled with l = 1, 2, . . . 2L, where L is the number of times V was applied onto the
initial state (the ground state is obtained in the limit ofL→∞). The physical degree
of freedom is localized at the bond between sites L and L+1. Finally, the parameters
K1,2 can be found as K1 = − 1

2 log tanh(δ) and K2 = − 1
2 log tanh(δλ).

The transfer matrix TA can be diagonalized in a standard way [149] by map-
ping onto a system of free fermions with the Jordan-Wigner transformation τzn =
ia2n−1a2n, τxn = a2n−1

∏
m<n τ

z
m. For convenience, we introduce Majorana

fermions an, n = 1, 2, 3, . . . 4L, which are Hermitian by construction and satisfy
the canonical anti-commutation relations {an, am} = 2δn,m. The transfer matrix
can then be diagonalized

TA = exp

(
−

2L∑

m=1

εmib2m−1b2m

)
, (4.32)

where the index m can be identified with momentum and εm is the dispersion
relation. The Majorana fermions bm = OTAm,nan are described by the orthogonal
matrix OTA . Since the transfer matrix has effectively open boundary conditions,
some care is needed during diagonalization. To that end, we follow the procedure
outlined in Ref. [150], obtaining OTA and εm numerically for some large, fixed
value of L.

4.9.2.2 Coarse-graining procedure

Our main goal is the construction of (the equivalent of ) the coarse-graining MPO in
Eq. (4.4). To that end, the transfer matrix, which is a Hermitian, positively defined
and Gaussian operator, can be described uniquely (up to a normalization) using the
correlation matrix

CTAm,n =
Tr (amanTA)

Tr TA
. (4.33)
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We use the free fermionic MERA ansatz, adapting the construction described in
[145] to our problem. The coarse-graining MPO is decomposed here as

= { {
P

Q
U

W
, (4.34)

consisting of one disentangler U and one isometry W in the language of MERA.
The gates U and W , which are in principle position and layer dependent (we skip
the indices to simplify notation), are parametrized in terms of SO(2P) matrices
describing the local canonical transformation of Majorana fermions. They are shifted
with respect to each other by one site (two Majorana modes), fixing the equivalent of
the bond dimension in the coarse-graining MPO to χ = 21, with suitable boundary
conditions for the tensors at the ends of the chain. The isometries W± = W 0Y ±,
where

Y − = diag(

2Q︷ ︸︸ ︷
1, 1, . . . , 1, 1,

2P−2Q︷ ︸︸ ︷
0, 0, . . . , 0, 0), (4.35)

and Y + = I − Y − are diagonal 2P × 2P matrices selecting the first 2Q and the
last 2P − 2Q Majorana fermions, respectively. A single layer of the coarse-graining
MPOs in Eq. (4.4) is in this picture a direct sum of disentanglers and isometries
in that layer, and we will mark it asW±s . The coarse-grained correlation matrix is
obtained from the previous one as

Cs = W−†s Cs−1
W
−
s , (4.36)

with Cs=0 = CTA representing the coarse-grained transfer matrix T s depicted in
Fig. 4.7(a).

We optimize the orthogonal matrices U and W in each layer, starting with the
bottom layer and progressing to the top, using the standard optimization strategy
for MERA [142]. The cost function is given by

fs(U,W ) = Tr
(
W

+†
s Cs−1

W
+
s Y

C
)
, (4.37)

which allows for a local optimization. In the above,

Y C =
⊕

l

(
0 −i
i 0

)
. (4.38)

Notice that the canonical form of the correlation matrix, following a suitable canoni-
cal transformation, is

C =
⊕

l

(
1 −i tanh εl/2

i tanh εl/2 1

)
, (4.39)

where εl are single particle energies of the corresponding transfer matrix. Optimizing
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FIGURE 4.10: Dominant part of the entanglement spectrum and the overlap between the
isometries Usvd and Usimp (see the text) for the first couple of coarse-graining layers s. Results
for (a) λ = 1.1 and (b) λ = 1. The initial transfer matrix was obtained by applying 4096
layers of MPOs. Comparison of different rates of compression in one layer, set by the ratio
of Q/P , see Eq. (4.34). This corresponds to the bond dimensions χs = 21, ds = 2P/2 and
d′s = 2Q of the coarse-graining MPO.

the MERA then boils down to bringing the W+†
s Cs−1W+

s correlation matrix as
close as possible to the canonical form, which allows for the identification of the
high-energy modes that need to be truncated during the coarse-graining. We note
that the truncation procedure is equivalent to tracing out the high-energy modes in
the transfer matrix, which could, in principle, introduce some bias when compared
to the (more correct) projection on their ground state. We observe however that the
procedure is working well, see Fig. 4.8(a,b).

4.9.2.3 Compressing the transfer matrix

As indicated in the main text, we use the MERA generated above to construct the
isometry used to compress the transfer matrix. We argue that the impurity (physical
spin) can be well described using the degrees of freedom living on the boundary
of its light cone, see Fig. 4.2. To that end, we construct the isometry Usimp which
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partially compresses the transfer matrix up to the scale s,

Usimp =
. . .

. . .{s , (4.40)

where full compression is achieved for s = smax. The partially compressed T simp,
described by the correlation matrix Csimp, is obtained by acting with Usimp on the
correlation matrix CTA as indicated in Fig. 4.7(b). The same Usimp is used for ket
and bra of the original MPS matrix, so only about half of the tensors generated with
MERA are used here in the end.

By bringing the correlation matrix Csimp into its canonical form, we can find the
spectrum of the corresponding transfer matrix as

T simp = exp

[
−
∑

m

εimp,sm c†mcm

]
, (4.41)

in its diagonal base of Dirac fermions cm. The spectrum is plotted in Fig. 4.8(c,d)
and discussed further in the main text. The entanglement spectrum, Eq. (4.20),
which is given by the reduced density matrix of the dominant eigenvector of T simp,
can be calculated from Csimp as well, see e.g. Ref. [147].

4.9.2.4 Comparison of impurity picture with standard truncation

Finally, we can now directly compare the isometry Usimp obtained with MERA, with
the standard truncation procedure described by the isometry Usvd, a 2L× 2χ matrix
where 2χ is the bond dimension of the truncated MPS. The matrix Usvd is obtained
by calculating the reduced density operator of the MPS on a half-infinite chain
(our initial Ai in Fig. 4.1) and finding dominant modes in its diagonal basis [132].
To that end, we look at the singular values of U†svdU

s
imp, which directly show how

well the dominant modes in the entanglement spectrum are preserved during the
compression.

The results for the gapped and critical cases are plotted in Figs. 4.10 (a) and
(b) respectively, together with the resulting entanglement spectra. Notice that each
mode in the entanglement spectrum corresponds to two Majorana modes in term of
the isometries U . We show the results for the first couple of layers, up to s = 5, and
various ratios of Q/P , see Eq. (4.34). This ratio sets an effective light cone, and
determines what fraction of the large energy modes of the original transfer matrix is
renormalized during each coarse-graining step. Notice that from that perspective,
one step for Q/P = 2/8 is equivalent to two steps for Q/P = 4/8 and almost
five steps for Q/P = 6/8. At the same time, the number of modes describing the
impurity resulting from each step is the same. The trade-off between the rate of
compression and the accuracy can be readily seen. As already described in the main
text, we expect that this is directly equivalent to obtaining MPS with given bond
dimension D using the standard procedure. For instance, for Q/P = 2/8 only
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4. MATRIX PRODUCT STATE RENORMALIZATION

the first few modes are described accurately corresponding to smaller D, while for
Q/P = 6/8 all the dominant (as plotted) modes are reproduced corresponding to
large D (we should be able to obtain the same result by increasing χ). The choice of
Q/P = 4/8 (i.e., d = d′) seems to be a good compromise.

4.9.3 Isometric MPO versus MERA

In the main text, we have proposed to characterize an isometric MPO locally by
introducing a five-legged tensor g, which can be interpreted as a map g : I⊗I⊗V→
O⊗V, where I,V, andO, respectively, refer to the vector spaces of the incoming
indices, the virtual indices and the outgoing indices. As a variational set of states,
the ansatz Eq. (4.6), constructed of layers of isometric MPOs, includes the MERA.
Explicitly, the ansatz Eq. (4.6) encompasses MERA in the sense that when the local
isometry g is, for example, interpreted as a disentangler u and an isometry w of a
binary MERA,

=

g†

g

=

w

w†
u†

u

, =

g†

g

=

w

w†
u†

u

(4.42)

the internal bond connecting the disentangler and the isometry is in no way restricted
by d = dim(I). There is however no local gauge transformation, acting purely on the
virtual level of the coarse-graining MPO, which can transform between Eq. (4.42).
Intuitively, we expect that the virtual dimensions of the MPO structure within every
layer result in a coarse graining scheme that is quasi-local rather than strictly local
as in the MERA. This difference is due to the different causal cone structures.
The causal region of the MPO ansatz is potentially larger than that of MERA as
it, at most, extends towards infinity in one of both directions. The MERA causal
cone, which is strictly local, is included in this extended causal cone. Crucially, the
more general MPO ansatz enables us to renormalize translation invariant MPOs into
translation invariant MPOs and renders the identification of the Wilson chain very
straightforward.
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CHAPTER FIVE

Renormalization group flows of
Hamiltonians

In this chapter1, we rephrase tensor network renormalization for two-dimensional
classical lattice models in a manifestly nonnegative way, leading to a TNR+ algorithm
based on nonnegative matrix factorization instead of singular-value decomposition.
The resulting real-space renormalization group flow preserves positivity and hence
yields an interpretation in terms of Hamiltonian flows, reconciling modern real-space
tensor network renormalization methods with traditional block-spin approaches.

5.1 Background and motivation

As we have seen in Chapter 2, the study of phase transitions and critical properties of
lattice models has long been at the center of statistical physics. Universal properties
of critical systems can be captured by conformal field theories (CF Ts), which act as
low-energy effective descriptions of critical models, and whose scaling dimensions
can be related to the critical exponents of asymptotic correlation functions. One way
to gain insight into these phenomena is through real-space renormalization group
(RG) methods, which predate the development of the modern renormalization group
and can be traced back to Kadanoff ’s block spin procedure [19].

In his treatment of block spin methods on the lattice, Wilson emphasized that
one should be able to do precise numerical calculations using pure RG methods
combined with approximations based only on locality [5]. For real-space RG to
work, the effective Hamiltonian at every step should be dominated by short-range
interactions as interactions of arbitrary complexity are generated in subsequent
iterations. Additionally, the calculation of any particular term in the coarse-grained
Hamiltonian should involve but a small number of fine-grained spins.

Tensor networks are efficient, local, real-space variational ansätze for many-
body wavefunctions, which are constructed by mimicking the spatial distribution
of entanglement and correlations. Renormalization group methods based on tensor
networks satisfy Wilson’s requirements insofar as their inherent real-space locality
and finite bond dimension restrict the range of newly generated effective interactions
and provide a controlled approximation that can be systematically improved.

1The work presented here has been published in Ref. [2] in collaboration with Michaël Mariën,
Jutho Haegeman, and Frank Verstraete.
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5. RENORMALIZATION GROUP FLOWS OF HAMILTONIANS

For two-dimensional lattice systems, the tensor renormalization group (TRG)
algorithm [111, 151] put the idea of tensor network renormalization (TNR) into
practice in a most explicit way. Wholly based on truncation using singular value
decomposition (SVD), this algorithm works extremely well for gapped systems
because of the same entanglement reasons that explain the success of the density
matrix renormalization group (DMRG) for quantum spin chains [111]. Despite
remarkable accuracy in determining critical exponents for finite systems, none of the
methods based on TRG [113, 114, 152] is sustainable in the sense that it is capable of
yielding true (approximate) fixed points tensors at criticality [115]. Recently, novel
TNR algorithms respectively based on the multi-scale entanglement renormalization
ansatz (MERA-TNR) [115, 116, 130, 153] and matrix product states (LOOP-TNR)
[117] have been developed which do manage to flow to approximate fixed point
tensors, even at criticality. Our work has been inspired by the latter proposal which
formulates TNR in terms of periodic matrix product states (MPS). For the 2D
classical Ising model, impressive numerical results have been obtained that seem to
defy the breakdown of TRG at criticality.

In this chapter, we demonstrate how tensor networks can be used to achieve
explicit real-space RG flows in the space of classical Hamiltonians. To this end, we
have developed a sustainable and manifestly nonnegative TNR method (TNR+) to
coarse-grain classical partition functions. By virtue of the element-wise nonnegativity
of all tensors involved, we can explicitly associate a Hamiltonian to the fixed point
tensors of the RG flow generated by our algorithm. We thus believe our work
opens up the possibility to begin to address one of the main concerns raised by
the traditional real-space RG community about all TNR schemes: the lack of an
insightful RG interpretation of what are essentially supposed to be real-space RG
methods:

“[...] the more recent tensor-style work often employs indices which
are summed over hundreds of values, each representing a sum of configu-
rations of multiple spinlike variables. All these indices are generated and
picked by the computer. The analyst does not and cannot keep track of
the meaning of all these variables. Therefore, even if a fixed point were
generated, it would not be very meaningful to the analyst. In fact, the
literature does not seem to contain much information about the values
and consequences of fixed points for the new style of renormalization.”

Efi Efrati, Zhe Wang, Amy Kolan, and Leo P. Kadanoff, 2014 [154]

5.2 Tensor network renormalization

The salient features shared by all TNR algorithms developed up to now are twofold.
First, the breaking apart of the tensor product structure, which was introduced in
TRG by splitting tensors using SVD, is crucial to the construction of new effective
degrees of freedom and the removal of correlations. The reason why Kadanoff ’s
spin blocking fails can be traced back to the bounds on correlations imposed by the
mutual information between a block and its environment (see Sec. 3.5). In order
to overcome this barrier, it is essential to reorganize degrees of freedom by doing a
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local basis transformation. Secondly, both MERA-TNR and LOOP-TNR address the
additional need to extend the domain of the coarse-graining step to act on a block of
sites in order to remove intra-block correlations. The disentangling power of both
MERA-TNR and LOOP-TNR can be found in surrounding a block of sites with a
coarse-graining operator. As mentioned in Sec. 3.5, this explains, for instance, why
there is no way for TRG, which acts locally on each site, to detect the short-range
correlations it sets out to remove at criticality.

5.3 Coarse-graining nonnegative tensor networks

Consider a two-dimensional bipartite square lattice of N classical spins {si} de-
scribed by an energy functional H(s1, s2, . . .). The classical statistical partition
function is then

Z = e−βF = Tr{s1,s2,...} e−βH(s1,s2,...), (5.1)

where F = E − TS denotes the free energy. If we imagine the spins living on the
vertices of the lattice, the Boltzmann weight of a site depends on the configuration
of the bonds connected to the site. We can write these probabilities as a rank-four
tensor Aijkl, so that the sum over all configurations in the partition function boils
down to contracting a nonnegative tensor network,

Z[A] = tTr
⊗

Aijkl, (5.2)

where tTr denotes the tensor-trace, i.e. the contraction of all connected indices).
By coarse-graining tensor networks, we then refer to a real-space RG procedure
constructing a sequence of partition functions Z[A0] → Z[A1] → . . . → Z[As],
where each effective partition function is defined on a coarser lattice than the one
before, until we are left with a single effective site after s ≈ log2(N) iterations.
If we now want to additionally retain element-wise nonnegativity of all involved
tensors at every step, we cannot resort to using SVD, which is the backbone of all
other TNR approaches. Instead, we are led to nonnegative matrix factorization
(NMF) algorithms (see Appendix 5.8.1) to approximate the following matrix fac-
torization problem: given an element-wise nonnegative matrix A ∈ Rm×n+ and a
rank k ≤ min(m,n), find the matrices X ∈ Rm×k+ and Y ∈ Rk×n+ minimizing the
Frobenius2 norm ‖A−XY ‖2F .

Now let us focus on a block of four adjacent sites (Fig. 5.1(a)), which we,
following Yang et al. [117], interpret as a periodic four-site matrix product state
(MPS) with respective physical and virtual dimensions. The local coarse-graining
procedure then proceeds according to the canonical real space RG steps by (i)
introducing new effective degrees of freedom, which here involves approximating the
local block with an ansatz that has a different tensor product structure in order to

2Given the nature of the problem, one might expect an l1-norm. In practice, tackling the l1-norm
optimization problem is often not economical due to the large number of constraints, hence the relaxation
to a smooth optimization in practice.
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FIGURE 5.1: (a-e) Illustration of a single step of the TNR+ algorithm. (a) Starting from a
bipartite square lattice, (b) we approximate the periodic MPS representing a block of four
sites by a rotated version (c) with a different tensor product structure, and (d) contract these
numerically optimized tensors exactly to (e) arrive at a coarse-grained tilted lattice. (f )
Iterating the TNR+ procedure in the presence of an open boundary generates a stochastic
MERA.

remove short-range correlations (Fig. 5.1(b)), (ii) summing over old degrees of freedom
by recombining the optimized tensors into new coarse-grained tensors C1 and C2

(Fig. 5.1(d)). The virtual dimension in step (i) can be increased at will, which in turn
determines the local dimension of the degrees of freedom living on the new lattice.
While step (ii) explicitly sums over the old outer (physical) degrees of freedom to
construct the coarse-grained tensors, step (i) also contains an implicit summation
over the old inner (virtual) degrees of freedom. After a single RG step, the roles of
the physical and virtual MPS dimensions have interchanged and the linear dimension
of the lattice is reduced by

√
2. The tensors in Fig. 5.1(e) then serve as input to the

next step, where we take into account that we have to break up the tensor product
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structure again. Notice that in Fig. 5.1(c) we identify the coarse-grained lattice with
the “vertex” configuration inside the dashed bounding box and not the “plaquette”
configuration inside the dotted one. Even though a priori they look similar, the
latter configuration leads to worse numerics which can be understood by it not being
able to remove short-range correlations of the corner double-line (CDL) form (see
Appendix 5.8.3).

5.4 Renormalization group flow

In Fig. 5.1(f ) we have depicted the tensor network generated by the action of TNR+

on an open boundary of the lattice. In much the same way as TRG produces a tree
tensor network and MERA-TNR a multi-scale entanglement renormalization ansatz
[116], our TNR+ algorithm builds up a nonnegative tensor network approximation
to the leading eigenvector of the transfer matrix. Given the nonnegativity and the
alternating pattern of one iteration “disentangling” (blue tensors) and the next one
reducing the degrees of freedom (green tensors), TNR+ can be said to generate a
stochastic MERA 3. If we instead track the action of TNR+ around an open impurity,
we end up with the following MPO after two iterations (see Appendix 5.8.6.2),

R = X3 X1

X2

X4

X2 X1

X3 X4

. (5.3)

In the scale invariant regime of the RG flow, this MPO is identified with the radial
transfer matrix [130], which can be diagonalized to give R =

∑
α 2−∆α |α〉 〈α|.

Here, the scaling dimensions ∆α and approximate lattice representations |α〉 of
the primary fields and descendants of the underlying CF T description are found
only if the relative gauge freedom of the coarse-grained partition functions has
been fixed, i.e. if the degrees of freedom we deem equivalent after two iterations
do indeed match (see Appendix 5.8.5). For critical systems, we thus end up with a
window of an approximately invariant alternating sequence of partition functions
Z[C∗1,A, C

∗
2,A] → Z[C∗1,B , C

∗
2,B ] after the initial part of the flow has sufficiently

suppressed irrelevant lattice details and up until the accumulated truncation errors
eventually prevail.

We can furthermore consider the fixed point equations of TNR+ as an algebraic

3Note that all these boundary tensor networks are but different low-rank tensor network approxima-
tions of the leading eigenvector of the transfer matrix written as an MPO [63].
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set of equations in their own right by finding tensors which (approximately) satisfy

≈ and ≈ . (5.4)

Exact solutions of these equations include trivial product states and Greenberger-
Horne-Zeilinger states corresponding to gapped infrared fixed points, potentially
with symmetry breaking. Including additional symmetry constraints, there might
exist non-trivial solutions which approximately yet accurately satisfy the RG fixed
point equations. The sets of these solutions and their stability under perturbations
could then point towards the conditions required for a classification of all possi-
ble (approximate) RG fixed points of TNR schemes. Note that by working with
symmetric tensor networks, we can also extract CF T data of non-local fields if we
modify Eq. (5.3) to include a matrix product operator (MPO) threading through the
transfer matrix (which encodes the anti-periodic boundary conditions and reduces
to just a string of matrices for the tensor product symmetry considered in Ref.[103]).
Similarly, the algebraic fixed point equations Eq. (5.4) can be modified to include
an additional MPO symmetry string.

5.5 Application to classical partition functions

We have benchmarked our algorithm on the classical Ising model and the six-vertex
model. As we have seen in Sec. 3.5.1, the partition function of the ferromagnetic
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FIGURE 5.2: TNR+ simulations for the critical Ising model and spin ice. (a) Relative error of
the free energy per site in function of TNR+ bond dimension (N = 232 sites). (b,c) Scaling
dimensions extracted from the linear transfer matrix MPO Eq. (5.6) in function of RG step
(Ising D = 16, spin ice D = 12).
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Ising model can be encoded by associating a tensor

Aijkl =
∑

s

(√
a
)
is

(√
a
)
js

(√
a
)
ks

(√
a
)
ls

(5.5)

to each vertex, where amn = [eβ1 + e−βX]mn denotes the contribution of the
interaction between spins m and n. The Ising model exhibits a phase transition at
the critical temperature Tc = 2/ ln(1 +

√
2) described by the free fermion c = 1/2

CF T introduced in Sec. 2.8.3, separating the Z2 symmetry breaking phase for
T < Tc from a trivial disordered phase for T > Tc. The partition function of the
zero-field six-vertex model can be written in terms of the non-vanishing tensor
elements A1111 = A2222 = a, A2112 = A1222 = b, and A2121 = A1212 = c, where
a, b, c denote the Boltzmann weights of the allowed bond configurations. In terms of
the parameter ∆ = (a2 +b2−c2)/(2ab), the six-vertex model has a phase boundary
determined by |∆| = 1 which separates four phases: two ferroelectric phases for
∆ > 1, an antiferroelectric phase for ∆ < −1, and a gapless disordered phase for
−1 < ∆ < 1. The six-vertex model belongs to special classes of Hamiltonians which
violate the universality hypothesis in that its phase diagram contains a continuum
of critical points with continuously varying critical exponents captured by a free
boson c = 1 CF T. In what follows, we will consider the example of spin ice,
i.e. a = b = c = 1 and ∆ = 0.5.

In Fig. 5.2(a), the relative error of the free energy per site f = − log(Z)/N is
plotted at criticality in function of the bond dimension. We observe very accurate
free energies, with the difference in accuracy between the simulations of the two
models reflecting the less trivial nature of the six-vertex model. To study the
implicit approximate scale invariance of the RG flow, we calculate the smallest
scaling dimensions from the linear transfer matrix MPO constructed from 4 × 2
effective partition function tensors,

M =
C1

C1C2

C2 C1

C1C2

C2

, (5.6)

in function of system size (or, equivalently, iteration step) in Fig. 5.2(c,d) (see
Appendix 5.8.6.1). We observe that the numerically obtained implicit fixed point
is stable under subsequent coarse-graining and remains so for a prolonged number
of steps, in agreement with other TNR approaches [115, 117]4. To verify that the
implicitly scale invariant tensors are also explicitly approximately scale invariant
after gauge fixing, we have constructed the radial transfer matrix MPO Eq. (5.3)
and calculated its smallest scaling dimensions (see Table 5.1). Together with the
coarse-graining procedure described in Fig. 5.1, Eq. (5.3) can be used to study fusion
of primary fields and to calculate the operator product expansion coefficients of

4Eventually though, the accumulated truncation errors act as a relevant perturbation steering the
flow away from criticality. See also the discussion on tensor networks and real-space RG in Sec. 3.5.4.
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Table 5.1: Smallest scaling dimensions extracted from the eigenvalues of the radial transfer
matrix MPO Eq. (5.3) for the critical Ising model (left) and spin ice (right).

exact Ising TNR+(D = 6) exact Spin ice TNR+(D = 10)
0.125 0.125236 1/6 0.163117

1 0.999282 1/6 0.167204
1.125 1.123883 2/3 0.659684
1.125 1.123883 2/3 0.662008

2 1.998575 1 0.997413
2 1.992823 1 0.997286
2 1.996882 7/6 1.163503
2 1.994090 7/6 1.163503

the underlying CF T, as has previously only been done using MERA-TNR for the
Ising model [103]. More importantly, our results suggest that the characteristic
information of the underlying CF T can also be obtained from the fixed point MPS
tensors Eq. (5.4), which in our formalism act as transparent building blocks for both
the linear and radial transfer matrix MPOs.

5.6 Effective Hamiltonians

In Fig. 5.3, we have plotted nonnegative fixed point tensors5 for the Ising model at
T < Tc, T = Tc, and T > Tc. Due to the element-wise nonnegativity, it is possible
to equivalently consider the element-wise logarithm, so that we can interpret the
tensor elements as energies of the configurations of the bonds connected to the
site. The trivial tensor Ctriv for T > Tc has one dominant element, and all
other arbitrarily small elements can be regarded as penalty terms in the effective
Hamiltonian, signifying the use of a superfluous bond dimension in the description
of the numerical fixed point. Similarly, for T < Tc, the Z2 symmetry breaking
tensor CZ2 = Ctriv ⊕ Ctriv is given by two equal dominant values with all other
elements effectively zero. Both of these fixed points satisfy the algebraic relations
Eq. (5.4) since they are exact fixed points of the RG flow. Off-criticality we thus
recover the fixed points previously found by Gu and Wen [112]. The critical fixed
point tensor for T = Tc however is highly non-trivial, implying that the MPS
optimization explores the full parameter space to approximate the exact fixed point
which has infinite bond dimension. Due to the lattice geometry and the choice
of the local coarse-graining transformation, the effective Hamiltonian encoded in
the critical fixed point is given by local interactions between at most four effective
D-dimensional degrees of freedom6. Note that the MPS tensors encoded in the

5We have only plottedC∗1,A, but the behavior of the other tensorsC∗2,A,C∗1,B ,C∗2,B is very similar.
6Although one might be tempted to extend the domain of the coarse-graining operation to even

bigger blocks, there is of course a numerical trade-off between the locality of a coarse-graining scheme
and the bond dimension that can be attained in practice.
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FIGURE 5.3: Nonnegative tensor elements of normalized fixed point tensors C∗1,A obtained
from D = 6 TNR+ simulations of the Ising model at (a) T < Tc, (b) T = Tc, and (c)
T > Tc.

critical fixed point, part of which is shown in Fig. 5.3(b), provide an explicit and
non-trivial example of numerically optimized solutions which approximately satisfy
the algebraic fixed point equations Eq. (5.4) of the TNR+ flow.

5.7 Conclusion

We have proposed a manifestly nonnegative tensor network renormalization al-
gorithm to coarse-grain classical partition functions in real space, and provided
additional evidence that tensor network renormalization techniques provide an ap-
proximation that behaves in a controlled way, introducing the required freedom to
approximate the relevant physics at larger length-scales using effective interactions
among effective degrees of freedom that are determined variationally. By restricting
to nonnegative tensors, our work provides a bridge between heuristic block-spin
prescriptions and modern tensor network approaches to coarse-graining in real space.

From an algorithmic7 point of view, further improvement of our numerical
results is definitely possible by implementing more advanced, high performance
convex NMF algorithms which should speed up convergence by reformulating the
optimization problem as a linear program [155]. From a physical perspective, we can
take lattice and internal symmetries into account and can try to improve the control
on the gauge freedom. Due to the algorithm’s formulation in terms of periodic MPS,
we expect that the interplay with well-established theoretical and numerical MPS
and MPO results will be of great importance in this regard.

It would be interesting to study the possibility of extracting CF T content semi-
analytically directly from the fixed point TNR conditions Eq. (5.4). Or, if that turns
out to be too hard, pinpoint exactly what is special about the structure of numerically
obtained non-trivial TNR fixed points such that they approximately satisfy Eq. (5.4).
A generalization of our scheme to the quantum case is possible by constructing

7Because of advances in computational power, machine learning applications are slowly but surely
creeping into physics as well. See https://physicsml.github.io/pages/papers.html for a list
of recent papers.
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sequences of completely positive maps acting on projected-entangled pair states
(PEPS) wave functions [80]. Another important extension, which we will come
back to in detail in Chapter 6, is to incorporate the formalism of MPO algebras
Refs. [82–84, 156] in order to put topological restrictions on the CF T data extracted
from tensor network renormalization and derive all Ising CF T data from the lattice
[50, 157].

5.8 Appendices

5.8.1 Nonnegative matrix factorization
5.8.1.1 Statement of the problem

A nonnegative matrix A ≥ 0 is a matrix in which all elements are equal to or
greater than zero. Given a nonnegative matrix A ∈ Rm×n+ and a factorization rank
k, the problem of nonnegative matrix factorization (NMF) is then to find a matrix
decomposition A ≈ XY , where X ∈ Rm×k+ and Y ∈ Rk×n+ are both nonnegative
matrices as well. We can reformulate this problem as the following optimization
problem:

argminX,Y ‖A−XY ‖2F , X ≥ 0, Y ≥ 0, (5.7)

where ‖·‖F denotes the Frobenius norm. Note that, without the nonnegativity
constraints, the optimal solution to Eq. (5.7) is obtained via the singular value
decomposition (SVD) of A. It is clear that NMF is not unique in general because
we can always insert a matrix G and its inverse G−1 such that the matrix product
remains invariant,

XY = XGG−1Y = X̃Ỹ . (5.8)

If the two matrices X̃ = XG and Ỹ = G−1Y are again nonnegative, they repre-
sent an equivalent parametrization (X̃, Ỹ ) of the same factorization (X,Y). The
requirements X̃ ≥ 0 and Ỹ ≥ 0 are surely satisfied if G is a nonnegative monomial
matrix G = PD, where P is a permutation matrix and D an invertible diagonal
matrix containing only positive diagonal elements. More generally, there might
also exist equivalent parametrizations (XG,G−1Y ) with XG ≥ 0 and G−1Y ≥ 0
where G is not a monomial matrix, which can potentially spoil the uniqueness
in a more severe way. Note that the smallest possible rank k for which an ex-
act factorization A = XY exists is the nonnegative rank of A, denoted with
rank+(A). It satisfies rank(A) ≤ rank+(A) ≤ min(m,n), and is defined as
the smallest number of nonnegative vectors such that every column of A can be
written as a nonnegative linear combination of those vectors. When assuming
rank(A) = rank+(A) = rank(X) = k, a given exact factorization (X,Y ) of A
can be said to be unique if A = X̃Ỹ implies X̃ = XPD and Ỹ = (PD)−1Y ,
i.e. if the only ambiguity of the factorization can be completely captured in terms of
permutation and scaling matrices as defined above [158].
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5.8.1.2 Intuition

To understand why NMF is an integral part of any machine learning toolbox, assume
for instance that each m-dimensional column vector Ai of A ∈ Rm×n+ contains
an element of a set of data. Finding X ∈ Rm×k+ and Y ∈ Rk×n+ so that XY ap-
proximates A as accurately as possible then corresponds to extracting k features that
capture latent properties of the dataset. Indeed, given the nonnegativity constraints,
each element of the dataset is approximately reconstructed by summing over the
k basis elements in the columns of X with coefficients given by the columns of
Y , yielding a representation of the data which is a sum of distinctive parts. Appli-
cations include, but are not limited to, image processing, facial feature extraction,
text mining and document classification, bioinformatics, recommender systems,
clustering problems and spectral data analysis. Note however that, in general, the
lack of uniqueness alluded to in Eq. (5.8) can be troublesome when the goal is to
actually attribute significance to these emerging basis elements. For this reason, the
uniqueness of NMF is closely linked to whether the numerically found features are
really the only sensible interpretation of the data [159, 160].

5.8.1.3 Algorithms

In practice, the optimization problem Eq. (5.7) has been shown to be NP-hard [161],
and all available algorithms are only guaranteed to converge to a local optimum.
The algorithm that kickstarted NMF was Lee and Seung’s multiplicative update rule
[162],

X ← X � ((AY T )� (XY Y T )), (5.9)
Y ← Y � ((XTA)� (XTXY )), (5.10)

where � and � denote Hadamard product and division respectively. It is an ex-
tremely simple alternating algorithm that updates the matrices element-wise, but
has a rather slow convergence rate. Numerous variations and extensions have since
been developed, and we refer the interested reader to Refs. [163, 164]. In practice,
we supplemented these algorithms by implementing a projected conjugate gradient
approach (see Algorithm 1) to improve solutions or convergence if required. Note
that there is no agreed upon convergence criterion for NMF optimization, so in
practice one is free to implement a strategy that takes into account cost function
values, gradient norms, projected gradient norms, local tolerances, global tolerances,
and maximum number of iterations.

Another important aspect of NMF optimization is the choice of initialization
(X0, Y0). Starting from random nonnegative matrices surely is an option, but as NMF
algorithms are local minimization algorithms, the choice of initial conditions can be
crucial to the quality of the resulting local minimum and the speed of convergence.
For our purposes, we favoured a semi-deterministic NNDSVD initialization based on
the best rank-k approximation of A given by the SVD [165]. The initialization
works by first calculating the subset of the k largest singular values and vectors of A,
i.e. UΣV T =

∑k
i=1 ui ⊗ vTi , where the k singular values Σ appear in descending
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Algorithm 1 Projected conjugate gradient algorithm for NMF

1: procedure PCGNMF(A, r, . . . ) . Input a nonnegative matrix A and a target rank r (and
convergence tolerances)

2: X0, Y0 ← NNDSVD(A, r) . Initialize X0 and Y0

3: while true do . Repeat until globally converged
4: G0 ← X0Y0Y T0 −AY T0 , D0 ← −G0

5: while true do . Repeat until locally converged for X
6: α← LINESEARCH(. . .) . Line search
7: X1 = max(0, X0 + αD0) . Take step by projecting out all negative values
8: G1 = X1Y0Y T0 −AY T0 . Compute new gradient
9: βFR ← ‖G1‖2 / ‖G0‖2 . Calculate β using your favourite formula

(e.g. Fletcher-Reeves)
10: D1 ← −G1 + βFRD0 . Update search direction (with βFR = 0 for first iteration)
11: D0 ← D1, G0 ← G1, X0 ← X1 . Prepare for next iteration
12: if ISLOCALCONVERGED(A,X0, Y0, . . .) then . Check local convergence (or

maximum number of iterations)
13: break
14: end if
15: end while
16: G0 ← XT

0 X0Y0 −XT
0 A, D0 ← −G0

17: while true do . Repeat until locally converged for Y
18: α← LINESEARCH(. . .) . Line search
19: Y1 = max(0, Y0 + αD0) . Take step by projecting out all negative values
20: G1 = XT

0 X0Y1 −XT
0 A . Compute new gradient

21: βFR ← ‖G1‖2 / ‖G0‖2 . Calculate β using your favourite formula
(e.g. Fletcher-Reeves)

22: D1 ← −G1 + βFRD0 . Update search direction (with βFR = 0 for first iteration)
23: D0 ← D1, G0 ← G1, Y0 ← Y1 . Prepare for next iteration
24: if ISLOCALCONVERGED(A,X0, Y0, . . .) then . Check local convergence (or

maximum number of iterations)
25: break
26: end if
27: end while
28: if ISCONVERGED(A,X, Y, . . .) then . Check convergence of X and Y together (or

maximum number of iterations)
29: break
30: else . Update local tolerances based on previous local tolerances, cost function values, and

gradient norms
31: . . .← UPDATETOLERANCES(. . .)
32: end if
33: end while
34: return X1, Y1

35: end procedure

order and have been absorbed in the vectors ui and vTi . Each rank-one term
ui ⊗ vTi generally contains positive and negative values (apart from the dominant
term due to Perron-Frobenius if the largest singular value is non-degenerate). A
sensible nonnegative initialization is then obtained by replacing each ui ⊗ vTi , for
i = 1, . . . , k, with the nonnegative outer products max(0, ui) ⊗ max(0, vTi ) or
max(0,−ui)⊗max(0,−vTi ), depending on whichever has larger norm. The zero
elements can be filled with small random values if need be.

Additionally, it can be convenient to fix the monomial gauge freedom Eq. (5.8).
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This can be done by calculating the row vector dX containing the sum of each column
ofX and column vector dY containing the sum of each row of Y . We then insert the
identity twice so that XY = Xdiag(dX)−1diag(dX)diag(dY )diag(dY )−1Y . After
sorting the values on the diagonal of diag(dX)diag(dY ) in descending order, we
permute the columns of X and the rows of Y accordingly.

5.8.2 Details on the TNR+ implementation

5.8.2.1 Nonnegative tensor factorization

To coarse-grain a 2D bipartite lattice made up of rank-four tensors [C1]ijkl ∈
R
d×d×d×d
+ and [C2]ijkl ∈ Rd×d×d×d+ in a manifestly nonnegative way, we will

need to extend the nonnegative matrix factorization described above to nonnegative
tensor factorization (NTF). Indeed, as pointed out in the main text and previously
in Ref. [117], we can interpret a block of four adjacent sites as a four-site periodic
matrix product state (MPS) by reinterpreting C1 and C2 rank-three tensors after
grouping the d-dimensional “physical indices” as follows

C1(1)i1

i2

l1 l4

k4

k3

j2 j3

C1(3)C2(2)

C2(4)

=
∑

{
i1,i2,j2,j3,
k4,k3,l1,l4

} |l1i1〉 |i2j2〉 |j3k3〉 |k4l4〉

Tr
(
C1(1)(l1i1)C2(2)(i2j2)C1(3)(j3k3)C2(4)(k4l4)

)
,

where the remaining d-dimensional indices have become “virtual indices”, and
are summed over in the matrix products. In the first step of the coarse-graining
process, we construct an ansatz to approximate this block with a “rotated block”
represented again by a ring of four sites with different rank-four tensors [Xn]injnαnβn

∈
R
D×D×d×d
+ , where in, jn = 1, . . . , d (physical MPS dimension), and αn, βn =

1, . . . , D ≥ d (virtual MPS dimension). After grouping the physical dimension, we
again obtain a periodic MPS representation of the block of sites. The cost function
for the local approximation is then given by the constrained MPS overlap,

argminX1,X2,X3,X4
X1 X3

X4

X2

C1(1)

C1(3)C2(2)

C2(4)

−

2

, (5.11)

where X1, X2, X3, X4 ≥ 0, or, after matching indices explicitly,
∑

Tr
(
C1(1)(l1i1)C2(2)(i2j2)C1(3)(j3k3)C2(4)(k4l4)

)
|l1i1〉 |i2j2〉 |j3k3〉 |k4l4〉

≈
∑

Tr
(

[X1](i1i2)[X2](j2j3)[X3](k3k4)[X4](l4l1)
)
|i1i2〉 |j2j3〉 |k3k4〉 |l4l1〉 .
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Note that the original C-block and the “rotated” X-block have different tensor
product structures. It is this breaking apart of the tensor product structure at each
step which we believe to be a crucial feature of the success of all TRG-inspired
methods.

5.8.2.2 Sweeping projected conjugate gradient

The cost function Eq. (5.11) can be optimized using a generalization of the al-
ternating inner loops of the PCGNMF procedure explained in Appendix 5.8.1 by
reformulating the problem in terms of matrices. This is possible, as the cost function
is equal to

C1

C1C2

C2

C1

C1C2

C2

− 2
C1

C1C2

C2

X3

X4

X2

X1 + X1 X3

X4

X2

X3

X4

X2

X1 (5.12)

Now assume we want to optimize X1, keeping X2, X3, and X4 fixed. Reshaping
X1 to a D2× d2 matrix and writing the gradient with respect to X1 as the following
D2 × d2 matrix,

gradX1
(x1) = 2 x1 X3

X4

X2

X3

X4

X2

− 2
C1

C1C2

C2

X3

X4

X2

, (5.13)

we have all ingredients to implement an alternating projecting conjugate gradient
method to sweep over all X tensors.

One way to initialize the X tensors is by constructing a tensor renormalization
group (TRG) [111] solution. If we use PCGNMF to find the rank-D nonnegative
decompositions of the d2 × d2 matrices C1 and C2,

C1 ≈
CBL

1

CTR
1 and C2 ≈

CBR
2

CTL
2 , (5.14)

our initialization looks like

=

CBL
1

CTR
1

CBR
2

CTL
2

X1 X3

X4

X2

CBL
1

CTR
1

CBR
2

CTL
2

. (5.15)

If we regard this particular initialization as a nonnegative TRG solution, we
observe numerically that the local approximation error can be made significantly
smaller than the initial solution. Just as MERA-TNR [115] and LOOP-TNR [117],
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our TNR+ algorithm is capable of systematically improving upon TRG. We also
observed that the error does not keep on increasing at criticality, but remains ap-
proximately constant for a prolonged number of iterations. Off criticality, the error
decreases quickly because the tensors flows to a simple fixed point encoding a trivial
Hamiltonian.

5.8.2.3 Coarse-graining

From the optimized X tensors, we can immediately construct the C tensors of the
coarse-grained lattice. For the general case under consideration where we impose
neither lattice nor reflection symmetries, there is an ambiguity in constructing the
new C tensors of the next layer. We refer to Appendix 5.8.3 for an explanation as to
why the “plaquette” grouping of the tensors mentioned in the main text is flawed.
The “vertex” grouping, depicted below,

=X3 X1 X3 X1

X4

X2

X2

X4

C1 C1

C2

C2

(a)

(b)

=X3 X1 X3 X1

X4

X2

X2

X4
C1

C1

C2 C2

(5.16)

can either be done by identifying the new C tensors (and in this way choosing the
orientation of the tilted lattice) counter-clockwise (a) clockwise (b), which is relevant
for the construction of the radial transfer matrix MPO in Sec. 5.8.6.2.

5.8.2.4 A natural gauge choice for periodic nonnegative matrix product states

When implementing MPS optimization algorithms, choosing a canonical gauge
is important both for manifestly revealing the entanglement content of a state as
well as stabilizing the optimization through better conditioning of the matrices
involved. Our TNR+ algorithm can also benefit from fixing the nonnegative mono-
mial gauge freedom Eq. (5.8) by providing a sensible basis for truncation purposes
(see Appendix 5.8.3), and by aiding in the recovery of explicit scale invariance (see
Appendix 5.8.5). We we will now describe a constructive way to fix the gauge
freedom for a ring of nonnegative MPS tensors.

Without loss of generalization, consider a ring of four sites with rank-four
tensors [Xn]

(ij)
(αβ) ∈ RD×D×d×d+ , for n = 1, . . . , 4, i, j = 1, . . . , d (physical MPS

dimension), and α, β = 1, . . . , D (virtual MPS dimension), so that the periodic
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nonnegative MPS is given by

∑

{injn}
Tr
(
Xi1j1

1 Xi2j2
2 Xi3j3

3 Xi4j4
4

)
|i1j1〉 |i2j2〉 |i3j3〉 |i4j4〉 = X1 X3

X4

X2

α

β

i

j

(5.17)

Let us now cut the bond connecting X1 and X4, and sum over all physical indices
of the resulting tensor,

X3X2 X4X1

+ + + + + + + +

Eγδ =
γ δ

,

where + denotes a vector of ones. We then find the diagonal matrices R and C such
that the matrix M = REC becomes doubly stochastic, i.e.

∑
iMij =

∑
jMij = 1.

Denoting the diagonals of R and C respectively as vectors r and c, we can find these
fixed point solutions by iterating

c = 1./(AT r), r = 1./(Ac),

which converges quickly as long as E contains sufficiently many nonzero elements
[166]. We then substitute the identity twice on the bond that was cut, absorb R and
C into X1 and X4 respectively, and obtain a central diagonal matrix,

X3 X2X4 X1C RC R
−1 −1

Λ

,

After sorting the diagonal elements of Λ in descending order (which yields a per-
mutation P ), we can check for small values relative to the largest value and truncate
up to some tolerance ε (by means of an isometry W ). In the end, we arrive at the
following matrices to be absorbed into X4 and X1 respectively,

GR4 = CPTWWTP
√

Λ, (5.18)
GL1 =

√
ΛPTWWTPR, (5.19)

where the matrixW is just the identity if there is no truncation or implicit truncation
by setting the small singular values to zero, and an isometry onto the subspace that
is retained if there is explicit truncation. Notice how Λ gives us a nonnegative
analogue of Schmidt values in the MPS case. The above gauge fixing can be repeated
independently for all other bonds by permuting the tensors accordingly.
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5.8.3 CDL tensors and entanglement filtering

Corner double line (CDL) tensors are a pathological case of non-critical fixed points
of the TRG flow in the space of tensors. As argued in the main text, all TNR
approaches (including the TEFR thanks to its entanglement filtering pre-processing
step [112]) are capable of removing CDL tensors because they surround a block
of sites with a coarse-graining operation that can in principle detect correlations
inside the block. Indeed, one can judiciously construct coarse-graining tensors that
eliminate short-range correlations with a particular CDL structure [115], which for
TNR+ proceeds as follows,

plaquette grouping

vertex grouping

, (5.20)

The vertex grouping groups the plaquettes which do not contain a loop, which results
in a product state that can be approximated in the next iteration with a D = 1 MPS.
In contrast, grouping the plaquettes that contain loops reinstates corner double line
tensors.

The above considerations however do not imply that numerical algorithms
built on this premise will act accordingly, since CDL configurations are still local
minima of the cost function and fixed points of the RG flow. It is important to
mention that, in the ideal case above, the presence of CDL correlations is reflected
in the degeneracies of the Schmidt values of the MPS. In practice however, there is
no obvious way to detect these (approximate) tensor product structures inside the
virtual bond and, numerically, there is often no structure to be inferred at all if local
corner tensors contain non-degenerate eigenvalues. One way to deal with this is by
monitoring the Schmidt values on the bonds of the ring Eq. (5.17) using the gauge
fixing described in Appendix 5.8.2.4 to filter local correlations in a similar way to the
tensor entanglement filtering step for TEFR and LOOP-TNR discussed in Refs. [112,
117]. Reformulated in conventional MPS language: what entanglement filtering does
is truncating a periodic MPS (which here describes a block of sites of a classical 2D
lattice model) by truncating its virtual dimension (which here contains short-range
correlations “inside" the block of sites). Note that a similar kind of truncation in
MERA-TNR corresponds to alternating bond dimensions every step and inserting
multiple optimized isometries at different stages in the actual implementation of the
algorithm to reduce the intermediate bond dimensions and steer the optimization
towards a preferred local minimum [153]. Another possible strategy, which requires
no gauging, would be to maximize the overlap of a four-site periodic MPS containing
irrelevant local details with a different MPS with a lower bond dimension and accept
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the lower-dimensional one if the fidelity is high enough. This can be done for
nonnegative MPS with the algorithm described in Appendix 5.8.2.1. Note that
entanglement filtering has no effect for critical systems as there is in general no
truncation possible due to the slowly decaying distribution of the Schmidt values
(recall that the exact critical fixed point would require an infinite bond dimension),
but by sorting diagonal values the permutations on the virtual indices can still be
fixed.

5.8.4 Symmetries and tensor network renormalization

A straightforward application of Yang et al.’s [117] insight that it is worthwhile to
model blocks of sites with periodic MPS, is the fundamental theorem of MPS [72,
167] and its use in relating symmetries on the physical level to those on the virtual
level. Consider an on-site symmetry operator acting on all sites, e.g. the spin flip
operator

X =

(
0 1
1 0

)
, (5.21)

for the Z2 symmetry of the Ising model. Invariance under the action of the symmetry
implies that the transformed MPS should have an overlap with the original state
that has modulus one. As such, the mixed transfer matrix of the original and the
transformed state must have a dominant eigenvector with eigenvalue |λ| = 1. It can
then be shown that the effect of this statement is that the action of the symmetry on
the physical level can be pushed through to the virtual level, up to a phase, which
amounts to having a projective representation of the symmetry on the virtual level in
the Schmidt basis.

Now recall from the main text that the physical and virtual dimensions switch
roles every RG iteration. This implies that the symmetry action on the virtual level
becomes the action on the physical level of the next iteration, which in turn can be
pushed through. In this way, the representation of the symmetry operator can be
tracked throughout the entire coarse-graining network.

5.8.5 Approximate scale invariance

As demonstrated in the main text, the TNR+ algorithm yields tensors which cor-
respond to approximate fixed points of the RG equations, and are approximately
scale invariant at criticality. By observing gauge-invariant quantities, such as the
eigenvalues of the linear transfer matrix (see Appendix 5.8.6.1), it is clear that the
fixed point tensors are implicitly approximately scale invariant and remain so for a
large number of iterations.

To recover explicit approximate scale invariance at the level of the individual
tensor elements however, we need to fix the gauge freedom of the partition function
across different scales. Note that the partition function written in terms of C1 and
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C2 remains invariant under the following transformations,

C1

G−1
2

G1 G−1
3

G4

C1

G−1
2

G1 G−1
3

G4

C2

G−1
4

G3

G2

C2

G−1
4

G3

G2

G−1
1

G−1
1

. (5.22)

One simple way to achieve approximate scale invariance during the optimization
itself is by adding additional constraints to the cost function Eq. (5.12). We can
introduce a small penalty term λi for each individual Xi by adding

4∑

i=1

λi

∥∥∥X(s−2)
i −X(s)

i

∥∥∥
2

(5.23)

to the cost function. This modified cost function will favor solutions which stay
close to the previous equivalent solutions, i.e. those of the even or odd iterations
connecting lattices of the same orientation, which in turn renders the respective C1

and C2 tensors of the even and odd iterations approximately explicitly scale invariant
as well.

5.8.6 Conformal data from tensor networks
5.8.6.1 Linear transfer matrix

Scaling dimensions of the conformal field theory (see Sec. 2.8) underlying a critical
partition function can be extracted directly from its tensor network representation
by constructing the linear transfer matrix [112]. At every iteration step, we can
construct the effective 2× 2 and 4× 2 row-to-row transfer matrices,

M (2) =
C1

C1C2

C2

, M (4) =
C1

C1C2

C2 C1

C1C2

C2

, (5.24)

whose gauge invariant eigenvalues can be directly related to the scaling dimensions
of the primary operators and descendants of the CF T. The leading contribution to
the partition function (ignoring non-universal finite-size corrections) on a torus of
size Lx × Ly is given by

Z ≈ eaLxLy
∑

α

e−2π
Ly
Lx

(∆α− c
12 ), (5.25)

147



5. RENORMALIZATION GROUP FLOWS OF HAMILTONIANS

0 π/2 π

momentum p

0

1

2

3

ex
ci
ta
ti
on

en
er
gy

−
lo
g
(E

(p
))

FIGURE 5.4: Linear energy-momentum spectrum of the critical Ising Hamiltonian encoded
in the infinite row-to-row transfer matrix Eq. (5.27) obtained from a TNR+ simulation with
D = 6 in the scale invariant regime. For the MPO fixed point calculations, a boundary MPS
with bond dimension χ = 18 was used.

where the non-universal contribution eaLxLy can be taken care of in the tensor
network representation by properly normalizing the tensors, and ∆α and c are
respectively the scaling dimensions the central charge. We can then write the
partition function Z = Tr(MLy ) in terms the row-to-row transfer matrix M ,
whose eigenvalue decomposition can be shown to be given by

M =
∑

α

e−
2π
Lx

(∆α− c
12 ) |α〉 〈α| , (5.26)

which immediately yields numerical estimates for the scaling dimensions and the
central charge given that ∆0 = 0. Note that we have assumed M to be Hermitian,
yet small deviations are to be expected numerically if no symmetries are enforced,
resulting in distinct left and right eigenvectors.

As an aside, we can interpret the row-to-row transfer matrix of Eq. (5.24) as an
infinite MPO

C1

C1C2

C2 C1

C1C2

C2C1

C1C2

C2
. . .

. . .

. . .

. . .
(5.27)

by blocking the tensors inside the dashed squares. Using the numerical MPO
techniques recently developed in Ref. [63], we can then calculate the low-lying
excitation spectrum of this operator directly in the thermodynamic limit in terms
of MPS excitation ansätze. As is to be expected, Fig. 5.4 reveals a linear dispersion
relation reflecting the continuum collapse of the CF T finite-size scaling results.

5.8.6.2 Radial transfer matrix

Alternatively, we can extract conformal data from the radial transfer matrix, which
can be obtained by tracking the RG flow around an open impurity [103]. For the
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RG flow of TNR+, we obtain after two iterations,

, (5.28)

where, for scale invariant systems, doing the next iteration everywhere on the block
of tensors inside the rightmost bouding box gives rise to the same tensors as those
obtained from the first iteration. Note that (see Appendix 5.8.2.3), we used different
combinations of X-tensors in constructing the new C-tensors for even and odd
iterations to arrive again at the same orientation after two iterations (“rotate back-
and-forth”). If we would use the same contraction each iteration it would take eight
iterations to again arrive at the original orientation (“rotate clockwise or counter-
clockwise”), which would lead to a rather impractical superoperator. For scale
invariant systems, we thus end up with repeated applications of the following MPO,

R = X3 X1

X2

X4

X2 X1

X3 X4

, (5.29)

which, after proper normalization, can be diagonalized to give [130]

R =
∑

α

2−∆α |α〉 〈α| . (5.30)

Note that here again we have assumed R to be Hermitian, yet small deviations are
to be expected numerically if no symmetries are enforced, resulting in distinct left
and right eigenvectors. If the gauge freedom has been fixed across RG steps, ∆α

and |α〉 are found to be respectively the scaling dimensions and approximate lattice
representations of the primary fields and descendants. Indeed, for this construction
to work, it is crucial to fix the gauge (see Appendix 5.8.5), or else the degrees
of freedom we deem equivalent do not match due to the different local gauges
Eq. (5.22).
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CHAPTER SIX

Mapping topological to conformal field
theories through strange correlators

In this chapter1, we study non-local symmetries in tensor networks by expressing
two-dimensional classical partition functions in terms of strange correlators of ju-
diciously chosen product states and topological string-net wave functions. When
tuning the partition function to criticality, non-local matrix product operator (MPO)
symmetries emerge which highlight the parallels between topological sectors and
conformal primary fields in the shared framework of MPO algebras. In particular,
we numerically identify the topological sectors of the Ising model in finite-size
conformal field theory spectra of twisted partition functions on the torus. Addi-
tionally, we provide a complementary perspective on real-space renormalization by
showing how known tensor network renormalization methods can be understood as
the approximate truncation of an exactly coarse-grained strange correlator.

6.1 Background and motivation

This chapter touches on a lot of different topics, so let us first of all provide a
superficial, high-level overview to guide our thoughts. Central to the framework of
topologically ordered phases (see Sec. 2.7.5 and Sec. 3.3.2) is the concept of tensor
fusion categories, which naturally appear in the context of both conformal field
theories (CF Ts) [39] and topological quantum field theories (TQF Ts) [38]. Tensor
fusion categories have been proposed to characterize and classify topological phases,
capturing the universal behavior of topological phases much like group theory does
for symmetry-breaking phases. Since it is our intention to do numerics using tensor
networks, we are interested in lattice realizations of CF Ts and TQF Ts. As mentioned
in Sec. 3.3.2, nonchiral (2+1)-dimensional TQF Ts can be realized on the lattice
using Turaev-Viro state sum constructions [90], with Levin and Wen’s string-net
models offering a concrete condensed matter realization of these mathematical ideas
[89]. String-nets additionally provide a physical mechanism which clarifies how
topological phases can emerge from microscopic degrees of freedom through the
condensation of extended “string-like” objects [89]. In Chapter 2, we have discussed

1An updated and condensed version of the work presented here has appeared in an arXiV pre-print
[3] and has been done in collaboration with Dominic Williamson, Robijn Vanhove, Nick Bultinck, Jutho
Haegeman, and Frank Verstraete.
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how rational CF Ts in two dimensions can be realized on the lattice as the scaling
limit of critical statistical-mechanical models, the most famous example being the
classical Ising model. The properties and fusion algebra of conformal defects2 in
CF Ts are very much related to those of topological sectors in string-nets, and have
been analyzed in great detail in a series of TQF T-infused CF T papers by Fröhlich,
Fuchs, Runkel, and Schweigert [168–170].

In this chapter, we provide a first step towards a constructive tensor network
realization of this correspondence. To do this, we make use of three ideas.

First, we use the fact that there exist natural PEPS representations of string-
net wave functions [112, 171], and that their topological features are completely
characterized by symmetries of local tensors in the form of MPOs [82–84, 156]. In
Sec. 6.3.3, we will sketch how the MPO algebra representation of these symmetries
naturally leads to a second algebra, a so-called Ocneanu’s tube algebra, whose central
idempotents are identified with the different topological sectors [84, 156]. Secondly,
we focus on classical partition functions on the lattice and make use of the concept
of a strange correlator introduced in Ref. [172] to write a classical partition function
Z as the overlap 〈Ω|ΨSN〉 of a string-net |ΨSN〉 and a product state |Ω〉. Even
though both of these wave functions are gapped and have zero correlation length,
their overlap is highly nontrivial since the partition function obtained in this way
actually represents the physics at the interface between a topological phase and a
trivial phase. Indeed, we will confirm that the strange correlator is able to capture the
critical correlations of the classical model. Looking ahead, the topological properties
of the string-net will ensure that (part of ) the emerging non-local symmetries of
the scaling limit of the classical partition function at criticality are already enforced
at the ultraviolet level. Thirdly, we rely on a folklore structure theorem for MPO
algebras, which states that any one-dimensional quantum Hamiltonian or transfer
matrix on a spin chain which commutes with all elements of this algebra has to be
either gapless/critical or symmetry broken. For our purposes, this implies that the
partition function with a given MPO symmetry obtained from the strange correlator
will be critical or symmetry broken. Note that even if the partition function turns
out to be critical/gapless, we are not necessarily guaranteed to obtain a CF T.

We believe our tensor network construction is useful because it provides explicit
lattice representations of topological conformal defects3. As shown by Petkova and
Zuber [173, 174], these defects can be interpreted as generalized twisted boundary
conditions obtained by inserting a (non-local) defect operator X into the partition
function on a torus ZX = Tr(Xe−Im(τ)H). The effect of this operator is to twist
the boundary conditions, similar to defect lines in statistical mechanics. For the
Ising model, inserting the spin-flip operator along a non-contractible cycle of the
cylinder results in anti-periodic boundary conditions. The spin-flip operator is a
topological conformal defect since it can be shown to commute with the action of

2A conformal defect is obtained by cutting space-time along a defect line and rejoining the two sides
in the presence of an appropriate boundary condition, which describes how the bulk fields behave when
crossing the cut. Conformal defects which respect the conformal symmetry can be labelled by the primary
fields.

3A topological conformal defect is a conformal defect which can be deformed at will as long as it
does not cross another field insertion.
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two copies of the Virasoro algebra [Ln, X] = [L̄n, X] = 0 so that the closed defect
line of string operators can be moved around.

Related work has been done recently in Ref. [157], where the twisted partitions
Z1, Zψ , and Zσ of the Ising model have been studied numerically usingZ2-invariant
tensor networks. The σ-duality defect is constructed from its action at the level
of the Hamiltonian of the quantum Ising spin chain instead of finding the explicit
realization for the classical partition function. As will become clear in Sec. 6.3, the
MPO algebra readily gives the correct non-local symmetry operators and demon-
strates that truly identifying the topological sectors requires two defect lines and a
way of constructing projectors onto the topological sectors. An analytic description
of topological defects on the lattice was recently achieved in Ref. [50] based on
defect commutation relations. This approach is inspired by the previously mentioned
generalized twisted CF T partition function approach by Petkova and Zuber applied
to a special class of integrable lattice models (RSOS models [175, 176]) [174], and is
hence very much related to our work. Our SC construction leads to a very similar
picture reformulated in terms of MPO algebras, but introduces numerics into the
picture. In this sense, our work unifies the numeric and algebraic approaches of
respectively Ref. [157] and Ref. [50] and sheds light on the difficulties encountered
when trying to achieve a full identification of the topological sectors in finite-size
spectra of twisted partition functions on the lattice. In case of getting lost, the reader
should take a step back and remember that all we are doing is studying the Ising
model.

6.2 Partition functions from strange correlators

Let us first of all show how to relate the strange correlator overlap of two quantum
wave functions to the classical partition function of the Ising model. To implement
the Kramers-Wannier duality (see Appendix 6.6.1) on the lattice, we make us of
symmetry-enriched (SET) string-nets [177–179] to encode both the primal and
the dual lattice. We show how the partition function tensors satisfy SET pulling-
through conditions which allow duality defects to be moved around and extract the
critical temperature from demanding that the product state inserted into the strange
correlator is the same on both sides of the duality. In Sec. 6.2.4 we will comment on
possible extensions to other minimal models.

6.2.1 Symmetry-enriched string-net models

The string-net construction is based on the algebraic data of an input unitary fusion
category C associated to a finite set of simple objects {a} with respective quantum
dimensions da. Let N c

ab denote a rank-three tensor which encodes the allowed
fusion channels of the objects labelled by a, where N c

ab = 1 if a× b contains c and
N c
ab = 0 otherwise. These objects can be represented by lines obeying the following
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diagrammatic rules4

a = da,

i

j

k l = δij

√
dkdl
di

i

, (6.1)

i j =
∑

k

Nk
ij

√
dk
didj

i j

ji

k (6.2)

Closed loops of label a yield a quantum dimension da, bubbles pop and leave behind
quantum dimensions, and a vacuum line can be replaced by a summation over other
labels which are compatible. For the Ising fusion category, we have the objects
a ∈ {1, ψ, σ} with non-zero fusion coefficients

N1
11 = 1, Nσ

1σ = 1, Nψ
1ψ = 1, Nψ

σσ = 1, (6.3)

up to allowed permutations, so that the non-trivial fusion rules are given by

ψ × ψ = 1 (6.4)
σ × ψ = σ (6.5)
σ × σ = 1 + ψ. (6.6)

Pictorially, this means that only the following vertices (up to permutations) are
allowed in trivalent graphs,

1 1

1

ψ ψ

1

σ σ

1

σ σ

ψ

(6.7)

For the Ising case, the quantum dimensions da associated to the labels are respectively
d1 = dψ = 1 and dσ =

√
2.

Another diagrammatic rule involves the F -symbols

F abcdef =
[
F abcd

]f
e

= Ne
abN

d
ec

[
F abcd

]f
e
Nf
bcN

d
af , (6.8)

which satisfy the “F -move” equation,

a

b

c

e

d
=
[
F abcd

]f
e

a

b

c
f d

(6.9)

When interpreted as matrices, the F -symbols are unitary in the subspaces where
4Actually, these lines are oriented and we should include arrows. We will suppress the arrows in most

diagrams because the orientation of the lines plays no role for the fusion categories we consider explicitly.
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they are defined,

[(F abcd )−1]ef = [(F abcd )†]ef = (F abcdef )∗, (6.10)

so that
∑
f F

abc
def (F abcdẽf )∗ = δeẽN

e
abN

d
ec and

∑
e(F

abc
def̃

)∗F abcdef = δf̃fN
f
bcN

d
af . The

non-trivial F -symbols for the Ising case are given by

[Fσσσσ ]ij =
1√
2

(
1 1
1 −1

)
, [Fσψσψ ]σσ = [Fψσψσ ]σσ = −1. (6.11)

All other elements are either zero or one and are completely determined by the
fusion constraints in Eq. (6.8).

We now have all ingredients to define the PEPS representations of the trivalent
SET string-net tensors,

k

i j
β

α γ
=

(didj)
1/4

(dk)1/4

Fαijγβk

(dβ)1/2
,

k

i j

β

α γ

=
(didj)

1/4

(dk)1/4

(Fαijγβk)∗

(dβ)1/2
, (6.12)

where we have included appropriate quantum dimensions5. These are identical to
the usual PEPS representation of string-nets [112, 171], but sector information of
the virtual loop is copied to the physical level, which we have denotes by additional
physical indices emanating from the loops. By this we mean that, for the SET
extension of string-nets, the Ising fusion category {1, ψ, σ} is to be regarded as a
Z2 extension of {1, ψ} with a Z2 grading given by {1, ψ}+1 and {σ}−1 [85, 177],
i.e. C = {1, ψ} ⊕ {σ}. Note that we have already anticipated the contraction of
these tensors in a bigger tensor network by being sloppy with the index labeling. To
avoid confusion, let us write out one of the tensors in Eq. (6.12) in full by including
Kronecker δ-functions,

k′

i′ j′
β′

α′ γi j
k

α γ′

β

= δαα′δββ′δγγ′δii′δjj′δkk′
(didj)

1/4

(dk)1/4

Fαijγβk

(dβ)1/2
, (6.13)

where we actually have to add three more δ-functions for the SET indices which
yield the sector information {1, ψ}+1 and {σ}−1 consistent with the value of the
loop. This explicit notation also clarifies that we interpret the physical indices in the
PEPS representation not as living on the links, but as being doubled so as to live on
the vertices, e.g. the indices ijk correspond to doubled physical indices which are
identified.

States in the Hilbert space of string-net models are linear superpositions of

5Not all of these quantum dimensions are required for the construction of a consistent MPO algebra
framework. Additional factors (didjdk)1/4 have been added which correspond to a filtering operation
on the physical level but play no role in pulling-through equations and other properties that have to be
satisfied by the MPO algebra tensors (see Refs. [84]).
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different spatial configurations of string-nets. In this way, the triangles Eq. (6.12)
define a tensor network representation of the string-net ground state wave function
on the hexagonal lattice, depicted by the contraction below,

. (6.14)

Rather than absorbing factors of quantum dimensions locally, we adopt the diagram-
matic rule that every closed loop of label a introduces a factor da.

Let us now construct a tensor network representation on a bipartite square lattice
by blocking the triangle tensors in Eq. (6.14) as follows

. (6.15)

Explicitly, the tensor making up the bipartite square lattice is given by

[Q�]ijklm =

β γ

δ
l

j

ki
m

α

=
(dm)1/2(didk)1/4

(dβdδ)1/2(dldj)1/4
(F βmkγδj )∗Fαimδβl . (6.16)

Using the pentagon equation6 for the F -symbols

F pcdeqr F
abr
eps =

∑

n

F abcqpnF
and
eqs F

bcd
snr, (6.17)

and tetrahedral symmetry of the F -symbols, we can locally relate every other square
tensor to its 90-degrees rotated version to arrive at a genuine A-B lattice structure
since

(F βmkγδj )∗Fαimδβl = F γβmkjδ Fαimδβl = F βγkmjδF
iαδ
mβl =

∑

n

F iαγjβnF
ink
mjlF

αγk
lnδ , (6.18)

6The pentagon equation is an extremely important consistency relation reflective of the “associativity”
property of the F -symbols, and is actually more important than the F -symbols since valid F -symbols
are those which are found to satisfy the pentagon equation.
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which leads to
∑

n

F iαγjβnF
ink
mjlF

αγk
lnδ =

∑

n

F inkmjlF
γji
αβnF

αγk
lnδ (6.19)

=
(dβdδ)

1/2

(djdαdγdl)1/2

∑

n

dnF
ink
mjlF

γβi
njαF

αnk
δγl (6.20)

=
(dβdδ)

1/2

(dαdγ)1/2

∑

n

√
dn
dm

F ijklnm(F βinγαj )
∗Fαnkδγl . (6.21)

If we now define

[Q�]ijklm =

α

β γ

ki

j

l

m

δ

=
(dm)1/2(didk)1/4

(dαdγ)1/2(dldj)1/4
(F βimγαj )∗Fαmkδγl , (6.22)

we find that Q� and Q� are interchangeable in the sense that they are related by a
local operation on the physical indices

[Q�]i′j′k′l′m′ =
∑

m

F i
′j′k′

l′mm′ [Q
�]i′j′k′l′m. (6.23)

We can interpret this as the action of a gate which is unitary on the allowed subspace

Ui′j′k′l′m′,ijklm = δi′iδj′jδk′kδl′lF
ijk
lmm′ , (6.24)

satisfying

Ui′j′k′l′m′,ijklm(Ui′′j′′k′′l′′m′′,ijklm)† (6.25)
= δi′′i′δj′′j′δk′′k′δl′′l′δm′′m′N

m′

j′k′N
l′

i′m′ , (6.26)
(Uijklm,i′′j′′k′′l′′m′′)

†Uijklm,i′j′k′l′m′ (6.27)
= δi′′i′δj′′j′δk′′k′δl′′l′δm′′m′N

m′

i′j′N
l′

m′k′ , (6.28)

so that indeed

[Q�]i′j′k′l′m′ =
∑

ijklm

Ui′j′k′l′m′,ijklm[Q�]ijklm =
∑

m

F i
′j′k′

l′mm′ [Q
�]i′j′k′l′m.

(6.29)

Conversely, we find that

[Q�]i′j′k′l′m′ =
∑

m

F j
′k′l′

i′mm′ [Q
�]i′j′k′l′m. (6.30)

A patch of the string-net wave function |ΨSN〉 on the bipartite square lattice we
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consider thus looks like

|ΨSN〉 = (6.31)

6.2.2 Strange correlators
We will now describe several flavors of product states |Ω〉, whose overlap 〈Ω|ΨSN〉
with the PEPS representation of the string-net wave function |ΨSN〉 leads to a strange
correlator (SC) representation of the classical partition function.

6.2.2.1 Product states: flavor #1

Let us now construct two product states which act on all physical indices of re-
spectively Q�

A and Q�
B , where we have chosen the convention that the slanted A

sublattice will correspond to horizontal Ising interactions with coupling constant
K = βJx and the slanted B sublattice to vertical interactions L = βJy,

〈Ω�[fA]| =
σ

σ

σ σ〈fA|
1
1 −1

−1 1
1

and 〈Ω�[fB ]| =
σ

σ

σ σ〈fB |

−1

−1

1
1

1
1

, (6.32)

where the SET-labels are denoted by their respective sector and where 〈f | ≡ 〈f(α)|
is a product state depending continuously on a single scalar parameter α. We will
often consider the fixed σ indices and the SET indices as “dressing” of the non-trivial
inputs 〈f | and also ignore the difference between single or double SET-inputs along
the diagonals, the latter of which we can of course just as well be replaced by a single
label. The strange correlator is then taken to be the overlap of a trivial PEPS

|Ω〉 =
⊗

a∈A
|Ω�[fA]〉a

⊗

b∈B
|Ω�[fB ]〉b , (6.33)

with a PEPS string-net wave function Eq. (6.31), which gives

〈Ω|ΨSN〉 =

σ σ

σ

1/ψ 1/ψ

1/ψ 1/ψσ

σ σ

σσ

1/ψ1/ψ

1/ψ 1/ψ

〈fB |

〈fB |

〈fB |

〈fB |

〈fB |

〈fA|

〈fA|

〈fA|

〈fA|

. (6.34)

because the product state fixes the internal labels to be σ and the loop labels to be
either {1, ψ}+1 or {σ}−1. To see how the Ising partition function explicitly arises
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from the strange correlator, let us look at the local tensor overlap

〈Ω�|Q�
A〉β,δ =

1/ψσ

1/ψ σ

〈fA|

σ

σσ

σ

=
∑

j={1,ψ}
(F βjσσδσ )∗fjF

σσj
δβσ =

(
f1 fψ
fψ f1

)
!
=

(
eα e−α

e−α eα

)
,

(6.35)

so that if we define 〈f(α)| = eα 〈1|+e−α 〈ψ|, we have to choose 〈fA| ≡ 〈f(K)| =
eK 〈1|+ e−K 〈ψ| and 〈fB | ≡ 〈f(L)| = eL 〈1|+ e−L 〈ψ| if we want to retrieve the
partition function of the Ising model, which is to be expected for an anisotropic Ising
interaction. An isotropic interaction just corresponds to taking equal horizontal and
vertical couplings K = L and putting the same product state everywhere. Explicitly,

〈Ω|ΨSN〉 =

σ σ

σ

1/ψ 1/ψ

1/ψ 1/ψσ

σ σ

σσ

1/ψ1/ψ

1/ψ 1/ψ

〈fB |

〈fB |

〈fB |

〈fB |

〈fB |

〈fA|

〈fA|

〈fA|

〈fA|

= 〈fA|A

A

A

A

BB

B B

B . (6.36)

where Aij = [eK1 + e−KX]ij and Bij = [eL1 + e−LX]ij . The 1/ψ loops are
spins (black dots) on the primal lattice whereas the σ-loops encode the empty sites
of the dual lattice (red dots).

6.2.2.2 Product states: flavour #2

Alternatively, we can define product states with flipped SET indices,

〈Ω̃�[gA]| =
σ

σ

σ σ〈gA|
−1
−1 1

1 −1
−1

and 〈Ω̃�[gB ]| =
σ

σ

σ σ〈gB |

1

1

−1
−1

−1−1
, (6.37)

where we now take the slanted A sublattice to correspond to the vertical Ising
interactions with coupling constant L = βJy and the slanted B sublattice to
horizontal interactions K = βJx. The overlap is now given by

〈Ω̃|ΨSN〉 =

〈gB |

〈gA|

σ σ

σ

1/ψ 1/ψ

1/ψ 1/ψσ

σ σ

σσ

1/ψ1/ψ

1/ψ 1/ψ

〈gA|

〈gA|

〈gA|〈gB |

〈gB | 〈gB |

〈gB |

. (6.38)
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Let us look at the local tensor overlap again,

〈Ω̃�|Q�
A〉α,γ =

σ1/ψ

σ 1/ψ

〈gA|

σ

σσ

σ

= 2−1/2
∑

j={1,ψ}
(Fσjσγσσ )∗gjF

ασj
σσσ (6.39)

= 21/2
∑

j={1,ψ}
Fσσσσαj gjF

σσσ
σjγ , (6.40)

where α, γ ∈ {1, ψ}. Using Eq. (6.11), we now find

〈Ω̃�|Q�
A〉α,γ = 2−1/2

(
1 1
1 −1

)(
g1 0
0 gψ

)(
1 1
1 −1

)
!
=

(
eL e−L

e−L eL

)
.

(6.41)

These equations can be trivially solved to yield
(
g1 0
0 gψ

)
=

√
2

2

(
eL + e−L 0

0 eL − e−L
)

=
√

2

(
cosh(L) 0

0 sinh(L)

)
,

(6.42)

so that we have to pick 〈gA(L)| =
√

2(cosh(L) 〈1| + sinh(L) 〈ψ|) to recover the
Boltzmann weights. A similar calculation for the B-sublattice leads to the same
result but with K instead of L. Explicitly, we find

〈Ω̃|ΨSN〉 =

〈gB |

〈gA|

σ σ

σ

1/ψ 1/ψ

1/ψ 1/ψσ

σ σ

σσ

1/ψ1/ψ

1/ψ 1/ψ

〈gA|

〈gA|

〈gA|〈gB |

〈gB | 〈gB |

〈gB |

= 〈fA|A

A

A

A

B

B B

B

B

. (6.43)

whereAij =
√

2[cosh(L)1+sinh(L)X]ij andBij =
√

2[cosh(K)1+sinh(K)X]ij .
The roles of primal and dual lattice have been interchanged compared to Eq. (6.36).

For both of the above product state flavors, the strange correlator becomes equal
to the partition function of the Ising model defined in terms of spins on a slanted
square lattice, up to an overall scaling factor due to quantum dimension dσ of every
closed σ-loop on the empty dual lattice, which looks like

=
√
2 (6.44)
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More precisely, the Ising model arising from the strange correlator is defined on the
slanted square lattice with the spins living on the 1/ψ plaquettes and the interactions
mediated by the 〈Ω�|Q�

A〉 and 〈Ω�|Q�
B〉 tensors living on the A and B sublattices.

The two different flavors for the SET-labels introduced above are of course related
to the (self-)duality of the Ising model, as we will describe in the next section.

6.2.2.3 Equivalent strange correlator descriptions

Due to its construction, different strange correlator descriptions can be unitarily
equivalent. Consider the designation of A and B sublattices to be fixed. Let U
denote the tensor product of all local unitaries Eq. (6.23) and Eq. (6.30) acting on
the physical indices of the tensors on the A and B sublattices. Using the definitions
of the product states Eq. (6.32) and Eq. (6.32), we then find

〈Ω|ΨSN 〉 = 〈Ω|UU†|ΨSN〉 (6.45)

=

(⊗

a∈A
〈Ω�[f(K)]|a

⊗

b∈B
〈Ω�[f(L)]|b

)
UU† |ΨSN〉 (6.46)

=

(⊗

a∈A
〈Ω�[g(K)]|a

⊗

b∈B
〈Ω�[g(L)]|b

)
|Ψ�↔�

SN 〉 , (6.47)

and not in terms of Ω̃� and Ω̃� since these product state have flipped values for the
SET indices, which the unitaries do not act upon. Pictorially, this means that doing
F -moves in the following way to go from

1/ψ

σ

1/ψ

1/ψ

1/ψ

1/ψ

1/ψ

1/ψ

σ

σ σσ

σ σ

σ

σ

−→
1/ψ

σ

1/ψ

1/ψ

1/ψ

1/ψ

1/ψ

1/ψ

σ

σ σσ

σ σ

σ

σ

(6.48)

leads to physically equivalent partition functions if the product states transform
accordingly as well, leaving the strange correlator invariant. Indeed, the unitary
acting on the product state mixes the components in just the right way to yield
the correct interactions on the bonds. This is also why the factor

√
2 pops up in

Eq. (6.42). Since the insertion of UU† in the strange correlator does not touch
the SET loop indices, we can regard the “filled” primal and “empty” dual lattice
interpretation of the partition function as unchanged.

6.2.2.4 Strange correlator partition function perspective on duality

Starting from the last remark of the previous section, we can intuit that we will arrive
at the dual description when we flip the SET loop labels while leaving alone the
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6. MAPPING TQF TS TO CF TS THROUGH STRANGE CORRELATORS

physical indices. Indeed, if 〈Ω|ΨSN〉 defines an isotropic Ising partition function at
inverse temperature β, then we can equally well interpret it as the overlap 〈Ω̃|ΨSN〉
at the dual inverse temperature

β̃ = −1

2
log(tanhβ). (6.49)

Indeed, after flipping the SET labels, we find that

〈Ω�|Q�
A〉α,γ = 2−1/2

(
1 1
1 −1

)(
eβ 0
0 e−β

)(
1 1
1 −1

)
(6.50)

=
√

2

(
cosh(β) sinh(β)
sinh(β) cosh(β)

)
!
=

(
eβ̃ e−β̃

e−β̃ eβ̃

)
, (6.51)

so that from
√

2 cosh(β) = eβ̃ and
√

2 sinh(β) = e−β̃ , we find

tanh(β) = e−2β̃ . (6.52)

One can easily check that the dual of the dual again yields the dual, as expected.
For more details on the Kramers-Wannier duality in the classical Ising model, see
Appendix 6.6.1. Physically, the SET string-net tensors are needed to keep track of a
single additional bit of information denoting the “active" lattice.

6.2.2.5 Yet another way to encode the Ising model using SET string-nets

Note that the product state flavors defined above fixed some physical indices to σ
and allowed for fluctuating loops to encode the primal and dual lattice. We can
however also encode the partition function with all loops fixed to σ and all physical
degrees of freedom 1/ψ as follows

σσ

σ

σ

σ , (6.53)

where the black and red dots mark the 1/ψ degrees of freedom. The encircled tensor
corresponds to a well-known PEPS representation of the toric code ground state
[64],

i k

l

j

l + i

i+ j j + k

k + l

= 1 (6.54)

where all degrees of freedom are Z2 variables and the summation is mod 2. By now
acting with a product state spanning a slightly larger region corresponding to the
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6.2. Partition functions from strange correlators

circle above, we can allocate particular weights to some configurations to arrive at
the correct weights for the Ising model partition function expressed in terms of
closed loops. Since applying the MPO algebra formalism is however less intuitive in
this representation, we will not consider it in detail. Note however that the Ising
partition function representation Eq. (6.53) will naturally appear in Sec. 6.4.3 after
just a single coarse-graining step on the SC overlap, indicating that it might prove
worthwhile to translate all of the findings below into this representation.

6.2.3 MPO algebra and pulling-through

By representing the classical partition function as a strange correlator, we can im-
mediately make use of the MPO algebra formalism developed in Refs. [82–84] and
its extension to the SET case [85] (see also Sec. 3.3.2). To do this, we will need the
(left-handed) MPO tensors

i

a
α β′

i′

a′
ν

µ

α′ β

ν′

µ′ = δαα′δββ′δµµ′δνν′δii′δaa′
F aµiβαν√
dαdν

, (6.55)

where a corresponds to the block label of the MPO. For the Ising case, Eq. (6.55)
defines a symmetry MPO for every choice of a ∈ {1, ψ, σ}. On a periodic chain
of L tensors, these MPOs are matrices which form an MPO representation of the
input fusion algebra MPOaMPOb =

∑
cN

c
abMPOc. To multiply MPOs with open

boundary conditions, we require the fusion and splitting tensors

a β

α

c

b β
′

α

α′

γ′

γ

= δαα′δββ′δγγ′
(dadb)

1/4F abγαcβ

(dc)1/4
√
dβ

, (6.56)

aβ′

α

c

b
β

α′

α

γ

γ′

= δαα′δββ′δγγ′
(dadb)

1/4
(
F abγαcβ

)∗

(dc)1/4
√
dβ

, (6.57)

which will also be needed to construct the anyon ansatz later on in Sec. 6.3.

The symmetry-enriched MPOs are identical to those for the usual string-net
Eq. (6.55), but they now induce a group action on the virtual loops when they are
moved through the lattice [85]. In particular for the SC, a special case of the SET
pulling-through equations encodes the action of the duality which maps primal to

163



6. MAPPING TQF TS TO CF TS THROUGH STRANGE CORRELATORS

dual lattice:

1/ψ

1/ψ

〈Ω|

1/ψ1/ψ

σ

σ

σ

σ

σ σ =

1/ψ〈Ω|

σ

1/ψ

σ

σ

σ

1/ψ

σ σ (6.58)

where we have shaded the indices fixed to σ in gray since they are effectively gone
for all intents and purposes. We have also colored the indices where the product
states acts on in red. Because the Ising model is self-dual at its critical point, we
demand that Eq. (6.58) holds componentwise for identical product states |Ω(β)〉
of the form Eq. (6.37) on the left- and right-hand side, which forces the parameter
β to take on its critical value βc = log(1 +

√
2)/2. Indeed, by labeling the indices

which survive the projection as

σ

σ

σ

σ

σ σ

γ

j

βα

k

=

σ

σ

σ

σ

σ σ

γ

j

βα

, (6.59)

where α, β, γ, j, k ∈ {1, ψ}, we obtain the tensor equation

∑

jk

(dσ)1/2Fσσσσβj (dσ)1/2Ωj(F
σσσ
σkj )∗

Fσασkσσ

(dσdσ)1/2
Fσσσσkβ (6.60)

= dσ
∑

j

(dσ)1/2Fσσσσαj (dσ)1/2Ωj(F
σσσ
σβj )∗

Fσασγσσ

(dσdσ)1/2
Fσσσσkβ , (6.61)

where we have used the definitions for the string-net tensors Eq. (6.12) and the MPO
tensors Eq. (6.55) and the fact that da = 1 for a ∈ {1, ψ}. The additional factor dσ
on the right-hand side appears because there is a closed σ-loop on the right-hand
side of Eq. (6.58). Making use of the explicit Ising F -symbols Eq. (6.11), we find,
for example, that the (α, β, γ) = (1, 1, 1) has to satisfy

Ω1

(
1√
2

+
1√
2

)
+ Ωψ

(
1√
2
− 1√

2

)
=
√

2

(
Ω1√

2
+

Ωψ√
2

)
(6.62)
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or
√

2Ω1 = Ω1 + Ωψ, (6.63)

which, for the product state ansatz |Ω(β)〉 of Eq. (6.42), leads to β = log(1+
√

2)/2.
The critical temperature of the Ising model thus follows immediately from

requiring that the SET pulling-through equations hold for the SC with identical
product states on both sides of the duality. Away from the critical point, a product
state corresponding to the dual inverse temperature β̃ = − log(tanhβ)/2 is required
instead (see Sec. 6.2.2.4). Physically, the SET string-net tensors are needed to keep
track of a single additional bit of information which signifies whether the spins 1/ψ
live on the primal or dual lattice.

6.2.4 Extension to other minimal models
Given the results by Petkova and Zuber on generalized twisted CF T partition
functions for RSOS models (see Sec. 6.1), we expect that we should at least be able
to implement the SC construction for all RSOS models. On the CF T side, this
corresponds to the minimal models, since the scaling limit of the critical RSOS
models realizes the simplest rational CF Ts, i.e. the minimal models discussed in
Sec. 2.8.3 [180].

However, finding the right input unitary fusion category that leads to the correct
topological sectors requires a priori knowledge of what MPO symmetries to consider,
which is related to the problem of recognizing MPO symmetries in variationally
optimized PEPS. Put differently, we can really never do more than find topological
sectors for fields in the CF T since it seems to already require full knowledge of the
relevant CF T to decide which MPOs one should use to have the topological sectors
match the primaries. Through the strange correlator construction, our partition
function representation contains the full data of the emergent CF T and hence the
properties of the tube algebra we will discuss in 6.3.3, so that the topological spins
and scaling dimensions are built-in and have to exactly match those of the resulting
CF T.

To illustrate this, let us give an example of an extension leading to the classical
partition function of the 3-state Potts model. The Z3 Tambara-Yamagami category
[83] consists of two sectors C0 ⊕ C1, where the trivial sector contains three labels
C0 = {1, ψ, ε} of a Z3 anyon theory with fusion rules N c

ab = δa+b=c mod 3 and
trivial F -symbols. The nontrivial sector contains a single defect C1 = {σ}, so that
the fusion look like a slight generalization of the Ising case,

σ × a = a× σ = σ, σ × σ =
∑

a∈C0
a, (6.64)

with nontrivial F -symbols

[F aσbσ ]σσ = [Fσaσb ]σσ = χ(a, b), [Fσσσσ ]ba =
κσ√

3
χ(a, b)∗ (6.65)
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where χ(a, b) = e2πiab/3 and κσ = ±1. The anyons in C0 have quantum dimension
1 and dσ =

√
3. Taking this data as the input category and constructing an

appropriate product state |Ω〉, which is a slight generalization of the one for Ising,
we immediately find a SC representation of the 3-state Potts model partition function.
From the pulling-through equation Eq. (6.58), the critical temperature now follows
from

√
3Ω1 = Ω1 + Ωψ + Ωε. This critical SC will only contain a subset of the

primaries of the unitary minimal model m = 5 with central charge c = 4/5. We
have not yet checked whether this subset matches7 the one expected for the 3-state
Potts model [13].

6.3 Exact diagonalization and topological sectors

6.3.1 Motivation

In this section we will demonstrate how to numerically identify all topological
sectors in the CF T spectra associated to Ising partition functions with twisted
boundary conditions. Since the SC construction exposes and enforces the topological
symmetries of the scaling limit of the classical partition function already at the
ultraviolet level, we should be able to go beyond the Z2 labeled twisted CF T spectra
obtained for the Ising model in Ref. [157] (see Sec. 6.1).

We can introduce anti-periodic boundary conditions on the cylinder by inserting
a horizontal ψ-twist which effectively flips spins across the defect line. Inserting
a σ-twist implements twisted boundary conditions corresponding to the Kramers-
Wannier duality and maps primal to dual lattice. Along the periodic direction of the
cylinder, we can identify the dual lattice again with its self-dual primal by removing
half a row of transfer matrices (see the M1, Mψ , and Mσ in the top row of Fig. 6.2).
All of these twists are immediately given by their respective MPO representations

MPO1 = ψ

σ σ σ

σ σ

σσ

1/ψ

1/ψ

1/ψ

1/ψ

(6.66)

MPOψ = ψ

σ σ σ

σ σ

σσ

1/ψ

ψ/1

1/ψ

ψ/1

(6.67)

MPOσ = σ

σ σ σ

σ

σσ

1/ψ

1/ψ 1/ψ

1/ψ σ

(6.68)

7The CF T describing the 3-state Potts model is actually not the bare m = 5 minimal model, but a
related model whose modular invariant partition function involves only a subset of the m = 5 primary
fields with different multiplicities. These multiplicities indicates that the 3-state Potts model is not just a
subtheory of the m = 5 minimal model, as it contains copies of some of its fields. Similarly, the 3-state
Potts fusion rules are not just a subset of those of the m = 5 minimal model [13].
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FIGURE 6.1: Finite-size CF T spectra (scaling dimension ∆ versus conformal spin s) of
twisted Ising partition functions on a cylinder (Ly = 11).

which are special cases of the more general MPOs presented in Eq. (6.55). Exact
diagonalization of the SC partition function on a cylinder with an additional horizon-
tal insertion of MPO1, MPOψ, or MPOσ then leads to the twisted spectra shown
in Fig. 6.1, from which one can identify the field content of three modular invariant
partition functions built from the holomorphic primary fields of the Ising CF T.

But there are more than three modular invariant partition functions for the Ising
model (or more than six if one considers the Z2 parity labeling of Ref. [157] as
genuine topological sectors). As shown analytically in Ref. [50], modular transforma-
tions can be implemented exactly on the lattice without invoking the continuum by
considering well-defined operations on the lattice partition function. Doing so leads
to ten different possible modular invariant partition functions for the Ising model
related to nine independent topological defect configurations on the torus8. As men-
tioned in Sec. 6.1, our SC construction leads to a very similar picture reformulated
in terms of MPO algebras, but introduces numerics into the picture.

6.3.2 Topological corrections to the conformal spin
Let us first of all extend the results of Sec. 5.8.6.1 on extracting conformal data from
the linear transfer matrix to include conformal spin. More generally, to derive the
scaling dimensions and conformal spins from exact diagonalization, we write the
CF T partition function result Eq. (2.153) in terms of the eigenvalues of the Virasoro
operators,

Z = Tr e−Im(τ)H+iRe(τ)P (6.69)
∑

α

e−2πIm(τ)(hα+h̄α− c
12 )+2πiRe(τ)(hα−h̄α), (6.70)

=
∑

α

e−2πIm(τ)(∆α− c
12 )+2πiRe(τ)(sα), (6.71)

8This ambiguity is due to the anyon Eq. (6.85) which appears in two different partition functions.
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where ∆α and sα denote the scaling dimension and the conformal spin. Dropping
all subleading, non-universal, finite-size terms, we can apply this formula to the
tensor network representation

Z = Tr(MLx) (6.72)

of a critical classical partition function on an Lx × Ly torus, where M denotes the
column-to-column transfer matrix [112, 157]. Let us assume periodic boundary
conditions and translation invariance. If the transfer matrix M commutes the
translation operator

T = e
2πi
Ly

P
, (6.73)

which shifts the lattice over one site, then the eigenvalues e
2πi
Ly

pα of T provide a good
momentum quantum number pa. Since P = L0 − L̄0, this momentum corresponds
to the conformal spin sα = hα − h̄α. A shortcut to obtain both scaling dimensions
and conformal spins at the same time is given by diagonalizing the product T ·M
instead, corresponding to a torus with modular parameter

τ = 1/Ly + i/Ly. (6.74)

Indeed, the universal content of the product of the eigenvalues of T and M is then

λα = e
− 2π
Ly

(∆α− c
12 )+ 2πi

Ly
sα , (6.75)

where the modulus coincides with Eq. (5.26) derived previously and the phase yields
the conformal spin.

The above derivation assumed periodic boundary conditions, which corresponds
to the case of no horizontal defects or, equivalently, identity defects. We then
have that (T1)Ly = 1 so that the momenta, which are the eigenvalues of P1,
have to be integers. For a horizontal ψ-twist, this is no longer the case. The
topological obstruction of the defect line implies the existence of a corresponding
twisted translation operator Ta on the cylinder [181],

Ta =

..
.

a

(6.76)

which is obtained by demanding that the horizontal defect line stays put under
vertical translation. The crossing of lines introduces an MPO tensor with non-trivial
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consequences for the momenta. The process of inserting the Dehn twist operator
Dψ ≡ (Tψ)Ly into the partition function on a torus boils down to cutting the torus
into a cylinder, fully twisting one end of the cylinder, and gluing the pieces back
together. Doing this can have non-trivial effects when a horizontal defect is present.
One non-trivial consequence is that the length L for which (Tψ)L = 1ψ, where 1ψ
denotes the identity on the appropriate subspace, is actually 2Ly for anti-periodic
boundary conditions, so that the momenta, and hence the conformal spins, are given
by half-integers modulo an integer. This is the origin of the topological correction to
the conformal spin. The case of the duality defect MPOσ is slightly more involved,
but the action of the Dehn twist Dσ is similar in that it also adds a vertical MPOσ

to the torus. One can show that [50, 182]

(Tσ)2Ly−1 = D2
σ, (6.77)

which implies that the effective length L of the system with σ-twisted boundary
conditions is given by L = Ly−1/2. Indeed, at the level of the eigenvalues, we have
that if e2πipσ/(Ly−1/2) is an eigenvalue of the twisted translation operator Tσ, then
e4πipσ is an eigenvalue of D2

σ . Since D16
σ = 1σ , where 1σ again denotes the identity

on the appropriate subspace, the momenta are restricted to pσ = ±1/16,±7/16 up
to an integer.

6.3.3 Ocneaunu’s tube algebra and the anyon ansatz
Before discussing the exact diagonalization results for the twisted Ising partition
functions, let us give a short summary of the additional pieces of MPO algebra
knowledge we need to go from having a single defect line to two crossing defect
lines on the torus. It is intuitively clear that something interesting has to happen
when two non-contractible defect lines meet,

(6.78)

For our pedestrian purposes, it is enough to know that the objects at the intersection
are called irreducible central idempotents and that they project onto the topological
sectors obtained from block diagonalizing Ocneanu’s tube algebra. The irreducible
central idempotents of this tube algebra correspond to Hermitian projectors onto
each irreducible block. From the projectors onto these blocks (which are identified
with the topological sectors), the topological data of the emergent anyonic excitations
can be extracted. For details on how Ocneanu’s tube algebra can be naturally derived
from the MPO symmetry algebra, we refer to Refs. [84, 156]. Technically, these
idempotents realize the topological superselections sectors of the emergent anyon
theory, or modular tensor category, which is the Drinfeld center Z(C) of the unitary
fusion category C we started from in Sec. 6.2.1 [156].

To construct the anyon ansatz for string-nets, we first define a basis of tubes
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T spqp which are built from the fusing and splitting tensors Eq. (6.56) and Eq. (6.57),

T spqp =

s

s

p

q

p

(6.79)

where one has to imagine this object to be connected to a closed string of MPOs

tensors going vertically around on the cylinder. The irreducible central idempotents
are then expressed as linear combinations of these tube basis elements,

Pi =
1

D2

∑

pqs

tpqsi

s

s

p

q

p

(6.80)

where D = (
∑
a∈C d

2
a)1/2 is the total quantum dimension and tpqsi are coefficients.

For the Ising case, these projectors (anyons) are given explicitly by

P0 = T 1
111 + T ψ1ψ1 +

√
2T σ1σ1 (6.81)

Pψψ̄ = T 1
111 + T ψ1ψ1 −

√
2T σ1σ1 (6.82)

Pψ = T 1
ψψψ − T ψψ1ψ − i

√
2T σψσψ (6.83)

Pψ̄ = T 1
ψψψ − T ψψ1ψ + i

√
2T σψσψ (6.84)

Pσσ̄ = 2T 1
111 − 2T ψ1ψ1 + 2T 1

ψψψ + 2T ψψ1ψ (6.85)

Pσ = T 1
σσσ − iT ψσσσ + e−

iπ
8 T σσ1σ + e

i3π
8 T σσψσ (6.86)

Pσψ̄ = T 1
σσσ − iT ψσσσ + e

i7π
8 T σσ1σ + e−

i5π
8 T σσψσ (6.87)

Pσ̄ = T 1
σσσ + iT ψσσσ + e

iπ
8 T σσ1σ + e−

3πi
8 T σσψσ (6.88)

Pψσ̄ = T 1
σσσ + iT ψσσσ + e−

i7π
8 T σσ1σ + e

i5π
8 T σσψσ, (6.89)

where we have left out the division by the overal normalization factorD2 = 4 in every
projector. In Table 6.1, the Ising anyons are listed together with their corresponding
topological spins hi, which can be obtained in the MPO algebra framework from the
eigenvalue e2πihi of a 2π-rotation (Dehn twist) of the irreducible central idempotent
Pi corresponding to the anyon of type i [84].

6.3.4 Topological sectors of the Ising model
We are now in a position to study the topological sectors of the Ising model directly
on the lattice through the SC construction using exact diagonalization. If we want
to make use of the anyon ansatz, we better make sure our duality MPOσ acts as
a symmetry. One way of achieving this is by going back to the topological string-
net. We have tried many other approaches, but there seems to be no way around
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Table 6.1: Anyon table for the doubled Ising model with exact topological spins and notations
used in respectively [156] and [84].

Anyon [156] Anyon [84] topological spin
0 (1, 1) 0
ψψ̄ (ψ, ψ̄) 0
ψ (1, ψ) -1/2
ψ̄ (ψ, 1) 1/2
σσ̄ (σ, σ̄) 0
σ (1, σ̄) -1/16
σψ̄ (ψ, σ̄) 7/16
σ̄ (σ, 1) 1/16
ψσ̄ (σ, ψ̄) -7/16

introducing both primal and dual lattice if the tube algebra of Sec. 6.3.3 is to survive.
In a way, introducing both lattices is inevitable since the anyons Eqs. (6.81)-(6.89)
contain tubes with a vertical MPOσ, which are exactly those which mix primal and
dual lattices, i.e. some emergent anyons are inextricably made up of primal and
dual objects, or, in terms of the classical Ising interpretation, of spin operators and
disorder operators [51]. We found that trying to correct the MPO symmetries by
including a half-shift to glue the primal and dual lattice together again on both sides
of a vertical duality MPOσ manifestly breaks the projector properties of the central
idempotents. In short, there does not seem to be an obvious way to restore the tube
algebra in the presence of additional half-shifts.

Having identified the product state which tunes the SC to criticality for the SET
case, we apply the same product state to act on the purely topological string-net
where the MPOσ duality defect may again be freely moved around on the virtual
level. From the point of view of the classical partition function, going back to
the purely topological case amounts to restoring the superposition between primal
and dual lattices. In doing so, we lift the action of the duality MPOσ to a virtual
symmetry which interchanges two shifted copies of the self-dual Ising partition
function, which now corresponds to the direct sum of primal and dual lattices
Eq. (6.90). By removing the parts of the product state Eq. (6.37) which fix the SET
indices, the unit cell tensor making up a single column M of the transfer matrix T
now has a block diagonal structure corresponding to the subset of the topological
Ising string-net allowed by the fusion rules after fixing indices,

=
⊕

(6.90)
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FIGURE 6.2: Tensor network diagrams for the action of the ten tubes Eq. (6.79) appearing
in Eqs. (6.81)-(6.89) on a cylinder of three sites, where the top and bottom row respectively
denote all possibilities on the primal and dual lattice. The central idempotents are then
constructed by taking linear combinations of the tubes via Eqs. (6.81)-(6.89).

where the left-hand side should be diagramatically interpreted9 as a collapse of the
primal and dual parts on the right-hand side, reflecting the superposition, and where
the product state acts on the red indices. The block decomposition of Eq. (6.90)
carries over to all other objects required to do exact diagonalization on a cylinder.
In particular, the MPOs Eq. (6.66) and Eq. (6.67) are now block-diagonal, acting
independently on the primal and dual lattice, while the duality MPO Eq. (6.68) is
block-off-diagonal and connects the primal and dual lattice as a symmetry. In this
way, one can (numerically) check that the tube algebra, which leads to the central
idempotents, is preserved and that all projecters commute with the transfer matrix.
Similarly, the twisted translation operators are block-off-diagonal, since the natural
translation on the string-net Eq. (6.90) is a half-shift (a shift by half a lattice spacing)

9As it is pictured, the configuration on the left-hand side of course looks like it is not allowed by the
fusion rules.
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FIGURE 6.3: Topological sector labeling of finite-size CF T spectra (scaling dimension ∆
versus momentum p) of twisted partition functions on a cylinder (Ly = 11). From left to
right: the 1-twist, ψ-twist, and σ-twist spectra.
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FIGURE 6.4: Central branch of Fig. 6.3. Topological sector labeling of finite-size CF T spectra
(scaling dimension ∆ versus conformal spin s) of twisted partition functions on a cylinder
(Ly = 11). From left to right: the 1-twist, ψ-twist, and σ-twist spectra.

going from primal to dual lattice or vice versa, and can be shown to commute with
both the transfer matrix and the central idempotents.

Let us now turn to the actual numerics. Using a Lanczos algorithm, we diagonal-
ize the product of the twisted translation operator Ta (see Eq. (6.76)) together with
the twisted transfer matrix Ma, where a ∈ {1, ψ, σ} denotes the horizontal defect
line (see Sec. 6.3.2). Additionally, we act with one of the compatible anyon projectors
Pi listed in Eqs. (6.81)-(6.89) to project Ta ·Ma onto a definite topological sector i.
The relevant tensor network diagrams for implementing the action of the tubes on
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the transfer matrix are shown in Fig. 6.2, where the top and bottom row respectively
collect all possibilities on the primal lattice and dual lattice. Note that one has to
be aware of the closed loop convention when multiplying these matrices on the
cylinder by carefully inserting the correct quantum dimensions to account for the
popping of closed σ-loops. For clarity, let us emphasize that we implicitly assume
that the vertical and horizontal MPOs, and thus all tubes in the anyon projector,
match the a-twisted partition function Ma so that all contractions are compatible
on the cylinder.

The labeled twisted CF T spectra are shown in Fig. 6.3. In terms of Table 6.1, the
trivially twisted transfer matrix M1 then contains 0, ψψ̄, and part of σσ̄, while Mψ

contains ψ, ψ̄, and a different part of σσ̄. The σ-twisted transfer matrix Mσ can be
broken up in σ, σψ̄, σ̄, and ψσ̄ contributions. Due to the superposition of the primal
and dual lattice, the eigenvalues of the transfer matrix have an additional degeneracy,
which is the origin of the spurious fields appearing around momentum p = ±π.
The labeling of these spurious fields is completely compatible with the presence
of an additional ψψ̄ vacuum at momentum p = ±π. Indeed, ψψ̄ appears with
scaling dimension ∆ = 0 in the 1-twist partition function spectrum. Drawing light
cones of the ground state in each twisted sector makes it clear that these unwanted,
mirrored copies do not hinder the identification of the topological sectors of the
branch around momentum p = 0. In Fig. 6.4, we plot this central branch and
relate10 momentum to the conformal spin, which receives topological corrections for
the ψ- and σ-twist (see Sec. 6.3.2).

6.4 Coarse-graining strange correlators

Having established the strange correlator, its properties, and its usefulness in char-
acterizing the topological sectors appearing in CF T spectra, let us now discuss its
real-space renormalization properties. Since we have decomposed the classical par-
tition function into the overlap of two wave functions (with one of them being
a product state), we can try to reinterpret the renormalization procedures on the
partition function of Sec. 3.5 and Chapter 5 at the level of quantum states instead.
This approach is particularly appealing since string-nets are known to be exact zero
correlation length RG fixed point wave functions of a particular RG transformation.

6.4.1 Exact string-net renormalization
By construction, string-net wave functions are gapped, fixed point wave functions
with zero correlation length. As demonstrated by König, Reichardt, and Vidal in
Ref. [183], it is possible to construct a real-space RG transformation which maps
ground-state fixed point string-net wave functions onto themselves. Essentially,
the procedure yields a sequence of F -moves, which can be interpreted as an exact
quantum circuit, made up of local disentanglers and isometries, preserving the

10Since a twisted half-shift translation operator was used, the conformal spins are respectively
related to the momenta p via s1,i = 2Lyp1,i/(2π), sψ,i = 2Lypψ,i/(2π), and sσ,i = 2(Ly −
1/2)pσ,i/(2π).
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FIGURE 6.5: A patch of the lattice defined by the SC obtained from Eq. (6.38).

topological degrees of freedom. In this way, we can interpret the circuit as an exact
MERA representation of the wave function since every coarse-graining step locally
eliminates part of the ground-state entanglement.

The coarse-graining transformation is defined in two steps. First, we reshape the
lattice using F -moves. Since our basic building blocks Eq. (6.16) and Eq. (6.22) are
defined in terms of two F -symbols (triangles), we need to make us of the pentagon
equation to relate the local configurations before and after reshaping. Secondly,
we eliminate physical degrees of freedom by disentangling them exactly to obtain
tadpoles connected to the rest of the network by a vacuum line. The loop states∑
a da |a〉 can then be safely projected out, reducing the number of physical degrees

of freedom. Taken together, these two steps constitute the (exact) coarse-graining
transformation on the string-net wave function.

Let us now give a pictorial derivation for our square lattice structure. We refer
the reader to Appendix 6.6.2 for explicit derivations of the expressions for the unitary
and isometric gates, which are needed to do actual numerics. Note that all gates of
the quantum circuit are defined completely in terms of F -symbols and act solely
on the physical degrees of freedom. For clarity, let us first revisit the SC obtained
from Eq. (6.38) where the spins 1/ψ live on the primal lattice defined by the virtual
loops inside the squares, and the σ loops label the empty, dual lattice inside the
octagons (see Fig. 6.5). Aficionados of the tensor network renormalization methods
introduced in Sec. 3.5 and Chapter 5 might want to keep track of the black bounding
box, which tracks a block of four Ising spins in the SC representation of the partition
function. Let us now drop all loop labels since we only consider the string-net wave
function and focus on a patch of the lattice containing the black bounding box and
its immediate neighborhood. To implement the first step of the coarse-graining
process, we act with unitary gates on the pairs of F -symbols inside the black ellipses,

F -moves
(6.91)
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The relevant unitary gates are given by

α γ
β

δ

i′

k′

j′

l′
n′ = δi′iδj′jδk′kδl′l

∑

n

F klijnn′ α γ

β

δ

i

k

j

l

n , (6.92)

n′

β

δ

γα

i′ j′

k′l′

= δi′iδj′jδk′kδl′l
∑

n

F lijknn′
δ

βα γ
i j

l k
n , (6.93)

n′

β

δ

γα

ii′ j′

k′l′

= δi′iδj′jδk′kδl′l
∑

n

F lijknn′
n
β

δα γ

i

k

j

l

. (6.94)

Next, we act with a different unitary operator on the degrees of freedom inside the
black squares below to get rid of physical degrees of freedom,

disentangle loops

(6.95)

with the gate given by

kk′
γ

α

i

γ

α = diδk′kN
γ
αk =

∑

j

F k
′ii

kj0


 β

i

j

k′ k

γ

α


 . (6.96)

By explicitly projecting j onto the vacuum and i onto the loop state
∑
a da |a〉 and

identifying the degrees of freedom k′ and k, we can interpret the unitary as an
isometry. No information is lost because we know the exact states we have projected
onto: the whole procedure in terms of its quantum circuit is an example of an exact
unitary circuit.

After this single RG step, we end up with a string-net defined on a coarser
lattice11. Iterating the coarse-graining procedure again will lead us back to the
original lattice orientation and will have reduced the number of Ising spins by a

11As we will see later on, we can relate the coarse-grained string-net back to the partition function
by identifying the tensors inside the red bounding box in Eq. (6.95) with a block of four coarse-grained
partition function tensors defined on half the number of Ising spins. Note the obvious similarity of the
string-net coarse-graining with TRG as described in Fig. 3.5.
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factor of four. Indeed, one more RG transformation yields

rg step

7

, (6.97)

where the gold box represents the four coarse-grained partition function tensors
defined on the effective lattice obtained after two (T)RG steps.

6.4.2 Coarse-graining map as a PEPO

The RG map acting on the physical indices can be written as a projected entangled
pair operator (PEPO), the higher-dimensional generalization of a matrix product
operator (MPO). To see this, let us introduce a double-GHZ tensor which takes two
inputs and forces them to be equal to each other (i.e. identifies two indices):

j

k

i = δijk, (6.98)

The reason for introducing this trivial tensor is that it allows us to represent the
coarse-graining PEPO using doubled physical indices, similar in spirit to the PEPS
representation of the string-net ground state tensors Eq. (6.12) where physical
indices are also doubled and identified across tensors. Otherwise, we would have to
restort to an awkward stacking of the quantum circuit since the gates overlap, with
more than one gate acting on a single physical degree of freedom.

Let us now construct the PEPO representation of the first coarse-graining layer
Eq. (6.97). In the top-view below, the yellow rectangles are understood to denote the
appropriate disentangling gates Eqs. (6.92), (6.93), and (6.94), and the transparent
blue rectangles denotes the disentangling gate Eq. (6.96) prior to the isometry. The
output indices colored in blue correspond to the j and i indices in Eq. (6.96) which
are either summed over or projected out onto a closed loop state, while the two
central output degrees of freedom inside the central ellipses are identified using
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Eq. (6.98) tensors.

. (6.99)

This configuration of gates implements the F -moves which go from the left-hand
side of Eq. (6.91) to the right-hand side of Eq. (6.95). To guide the eye, we have
added black and red bounding boxes matching those of the figures in the previous
section.

Grouping the tensors in squares, the bond dimension of the PEPO is equal to the
number of labels in the string-net (i.e. D = 3 for the Ising model {1, ψ, σ}) because
we cut along the double-GHZ tensors Eq. (6.98). By adding another iteration on
top, we return to the initial orientation of the lattice,

(6.100)

Note that we have left all indices explicit using double-GHZ tensors Eq. (6.98),
many of them are actually identified. The output indices after two layers are the
indices denoted with red circles, which are again identified. The output of the
first layer is also left explicitly so that one actually has to imagine the insertion of
additional GHZs inbetween the first and second layer so that the indices “fit” the
gates, which is of course a completely trivial operation.

Looking ahead, we can already appreciate that the way in which the layers of
the string-net coarse-graining PEPO overlap and stack very much resembles tensor
network renormalization methods. Indeed, focusing on the black, red, and gold
bounding boxes already reveals that if we apply the conjugate of this coarse-graining
PEPO to a PEPS, the action of the gates on the physical level will block physical
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indices so that we will have to truncate the virtual level accordingly if we want to
preserve the PEPS representation of the wave function.

6.4.3 Real-space RG and SC renormalization
Inserting the coarse-graining PEPO Eq. (6.99) and its conjugate inbetween the SC
overlap 〈Ω|ΨSN〉, we immediately obtain a sequence of effective partition function
tensors induced by the exact renormalizability of the string-net part,

〈Ω|ΨSN〉 RG step−−−−−−→ 〈Ω(i)|U†U |Ψ(i)
SN〉 = 〈Ω(i)|U†|Ψ(i+1)

SN 〉 ' 〈Ω(i+1)|Ψ(i+1)
SN 〉 ,

where 〈Ω(i+1)| is a truncation of the PEPS 〈Ω(i)|U† and |Ψ(i+1)
SN 〉 is a string-net

on a coarse-grained lattice. The first blocking steps can generally be done exactly up
to a certain bond dimension and turn the initial product state |Ω〉 into an entangled
PEPS. If we want the bond dimension of the input PEPS to remain constant12,
subsequent iterations will require truncation. To see this, consider the action of the
coarse-graining PEPO on the initial product state,

(6.101)

where at each site we have used Eq. (6.98) to distribute the square roots of the
nonnegative weights in the product state evenly across the gates. Apart from the
familiar black and red bounding boxes, we have also drawn blue bounding boxes
which indicate the location of the corresponding tensors in the coarse-grained
string-net part of the SC overlap. Indeed, one can easily verify that, for the product
states constructed in Sec. 6.2.2, the effective SC overlap 〈Ωi+1|Ψi+1

SN 〉 defines a
coarse-grained partition function in terms of the partition function tensor

σ
σ σ

σ σ
(6.102)

In Fig. 6.6, we show how, at every layer, the coarse-grained PEPS has an internal
substructure in terms of four tensors which can be derived from those of the previous
layer. Some of the disentangling gates can be done on each of these four tensors
individually, but the isometric gates connect the coarse-grained PEPS with its nearest

12Or have it alternating every other layer as in MERA-TNR [153]. The point is that we want to keep
it from growing with every application of the coarse-graining step.
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string-net RG

recognize parts of coarse-grained PEPS

truncate coarse-grained PEPS

FIGURE 6.6: Every RG step, the gates of the coarse-graining map Eq. (6.99) block the
PEPS tensors in such a way that preserving the PEPS structure leads to an increased bond
dimension, so that we have to truncate the coarse-grained PEPS if we want a sustainable RG
transformation.

neighbor tensors. Rewriting the PEPS after applying the isometric gates again
as a PEPS requires truncation (see Sec. 3.3.3). Crucially, it is the way in which
this truncation step is carried out which differentiates between the different tensor
network renormalization schemes of Sec. 3.5.

At this point, we would like to stress that the string-net gates of the coarse-
graining circuit Eq. (6.99) do not implement a real-space renormalization procedure
on their own. Indeed, looking at Eqs. 6.92, 6.93, and 6.94 should convince us of
the fact that these gates are in fact very simple, sparse objects. Their action on the
physical level of the PEPS input state amounts to blocking sites, which increases the
virtual bond dimension, projecting out half of the physical indices, and constraining
the surviving physical indices of the PEPS to match the configurations of the physical
indices allowed by the string-net fusion rules. More generally, the SC construction
exposes and enforces (part of ) the topological symmetries of the scaling limit of the
classical partition function already at the ultraviolet level. In this sense, it extends
the usual applications of symmetries in tensor networks to include MPO symmetries,
which was exactly what enabled us to go beyond the Z2 parity labeling of the twisted
Ising spectra in Sec. 6.3. The actual renormalization step, which gets rid of local,
short-range correlations, depends on the choice of PEPS truncation on the virtual
level, as we will elaborate upon below.

In terms of the frog-bird analogy of Sec. 1.2, the gapped, RG invariant string-net
part |ΨSN〉 of the SC corresponds to a bird state containing (part of ) the universal
topological data of the RG fixed point model. The (coarse-grained) input state
can be interpreted as a frog state pertaining to the muddy ultraviolet physics of the
critical lattice model, i.e. the Boltzmann weights which tune the lattice model to
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criticality. By acting with the string-net RG circuit and its conjugate inside the
SC 〈Ω|ΨSN〉, we are able to gradually shift the renormalization group scale, which
introduces correlations into the the input state 〈Ω| but leaves the universal part
|ΨSN〉 invariant. After the first layer which turns the product state into a PEPS, the
effective partition function tensor at every subsequent layer is given in terms of an
approximate, renormalized SC, given by

= (6.103)

Consequently, the bond dimension χ = χΩχSN of the effective partition func-
tion completely results from the truncation of the PEPS to χΩ, since the physical
dimension of the string-net χSN is fixed. For the Ising model, this fixed dimension
is χSN = 2, corresponding to the spin as represented by the labels {1, ψ}.

6.4.4 Kadanoff ’s block-spin truncation

One way to stay in the Ising phase diagram is to enforce that the input state remains
a product state, i.e. approximate the coarse-grained PEPS as good as possible with a
product state. Doing this yields a flow in terms of partition function tensors with a
bond dimension that remains equal to χ = χSN, since the bond dimension of the
partition function is now solely determined by the (doubled) physical indices of the
string-net,

= (6.104)

This flow is reminiscent of Kadanoff ’s block spin method (see Sec. 2.10) where the
effective Hamiltonian is truncated to the nearest-neighbor term [154]. We have
already amply commented upon the reasons for the breakdown of the Kadanoff
picture in Chapter 2. Here, we interpret the failure as following from the restriction
the frog state to a product state instead of allowing a full PEPS ansatz to explore
higher-order interactions in a larger parameter space of the generalized Ising model
Eq. (2.71).
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FIGURE 6.7: Comparison between SC-TRG and TRG: (left) free energy density error at
criticality in function of bond dimension, (right) flow of scaling dimensions for χ = 10 from
the linear transfer matrix defined in Eq. (5.24).

6.4.5 Tensor renormalization group (TRG)

The simplest non-trivial way to truncate the coarse-grained PEPS in Eq. (6.102) is by
doing independent singular value decompositions to pull the coarse-grained tensors
apart, which is closely related to the simple update method for PEPS optimization
(see Sec. 3.3.3). We end up with a sequence of effective partition function tensors of
the form

σ
σ σ

σ σ
≈A′ (6.105)

where the fat indices correspond to the truncated indices, which will become the
inner indices in the substructure of PEPS of the next layer. Numerically, we observe
that this SC-TRG real-space scheme yields results which are indistinguishable from
TRG (see Fig. 6.7). Even though the numerical results are identical, we would like
to stress that the partition function tensors obtained from SC-TRG have a more
insightful interpretation. Given that the SC-TRG tensors are gradually built up from
extremely sparse F -symbol objects and that the blocking operation is done using
gates which themselves are nothing but F -symbols, the effective partition function
tensors remain extremely sparse all along the RG flow. Indeed, even if the PEPS
truncation were to introduce “forbidden”13 non-zero values in the truncated PEPS,
the eventual contraction with the string-net would remove all values which violate
the inherent symmetries of the string-net.
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(a) (b)

FIGURE 6.8: Coarse-grained strange correlators for two kinds of translation invariant unit
cells, where the PEPS tensor has an internal substructure given by (a) four tensors, (b)
eight tensors. Truncating the PEPS using full update is one possible implementation of the
truncation step alluded to in Fig. 6.6.

6.4.6 Beyond tensor network renormalization (TNR)

Thinking in terms of PEPS optimization, the most straightforward way to improve
SC-TRG is to include the full environment and set up a variational PEPS optimization
which maximizes the overlap between the coarse-grained PEPS with an increased
bond dimension and a truncated one. The idea is that this could provide an optimal
approximation of the exact contraction Eq. (6.102). The resulting coarse-grained
strange correlators are depicted in Fig. 6.8 for two kinds of PEPS unit cells. Using
a customized implementation of the variational method sketched in Sec. 3.3.3, we
implemented the PEPS overlap maximization using a full environment both for the
translation invariant unit cell containing four tensors (Fig. 6.8(a)) and a larger trans-
lation invariant unit cell with an A-B structure containing eight tensors (Fig. 6.8(b)).
We were able to significantly improve the value of the cost function compared to
the initial SC-TRG solution, similar to how TNR improves upon the TRG solution.
However, despite the better overlap of the PEPS, we numerically observed free
energy densities and scaling dimensions which were only marginally better than
SC-TRG, resembling the improvements of TRG which include approximations of
the environment of the partition function (see Sec. 3.5.2).

In hindsight, the reason for this behavior is obvious: the conventional overlap
maximization has no way of knowing that it is actually part of a coarse-graining
algorithm. Put differently, the optimal environment for truncating local, short-range
correlations has a lot less to do with the full environment required for ground state
optimizations than one might intuitively anticipate. Indeed, we know from Sec. 3.5

13This could happen since the truncation on the virtual level is done on the input 〈Ω| PEPS in
isolation, irrespective of the eventual contraction with the string-net part |ΨSN〉 in the SC.
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and Chapter 5 that the success of TNR methods can be attributed to the removal of
local correlations in a highly asymmetric way.

Our results confirm that using the full environment for real-space RG purposes
is inadequate since it is in a sense too “globally” optimal. One solution would be
to come up with a different cost function to maximze PEPS overlaps which uses
an environment attuned to the removal of short-range correlations. We want our
approximate environment to be less local than SC-TRG, which is blind to important
short-range correlations, but less global than a conventional PEPS optimization,
which overlooks the very same short-range correlations. We leave the design of
such a TNR-like PEPS truncation procedure for future work but already note the
relevance of the recently developed implicitly disentangled renormalization [184].
Another approach would be to insert a different coarse-graining map into the strange
correlator instead of the one given by the exact string-net RG of Sec. 6.4.1, which we
know is based on TRG and basically just blocks sites. There might exist more general
exact coarse-graining maps which still also have string-nets as their fixed point14.
For example, in Ref. [48] the Virasoro algebra is rigorously identified as a limit of
spin operators using intricate coarse-graining operators, which could give a much
better representation of the CF T coarse-graining operator than simply blocking sites.

6.5 Conclusion

We have shown how the strange correlator provides access to the non-local sym-
metries of the scaling limit of critical partition functions on the lattice by enabling
the identification of the topological sectors appearing in finite-size CF T spectra
of generalized twisted partition functions. The MPO algebra approach starts from
defects, which we can immediately relate to conformal primary fields for diagonal
CF T partition functions such as Ising. For non-diagonal partition functions, the
interpretation is more subtle and has been considered in Ref. [3] for the Fibonacci
string-net/hard hexagon case. We have also revealed an elegant perspective on the
tensor network approach to real-space renormalization.

For future work, it would be interesting to properly relate our work to the
literature introduced in Sec. 6.1. In particular, the connection to the work on dualities
by Fröhlich et al. [169] is unclear since we start from the defects whereas these
defects are the final results of the TQF T/CF T construction. It might be worthwhile
to work out the extension to other models to obtain a better understanding of the
limitations of the strange correlator construction (Sec. 6.2.4). A possible solution to
the appearance of the spurious fields in Sec. 6.3.4 might be to consider half a transfer
matrix, since we are already considering translations over half a lattice site. Neither
of these approaches may be particularly elegant, but nobody promised a rose garden.

Lots of open questions remain. As we have stated before, the RG invariant
string-net part of the SC corresponds in many ways to the bird state containing
the universal topological data of the RG fixed point model. The (coarse-grained)
input state can be referred to as the frog state pertaining to the muddy ultraviolet
physics of the critical lattice model. The strange correlator is thus not an RG fixed

14We thank Dominic Williamson for making this point (and many others).
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point and is totally ultraviolet from an RG point of view. Yet it captures the most
important (non-local) symmetries of the resulting CF T despite its ultraviolet nature.
For the Ising model we have seen that knowing the topological sectors tells us almost
everything there is to know about the primary fields of the CF T, even though we
cannot construct their exact representations at the ultraviolet scale. The primary
fields themselves might correspond to the leading eigenvectors of a coarse-graining
map within each sector of the tube algebra. So in a sense they are not MPOs but
rather vectors in the irreducible representations of the MPO tube algebra. It would
be very interesting to combine the results of Sec. 6.3 and Sec. 6.4 and study what
happens to the MPO algebra when coarse-graining the strange correlator. We believe
that a deeper understanding of how to approach conformal field theories using tensor
networks is right around the corner and that MPOs will play a central role. In this
light, the results of this chapter constitute a significant first step.

6.6 Appendices

6.6.1 Kramers-Wannier duality
Since it is our intention to include duality defects into tensor network descriptions of
classical partition functions, let us remind ourselves of the hidden duality discovered
by Kramers and Wannier in the two-dimensional Ising model [185].

Consider yet again the two-dimensional ferromagnetic Ising model on the square
lattice having N sites and 2N links. At each site there is a classical spin σi = ±1,
with the energy of a configuration of spins given by H[σ] = −J∑〈i,j〉 σiσj . The
partition function at inverse temperature β is given by

Z =
∑

{σ}=±1

exp


βJ

∑

〈i,j〉
σiσj


 =

∑

{σ}=±1

∏

〈i,j〉
eβJσiσj , (6.106)

where the sum/product runs over nearest-neighbor sites of the lattice. In addition
to the Z2 symmetry under global spin flips, the Ising model also has a more subtle
duality property. For later purposes, let us already introduce the sites of the dual
lattice at the center of the plaquettes of the original lattice, as shown below

(6.107)

where a particular spin configuration is shown on the primal lattice (black) and the

185



6. MAPPING TQF TS TO CF TS THROUGH STRANGE CORRELATORS

dual lattice (red). Islands of spin-down (◦) in a spin-up (•) sea are marked red and
surrounded by domain walls.

The Kramers-Wannier duality is then a mapping between the low-temperature
and high-temperature series expansions of the partition function. At low temper-
ature the expansion is done in terms of configurations of closed domain walls, or
polygon configurations [176], at high temperature in terms of closed loops of spin
configurations. As we will show in the next section, these expansions can be mapped
into each other if the coupling K = βJ is related to the dual coupling K∗ by

e−2K∗ = tanh(K). (6.108)

This duality is an exact identity only in the thermodynamic limit as boundary condi-
tions change under the action of the duality for finite systems. A duality transforma-
tion can thus only be considered a “symmetry” of local observables asymptotically
in the thermodynamic limit. Because of the self-duality of the square lattice, the
Kramers-Wannier duality on the square lattice relates a low-temperature Ising model
to a high-temperature Ising model on the same lattice geometry. For honeycomb or
triangle lattices, additional star-triangle relations are required on top of the duality
to match the lattice geometries.

6.6.1.1 Low-temperature series expansion

At low temperatures, the energy of the system is minimized by spin-aligned config-
urations which have a larger statistical weight than the misaligned configurations.
This suggests to expand the partition function in terms of domain walls, which are
lines on the bonds of the dual lattice that separate regions of spin up and down. The
Boltzmann weight associated to a dual bond with a domain wall present relative to
no domain wall present is e−2K , so that we can rewrite the partition function as

Z = 2e2NK
∑

{σ}=±1

e−2KNl , (6.109)

where N is the total number of sites and Nl the number of domain walls (dual
bonds), which boils down to the length of the domain walls. The sum is still over
the spin configurations, and the translation to a summation over domain walls
depends on the boundary conditions. We will be cavalier about boundary conditions
by implying the thermodynamic limit, and immediately write down the partition
function in terms of a sum over domain wall loops of length n as

Z = 2e2NK
∑

n

C
(n)
N

(
e−2K

)n
= 2eNK

(
1 +N

(
e−2K

)4
+ . . .

)
, (6.110)

where C(n)
N denotes the number of closed domain walls of length n on the dual

square lattice of N sites (which is again the square lattice). Note that even though
this expansion is exact, it is called a low-temperature expansion because as β →∞,
the term without any loops dominates (two configurations: all spins up or all spins
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down). The first correction has one flipped spin, so four domain walls surrounding
the flipped spin. The partition function can thus be interpreted as a sum over domain
walls/polygon configurations on the dual lattice.

6.6.1.2 High-temperature series expansion

Let us now write down a high-temperature expansion, starting from the identity

eKσiσj = cosh(K) + sinh(K)σiσj , (6.111)

leading to

Z =
∑

{σ}=±1

∏

〈i,j〉
(cosh(K) + sinh(K)σiσj) . (6.112)

The product can be expanded into a sum of 2Nl terms, where Nl is the number of
bonds. This can be done by introducing a new Z2 variable b(i,j) for every bond
between site i and j, where b(i,j) = 0 if the bond contains a cosh(K) term and
b(i,j) = 1 if the bond contains sinh(K)σiσj , so that

Z = (cosh(K))
Nl

∑

{σ}=±1

∑

{b(i,j)}=0,1

∏

<i,j>

(tanh(K)σiσj)
b(i,j) . (6.113)

This gives a one-to-one correspondence between the terms in the expansion and
line configurations on the bonds of the original lattice. Now switch the order of the
sums over the independent variables b and σ to first fix bond configurations before
summing over all spins,

Z = (cosh(βJ))
Nl

∑

{b(i,j)}=0,1

tanh(βJ)
∑
<i,j> b(i,j)


 ∑

{σ}=±1

∏

<i,j>

(σiσj)
b(i,j)


 .

(6.114)

Since σi = ±1, each term
∑

{σ}=±1

∏

<i,j>

(σiσj)
b(i,j) =

∑

{σ}=±1

∏

i

(σi)
∑
j b(i,j) (6.115)

where the sum over sites j is restricted to the nearest-neighbors of site i, is actually
only non-zero for a particular b(i,j) configuration if the exponents of all the σi’s are
even. In this case, the contribution is 2N , otherwise it is zero:

Z = 2N (cosh(βJ))
Nl

∑

{b(i,j)}=0,1∑
<i,j> b(i,j)=0,2,4,...

(tanh(βJ))
∑
<i,j> b(i,j) . (6.116)
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The sum over all spin configurations thus forces only closed loops to contribute (as
there can be no lines ending or branching),

Z = 2N (cosh(βJ))
Nl
∑

n

C
(n)
N (tanh(βJ))n (6.117)

= (cosh(βJ))
Nl 2N

(
1 +N(tanh(βJ))4 + . . .

)
, (6.118)

where we have introduced the same counting function C(n)
N to denote the number

of distinct closed loops of length n on the primal square lattice of N sites. Indeed,
because of the self-duality of the square lattice, counting the number of closed loops
on either the dual or the primal lattice is identical.

6.6.1.3 Kramers-Wannier duality

The duality now arises because both the low-temperature expansion in terms of do-
main walls and the high-temperature expansion in terms of closed loops are actually
identical on the square lattice, albeit one being on the dual lattice and the other
one on the original lattice. From equating the free energy per site of the partition
function series expansions Eq. (6.110) and Eq. (6.117) in the thermodynamic limit,
we find the constraint

lnZ
N

= 2K + g
(
e−2K

)
= ln 2 + 2 ln coshK + g (tanhK) , (6.119)

where the function g denotes the logarithm of the series expansion. The low- and
high-temperature arguments of g are related by the duality condition

g
(

e−2K̃
)
↔ g (tanh(K)) → K̃ ≡ −1

2
ln(tanh(K)). (6.120)

Note that the dual of the dual is again the primal, since

sinh(2K) sinh(2K̃) = 1. (6.121)

If the free energy Eq. (6.119) is singular at a critical point Kc, this must be reflected
in non-analytic behavior of the function g(K). But because of the duality, the
function g(K) also has a singularity at K̃c. Since the free energy should be analytic
everywhere except at the critical point, the model must be self-dual, which means
that

e−2K̃c = tanh(Kc) =
1− e−2Kc

1 + e−2Kc
, (6.122)

so that, e−2Kc = −1±
√

2. Discarding the negative solution, we obtain the critical
coupling of the square lattice Ising model immediately from its duality property

Kc =
ln(1 +

√
2)

2
= 0.441 . . . (6.123)
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6.6.2 Explicit string-net coarse-graining gates

In this Appendix, we provide the tedious F -symbol manipulations required to arrive
at the expressions for the exact string-net coarse-graining gates given in Eqs. (6.92),
(6.93), (6.94), and (6.96).

6.6.2.1 Disentanglers

Using Eq. (6.12), properties of F -symbols, and the pentagon equation, we start
from

α γ

β

δ

i

k

j

l

n =
(didjdkdl)

1/4

(dβdδdn)1/2
Fαijγβn(Fαlkγδn)∗, (6.124)

so that

Fαijγβn(Fαlkγδn)∗ = dn
(dβdδ)

1/2

(dαdγdidk)1/2

∑

n′

F lδβiαn′F
ln′j
nik F

δβj
kn′γ (6.125)

= dn
(dβdδ)

1/2

(dαdγdidk)1/2

∑

n′

F ln
′j

nik F
lδβ
iαn′(F

βjk
δγn′)

∗ (6.126)

=
(dβdδ)

1/2

(dαdγ)1/2

∑

n′

√
dn
dn′

F lijkn′nF
δli
βαn′(F

δkj
βγn′)

∗. (6.127)

Defining

α γ
β

δ

i′

k′

j′

l′
n′ =

(di′dj′dk′dl′)
1/4

(dαdγdn′)1/2
F δl

′i′

βαn′(F
δk′j′

βγn′ )
∗, (6.128)

it follows that

α γ

β

δ

i

k

j

l

n = δii′δjj′δkk′δll′
∑

n′

F l
′i′j′

k′n′nα γ
β

δ

i′

k′

j′

l′
n′ (6.129)

Conversely,

α γ
β

δ

i′

k′

j′

l′
n′ = δi′iδj′jδk′kδl′l

∑

n

F klijnn′ α γ

β

δ

i

k

j

l

n (6.130)
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with the unitary gate

[UV ]i′j′k′l′n′,ijkln = δi′iδj′jδk′kδl′l
∑

n

F klijnn′ (6.131)

so that

α γ
β

δ

i′

k′

j′

l′
n′ =

∑

ijkln

[UV ]i′j′k′l′n′,ijkln α γ

β

δ

i

k

j

l

n . (6.132)

For U
`

H , we start from

n′

β

δ

γα

i′ j′

k′l′

=
(di′dj′dk′dl′)

1/4

(dβdδdn′)1/2
Fαi

′j′

γβn′ (F
αl′k′

γδn′ )∗, (6.133)

yielding

Fαi
′j′

γβn′ (F
αl′k′

γδn′ )∗ =
(dn′dδ)

1/2

(dαdk′)1/2

∑

n

F δl
′i′

βαnF
δnj′

γβk′F
l′i′j′

k′nn′ (6.134)

=
(dn′dβ)1/2

(dδdi′dj′)1/2

∑

n

(dn)1/2F l
′i′j′

k′nn′F
αl′n
βδi′ F

βnk′

γδj′ (6.135)

We define

δ

βα γ
i j

l k
n

=
(dn)1/2(dkdl)

1/4

dδ(didj)1/4
(Fαlnβδi )∗(F βnkγδj )∗, (6.136)

to find

n′

β

δ

γα

i′ j′

k′l′

= δi′iδj′jδk′kδl′l
∑

n

F lijknn′
δ

βα γ
i j

l k
n

(6.137)

For U
a

H , we analogously start from

n′

β

δ

γα

ii′ j′

k′l′

=
(di′dj′dk′dl′)

1/4

(dβdδdn′)1/2
Fαi

′j′

γβn′ (F
αl′k′

γδn′ )∗, (6.138)
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Define

n
β

δα γ

i

k

j

l

=
(dn)1/2(didj)

1/4

dβ(dkdl)1/4
Fαinδβl F

δnj
γβk, (6.139)

which we can match with the previous solution

Fαi
′j′

γβn′ (F
αl′k′

γδn′ )∗ =
(dn′dβ)1/2

(dδdi′dj′)1/2

∑

n

(dn)1/2F l
′i′j′

k′nn′F
αl′n
βδi′ F

βnk′

γδj′ (6.140)

=
(dn′dδ)

1/2

(dβdk′dl′)1/2

∑

n

(dn)1/2F l
′i′j′

k′nn′F
αi′n
δβl′ F

δnj′

γβk′ (6.141)

to find the same unitary

n′

β

δ

γα

ii′ j′

k′l′

= δi′iδj′jδk′kδl′l
∑

n

F lijknn′
n
β

δα γ

i

k

j

l

(6.142)

6.6.2.2 Isometries

As we are interested in the gates acting on the physical indices (and the corresponding
exact RG circuit), we need to disentangle degrees of freedom first. We start from

∑

β

dβ
(didj)

1/2

dβ(dkdk′)1/4
(Fαijγβk′)

∗Fαijγβk, (6.143)

where the additional dβ is due to the closed virtual loop convention, so that

∑

β

(didj)
1/2

(dkdk′)1/4
(Fαijγβk′)

∗Fαijγβk (6.144)

=
∑

β

dβ(dkdk′)
1/4

(dαdγ)1/2
F γk

′i
βαj F

αkj
βγi (6.145)

=
∑

β

dβ(dkdk′)
1/4

(dαdγ)1/2

∑

n

Fαkk
′

αγn F
αni
βαi F

kk′i
inj (6.146)

=
∑

β

(dβdi)
1/2(dkdk′)

1/4

(dγ)1/2

∑

n

1

(dn)1/2
Fαkk

′

αγn F
iαα
iβn F

kk′i
inj (6.147)

=
∑

β,n

dβF
kk′i
inj

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)(
(di)

1/2(dn)1/4(Fαiiαβn)∗

(dβdn)1/2

)
.

(6.148)
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We now recognize a trivial symbol Fαiiαβ0 = (dβ)1/2(dαdi)
−1/2Nβ

αi,

∑

β

(didj)
1/2

(dkdk′)1/4
(Fαijγβk′)

∗Fαijγβk (6.149)

=
∑

β,n

dβF
kk′i
inj

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)(
(di)

1/2(dn)1/4(Fαiiαβn)∗

(dβdn)1/2

)(
(dαdi)

1/2

(dβ)1/2
Fαiiαβ0

)

(6.150)

=
∑

n

F kk
′i

inj

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)
δn,0

(
(di)

1/2(dn)1/4

(dn)1/2

)(
(dαdi)

1/2
)

(6.151)

= F kk
′i

i0j

(
(dkdk′)

1/4Fαk
′k

αγ0

(dγ)1/2

)
di(dα)1/2 (6.152)

= δk′k
(didj)

1/2

(dk)1/2
Nk
ijN

γ
αk (6.153)

Let’s now do the calculation in the other way as well to get the disentangling
gate we need. We start from

∑

β

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)(
(di)

1/2(dn)1/4(Fαiiαβn)∗

(dβdn)1/2

)
(6.154)

and want to get to

∑

β

(didj)
1/2

(dkdk′)1/4
(Fαijγβk′)

∗Fαijγβk (6.155)

We find

∑

β

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)(
(di)

1/2(dn)1/4(Fαiiαβn)∗

(dβdn)1/2

)
(6.156)

=
∑

β

(dn)1/2(dk′)
1/4

dα(dk)1/4
FαβiniαF

k′γα
nαk (6.157)

=
∑

β,j

(dn)1/2(dk′)
1/4

dα(dk)1/4
F k
′γβ

iαj F k
′ji

nik F
γβi
kjα (6.158)

=
∑

β,j

F k
′ii

kjn

(didj)
1/2

(dkdk′)1/4

(Fαijγβk′)
∗

(dβ)1/2

Fαijγβk

(dβ)1/2
, (6.159)
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leading to

∑

β

dβ

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)(
(di)

1/2(dn)1/4(Fαiiαβn)∗

(dβdn)1/2

)
(6.160)

=

(
(dkdk′dn)1/4Fαk

′k
αγn

(dγdn)1/2

)∑

β

dβ

(
(di)

1/2(dn)1/4(Fαiiαβn)∗

(dβdn)1/2

)(
(dαdi)

1/2

(dβ)1/2
Fαiiαβ0

)

(6.161)

= di

(
(dkdk′)

1/4Fαk
′k

αγn

(dγ)1/2

)
δn,0

(
1

(dn)1/2

)
(dα)1/2 (6.162)

= diδk′kN
γ
αk (6.163)

(6.164)

The take-home message is

∑

j

F k
′ii

kj0

∑

β

dβ
(didj)

1/2

(dkdk′)1/4

(Fαijγβk′)
∗

(dβ)1/2

Fαijγβk

(dβ)1/2
= diδk′kN

γ
αk (6.165)

so that the gate on the physical indices looks like

∑

j

F k
′ii

kj0


 β

i

j

k′ k

γ

α


 = diδk′kN

γ
αk (6.166)

where
∑
β dβ is understood to be included in the tensor network diagram. As

expected, the n label gets fixed to the vacuum, the j label gets summed over, and the
i label yields a quantum dimension. In actual numerics we implement the isometry
by projecting the respective indices onto the vacuum and a loop state.
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Outlook

Since the end of a dissertation is a place for contemplation and reverie, we refer the
reader to the separate conclusions at the end of Chapters 4, 5, and 6 for specific,
technical conclusions, and would like to reserve this last page for a broader outlook.

“For all the work that has been invested in the renormalization
group it may seem the results obtained so far are rather scanty. It should
be kept in mind that the problems to which the method is being applied
are among the hardest problems known in the physical sciences. If
they were not, they would have been solved by easier methods long ago.
Indeed, a substantial number of the unsolved problems in physics trace
their difficulty to a multiplicity of scales. The most promising path to
their solution, even if it is an arduous path, is the further refinement of
renormalization group methods.”

K. G. Wilson, 1979 [21]

Even though Wilson’s quote befits the conclusion of our work, we are well
aware of the fact that one would have a hard time finding a top theoretical physicist
today who would agree with this sentiment. Contemporary high-flying birds revel
in strings and branes, and have found different, more rewarding paths to explore.
Maybe they will return to “the most promising path” some day. Most likely though,
they won’t.

Throughout this dissertation, the two-dimensional classical Ising model has
been our steady companion. It first appeared in Chapter 2 in early discussions on
criticality and phase transitions. Then as one of the theoretical laboratories Wilson
used to scrutinize his ideas on renormalization group theory and later on as the
microscopic lattice model underlying the Ising conformal field theory. We used
tensor network renormalization methods to coarse-grain it at criticality in Chapter 5
and discussed its duality properties in Chapter 6, where, at last, all of its properties
could be distilled into relations between structures of the Ising fusion category. We
find it quite remarkable that a century old model continues to evolve along with the
development of our understanding of physics.

We hope that the “further refinement of renormalization group methods” will
not grind to a halt soon and that the Wilsonian spirit will live on in the physics of
tomorrow.
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and F. Verstraete, “Matrix product operators for symmetry-protected topo-
logical phases: Gauging and edge theories”, Physical Review B 94, 1 (2016),
arXiv:1412.5604.

[84] N. Bultinck, M. Mariën, D. J. Williamson, M. B. Şahinoğlu, J. Haegeman,
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