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The cushioning function of large arteries encompasses distension during systole and recoil
during diastole which transforms pulsatile flow into a steady flow in the microcirculation.

Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic
common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality
globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM)
proteins that support the mechanical load, while the second important components are vascular
smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but
mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling
in both conductance and resistance arteries are highly relevant to the physiology of normal and early
vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile
circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interac-
tions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small
arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to
calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the
arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the
identification of gene variants affecting arterial stiffening. Now that important hemodynamic and
molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between
ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the
development of arterial stiffness.
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I. INTRODUCTION

Hemodynamic homeostasis enables large arteries to transform
pulsatile pressure and flow into arteriole continuous pressure
and flow with minimal energy dissipation within the vascular
wall. The ability of large arteries to distend when they are
loaded in a nonlinear behavior defines arterial compliance,
which decreases as blood pressure (BP) increases. Arterial
compliance depends on the intrinsic material stiffness and the
arterial geometry (see FIGURE 1A). Arterial stiffness is envi-

sioned as a decreased distensibility that represents the relative
changes in lumen cross-sectional area for a given change in BP.
The distensibility of the arteries contributes to wave propaga-
tion and reflection in the arterial tree: the arterial pulse prop-
agates with a certain speed, the pulse wave velocity (PWV),
over the arterial tree, whereby it varies continuously in ampli-
tude and shape. The leading clinical concept of arterial stiff-
ness relies on central artery stiffness which has been identified
as a major independent risk factor for incident cardiovascular
disease and overall mortality (25, 265, 269, 460, 558). Aortic
PWV is a reference parameter of central arterial stiffness
at the level of large elastic arteries. A complete under-
standing of arterial stiffness requires integrating periph-
eral (small artery) stiffness that acts in concert in physi-
ological and pathological settings (459). Specific indexes
of arterial stiffness, such as local distensibility or Young’s
elastic modulus calculated from stress-strain curves, are
used in small-sized muscular arteries. Both central and
peripheral stiffness encompass the complex interactions
between intramural cells and extracellular matrix (ECM)
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FIGURE 1. Structural and functional heterogeneity of the arterial tree. The structural and functional heter-
ogeneity of the arterial tree allows the large arteries to exert their conduction and compliance function (i.e., to
transform pulsatile pressure and flow into a continuous pressure and flow at the site of arterioles to deliver
oxygen with a minimal energy dissipation within the vascular wall), and the arterioles to exert distribution of
blood flow to target organs. A: the red triangle on the left illustrates the main role of arterial compliance (or its
inverse: arterial stiffness) of proximal elastic large arteries, ECM, and number of musculo-elastic complexes.
The triangular shape thinning toward the right shows that the elastic potential of the arterial wall is reduced
because of the progressive reduction in the number of musculo-elastic complexes, from large proximal elastic
(aorta, carotid) to medium-sized distal muscular (brachial, radial, femoral) arteries. The red triangle on the
right illustrates the main role of vasomotor tone of small arteries and the density in VSMCs. The triangular
shape enlarging toward the right shows that the vasomotor function increases as the caliber of small arteries
decreases, until the microcirculation. B, left: histological image of a large elastic artery, clearly displaying the
intima-media-adventitia layering. The media consist of concentrically organized musculo-elastic complexes.
Right: a histological image of a muscular artery is shown. The medial layer is still bounded by the internal and
external elastic membrane, but the medial organization in musculo-elastic complexes has entirely disappeared.
[A and B from Resch et al. (443).] C: 3-dimensional organization of VSMCs and ECM, within a musculo-elastic
complex of a large artery. VSMCs are embedded between two layers of elastic lamellae (EL) and attached to
them by dense plaques (DP) corresponding to a focal adhesion complex (FA). Collagen fibers (COL) are running
along the elastic lamellae. Elastic lamellae are fenestrated (Fen.). All empty spaces are filled up with other
components of ECM. The stiffness of the arterial wall material of large proximal arteries is thus dependent on
the stiffness of each component (VSMC, EL, COL), other components of ECM, and their geometrical and
functional relationships. Oxytalan fibers (Ox) containing fibrillin attach VSMCs to the elastic lamellae (101). D:
organization of VSMCs and ECM within a small artery. Only one or two layers of VSMC are present in arterioles.
VSMC are loosely dispersed within the ECM. VSMC are separated from endothelial cells by elastic lamina
(358).

LACOLLEY ET AL.

1556 Physiol Rev • VOL 97 • OCTOBER 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (157.193.009.043) on January 31, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



that regulate mechanical functions and structural integ-
rity of arteries (194) and vary among different-sized ves-
sels.

Initially, arterial stiffening has been attributed mainly to
ECM. Research of key molecular/cellular determinants of
arterial stiffness has recently expanded this view 1) from the
classical components of the ECM (mainly elastin and colla-
gen) to proteins regulating vascular smooth muscle cell
(VSMC) tone, cell-ECM interactions, and VSMC stiffness;
2) from shear stress to tensile, pulsatile, circumferential
stress, as key mechanical determinants of arterial wall re-
modeling; and 3) from abnormal macrocirculation to large/
small arteries cross-talk, as key determinants of target or-
gan (brain, heart, and kidney) damage in disease (396). The
role of ECM proteins, mainly the elastic fiber network, has
been extensively reviewed, and mechanical models of car-
diovascular development, growth, and adult remodeling
vessels have been proposed (561). Initially, vascular remod-
eling resulting in a smaller external diameter was formally
presented in cerebral arterioles in hypertension nearly 30 yr
ago (20) and then this concept has since been applied ex-
tensively to large arteries in humans. The recent character-
ization of a general integrin adhesome network and the
identification of GTPases and their downstream effectors
has revealed new signaling pathways initiated by ECM stiff-
ness and regulating cellular mechanotransduction (186,
524). A detailed discussion of the concept of VSMC plas-
ticity characterized by a phenotypic switching from a nor-
mal differentiated contractile state towards a dedifferenti-
ated state with increased proliferative capacities, as well as
the redifferentiation process, can be found elsewhere (5,
409). The emerging role of VSMC plasticity in regard to the
architecture of cytoskeletal proteins has introduced the no-
tion of VSMC stiffness and cell contraction in the context of
arterial stiffness (491).

The purpose of this review is to provide a translational
approach of arterial stiffness spanning the understanding of
the molecular determinants of mechanical homeostasis fo-
cused on VSMCs to the physiology of normal and age-
related vascular diseases. We will contrast global large ar-
tery stiffness, i.e., that of the vascular wall structure as a
whole, in the context of prevailing hemodynamic forces to
the prominent role played by VSMC tone in small-sized
muscular arteries. Our current understanding of the recip-
rocal ability of VSMCs to organize the ECM network in
response to mechanical signals will be discussed in section
II. Key bioengineering concepts to better understand how
qualitative and quantitative changes in the components
(both stiff and elastic) of the arterial wall translate into an
increase in stiffness of large arteries, and the cross-talk be-
tween macro- and microcirculation will be highlighted in
section III. All these hemodynamic notions based on VSMC
phenotype will be described during development, normal
and early vascular aging (EVA), with particular focus on

vascular inflammation, stem cells, and calcification in sec-
tion IV. Section V will focus on the identification of VSMC
gene variants involved in arterial stiffness using recent ad-
vances in gene analysis. The last part of this review (sects. VI
and VII) will focus on physiopathology and clinical aspects
in monogenic and polygenic diseases. In three monogenic
diseases of the arterial wall, characterized either by arterial
rupture and dissection (Marfan and Ehlers-Danlos syn-
drome), or by stenosis and ischemia (Williams syndrome),
VSMCs are the target of intrinsic gene defects that are re-
sponsible for changes in ECM structural integrity. We will
then try to integrate these mechanical concepts in polygenic
diseases to analyze the role of VSMCs in the mechanisms of
arterial stiffening in hypertension, diabetes, chronic kidney
disease, and atherosclerosis.

II. PHYSIOLOGY OF VASCULAR SMOOTH
MUSCLE CELLS AND ARTERIAL
STIFFENING

A. Presence and Distribution of VSMCs in
the Circulation

Before focusing on the current knowledge on molecular
mechanisms/processes that control VSMC contribution to
large artery stiffening, we first briefly review some general
statements on the origin and distribution of VSMCs. Recent
reviews give a historical overview of embryological origins
of VSMCs (507).

Several cell lineages have been identified as VSMC progen-
itors, and their destiny is determined by factors present in
their environment (143, 322, 570). As for the aorta, its base
will be populated by cells originating from the secondary
heart field, while the ascending aorta, arch, and common
carotid arteries are populated by primordial VSMCs from
the neural crest. The proepicardium gives rise to VSMCs in
coronary arteries. The descending thoracic aorta will be
populated by somites, and the abdominal aorta by splanch-
nic mesoderm.

Traditionally, mesenchymal cells are considered to be pri-
mordial cells of mesodermal origin with a multipotent dif-
ferentiation potential giving rise to fibroblasts, osteoblasts,
chondroblasts, adipocytes, VSMCs, and endothelial cells
(ECs) as well as stromal cells (66). A broad set of markers
defines the vascular smooth muscle lineage throughout the
vasculature, although no specific markers for VSMC pro-
genitors have been identified so far. There is compelling
evidence that embryonic stem cells are capable of differen-
tiating into both ECs and VSMCs and thereby contribute to
vascular development (292, 324, 413). The best-studied
regulatory events guiding differentiation pathways are me-
diated by growth factors. Differentiation of progenitor stem
cells into VSMCs can be initiated by transforming growth
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factor-� (TGF-�) (10) or platelet-derived growth factor
(PDGF)-BB, while vascular endothelial growth factor
(VEGF) promotes EC differentiation (100, 582). VSMCs
can find their origin also from pluripotent circulating cells,
EC transition, adventitial myofibroblasts, and pericytes
(178).

An increasing number of articles have raised similarities
between pericyte and VSMC differentiation (12, 323). Peri-
cytes derived from mesoangioblasts are defined as cells sur-
rounding the basement membrane of microvascular ECs
and serve to maintain their progenitor phenotype. It is not
trivial to unequivocally differentiate pericytes from VSMCs
as there are no single markers such as desmin or PDGF
receptor-�, and distinction is based on cell body morphol-
ogy. Pericytes play a role in small vessel permeability espe-
cially in the brain circulation by modulating endothelial
cell-cell junctions. In aging for example, the loss of pericytes
induces increased endothelial permeability and promotes
neurodegeneration (24). After brain ischemia-reperfusion,
pericyte contraction leads also to capillary constriction, but
mechanisms for blood flow regulation are under investiga-
tion. Because of their relative plasticity, it has also been
suggested that pericytes may possess stem cell or progenitor
cell potential. This capacity may serve pericytes in the ad-
ventitia of large arteries to generate VSMCs or myofibro-
blasts and participate into vessel wall repair in conjunction
with inflammation or fibrosis. Indeed, pericytes in fibrosis
were shown to constitute a source of myofibroblast precur-
sors expressing �-smooth muscle actin (�-SMA). The loss of
pericytes appears to play a key role in the early phase of
diabetic retinopathy. It is now generally accepted that de-
fected or absence of pericytes even though ECs are intact,
may explain microvascular changes in pathology (404).

The structure of blood vessels organized in lamellar units
(an elastic lamella and adjacent VSMCs) varies along the
arterial tree (FIGURE 1, B AND C) (204). The aorta and prox-
imal branches contain the greatest number of medial elastic
layers (from 5 in mouse to 72 in sow). The seminal works of
Wolinsky and Glagov (575) have shown that the total num-
ber of elastic lamellar units and the internal diameter are
nearly proportional and that the tension per aortic lamellar
unit is exerted in a very narrow range after adjustment for
the animal size and for a given arterial site. The muscle cell
layers increase in amount in distal portions of elastic arter-
ies, i.e., medium-sized musculo-elastic arteries such as ra-
dial arteries and in smaller arteries referred to as muscular
arteries (diameter from 100 to 400 �m). VSMCs are ar-
ranged in a helical pattern around the vessel lumen, with a
decreasing pitch in the more peripheral vessels (FIGURE 1D).
The elastin-to-collagen ratio and the surrounding ECM/
VSMC ratio decrease from the thoracic aorta to distal ar-
teries (106, 149). VSMCs decrease in arterioles (�100 �m),
and only ECs and pericytes remain in the capillaries. In

muscular arteries, the luminal diameter is co-determined by
the contractile state of VSMCs.

During development VSMCs undergo ultrastructural
changes (72) and exhibit different phenotypic states related
to the expression of an increasing number of cytoskeletal
and extracellular molecules, the earliest markers being an
actin isoform specific for VSMCs, �-SMA, the fibronectin
isoform comprising the spliced extradomain (ED), throm-
bospondin-1, and elastin (TABLE 1) (100). At the midstage
of differentiation, VSMCs express smooth muscle protein
22-� (SM22-�) also called transgelin, SM-actinin, h1-cal-
ponin, h-caldesmon, and metavinculin. After birth, the ma-
ture and fully differentiated VSMCs express SM-1 myosin
heavy chain (MHC), smoothelin (551), and desmin as well
as a repertoire of contractile proteins required for regula-
tion of hemodynamic resistance (408). Proteome and secre-
tome mapping of VSMCs have identified hundreds of pro-
teins differentially expressed along the arterial tree or in
response to various stimuli or pathological conditions (68,
106, 438). Comparative analysis of proteomes of human
aortic, umbilical, and pulmonary artery VSMCs revealed
greater differences between human umbilical artery VSMCs
and aortic or pulmonary artery VSMCs, in particular in
proteins involved in glycolysis and gluconeogenesis and cy-
toskeleton proteins (filamin and vimentin), than between
aortic and pulmonary artery VSMCs (438). Additionally,
Akt, NF-�B, c-AMP response element-binding protein
(Creb), and tumor protein TP53 were shown to be linked
with many of the differentially expressed proteins in a func-
tional network analysis. Comparison of proteome profiles
of VSMCs from peripheral musculo-elastic (femoral) and
proximal elastic (aorta) arteries has revealed that 25% of
the total identified proteins are expressed differentially
(106). Proteins involved in cytoskeleton organization are
more highly expressed in VSMCs from the aorta while pro-
teins regulating the cell cycle network are more highly ex-
pressed in VSMCs from the femoral artery.

While extensive evidence has been accumulated on the in-
volvement of small G proteins in ECs in vascular develop-
ment, several findings support a crucial role of G protein-
coupled receptor (GPCR) signaling in VSMCs for their re-
cruitment to nascent vessels and vessel stabilization. The
guanine nucleotide exchange factor C3G has been identified
as a key regulator of the recruitment of supporting cells that
differentiate into pericytes and VSMCs during blood vessel
maturation (560). �-Parvin regulates RhoA and Rho-kinase
(RhoK)-mediated signaling to provide persistent and di-
rected migration of VSMCs and thus normal coverage of
endothelial tubes (365).

In adult vessels, VSMC progenitor cells are present in a
niche environment in the adventitial layer where tran-
scription of VSMC marker genes is silenced to maintain
the progenitor phenotype (323). Initially VSMCs express
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Table 1. Vascular smooth muscle cell differentiation markers

VSMC Marker Gene Model
Other Cell Types Expressing the

Marker Function and/or Comments
Reference

Nos.

Early differentiated VSMCs
�-SMA (�-smooth

muscle actin)
Acta2 gene �-SMA�/� mouse Myofibroblasts, pericytes, lymph

nodes, activated pancreatic
stellate cells

Structural protein that oligomerizes to
form thin filaments and thereby
regulates vascular motility and
contractility.

355

Impaired vascular contractility and
blood pressure homeostasis in �-
SMA�/� mice. Overexpression of
�-SMA decreases proliferation and
migration of VSMCs via Rac1
inhibition.

477

77
EDA�FN

(fibronectin
extra domain A)

Fn1 gene Fibroblasts, macrophages,
platelets, ECs, mesangial cells

Vascular intimal proliferation. 111

Fn-EDA�/� and Fn-EDA�/�

mice
Fn-EDA�/� mice exhibited prolonged

times to FeCl3-induced carotid
thrombosis.

425

Fn-EDA�/�apoE�/� mouse Fn-EDA�/�apoE�/� mice exhibited
less inflammatory response via
TLR4 signaling after cerebral
ischemia-reperfusion injury.

103

Thrombospondin-1 Thbs1 gene ECs, fibroblasts,
megakaryocytes, neutrophils,
glial cells, tumor cells,
pneumocytes, keratinocytes,
osteoblasts

ECM cellular glycoprotein, inducer of
VSMC chemotaxis and proliferation.

171

Tsp1�/� mouse SMC phenotypic changes and
neointima formation in a carotid
artery ligation model were delayed
and impaired in Tsp1�/� mice.
Tsp1�/�apoE�/� mice exihibited
attenuated VSMC migration
associated with enhanced fibrotic
lesions and plaque necrotic core
formation.

368, 369

Tsp1�/�apoE�/� mouse
Elastin Eln gene Almost all cell and tissue types,

mainly expressed in vessels,
lung, and skin

Elasticity. 561

Eln�/� mouse Eln�/� mice exhibit increased number
of lamellar units.

Midstage of differentiation
SM22-alpha

(transgelin)
Tagln gene Skeletal, cardiac, visceral

smooth muscle
Formation of stress fiber and vessel

contractility.
503

Sm22�/� mouse Sm22�/� mice exhibited enhanced
arterial inflammation through
activation of ROS-mediated NF-�B
pathways after carotid denudation.

502

Sm22�/� mice developed medial
chondrogenesis after carotid
denudation

SM-actinin Actn1 gene Almost all cell and tissue types,
mainly expressed in
megakaryocytes and platelets

Cross linker of actin filament, cell
adhesion, and migration.

375

Actn1 mutations in human caused
macrothrombocytopenia.

Calponin Cnn1 gene Myoepithelial cells, interstitial
cells, fibroblasts, tumor cells,
visceral smooth muscle

Actin-binding protein involved in
smooth muscle contraction.

342, 343

Continued
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a proliferative and migratory phenotype and synthesize
ECM proteins. A quiescent and contractile phenotype is
characteristic of mature VSMCs. All these phenotypes
are present in the media of all arteries along the arterial
tree with a majority being contractile cells. VSMCs can
be differentiated on the basis of two main morphological
phenotypes, spindle-shaped and epithelioid cells, to
which can be added the thin elongated and the senescent
cells. These morphologically different subtypes most
likely mirror the functional classification of contractile
(spindle-shaped) and synthetic (epithelioid) VSMCs
(323, 324).

Thus VSMC lineage diversity is an important determinant
of specific properties of artery wall cells in different seg-
ments of vascular tree and of heterogeneous patterns of
vascular diseases.

B. VSMC-ECM Interactions

1. Mechanobiology

A process of mechanical homeostasis between ECM and
VSMCs is a fundamental concept in arterial stiffness (194).
These interactions coexist with both homocellular (VSMC-

Table 1.—Continued

VSMC Marker Gene Model
Other Cell Types Expressing the

Marker Function and/or Comments
Reference

Nos.

Cnn1�/� mouse Cnn1�/� mice displayed increased
spontaneous arterial baroreflex and
a blunted �-adrenergic response to
phenylephrine.

307

Overexpressing human CNN1
suppressed neointimal formation
following carotid ligation injury.

Caldesmon Cald1 gene hCaD�/� mouse h-CaD isoform in smooth
muscle and l-CaD in
nonmuscle cells

Inhibitor of ATPase activity. 154, 155

70% mortality at birth of hCaD�/�

mouse which exhibited ventral
hernia and slower relaxation of
smooth muscle.

Metavinculin Vcl gene Muscle tissue, platelets Major constituent of focal adhesion
and/or signaling via integrins and
cadherins.

581

Vinculin�/� mouse No live vinculin�/� mice, reduced
population of cardiomyocytes.

Fully differentiated VSMCs
Desmin Des gene Pericyte, skeletal, cardiac,

visceral smooth muscle
Constituent of intermediate filaments

involved in smooth muscle dilation
and contraction.

314

Des�/� mouse Des�/� mice showed decreased
dilatory and contractile functions in
resistance arteries.

Smooth muscle
myosin heavy
chain

Myh11 gene Smooth muscle lineages Structural protein that oligomerizes to
form thick filaments and thereby
regulates vascular motility and
contractility.

82, 366

SM2�/� mouse Aortic rings from SM2�/� null mouse
exhibited increased nonmuscle
myosin heavy chain-dependent
contraction to potassium.

Smoothelin-B Smtn gene Visceral SMCs Contractile phenotype marker and thin
filament regulatory protein, highly
expressed in muscular arteries and
modestly expressed in elastic
arteries.

442, 551

Smtn-B�/�mouse Smtn-B�/� mice displayed decreased
arterial contractility associated with
elevated mean arterial pressure
and cardiac hypertrophy.

VSMC, vascular smooth muscle cell; EC, endothelial cell; TLR, Toll-like receptor; ROS, reactive oxygen species.
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VSMC) and heterocellular (VSMC-EC) interactions medi-
ated by gap junctions (connexins) and adherent junctions
(cadherins). The major constituents of the ECM are, on the
one hand, elastic and collagen fibers and on the other hand
glycosaminoglycans and related proteoglycans. The role of
VSMCs in the synthesis of soluble and cross-linked elastin
as well as in the formation of collagen fibers has been con-
sistently demonstrated during the 1970s using ultrastruc-
tural analyses by Ross’s group (379, 457, 458). The heter-
ogeneity of the adventitial elastin network in small arteries
from different vascular beds serves for accommodating lon-
gitudinal changes in arterial length and prestressed condi-
tions (179). Internal elastic lamellae are characterized by
fenestrations (FIGURE 1C) whose number and size partici-
pate in the mechanical adaptation of the arterial wall during
hypertension (41). In addition to the organization of inter-
nal elastic lamellae and the adventitial network, fine elastic
fibers present in the media may act to connect VSMCs to
ECM through elastin receptors that become disorganized
with aging (113). Cell-ECM interactions involve collagen
and elastin proteins, adhesion proteins, and transmem-
brane receptors, mainly integrins, which link at focal adhe-
sion (FA) sites the associated integrin linker proteins (such
as talin, kindlin, and vinculin) to the actomyosin cytoskel-
eton and GPCRs.

Integrins are crucial for ECM deposition and vascular phe-
notype. Integrins are ��-heterodimeric receptors present on
the surface of nonactivated cells in a low-affinity state (FIG-
URE 2A). They shift to a high-affinity state through inside-
out signaling, thus increasing their avidity for ligands. Li-
gand-occupied integrins in turn transduce outside-in signals
that orchestrate many cellular responses. Dynamic inside-
out and outside-in signaling events more than likely operate
in concert in a self-reinforcing feedback loop. In VSMCs in
vivo, the �1 subunit pairs with �1, �3, �4, �5, �6, �7, and �8

subunits that play different roles in attachment and migra-
tion by acting as laminin-binding, Arg-Gly-Asp (RGD) mo-
tif or collagen receptors (361). The �v subunit pairs with the
�3 subunit and the �6 subunit with the �4 subunit to form
additional subgroups of RGD receptors and laminin-bind-
ing integrins, respectively. There is no integrin gradient

along the arterial tree (as, for instance, for the ECM com-
position between large and small arteries). Complexity and
redundancy of the integrin repertoire are a signature of
VSMC mechanotransduction. Elucidation of the functional
roles of integrins has benefited from tissue-specific trans-
genic mice (TABLE 2).

Because the composition of FAs are cell- and ligand-specific
and highly regulated in a dynamic fashion, comparative
proteomics have identified a consensus adhesome of 60 pro-
teins that need to be combined with phosphoproteome to
identify signaling pathways regulating FA dynamics (332).
FAs transmit external mechanical forces or internal cell
contractile force in the outside-in or inside-out direction
through the integrin receptors. In response to mechanical
load applied through the integrins, talin rod undergoes un-
folding and subsequently more domains bind to the vinculin
head domain which increases the strength of the actin-in-
tegrin attachment (FIGURE 2A). Clustering of integrins at
FAs produces changes in protein conformation or the asso-
ciation and dissociation rate of protein complex assembly.
In parallel, VSMCs actively reorganize ECM and crosslink-
ing through activation of FA. The accumulation of these
proteins may recruit more integrins leading to an enlarge-
ment of FAs. Integrin clustering is highly sensitive to ECM
stiffness. On soft ECM, the level of talin extension is not
sufficient to induce the recruitment of vinculin that connects
to F-actin. The slip bond behavior of these interactions
limits mechanotransmission and may accelerate FA turn-
over. A stiff ECM induces a complete talin rod unfolding,
and the binding of vinculin reinforces integrin clustering to
form a catch bond. The mechanical linkage between ECM,
integrins, and actomyosin defines the molecular clutch
(524). Binding of phosphoinositide to vinculin displaces
F-actin and causes FA turnover. Later on, integrative mod-
els recapitulating mechanotransduction processes have been
conceptualized on FA recruitment and strengthening, defining
the lifetime of the whole adhesion process varying from sec-
onds to minutes. FA protein recycling is regulated by endocytic
pathways both in proliferative and migratory cells as well as in
some but not all mature differentiated cells (424). Such turn-
over of FAs plays a role in arterial stiffness (468). All data

FIGURE 2. Major mechanisms regulating focal adhesion and vascular smooth muscle cell contraction. A: dynamics of focal adhesion
formation. In resting state, integrins are present on VSMCs in an inactive “bent” conformation. Recruitment of talin and binding to the
�-cytoplasmic tail induces integrin to adopt an extended form that enables strong ligation with specific ECM proteins. Binding of talin to actin
filaments via activation of vinculin promotes nascent focal complexes. Final maturation of focal adhesions depends on ECM stiffness and involves
clustering of integrins and recruitment of additional adhesome proteins such as kindlin, paxillin, and �-actinin, which in turn increases actin
polymerization and contractile capacity. Disassembly of the actin cytoskeleton and interaction of vinculin with PIP2 regulates focal adhesion
turnover. B: schematic representation of signaling pathways of smooth muscle acto-myosin activity. Intracellular calcium is increased either via
opening of voltage-gated Ca2� channels or release from sarcoplasmic reticulum through activation of G protein-coupled receptors coupled to
G�q/11 proteins and subsequent inositol trisphosphate (IP3) production. Myosin light chain (MLC20) is phosphorylated by the Ca2�/calmodulin-
activated MLC kinase (MLCK), which in turn increases acto-myosin interaction and contraction. Activation of Rho-family small GPTases and their
downstream effectors (Rho-associated protein kinase, RhoK) decreases the activity of MLC phosphatase (MLCP) with its regulatory subunit,
myosin phosphatase target subunit 1 (MYPT1), directly or also through phosphorylation of C-kinase-activated protein phosphatase-1 inhibitor
(CPI-17). Another target of RhoK is LIM kinase, which phosphorylates cofilin, leading to actin polymerization and serum response factor (SRF)
activation. Incorporation of G-actin into polymerizing the actin network through proteins of integrin-based adhesion structures participates in
vasoconstriction.
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Table 2. Integrin expression and role in vascular smooth muscle cell functions

Integrin ECM Ligands
Expression in Macro- or

Microcirculation Involvement in VSMC Functions Insights From Animal Models

�1�1 COL I, COL II, COL III,
COL IV, COL VIII,
LN 1

Highly expressed on aortic
VSMCs (316)

ANG II-induced proliferation of
VSMC (57)

Genetic deficiency in �1 integrin
in mice inhibited FMD without
affecting receptor-mediated
endothelium-dependent or
endothelium-independent
dilation, and myogenic tone
(315)

Low expression in
mesenteric artery (165)

�3�1 LNs, FN, COL I The �3A variant is highly
expressed on VSMCs
(97)

Binding with maspin inhibits VSMC
migration (19)

�3�1 Integrin-null mice die
during the neonatal period
(241)

�4�1 FN, VCAM-1, OPN Expressed on aortic
VSMCs during
development (114)

Promote VSMC transition to
myofibroblasts and proliferation
(441)

�4 Integrin-deficient mouse
embryos exhibited failure of
pericyte-VSMC interaction
during blood vessel
development (148)

Expressed in cremaster
arterioles (564)

Involvement in arteriole
vasoconstriction (564)

�5�1 FN, OPN Expressed on aortic
VSMCs

ANG II and PDGF increases �5�1-
mediated adhesion of VSMCs to
FN (221)

�5 Integrin-null mice are
embryonically lethal (449)

Expressed in
microvascular SMCs
(525)

Binding with maspin inhibits VSMC
migration (19)

Expressed in cerebral
muscular arteries (88)

Homocysteine promotes VSMC
migration via the
�5�1/FAK/paxillin/Rac1
pathway (214)

Neointimal formation in response
to TGF-� involves overexpression
of �5�1 and �v�3 (290)

Involvement of �5�1 and �v�3 in
micromyogenic tone (525)

Involvement in myogenic tone in
cremaster arterioles, cerebral
and renal arteries (15, 88, 338)

Enhancement of L-type Ca2�

channel current in cremaster
arterioles (577)

�6�1 CCN1, LNs Expressed on carotid
VSMCs (344)

CCN1 stimulates adhesion of
VSMCs via �6�1 and neointimal
hyperplasia (344)

�6 Integrin-null mice die at birth
(96)

�6�4 LNs Expressed on SMCs of
small vessels (93)

Involved in hemidesmosomes (359)
but its role in the vasculature has
not been identified

�7�1 LNs Highly expressed in aortic
VSMCs (584)

Role in the maintenance of the
VSMC differentiated phenotype
and in their interaction with
laminins (584). Negatively
regulates proliferation through
ERK activation to promote VSMC
contractile phenotype (573)

�7 Integrin-null mice displayed
pronounced neointimal
formation after carotid artery
ligation (573)

�8�1 FN, tenascin,
vitronectin

Highly expressed in aortic
VSMCs (479)

Marker of differentiation,
involvement in assembly of FAs
and negative regulator of VSMC
migration (590)

Most mice lacking the �8 gene
die soon after birth due to
kidney defects (371)

Continued
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suggest that changes in integrin activity in VSMCs are both a
cause and a consequence of ECM changes. A positive feedback
loop between intramural FA-mediated mechanotransduction
and local hemodynamics endows arterial stiffening which is
specific of each different-sized vessel. Arterial stiffness can also
induce global hemodynamic changes that promote ECM com-
position and cell phenotypic changes.

Main regulators of the FA-mediated mechanotransduction
are the intracellular signaling molecules [FA kinase (FAK)
and Src] and the Rho-family small GTPases which activate
the myosin light chain kinase (MLCK) (FIGURE 2B). It has
been reported in vitro and in vivo that Src- and FAK-medi-
ated tyrosine phosphorylation of FA proteins increased aor-
tic stiffness and contractility (468). Other FA proteins such
as cofilin, which mediates the disassembly of actin fila-
ments, and the adaptor protein p130Cas, a substrate for
p60 Src kinase involved in the activation of p38 MAPK,
also regulate the mechanosensing processes at FAs (166).

The degree of ECM stiffness together with the frequency
and amplitude of applied forces govern FA dynamics. It has
been previously reported in whole vessel organ culture that
steady and cyclic stretch may induce different pathways of
mechanotransduction related to FAK-induced ERK1/2 ac-
tivation. Only static stretch was able to increase FAK phos-
phorylation via Src and integrin engagement, whereas the
downstream signaling ERK1/2 cascade was activated inde-
pendently of these molecules in cyclic stretch conditions
(278). A stiff substrate leads to more spreading and migra-
tion of cells. At the opposite, less stiff substrates, by reduc-
ing cell attachments and integrin signaling, produce apo-
ptosis called anoikis. The migration of VSMCs towards
gradients of substrate stiffness called durotaxis occurs on

fibronectin-coated surfaces but not on lamimin, indicating a
key role for ECM composition in this process (164). Many
cardiovascular complications such as thoracic aortic aneu-
rysm and dissection can be envisioned as mechanotransduc-
tion disorders affecting first VSMC selectively exposed to
static or cyclic stretch (182, 194, 196).

2. VSMC plasticity

VSMC plasticity, initially referred to as phenotypic modu-
lation (72), has been conceptualized as the ability of
VSMCs to switch from a quiescent contractile phenotype to
a more migratory, secretory, proliferating phenotype with
remodeling of the ECM (leading to arterial stiffening). The
relevant markers of VSMC differentiation are SM-MHC,
smoothelin, and intermediate filaments, desmin, and vimen-
tin. Vimentin is prominent in elastic arteries, whereas
desmin is present mainly in muscular arteries (572). The
loss of these markers and the parallel increase of non-mus-
cle MHC are the most reliable indices of VSMC dedifferen-
tiation (409). The identification of key elements and path-
ways responsible for VSMC plasticity remains a field of
intense and complex research (249), so only oversimplified
mechanistic explanations are attempted here.

The states of differentiation of VSMCs are controlled by
hemodynamic parameters, growth factors, vasodilation
and vasoconstriction pathways, ligand-receptor interac-
tions, and reactive oxygen species (ROS). Hemodynamic
parameters are mainly represented by blood flow and BP
considering their respective steady and pulsatile compo-
nents. The time course of phenotypic changes varies de-
pending on the exact location of the vessel along the arterial
tree as a function of shear stress and pulse pressure (PP) and

Table 2.—Continued

Integrin ECM Ligands
Expression in Macro- or

Microcirculation Involvement in VSMC Functions Insights From Animal Models

�v�3 VN, FN, OPN, LN,
TSP, COL I, COL
IV, tenascin-C,
fibrinogen,
prothrombin

Expressed on aortic
VSMCs

Mediate adhesion, migration,
apoptosis, and proteinase
expression of VSMCs (513)

�v Integrin-null mice die during
embryonic development
(504)

Expressed in cremaster
arterioles (577)

Antiapoptotic action via activation
of NF-�B in VSMC exposed to
type I collagen fragment in
atherosclerotic lesion (559)

Regulate vascular healing (461)
Mediate the increase in thrombin

generation on VSMC in response
to mechanical stretch (333)

Reduction of L-type Ca2� channel
current in cremaster arterioles
(577)

Reference numbers are given in parentheses. VSMC, vascular smooth muscle cell; COL, collagen; LN, laminin; OPN, osteopontin; CCN1,
cysteine-rich angiogenic protein 61; VN, vitronectin; VWF, von Willebrand factor; TSP, thrombospondin; FA, focal adhesion; FAK, focal adhesion
kinase; FMD, flow-mediated dilation.
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also within the vessel according to the structural modifica-
tions and distribution of mechanical forces into the wall
(106). VSMCs have the ability to reprogram their expres-
sion patterns to organize the ECM network in response to
mechanical signals. PDGF-BB and TGF-�1 as well as ANG
II, endothelin, thrombin, and norepinephrine act on specific
receptors to control proliferation, fibrosis, and ROS pro-
duction. Recently, the decreased expression of the integrin
ligand mindin upon exposure of VSMCs to PDGF-BB was
shown to blunt VSMC dedifferentiation through down-
regulation of Akt/glycogen synthase kinase 3� (GSK-3�)/
mammalian target of rapamycin (mTOR)/forkhead box O
(FOXO3A-FOXO1) signaling (598). Nitric oxide (NO)
synthesized by ECs induces VSMC relaxation and main-
tains a low level of proliferation. In large elastic arteries,
ROS production has an opposite effect favoring major
structural mechanisms of arterial stiffness that are collagen
synthesis, intimal hyperplasia, and apoptosis (205).

VSMC plasticity is under the control of many regulatory
transcriptional pathways, in particular serum response fac-
tor (SRF). Binding of SRF to cis-regulatory elements called
CArG [CC(A/T-rich)6GG] box sequences in both promoter
and intronic regions regulates target genes. Two distinct
VSMC gene programs are controlled by the transcriptional
activity of SRF, depending on its interaction with specific
cofactors (423). Binding of myocardin to SRF activates
VSMC-specific contractile genes while binding of ETS-like
transcription factor 1 (Elk-1) promotes the expression of
growth-related immediate early genes (IEG such as Fos/c-
Fos genes). It should be noted that SRF has a lower affinity
for contractile gene promoters than for IEG promoters. Sev-
eral mechanisms have been proposed to regulate the switch-
directing contractile gene or IEG expression. Classically,
competition between myocardin and Elk-1 for binding to a
common site on SRF (568), downregulation of cofactors
and repressors of SRF by microRNA(miRNA)-143/145 and
miRNA-221/222 (323), and modifications of epigenetic hi-
stone marks of chromatin structure (5) are considered as
major regulators of VSMC phenotypic switching. The phe-
notypic switch induced by PDGF works by its action on the
transcriptions factors Elk-1 and Krüppel-like factor 4
(KLF4) and on the miRNA-221/222 leading to the disrup-
tion of the myocardin binding to SRF (462). Nucleo-cyto-
plasmic shuttling of SRF is another possible mechanism
regulating VSMC differentiation (188). Phosphatase and
tensin homolog (PTEN), a cytoplasmic lipid phosphatase,
has been recently identified as novel actors in the cofactor
interactions with SRF. The formation of nuclear protein
complexes constituted by PTEN, SRF, and myocardin pro-
motes selective binding of SRF to promoters of differentia-
tion-associated genes and prevents SRF translocation out of
the nucleus. In vascular diseases, stimuli disrupting the in-
teraction of PTEN with SRF and driving their nuclear ex-
clusion enhance the binding of available nuclear SRF to
alternative growth-associated gene promoters (188).

The general process of inducible cell regeneration called
autophagy is the recycling of cytoplasmic elements that re-
sult from lysosomal degradation (464). The occurrence of
autophagy in VSMCs was first reported in atherosclerosis
and hypertension (394). Cultured cells have yielded further
insight into stimuli and mechanisms contributing to au-
tophagy. Growth factors and cytokines, ROS, and meta-
bolic stress have been reported to trigger autophagic pro-
grams through MAPK, AMP-activated protein kinase
(AMPK), Akt, and endoplasmic reticulum stress signaling
pathways. PDGF drives the degradation of contractile pro-
teins via an autophagic process and the conversion to the
synthetic VSMC phenotype via mitochondrial fragmenta-
tion (465). In cultured cells, autophagy induced by PDGF
also prevented cell death (463). Of note, proteosomal activ-
ity is not required for the VSMC phenotypic switch,
whereas it has a role in VSMC hyperplasia. Dedifferentia-
tion of VSMCs thus is hallmarked by a dichotomy, i.e., the
coupled removal of contractile elements mediated by au-
tophagy and repression of contractile genes, which is dis-
crete from the induction of the proliferative feature through
the transcriptional machinery regulated by changes in mi-
tochondrial morphology and activity.

The widely accepted concept (paradigm) that VSMC phe-
notypic modulation or plasticity underlies many vascular
occlusive diseases has been recently challenged. The find-
ing of media-derived multipotent vascular stem cells re-
populating the tunica media and forming neointima after
vascular injury is supportive of the hypothesis that mul-
tipotent vascular stem cell activation and differentiation
rather than VSMC dedifferentiation of mature VSMCs
contributes to vascular remodeling and disease develop-
ment (530).

C. Vascular Tone, VSMC Stiffness, and
Adhesive Properties of VSMCs Are Major
Determinants of Arterial Stiffening

1. Vascular tone

Vascular tone, defined as an intrinsic spontaneous level of
vasoconstriction, contributes to the dynamic regulation of
blood flow and small artery diameter. Abolition of vascular
tone with potassium cyanide increases arterial compliance
in situ in the rat carotid artery (285). The active role of
VSMCs is achieved by changing their position within the
media and the attachments between themselves and with
ECM proteins (337). Indeed, there is an optimal short-term
distribution of wall stress within the vascular wall which
contributes to more efficiently sustained vasoconstriction.
A contractile cell in a soft ECM encounters little resistance
to its contraction, whereas a stiff ECM material produces a
large resistance to its contraction (571). In the long term, a
sustained regulation to a smaller diameter is achieved via
structural changes. Elastic arteries are characterized by
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tonic (slow) contractions in contrast to muscular arteries
where phasic (fast) contractions occur allowing the fine tun-
ing of regional blood flow circulation (439).

Understanding the crucial role of the Ras protein superfam-
ily, and in particular Rho family proteins, in the regulation
of VSMC contraction required for BP control has pro-
gressed rapidly during the past 10–15 yr (304, 452). Phos-
phorylation of 20-kDa MLC has been identified as a key
event of VSMC contraction (FIGURE 2B) (429, 509). MLC is
phosphorylated by Ca2�/calmodulin-activated MLCK and
dephosphorylated by Ca2�-independent MLC phosphatase
(MLCP). When activated by ANG II, the ERK1/2 pathway
exerts a hypertensive action by triggering MLCK and
thereby MLC phosphorylation. Pharmacological data and
genetic studies have revealed that RhoA activation exerts a
major role in the pathogenesis of hypertension. This hap-
pens by stimulating target RhoK that phosphorylates myo-
sin phosphatase target subunit 1 (MYPT1), a regulatory
subunit of MLCP, and inhibits MLCP activity. RNA se-
quencing has revealed alternative splicing generating fast
and slow variants of MHC, MLC, and MYPT1 responsible
for velocity of shortening or cGMP relaxation (439). The
RGS (regulator of G protein signaling)-containing guanine
nucleotide exchange factors participate in RhoA activation
induced by vasoconstrictors acting through GPCRs (153),
while Rap1 downregulates RhoA activity via the increase in
cAMP and cGMP. Activation of RhoA/RhoK signaling
pathway results in Ca2� sensitization of contractile proteins
and thereby tonic VSMC contraction.

Myogenic tone is defined by vasoconstriction in response to
elevated BP and contributes to autoregulation of blood
flow. Myogenic tone may involve different mechanosensors
that are cell membrane proteins (ion channels, GPCRs),
cell-ECM interactions via integrins connected to the cytoskel-
eton, and intercellular junctions through cadherins-catenins
complexes (178). Blockade of N (neuronal)-cadherin, which is
a major cell-cell protein in VSMCs belonging to the type I
cadherin family, prevents the pressure-induced myogenic re-
sponse without changes in intracellular calcium in VSMCs
(210). Nonselective stretch-activated cation channels are key
players of the myogenic response via the opening of voltage-
dependent calcium channels. In VSMCs, stretch-activated cat-
ion channels opening is negatively regulated by polycystin-2
(500). This inhibition works by actin cross-linking induced by
binding of polycystin-2 to filamin-A, thereby reducing the ten-
sion applied on microdomains in the VSMC membrane for a
given level of BP. Myogenic constriction occurs mainly in
myogenically small-sized muscular arteries and is positively
regulated by integrins �v�3 and �5�1 and NADP oxidase
(Nox)-induced production of ROS mainly from mitochondria
(141, 338). At the single cell level, external forces applied to a
fibronectin-induced FA site induced a micromyogenic event
through interactions with �v�3 and �5�1 integrins and Src
activity (525). Fibronectin-induced Src activation is explained

by phophorylation of the L-type Ca2� channel. Such a myo-
genic response was not observed in response to forces applied
to collagen type I, laminin, or vitronectin despite involvement
of these two similar integrins, suggesting ECM specificity
(525). Alterations in myogenic response have been well impli-
cated in microvascular disorders (mainly cerebral and coro-
nary vasospasms and diabetes) and may be enhanced by ECM
stiffening (178).

ROS play a major role in microvascular remodeling. Noxs
are the major source of superoxide anion in VSMCs (514).
NADP is composed of five subunits: the catalytic subunit
gp91phox and p22phox in the membrane, p47phox, as well
as p40phox and p67phox in the cytosol. The redox status of
VSMCs regulates Nox activity through the chaperone en-
zyme protein disulfide isomerase (211). The small G pro-
teins interfere at different levels of Nox activation. Indeed,
after stimulation, the cytosolic units form a complex that
requires the presence of (GTP)ase Rac to interact with the
units located in the membrane. The Nox family may be
stimulated by GPCRs such as for ANG II, endothelin, and
thrombin which are important modulators of vascular tone.
The polymerase delta-interacting protein (Poldip2) through
increased activity of Nox4 has been also shown to activate
FA complexes via Rho-dependent pathways (330). ROS
may be produced also by the endothelial NO synthase
(eNOS) isoform of NOS in case of abnormalities of NO
synthesis by reducing tetrahydrobiopterin (BH4) and L-ar-
ginine availability. Differential effects of ROS on cellular
growth and apoptosis have been described. Although ROS
increases proliferation, apoptosis as well as rarefaction of
capillaries may occur also in response to specific ROS such
as H2O2 in a dose-dependent manner (291). Production of
ROS via positive interactions with GTPases and integrin
activation plays a major role in vascular tone particularly in
the microcirculation. Indeed, ROS generation in response
to vasoconstrictive agents could exert a positive action in
VSMC actin polymerization via the protein complex of the
actin-related protein 2/actin-related protein 3 (Arp2/3) with
the nucleation promotion factors (NPF) (4, 127, 227). This
effect of actin polymerization has been shown to be associ-
ated with increased myogenic tone in response to VSMC
stretching (282). In addition, expression and activation of
ECM metalloproteinases (MMP-2 and MMP-9) participate
in the vasoconstrictor-induced inward eutrophic remodel-
ing of large elastic arteries (67). Regarding arteriolar re-
modeling, several reports have consistently implicated acti-
vation of transglutaminases. Recently, it was demonstrated
that activation of transglutaminases in response to the top-
ical application of serotonin that triggers inward remodel-
ing is associated with an increase in cofilin phosphorylation,
thereby directing the actin polymerization dynamics to-
wards the formation of F-actin (130). Tissue transglutami-
nase (TG2) modulates also remodeling and stiffness in aorta
via two different mechanisms, matrix assembly through
crosslinking-dependent functions in particular during aging
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(see below) and VSMC tone through endothelium dysfunc-
tion [activation of Ca2�-activated K� (BK) channels and
reduction of NO bioavailability] (220, 519).

2. VSMC stiffness

Cell stiffness and adhesion properties of VSMCs have been
proposed as important determinants of the overall stiffness
of the intact vessel. Atomic force microscopy (AFM) allows
accurate assessement of cell topography, adhesion force
(the force required to rupture the bonds between probes
coated with ECM proteins and cell surface), and cell elas-
ticity (Young’s elastic modulus calculated from indenta-
tion-force relationship). F-actin connected to FA sites at the
membrane represents the first model of cell stiffness (376).
These mechanisms involve dynamic actomyosin interac-
tions as well as the capacity of actin to rapidly depolymerize
and repolymerize. The actomyosin interactions occur
within a timescale of seconds, but full reorganization of FAs
has a timescale of minutes. The increase in cell stiffness
depends on the degree of stretch of the original F-actin and
the recruitment of new F-actin. VSMCs subjected to a 10%
cyclic equibiaxial stretch at 0.25 Hz induce a rapid peak of
increase of cell stiffness and number of FAs at 2 min which
returns to normal values after 5 min. Despite concomittant
increases in FA-associated proteins (more paxillin than vin-
culin), it is not known whether this mechano-adaptation of
cell stiffness in response to cyclic stretch is due to polymer-
ization/depolymerization of F-actin or development/resolu-
tion of contractility (377). Stiffness of VSMCs and adhesion
to ECM via integrins are increased during contraction and
reduced during relaxation. In addition to FAs, there is ex-
perimental evidence suggesting that cadherin-mediated ad-
herens junctions may regulate microvascular tone through
the reorganization of F-actin in VSMCs (527). N-cadherin
adhesion complexes and FA complexes share mechanosens-
ing properties and exhibit similar responses to substrate
stiffness. Common anchoring proteins, signaling molecules,
and spatial distribution of these two complexes argue for an
integrated regulation of VSMC tone. In response to out-
side-in signaling pathways, both cell adhesion and elasticity
show similar oscillations with time characterized in terms of
frequency and amplitude. ANG II increased and adenosine
decreased their amplitude as well as the density of stress
fibers in a coordinated manner, but the exact mechanisms
and signification related to dynamic changes of cytoskeletal
structures and synchronized contraction or relaxation re-
sponses are not known (184, 185).

The interaction between fibronectin and �5�1 is the one that
has been the most studied. Measured with AFM, the range
of adhesion forces for a single bond is 34–43 pN (526).
Multimolecular process are involved in the regulation of
fibronectin-�5�1-induced FA activation. It has been shown
that PDGF-BB decreases fibronectin-�5�1 binding, indicat-
ing that the proliferating effect of PDGF-BB is linked to this
complex. In contrast, lysophosphatidic acid, a small phos-

pholipid in the membrane of VSMCs, increased integrin-
fibronectin adhesion via �5�1 and �v�3 activation. This
effect, mediated through GPCRs (lysophosphatidic acid re-
ceptors 1–6), induces production of ROS (514). The main
characteristics of �5�1 binding are the rapidity of activa-
tion-deactivation cycles ranging from 2 to 25 h in serum-
starved cells and the time dependency of the functional
activity of �5�1.

Combined with a higher elastin content, the smaller size of
FAs in the thoracic aorta compared with femoral arteries
may trigger higher distensibility assessed using a magnetic
tweezer coupled with a RGD peptide and optical twisting
cytometry (106). Proteomic data showing higher expres-
sion of proteins of both cytoskeletal structure and FA com-
plexes in VSMCs from thoracic aorta are consistent with a
higher elasticity if one assumes that changes in cytoplasmic
rigidity can positively control VSMC stiffness. These find-
ings also raise the question of the cell response to stretch,
since higher levels of cyclic stretch increase VSMC elasticity
in the entire arterial tree. The influence of this factor is
prominent in the thoracic aorta where the coupling between
cytoplasmic rigidity depending on FA plasticity and circum-
ferential stress is optimal. The importance of cytoskeletal
subnetworks linked to non-integrin receptors has also been
demonstrated using a magnetic trap to apply a controlled
force to cells via magnetic beads coated with fibronectin,
anti-transferrin, or anti-dystroglycan antibodies (191). Cell
stiffness was greater when there was a linkage between the
cytoskeleton and a membrane receptor such as the dystro-
glycan receptor. The concept of cytoskeletal subnetworks
linked to specific cell type receptors in the regulation of cell
stiffness has been proposed.

Increased stiffness and adhesive properties of VSMCs of
spontaneously hypertensive rats (SHRs) were found com-
pared with Wistar-Kyoto normotensive controls using
AFM in nanoindentation experiments (492). In SHR,
VSMC stiffness is characterized by slower oscillations but
of higher amplitude compared with normotensive rats, in-
dicating a dynamic regulatory process of cytoskeletal pro-
teins. VSMC stiffness increases with hypertension superim-
posed on aging (490). Stiffness of VSMCs, i.e., the Young’s
elastic modulus and adhesion, was significantly higher in
cells harvested from the aorta of old versus young monkeys,
in association with increased expression of �-SMA and ac-
tivation of �1 integrin (430, 599). The amplitude of the
oscillations with time in adhesion was higher in old animals
than in young animals. VSMC stiffness and the correspond-
ing oscillations were strongly reduced after disruption of
the actin cytoskeleton or inhibition of MLCK in both old
and young monkeys, indicating the highly dynamic reg-
ulation of the VSMC function and structure. At this time,
it is still very difficult to determine whether VSMC stiff-
ness is a cause or a consequence of large artery stiffness.
Recently, it has been reported that VSMC stiffness is
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increased in SHR at the level of the large arteries but not
in small arteries (248, 597). The proposed mechanism is
a hypertension-induced increase in SRF and related tran-
scriptional pathways in the thoracic aorta. Clearly, we
are on the way to understanding the relative contribution
of VSMC stiffness along the arterial tree in systemic ar-
terial stiffness (FIGURE 3).

3. VSMC–ECM Interactions and Arterial Stiffness

The elastin and collagen network represents the classical
mechanical scheme of arterial stiffness, since the elastic fiber
network is the most distensible component of the arterial
wall, whereas the (initially wavy) collagen fiber network
lacks elastic properties but provides rigidity and strength of
the arterial wall (TABLE 3) upon stretching. Elastin-deficient
mice die a few days after birth and display reduced aortic
compliance compared with control mice (79). The lack of
elastin induces loss of cell-cell contacts leading to an exten-
sive proliferation of VSMCs and arterial occlusion. Mice
with haploinsufficiency for elastin develop severe hyperten-
sion and arterial stiffness associated with an increased num-
ber of lamellar units and similar values of tension per lamel-
lar unit, indicative of adaptative arterial remodeling (123).
In addition, the loss of elastin-induced proliferative re-
sponse is the major cause of aortic stenosis in the Williams
syndrome in humans (244) (see below).

Among proteoglycans, small leucine-rich proteoglycans
(SLRPs) are crucial regulators of collagen fiber organization
and fibrillogenesis. Proteome analysis of the nonatheroscle-

rotic mammary artery has identified three SLRPs (prolar-
gin, mimecan, and asporin) significantly underexpressed in
patients with high arterial stiffness (assessed by an elevated
PWV, see below) without modification of large proteogly-
cans (318). Interestingly, none of these SLRPs is a determi-
nant of high values of PWV, whereas basement membrane-
associated collagen �-1 (IV) and collagen �-1 (VIII) expres-
sion are increased and predictive of high PWV. In addition,
several intracellular proteins related to actin cytoskeleton
organization, such as tropomyosin �-4 chain, are also de-
terminants of increased PWV. It has been reported also that
elastocalcinosis and accumulation of proteoglycans in the
media induced large artery stiffness in abcc6-deficient mice,
a model of pseudoxanthoma elasticum (226).

In VSMCs, desmin, the main component of the intermedi-
ate filaments, is associated with FA-associated proteins
closely linked to actin filaments. Despite a slight reduction
in BP, desmin-deficient mice exhibited a lower distensibility
and mechanical strength of the carotid artery without
changes in elastin and collagen content (245). Desmin is
also required to control microvascular tone and flow-in-
duced endothelium-dependent and -independent dilation
(314). A strong mechanistic proof of the role of VSMC tone
in arterial stiffness was given by experiments in mice inval-
idated for SRF in VSMCs. In this model, the mice exhibit a
higher arterial distensibility (lower Young’s elastic modu-
lus) without modification of the collagen-to-elastin ratio
(137). In these VSMC-specific SRF knockout mice, gene
expression of contractile components (�-SMA and MLC),
regulators of the contractile response [MLCK, MYPT1, and
protein kinase C-potentiated myosin phosphatase inhibitor
(CPI-17)] and integrins was reduced. Additional details of
other VSMC molecular determinants of arterial stiffness
using a classification according to their location are pre-
sented in TABLE 3.

In support of a role of integrins in arterial stiffness, it has
been proposed that the increase in �5�1 and �v�3 with age
observed in the mesenteric artery in SHR may in part deter-
mine arterial stiffening at high levels of circumferential wall
stress via increase in cell-ECM attachments together with
an increase in the collagen-to-elastin ratio (206). The in-
creased expression of �v�3 and activation of the signaling
pathway in VSMCs in response to cyclic mechanical stretch
argues also for integrin involvement in both cellular and
arterial stiffness changes in hypertension (333, 525). The
importance of cyclic mechanical forces on integrin adhe-
some in VSMCs has been highlighted using an RGT pep-
tide, which disrupts the interaction �3 cytoplasmic tail with
Src (333). The collagen-binding �1 subunit is required for
mechanical strength of the arterial wall but not for arterial
stiffness in the physiological range of BP. Genetic �1 subunit
knockout mice did not exhibit VSMC proliferation and
arterial stiffness in response to ANG II, indicating that
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FIGURE 3. Large artery stiffness: cross-talk between local and
systemic stiffness. In large arteries, the stiffness of vascular smooth
muscle cell (VSMC) is a key determinant of the stiffness of the
arterial wall material. The stiffness of ECM plays a major additional
role. The stiffness of the arterial wall material is often expressed as
the value of Young or incremental elastic modulus for a given cir-
cumferential wall stress. These stiffness moduli, together with the
relative wall thickness, determine the functional stiffness of the
arterial segment. Systemic arterial stiffness is the complex result of
the stiffness of all arterial segments. In turn, systemic arterial stiff-
ness plays an important role in the local stiffness of the VSMCs,
through the effects of pulse wave velocity (PWV), reflected waves
and systolic BP.
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Table 3. VSMC molecular determinants of arterial stiffness

Molecules
Role in Stiffness and Insights From Mouse Models With Genetic

Manipulations Reference Nos.

Extracellular
Elastin Elasticity

Loss of elastin yielded proliferation of VSMCs and occlusion. Eln�/�

mice displayed high systemic blood pressure and increased elastic
modulus at high pressure

123, 561

Mice overexpressing LOX in VSMC exhibited increased aorta
stiffness

339

SSAO knockout mice displayed increased carotid diameter without
modification of elastic modulus

353

Collagens Rigidity and strength �2(I) collagen-deficient mice exhibited
decreased breaking strength and elastic modulus

417

Cytokines-metalloproteinases Inflammation and ECM remodeling
CT-1 null mice exhibited reduced carotid elastic modulus 310
There was no age-related arterial stiffening in MMP-12-null mice 301
In MMP-9�/� mice, arterial stiffness was increased in response to

ANG II
134

Increased MMP-2 and MMP-9 activities in ANG II-treated VSMC
SirT1-deficient mice was associated with increased PWV

128

Proteoglycans Adhesion
Mice lacking N-deacetylase-N-sulfotransferase1 in VSMCs displayed

decreased sulfation of heparan sulfate and tangent modulus in
aorta

1

Abcc6-deficient mice displayed features of pseudoxanthoma
elasticum and reduced distensibility

226

Membrane
Glycosphingolipids Cholesterol biosynthesis

Administration of an inhibitor of glycosphingolipid synthesis in apoE�/�

mice reversed the increase in PWV induced by diet
74

G protein-coupled receptors Contraction and proliferation
Mice carrying 3 copies of the angiotensinogen gene displayed

decreased elastic modulus
47

Adhesion receptors Focal adhesion and mechanotransduction
�7 Integrin-null mice exhibited reduced vascular compliance 573
Deletion of �1 integrin in mice resulted in loss of ANG II-induced

arterial stiffness
316

Intracellular
Transcription factors Gene expression and differentiation

VSMC-specific invalidation of SRF in mice decreased elastic modulus
and vasomotor tone

137

VSMC-specific invalidation of MR suppressed the aldosterone/high
salt-induced increase in arterial stiffness

138

Intermediate filaments Distensibility
A null mutation in the Des gene reduced in vivo carotid distensibility,

in vitro mechanical force and mechanical strength
245

miRNA /LncRNA Gene expression regulation
Distensibility of Dicer knockout mesenteric arteries was reduced 33
Inhibition of miRNA-92a by an antagomir in aorta of old mice

increased PWV
169

VSMC, vascular smooth muscle cell; LOX, lysyl oxidase; SSAO, semicarbazide-sensitive amine oxidase; CT-1, cardiotrophin-1; MMP, ECM
metalloproteinase; SirT1, sirtuin-1; PWV, pulse wave velocity; SRF, serum response factor; MR, mineralocorticoid receptor; LncRNA, long
non-protein-coding RNA.
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VSMC integrin receptors and FAK phosphorylation are key
players for arterial wall remodeling (316). In cultured cells
grown onto collagen I or fibronectin, the proliferative effect
of ANG II via the angiotensin II, type 1 receptor (AT1R)
and ERK activity has been reported to be dependent on
both �1�1 and �5�1 integrins (57).

From a purely mechanical point of view, an increase in FA
site number limits the arterial wall deformability and in-
creases the stiffness of wall constituents. This hypothesis is
supported by the SHR model in which a higher expression
of fibronectin and �5�1 integrin is present in the media (31,
32). The increase in the Young’s elastic modulus in SHR is
due to a higher level of BP and not to the increased stiffness
of the wall materials indicating mechanical adaptation of
the vascular wall through an increase in fibronectin and
�5�1 in the media. In sinoaortic denervated and chemically
sympathectomized rats, two models of increased arterial
stiffness without hypertension, an increased number of cell-
ECM interactions contributed to large artery stiffness (40).
There, nonetheless, remains a gap between our current un-
derstanding of in vivo changes in arterial stiffness and dy-
namics of FAs at the molecular level.

4. Application to the
angiotensin–aldosterone–receptor system

Aldosterone and its mineralocorticoid receptor (MR) have
been shown to play an important role in arterial stiffness in
the course of primary aldosteronism (29, 521) or during
arterial aging in human patients (297, 469, 475, 522) and in
experimental models (380, 443). Selective and nonselective
aldosterone blockers decrease PWV in hypertensive pa-
tients and patients with chronic kidney disease (CKD) (37,

233, 534). In rats, administration of aldosterone produced
an increased Young’s elastic modulus associated with an
increase in fibronectin independently of BP (247). MR ex-
pression was increased in aortas and VSMCs from adult
and aged Brown Norway X Fischer 344 (F344XBN) rats.
MR signaling likely related to ANG II and epidermal
growth factor receptor (EGFR) activation is implicated in
upregulation of inflammatory marker expression (phospho-
ERK1/2, ICAM-1, TGF-�, and procollagen 1) during arte-
rial aging (FIGURE 4A) (242). MR antagonism is able to
reduce arterial aging through a recovery of a young contrac-
tile VSMC phenotype (242). The group of Jaffe and co-
workers (349, 350) have reported a mouse model with con-
ditional inhibition of VSMC MR expression. They demon-
strated a direct role for VSMC-MR at baseline in BP
regulation and in myogenic tone without any modifications
in arterial structure and distensibility in aged mice. How-
ever, in larger elastic arteries, like carotids, conditional in-
activation of VSMC MR suppressed the aldosterone/high
salt-induced increase in arterial stiffness and �5 subunit of
integrins, indicating that VSMC MR modulates directly
large artery stiffness via contraction and reinforcement of
cell/ECM interactions independently of major vascular
structural changes. This is in agreement with previous work
(348, 350) showing a key role of VSMC MR in controlling
microvascular tone and remodeling effects of aldosterone in
mice. It has been reported that invalidation of galectin-3 in
mice which interacts with various integrins and ECM pro-
teins such as collagen, elastin, and fibronectin inhibits aldo-
sterone-induced collagen expression in VSMCs (310, 398).
This mechanism also explained the action of VSMC MR on
arterial stiffening. Cardiotrophin-1 is able also to stimulate
expression of fibronectin and collagen particularly during
aging. Absence of cardiotrophin-1 reduced carotid Young’s

FIGURE 4. Role of smooth muscle cells in resistance artery remodeling. A: aldosterone and ANG II signaling pathway in arterial stiffness.
Mineralocorticoid receptor (MR) activated by aldosterone exerts rapid nongenomic effects (seconds to minutes) leading to activation of Cav1.2
subunit of the L-type calcium channel, Rho-associated kinase (RhoK), and MAPK pathways. This signaling causes contraction, myogenic tone,
and cellular stiffness. The genomic effects (minutes to hours) result in activation of genes involved in calcification, focal adhesion (FA) formation,
fibrosis, and proliferation. NF-�B nuclear translocation occurs through both genomic and nongenomic effects. Pink boxes indicate the
experimental and clinical data supporting the resulting effects of MR on arterial stiffness. ANG II acting through AT1R directly stimulates MR and
increases production of ROS via NAPDH oxidase. ANG II increases pro-MMP2 protein expression via the EGFR-JAK2-STAT3 pathway. Final
activation of proMMP2 is endothelial-dependent. TLR4 signals through Myd88/JNK activating NF-�B and an increased expression of pro-
inflammatory genes. In resistance arteries, COX1 via ANG II stimulates contractile thromboxane receptor (TP). VSMC, vascular smooth muscle
cell; EC, endothelial cell; AT1R, ANG II type 1 receptor; ROS, reactive oxygen species; EGFR, epidermal growth factor receptor; TP, thromboxane
receptor; TLR4, Toll-like receptor 4; COX1, cyclooxygenase-1; MMP2, ECM metalloproteinase-2; HRE, hormonal response elements; ALP,
alkaline phosphatase; BMP2, bone morphogenetic protein 2; FN, fibronectin; Gal-3, galectin-3; Col, collagen; NGAL, neutrophil gelatinase-
associated lipocalin; VEGFR, vascular endothelial growth factor receptor; PGF, placental growth factor; TGF-�, transforming growth factor-�;
MCP-1, monocyte chemoattractant protein-1; CT-1, cardiotrophin-1. B: acute contraction induces phosphorylation of myosin and remodeling of
the actin cytoskeleton. C: acute inward remodeling of a small artery during functional vasoconstriction. External and lumen diameters are
reduced in response to the contraction of the VSMCs. The number of VSMCs remains unchanged, since this is an acute phenomenon. However,
the number of dense plaques (and focal adhesions) increases, to strengthen cell attachment to the ECM or between them. D: overloading
elongates VSMCs and increases applied forces. Long-term effects of ANG II produce a fibrotic response and promote formation of larger focal
adhesions and actin stress fibers. E: acute inward eutrophic remodeling of a small artery during functional vasoconstriction. The reduction in
lumen diameter is associated with an increased media/lumen (M/L) ratio and no change in wall cross-sectional area (WCSA; i.e., eutrophic)
since it is an acute phenomenon. Long-term effects of ANG II or mineralocorticoid receptor activation lead to further remodeling, characterized
by acute inward hypertrophic remodeling, i.e., an increase WCSA associated with the reduction in lumen diameter and the increase in
wall-to-lumen ratio. Acute inward remodeling can be also transformed into a chronic inward remodeling, for instance, during essential
hypertension.
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elastic modulus and increased life span in mice caused by a
reduction of the apoptosis response, NF�B pathway activ-
ity, and premature senescence in VSMCs (310, 311).

AT1R activation by systemic or local ANG II signaling is an
important determinant of arterial stiffness since it induces
collagen and fibronectin accumulation and MMP activa-
tion. In clinical hypertension, there is no clear evidence
whether angiotensin converting enzyme (ACE) inhibitors
and AT1R blockers decrease arterial stiffness indepen-
dently of BP reduction (269, 319, 495, 534). However, at
the level of VSMCs, ANG II increases indirectly the expres-
sion of latent pro-MMP-2 via EGFR and JAK2/STAT3
pathways, whereas in ECs it directly involves JNK1 signal-
ing. In the aorta, the final activation of pro-MMP-2, mainly
expressed by VSMCs, is more complex and likely requires
the presence of endothelium (234). Acute administration of
ANG II produces vasoconstriction (FIGURE 4, B AND C),
whereas chronic administration of ANG II in rats decreased
the wall-to-lumen ratio and distensibility and increased col-
lagen accumulation and the Young’s elastic modulus of
small mesenteric arteries (FIGURE 4, D AND E). This occurs
partly through Toll-like receptor 4 (TLR4) activation, a
proinflammatory agent in VSMCs. In this model, the phos-
phorylation of JNK1/2, MAPK, and the myeloid differenti-
ation factor 88 (MyD88)-dependent activation of NF-�B
are reduced in response to TLR4 blockade, suggesting that
TLR4 is a potential link between oxidative stress and hy-
pertension-induced arterial stiffness (175). Another media-
tor of ANG II-induced structural alterations and stiffness of
resistance arteries is the cyclooxygenase-1 pathway which
produces contractile 6-keto-PGF1�, a metabolite of prosta-
cyclin acting on prostanoid thromboxane receptors ex-
pressed on VSMCs (557). The production of pro-inflam-
matory molecules [IL-6, monocyte chemoattractant pro-
tein-1 (MCP-1) and TGF-�] induced by ANG II hastens
leukocyte/macrophage recruitment and ECM turnover,
thereby promoting fibrosis of the entire vessel wall in-
cluding the adventitia (196) ANG II is considered a main
regulator of the cross-talk between proximal and distal
arteries. Increased aortic stiffness transmits higher pulsa-
tile flow to the microcirculation. In the presence of high
pulsatile flow, EC-induced ANG II production is able to
increase the degree of VSMC muscularization with
higher expression of differentiation markers such as
�-actin and SM-MHC (483).

III. ARTERIAL STIFFNESS IN RELATION TO
PULSATILE HEMODYNAMICS

A. Arterial Stiffness: Definition and
Measurement

The stiffness of the arterial wall is determined by the intrin-
sic properties of its constituents, their relative proportions,

and their three-dimensional organization and interconnec-
tivity. As the composition and organization of blood vessels
varies over the arterial tree, so will their stiffness (FIGURE 5).
The major ECM proteins are elastin and collagen, with
Young elastic moduli in the range of 100–600 kPa and
10–100 MPa, respectively (27). When inflating an artery in
an ex vivo setting over a large enough pressure range, the
typical nonlinear pressure-area relation is found (254), with
the slope representative of stiffness (FIGURE 6). At low
strains, the relation is determined by the distensible elastin;
it is only at higher strains that the very stiff collagen is
progressively recruited (i.e., waviness in collagen fibers dis-
appears) and stretched, progressively bearing the load and
stiffening the vessel. In physiology, arterial stiffness is gen-
erally quantified by functional indices that integrate the
intrinsic properties (e.g., the Young’s elastic modulus for a
linear elastic material or the incremental elastic modulus,
Einc, characterizing the stiffness around a certain working
point) of ECM and cellular arterial wall components and
their organization, as well as geometrical factors such as the
size of the vessel and its thickness.

At the local level, the most generic index of arterial stiffness
(or rather its reciprocal) is the distensibility coefficient (DC)

defined as DC �
dA�A

dP
, with dA being the (infinitesimal)

change in lumen cross-sectional area from its value A, and
dP the corresponding (infinitesimal) change in pressure. De-
fined as above, DC is dependent on BP and will typically
decrease over the physiological BP range, as described above.

In clinical practice, DC is usually calculated as DC �
�A�Ad

�P
with �A being the diastolic-to-systolic change in

lumen cross-sectional area from its value at diastolic pres-
sure (Ad) and �P the local PP. This yields one single value,
which can be seen as an average value over the BP range. DC
can be measured using any invasive (pressure catheter, in-
travascular ultrasound) or noninvasive techniques [appla-
nation tonometry, ultrasound, MRI, computed tomogra-
phy (CT)] that provide lumen cross-sectional area (or diam-
eter) and BP at a sufficiently high resolution. In reality, DC
is most often measured making use of ultrasound wall
tracking that allows for accurate diameter (and distension)

measurement: DC �
2�D�D

�P
(note the factor 2!). DC is

expressed in mmHg�1 or Pa�1.

Because of the incompressibility of the blood and the distensi-
bility of arteries, the pulse generated by the heart travels at
finite wave speed (the PWV) along the arterial network. The
locally measured DC is easily converted into a (local) PWV by

means of the Bramwell-Hill formula: PWV �� 1

	DC
with 	

being the density of blood (~1050 kg/m3) (49). Other methods
to determine local PWV exist. One class, the single point PWV
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measurement, is basically a variant of the Bramwel-Hill equa-
tion and is based on the simultaneous local measurement of
cross-sectional area and flow, diameter and flow, or BP and
flow velocity (230, 431). These methods are, however, very
susceptible to local wave reflections and have been shown to
be unreliable for the common carotid artery (489). Interesting
advances are also taking place in the ultrasound community.
On the one hand, ultrafast imaging modes are being explored
to measure directly the propagation of the pulse wave in su-
perficial vessels (though again with limited success for the
common carotid artery) (174, 243). On the other hand, elas-
tography methods are being explored that aim to track the
propagation of shear waves in the tissue (90). The propagation
speed of the shear waves is directly proportional to the shear
and Young’s elastic modulus of the tissue. Validation of this
novel technique is pending, but when successful, it would pro-
vide a unique clinically applicable tool to measure stiffness
directly.

PWV is also the gold standard index to quantify the stiffness
of the aorta (269). In this case, PWV is not measured locally
(although this can also be done) but regionally over a region

spanning the aorta (or parts of it). PWV is then derived from
(minimally) two measurements along the aortic path as
L/�T, with L being the distance between the two measuring
sites and �T the time it takes for the pulse to travel from site
1 to site 2. The arrival of the pulse can, in principle, be
detected with any technique that allows to invasively or
noninvasively measure BP (applanation tonometry), flow
velocity (ultrasound, MRI), arterial distension (ultrasound,
MRI, CT) or volume changes [(photo)plethysmography],
or even pulse-induced mechanical perturbations at skin
level (vibrometry, accelerometers). Despite the fact that
the path traveled by the pulse wave is not unequivocal
and that different distance measurements have been used,
there is a consensus (at least in Europe and the United
States) that the current reference method in clinical re-
search is carotid-femoral PWV, with measurements at the
carotid and femoral artery (549). Based on this technique
and pooling data from nearly 17,000 subjects, reference
values for PWV have been determined, demonstrating
that even in normal adults with optimal BP, PWV prac-
tically doubles from a value of ~5 m/s at the age of 20 to
over 10 m/s at the age of 80 (531a). Given the above
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equation, this implies that the distensibility of the aorta is
reduced by a factor of 4 over that age range.

In recent years, aortic PWV has also been measured with
MRI. Different sequences and signal processing algorithms
have been developed and explored, but the technique is
accurate (151). MRI allows the derivation of segmental
PWV. Recent studies demonstrated that it is possible to

measure PWV over the aortic arch and that a loss in disten-
sibility of the aortic arch is one of the earliest manifestations
of arterial aging (436). It has been shown also that the
ascending and thoracic aortas stiffen faster with age than
the abdominal aorta in humans (101). Drawbacks of MRI,
however, are the cost of the equipment, long scanning
times, and limited access to and availability of scanners. At
the other end of the spectrum, cuff- and sensor-based de-
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vices have been developed for routine assessment of PWV-
like measurements providing transit-time measurements be-
tween brachial and ankle, heart and ankle, finger and toe,
etc . . . The accuracy and validity of these and other devices
is under investigation and should be addressed with care.
We refer to Reference 272 for a recent review.

All of the above methods pertain to large and medium-sized
arteries. Unfortunately, the toolkit to assess the stiffness of
smaller muscular vessels is much less developed. There are a
few reports on PWV measurements in retinal arteries,
showing elevated PWV in hypertension (239), but the field
is limited. Study of the biomechanical properties of small
resistance arteries remains ex vivo, where small resistance
vessels obtained via gluteal biopsies can be studied on the
pressure myograph (236).

B. Arterial Stiffness: A Passive Property
Modulated by VSMC Tone

The modulating role of VSMC tone on arterial stiffness is
easily demonstrated ex vivo by performing pressure infla-
tion tests in organ baths. Experiments were, among others,
conducted by Dobrin (109), testing contracted and relaxed
cylindrical segments of dog carotid artery and human inter-
nal mammary artery. While VSMC contraction tended to
stiffen the artery up to 150–250 mmHg, the contracted
vessel exhibited decreased stiffness at higher pressures
(109).

Gaballa et al. (136) determined the BP-radius relation in
vivo in carotid arteries from 6- and 23-mo-old F344XBN
rats. In 6-mo-old rats, activation of VSMCs reduced vessel
diameter, but also enhanced the Young’s elastic modulus
measured at 200 mmHg, thus destiffening the vessel at high
pressure. In 23-mo-old rats, the difference between active
and passive properties was greatly reduced. VSMC tone
thus modulates arterial stiffness differently during aging
(136).

Seminal work on the impact of hypertension on the passive
and active properties of arteries was done by Cox in rat
models of renal hypertension (91) and later in dogs (92),
demonstrating a considerable regional variability of
changes in arterial wall in response to hypertension. More
recent data were collected by Fridez et al. (132) in a rat
(ligation) model of acute hypertension. Pressure-diameter
curves were measured in vitro under normal, maximally
contracted, and totally relaxed VSMCs. Basal VSMC tone
was found to rapidly increase in the acute hypertension
phase (2–8 days postsurgery), but decreased towards con-
trol values at 56 days postsurgery. It was postulated that
VSMC contraction may act as a first, rapid defense mecha-
nism of the arterial wall. As such, time can be gained for the
slower geometrical and structural remodeling to restore the
biomechanical environment and function of the arterial

wall to control VSMC tone levels (132). Computer model
simulations suggest that such a vasoconstrictive response to
increased BP can decrease the magnitude and transmural
gradients of the BP-induced wall stresses and return the
mean wall shear stress toward its homeostatic value (197).
VSMC contraction has been also demonstrated to play a
role in the overall rheological behavior of the arterial wall,
with VSMC contraction inducing a large degree of hyster-
esis (viscous energy dissipation) in inflation-deflation tests
and pressure-radius loops in rabbit (150) and human ca-
rotid arteries (11). In any case, the potential modulating
role of VSMCs will depend on the relative amount of
VSMCs (of the contractile phenotype) in the arterial wall. In
large elastic arteries, the effect of VSMC contraction prob-
ably plays a role via a redistribution of tensile forces be-
tween elastin and collagen (149). Its action may unload
collagen fibers and de-stiffen the artery, though it might
require overall constriction to reach this unloading effect,
which may be rare in vivo (110). Since VSMC contraction
actively changes diameter, it is important to specify whether
measurements are done under isobaric (constant pressure)
or isometric (constant diameter) conditions. In vivo mea-
surements at the brachial artery, for instance, demonstrated
no impact on (incremental) Young’s elastic modulus of
VSMC contraction under isobaric conditions, while large
changes were found under isometric conditions in thoracic
aorta of conscious dogs (18) and in the human brachial
artery (16).

From a biomechanical perspective, data are best interpreted
in terms of stress-strain relations, although it is not easy to
truly assess stress and strain in vivo due to the presence of
initial and residual stresses in the arterial wall (87), and the
impossibility to determine the unloaded configuration. It is
also interesting to observe that biomechanical models, de-
scribing the constitutive behavior of arterial tissue, are ex-
tending from models accounting for the passive behavior of
the arterial wall [e.g., strain-energy based models (140, 183,
579)] to models incorporating the contribution of VSMC
tone (562, 600) and complex remodeling laws (548).

C. Arterial Stiffening in Relation to Systemic
Hemodynamics and Pulsatile Load

The importance of the distensibility of the large arteries is
often functionally translated to the “cushioning” function
of the large arteries, where the aorta serves as a compliant,
damping reservoir (a “windkessel”), converting the pulsa-
tile flow from the heart into a more damped outflow to-
wards the organs and tissues. While this interpretation of
arterial hemodynamics provides an elegant way to get in-
sight into cardiovascular pathophysiology, systemic hemo-
dynamics are nowadays addressed more commonly in
terms of wave physics, with BP resulting from the interac-
tion of a forward wave generated by the heart, and waves
reflected in the periphery. Both the windkessel and wave
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interpretations are intricately related; they only provide two
different paradigms to assess arterial hemodynamics and to
interpret the arterial input impedance, which is the most
general way to quantify the arterial load (354, 356, 374,
382, 392, 406).

As demonstrated by Elzinga and Westerhof (119) in iso-
lated cat hearts loaded with a hydraulic model with inde-
pendent control over arterial resistance and compliance, a
decrease in total arterial (windkessel) compliance causes an
increase in PP (i.e., an increase in pulsatile load), through
mainly a decrease in diastolic and mean aortic BP, and only
modestly via an increase in systolic BP. It is thus only
through a concomitant increase in systemic vascular resis-
tance, which is generally the case in vivo via compensatory
mechanisms, that an increase in stiffness increases systolic
BP. This mechanism has been confirmed repeatedly using
computer simulations based on windkessel models (28,
488, 520).

Randall et al. (434) inserted a stiff tube in the aorta of six
closed chest anesthetized dogs. Consistent with a 63% de-
crease in compliance (119), systolic BP increased by 18%,
while diastolic BP decreased by 24%. However, mean BP
did not change significantly but cardiac output fell by 21%,
implying an increased vascular resistance. Decreased com-
pliance mainly caused changes in the low-frequency range
of the input impedance (434). Ioannou et al. (208) wrapped
a Teflon prosthesis around the aortic arc to limit proximal
aortic compliance in Yucatan miniature swine. Banding de-
creased compliance by 52%, with an increase in systolic
(37%) and PP (87%). Diastolic BP, mean BP, cardiac out-
put, and systemic vascular resistance did not change signif-
icantly (208).

In the above animal experiments, increased stiffening was
induced via a local impediment of aortic distensibility,
which is different from human pathophysiology, where ar-
terial stiffening is generally not confined to a segment of the
aorta. Using a one-dimensional computer model of the ar-
terial tree, Reymond et al. (445) simulated the effect of local
aortic stiffening with compliance reduced only in the region
of the aortic arch, or globally, with an equivalent uniform
decrease in compliance in all arterial segments. Both scenar-
ios yielded the same increase in PP, but the underlying
mechanisms are different. Local stiffening in the region of
the aortic arch mainly augments the forward pressure wave
through an increase in proximal characteristic impedance.
Global stiffening, on the other hand, leads to an increased
contribution of wave reflections. Which of the two mecha-
nisms drives the increase in systolic BP with aging or in
disease will depend on the topology changes in arterial stiff-
ness and arterial geometry (445).

Invasive measurements of input impedance in humans dem-
onstrated an increased peripheral vascular resistance by

37% over the age range of 20–60 yr, whereas characteristic
impedance (a functional property of the proximal aorta
depending proportionally on aortic stiffness and inversely
proportional on aortic diameter) increased by 137%. The
observed patterns of the input impedance were consistent
with the ascending aorta becoming stiffer with age, accom-
panied by a decrease in the cross section of the peripheral
vascular bed. These phenomena lead to an increased PWV
and wave reflections with age (385). The changes in input
impedance are mirrored in the shape of the pressure wave-
forms. In subjects younger than 30 yr, early systolic BP
usually exceeds late systolic BP (the waveform is of the
so-called type C) due to the arrival of the bulk of the re-
flected waves in late systole and early diastole. In subjects
older than 50 yr, the impact of the reflected waves occurs
earlier in systole, boosting late systolic BP (type A pressure
waveform) (228, 374, 385). Similar effects, though more
pronounced, play a role in patients with isolated systolic
hypertension (383).

The increased load, obviously, also impacts the heart.
Chronically increased arterial stiffness by aortic wrapping
leads to left ventricular (LV) hypertrophy in pigs after 60
days (207). Three-month exposure to increased aortic stiff-
ness in vitamin D3-nicotine rats induces LV hypertrophy
with moderate interstitial fibrosis and a shift in the MHC-
isoform pattern, though maintaining LV performance
(256). In humans, the increase in vascular load with aging
may account for the observed decrease in stroke volume
(23%, P � 0.025) and cardiac output (20%, P � 0.005)
and the development of mild LV hypertrophy and pro-
longed relaxation with advancing age (385).

When considering the pulsatile load on the heart, the “se-
quence of events” is important, as the sensitivity to systolic
load of the contracting left ventricle increases progressively
throughout the ejection period. The relaxation rate of the
left ventricle decreases more with late than with early BP
increases (142). The timing of wave reflection during the
cardiac cycle may thus have an important effect on LV
relaxation and coronary flow (583). This was recently dem-
onstrated in a large cohort of middle-aged subjects. Analy-
sis of the timing of the sequence of loading events showed
that subjects whose heart was experiencing prominent
late systolic stress had a reduced longitudinal systolic
function and a slower diastolic relaxation (84), despite
the fact that peak myocardial stress occurs in early sys-
tole, before important contributions of reflected waves to
central BP (83).

Attentive readers will have noticed that, in the above, the
role of VSMCs in pulsatile load was not discussed. Pulsatile
load can be modulated by vasoactive drugs such as nitrates,
which act on VSMC tone. The response of arterial territo-
ries to nitrates is heterogeneous, with measurable vasodila-
tory effects on carotid, brachial, and femoral arteries which
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are, however, not necessarily accompanied by a decrease in
arterial stiffness (261). Nonetheless, nitroglycerin has a
large effect on systemic hemodynamics. It was demon-
strated in dogs that nitroglycerin led to a reduction in the
amplitude of reflections from the periphery, and delayed the
arrival of these reflections at the aortic root. These effects
are visible in the impedance modulus and phase patterns
(shifted to the left) and indicate a shift of the reflection sites
towards the periphery (258). This is consistent with obser-
vations in humans, where vasoactive drugs drastically re-
duced aortic augmentation index in healthy men, indepen-
dent of aortic PWV (229). About 25 yr ago, O’Rourke
(405) stated that antihypertensive drugs have little or no
direct effect on arterial stiffness. However, several pharma-
cological studies demonstrated that this is not the case.
Drugs can reduce wave reflection via modulation of vascu-
lar tone, and hence decrease aortic BP augmentation (an
effect which might not be picked up when measuring in a
peripheral artery) (405). An acute direct effect, i.e., inde-
pendent of BP reduction, of the calcium channel blocker
diltiazem (515) on aortic stiffness was demonstrated
through the BP-diameter curve. A delayed, long-term direct
effect of 1) the ACE inhibitor perindopril (538) and 2) the
AT1R blocker olmesartan (262) was demonstrated on ca-
rotid stiffness and aortic stiffness, respectively. In contrast,
the beta-blocker celiprolol was able to stiffen the carotid
artery wall, after 4 yr administration in patients devoid of
hypertension (403).

D. Arterial Stiffness and Baroreceptor BP
Control

The carotid and aortic baroreceptors are located in the wall of
large proximal, elastic arteries, and “sense” the level of BP,
possibly via stretch-sensitive neural pathways. As such, a loss
of the artery’s ability to stretch under BP, due to arterial stiff-
ening, would directly impede baroreceptor functioning. Arte-
rial stiffening and attenuation of baroreflex sensitivity (BRS)
are processes that typically go hand in hand with aging or in
patients with hypertension. The key question is whether there
is any causal relation between both. As illustrated below, lit-
erature on the topic is somewhat mixed.

In a small-sized study in the early 1990s, Lage et al. (251)
concluded that although both carotid arterial compliance is
abnormal and arterial baroreflex regulation of heart rate is
attenuated in patients with hypertension, reduced arterial
compliance is not solely responsible for baroreflex dysfunction
in these individuals. A stronger position with respect to the
role of reduced carotid artery compliance in BRS was taken by
Monahan et al. (362), who concluded that carotid artery com-
pliance was the strongest independent physiological correlate
of cardiovagal BRS, explaining 51% of the total variance.
Regular exercise in previously sedentary humans increased
both carotid artery compliance as well as BRS (363).

Classically, fluctuations in BP are used to assess global BRS,
which is the result of both vascular (dependent to the arte-
rial stiffness) and neural components of the baroreflex.
However, baroreceptors respond to deformation and not to
BP per se. Therefore, peripheral changes in BP might not
accurately reflect changes in carotid bulb distension in sub-
jects with increased arterial stiffness, making global BRS a
poor indicator of the neural component of the baroreflex.
Moreover, both vascular and neural components of the
baroreflex can be jointly or singularly altered in several
pathological conditions. To overcome these limitations,
Kornet et al. (235) measured directly diameter distension
using ultrasound and found that, rather than the absolute
change in diameter, the rate of distension of the common
carotid artery was a considerably more accurate predictor
of R-R interval variability [more accurate also than the vari-
ability in systolic (finger) BP]. In that same study, the authors
ascribed the reduced BRS in the elderly mainly to a deteriora-
tion of conduction by the neural baroreflex pathways (235).
Using the same methodology, Zanoli et al. (588) showed that,
compared with controls, subjects with metabolic syndrome
had a lower neural component of the baroreflex and higher
carotid stiffness than age- and sex-matched control subjects.
The neural component of the baroreflex was positively asso-
ciated with carotid stiffness in controls, but this association
was lost in subjects with metabolic syndrome. The determin-
ing role of carotid distensibility as such in BRS was also ques-
tioned by Steinback et al. (517) in a head-up-tilt protocol
study, who found maximal carotid distensibility, which occurs
in early systole, to contribute to reduced cardiovagal BRS with
head-up-tilting tests.

Important data sources on the topic are the Rotterdam study,
including elderly people, and the Young Finns study based on
young adults. In the Rotterdam study, subjects with higher
arterial stiffness (quantified by carotid-femoral PWV) experi-
enced a higher drop in BP during orthostatic intolerance test-
ing, without a significant change of heart rate, than subjects
with lower arterial stiffness. This observation led to the con-
clusion that arterial stiffness may explain, at least in part, the
reduced baroreflex observed in older adults (346). In a fol-
low-up publication on the same database which also included
measurement of carotid distensibility, a stronger position was
taken with the conclusion that arterial stiffness appears to be
an independent determinant of impaired BRS (345). Carotid
stiffness and BRS were also measured in the Young Finns
study. In 1872, healthy 24- to 39-yr-old subjects, carotid dis-
tensibility significantly related with all measured components
of heart rate variability, supporting the hypothesis that reduc-
tion in carotid artery wall elastic properties may lead to low
vagal tone (237).

Baroreflex control runs via both the vagal and sympathetic
branches of the autonomic nervous system. In a study fo-
cusing on the association between carotid stiffness and the
response in sympathetic activity to changes in BP, Okada et
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al. (401) found elderly women to have a lower sympathetic
BRS than elderly men. Elderly women also exhibited higher
carotid artery stiffness. The authors concluded that baro-
sensory artery stiffness seems to be one independent deter-
minant of sympathetic BRS in elderly men and women
(401). The interaction between arterial stiffness and BRS
was recently addressed in a computer model study, model-
ing the integrated cardiovascular system including barore-
flex control. The model predictions were dependent on the
stipulated relation between arterial distensibility and baro-
reflex signaling (i.e., BRS). It was demonstrated that arterial
stiffening, via its effect on BRS, seems sufficient to explain
age-related emergence of hypertension and the impaired
capacity of hypertensive individuals to regulate short-term
changes in BP (416).

E. Cross-Talk Between Large Elastic
Arteries and Small-Sized Muscular
Arteries

Small and large artery alterations in normal and accelerated
aging are closely interdependent. A simple straightforward
cause-effect relation is difficult to establish, and a cross-

talk, by which large elastic artery alterations appear to in-
fluence a small-sized muscular artery phenotype, and con-
versely small artery alterations appear to influence a larger
artery phenotype, is more likely (267).

With normal aging, there is a moderate increase in the level
of peripheral resistance (see above), despite a likely increase
in lumen diameter and media thickness in small-sized mus-
cular arteries without a change in media-to-lumen ratio,
indicative of outward hypertrophic remodeling (FIGURE 7)
(129, 372, 400). The increase in brachial and central sys-
tolic and PPs with aging is due to the stiffening of large
arteries that increases the speed of reflected waves, and to
the increase in geometric taper that generates more wave
reflection (384). Indeed, normal aging exerts opposing ef-
fects on proximal elastic arteries that enlarge, and distal
muscular arteries (common femoral, brachial, and radial
arteries) that do not (43, 45, 60, 209). Thus normal aging
increases the geometrical taper in large arteries which in
turn aggravates the difference of impedance between small
and large arteries (impedance mismatch), generates wave
reflection, and limits transmission of pulsatile energy into
the microcirculation. There is, however, a parallel reduc-
tion in the stiffness gradient between proximal large elastic
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FIGURE 7. Cross-talk between the large artery
and microcirculation. Reduced lumen diameter of
small arteries and impaired vasodilation contrib-
ute to increased peripheral resistance to blood
flow which increases mean blood pressure (BP).
The increase in brachial and central systolic pres-
sure as well as pulse pressure (PP) with aging are
due to the stiffening of large arteries (that in-
creases the speed of reflected waves) and to the
increase in geometric taper (that generates more
wave reflection). The reduction in the stiffness
gradient between small and large arteries and the
increase in arterial wall hypertrophy, as an ad-
aptative mechanism in essential hypertension,
tend to limit the increase in central pulsatility.
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arteries (stiffening more rapidly) and distal medium-sized
muscular arteries, which tends to reduce the impedance
mismatch (43, 45, 60, 209, 257, 270, 550), and exerts op-
posite effects on transmission of pulsatile energy that is
exaggerated. Altogether, the balance between these oppo-
site mechanisms leads to a higher central pulsatility, which
when transmitted to target organs could damage the kid-
ney, the brain, and the heart, and maintains the outward
hypertrophic remodeling of small-sized muscular arteries
(129, 372, 400).

In primary (essential) hypertension, the cross-talk between
small and large arteries is transformed into a vicious circle
of aggravation (FIGURE 7). Starting the cross-talk from
small-sized muscular artery damages, vasoconstriction and
impaired vasodilation, reduced lumen diameter associated
with increased wall-to-lumen ratio indicative of inward eu-
trophic remodeling and rarefaction of small arteries are
major causes of the increase in total peripheral resistance
and mean BP (129, 170, 372). The loading of stiff compo-
nents of the arterial wall, mainly collagens, is responsible
for the increase in large artery stiffness at high mean BP
(266). The rise in central systolic BP and PP results from the
synergistic action of the increase in large artery stiffness and
structural alterations of small arteries contributing to an
increase in the amplitude of wave reflection (384). The in-
creased central PP is correlated with increased media-to-
lumen ratio of subcutaneous small-size muscular arteries
(370). The wall-to-lumen ratio of retinal arteries is also
positively correlated with 24 h systolic BP (466). Interest-
ingly, in hypertensive patients, changes of subcutaneous
small-sized muscular arteries and carotid-femoral PWV are
both independent determinants of central systolic BP (370).

F. Tensile Pulsatile Circumferential Wall
Stress Is a Major Determinant of VSMC
Differentiation and Arterial Remodeling:
Bioengineering Concepts Applied to Cell
Biology

Physical forces, ECM, and cell structure play a key role in
the control of normal development, as well as in the main-
tenance of tissue form and function (200). Cardiovascular
cells, including VSMCs, adjust the expression and synthesis
of ECM molecules to adapt their environment to these
changes (34, 156). Cyclic mechanical strain profoundly in-
fluences cultured VSMC orientation, growth, and pheno-
type and increases the secretory function of VSMCs leading
to increased ECM protein production (574).

Wall stress is one of the lesser tangible mechanical quanti-
ties, which unfortunately cannot be measured, but needs to
be estimated via biomechanical models (192). Most often,
circumferential wall stress (
�) is deduced from a contin-
uum mechanics approach using Laplace’s law. For an iso-
tropic, homogeneous thin-walled cylinder (ratio of radius

to wall thickness less than 10), 
� � Pr/h, with P being the
internal pressure, r the vessel radius, and h the wall thick-
ness (FIGURE 6). With VSMC contraction leading to a re-
duction in vessel radius and an increase in wall thickness,
VSMC tone can actively modulate the stress level to which
the vessel is exposed. A factor that is commonly overlooked
in vivo (as it cannot be measured) is the fact that arteries are
also exposed to a longitudinal stress component (135, 192).
Indeed, when arteries are excised from the circulation, they
shorten significantly due to the unloading in the longitudi-
nal direction (with values up to 50% for, e.g., canine and
porcine aorta) (160). It may therefore be clear that the
Laplace’s law is an extremely crude way to estimate the
(circumferential) stress component. It does not account for
residual stresses, and the assumptions behind the formula
are never met in biology. It cannot be used to obtain reliable
estimates of absolute stress levels, but the general principle
holds that circumferential stress is directly proportional to
internal pressure and vessel radius, and inversely propor-
tional to its thickness.

Considering that the organism is a highly regulated dy-
namic system, a basal level of VSMC tone would keep the
vessel in a position from where the diameter can be quickly
up- and downregulated, which is a mechanism that is espe-
cially important for small-sized muscular arteries regulating
BP. Although the level of myogenic tone can be quite differ-
ent from vessel to vessel (the smaller the diameter, the
higher the tone), it is thought that active (VSMC) stress
levels are quite constant throughout the arterial network
(50). In a theoretical model study, Rachev and Hayashi
(433) showed that basal VSMC tone reduces also the strain
gradient across the thickness of the arterial wall and yields
a near uniform stress distribution. During temporary
changes in BP, the increase in myogenic tone induced by
elevated BP tends to restore the distribution of circumfer-
ential strain in the arterial wall, and to maintain the flow-
induced wall shear stress at normal level (433).

In the earliest bioengineering models described by Rachev
(432), the active stress generated by VSMCs was simply
added as an extra stress component in the stress balance
equations. Later on, models gradually increased in com-
plexity, integrating the vascular smooth muscle as a struc-
tural element into the models (e.g., via a pseudo strain en-
ergy function). The contribution of vascular smooth muscle
to load bearing is then modulated by the contraction,
which, for instance, also allows to integrate vascular
smooth muscle myogenic tone in response to local increases
in stretch into the models (600). Models also more and
more account for the multi-layered nature of arteries, with
properties that vary from the intima towards the media and
adventitia, which provides additional insight into residual
stress-related opening angle and the axial prestress (225).
The most advanced models are now capable of predicting
growth and remodeling of arteries, with models validated
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most often using experiments in hypertension-induced ex-
perimental models (7, 600). These experiments and models
have suggested that increasing VSMC tone is a first defense
mechanism of the vessel against an acute increase in BP
which lowers wall stress, and “buys time” for the vessel to
respond to the increase in wall stress in a more structural
way, by an increase in cell protein synthesis (hypertrophy)
and ECM secretion (132). VSMCs also interplay with stress
distribution over the arterial wall and the level of residual
stress which builds up in remodeling vessels (7, 225, 433)
[and which, e.g., can be visualized when cutting a ring seg-
ment of an artery, which will open up to a certain opening
angle, which is a measure of internal residual stresses (87)].
These residual stresses are highly variable and change as the
vessel remodels in the circumferential and longitudinal di-
rection.

It is, however, important to understand that all of the above
models are based on continuum mechanics, i.e., considering
the arterial tissues as a continuous medium (though with
complex anisotropic properties that are based on the ultra-
structure of the arterial wall). Vessel remodeling responses
are mediated by complex inter- and intracellular signaling
pathways (249), which are likely to depend on the mecha-
nobiology of the individual cell. How stresses and forces are
transmitted to the level of the individual cells and its intra-
cellular structures and components is likely to depend on
the three-dimensional organization and interconnection of
the ECM component and cytoskeleton (see mechanobiol-
ogy above). A relatively popular conceptual model of cell
biomechanics is the tensegrity structure [a structure com-
posed of elements being either under compression (micro-
tubules) or under tension (actin filaments)] (201). The
tensegrity hypothesis implies that cell stiffness must in-
crease in proportion with the level of the tensile stress (the
prestress) (567), but the same behavior is also explained by
the exponential stress-stretch relation of isolated actin fila-
ments, without any prerequisite on the structure of the cy-
toskeleton (193). Other cellular bioengineering models con-
sider the cell as a pressurized cytoplasm surrounded by a
membrane under tensile stress (493, 596), but models con-
fining all structural strength to the membrane cannot ade-
quately capture in vivo observations during micro- and
nanomanipulation of cells (331). We refer the reader to
References 193, 202 for more complete discussions on the
biomechanics of cells and their subcellular organelles and
structures and bioengineering models of cell cytoskeleton
with their respective strengths and limitations.

These cellular biomechanical models have, at present, little
to no application in vivo. Nonetheless, it is possible to de-
termine, using nonlinear models, the in vivo mechanics of
common carotid arteries in humans. Thus it is possible to
compare treated hypertensive patients with normotensive
subjects, for wall stress and the contributions of wall micro-
constituents. Using a well-accepted theoretical three-dimen-

sional model of arterial mechanics, Masson et al. (340)
obtained in vivo data from the human carotid artery, under
noninvasive conditions and assuming an anisotropic, hy-
perelastic, active-passive, and residually stressed wall. To
solve the quasistatic boundary value issue, a semi-analytical
software was used over a cardiac cycle. Surrounding
perivascular tissue was also accounted for. A nonlinear
least-squares method estimated model parameters (intra-
mural fibrillar collagen, elastin, and VSMCs) using the best-
fit values. Temporal changes in intraluminal BP were cap-
tured by the model, as well as the estimated wall stress fields
(reflecting age and disease effects) and possible changes in
microconstituent mechanics. For instance, in normotensive
subjects, age was positively and significantly correlated
with residual stress and altered fibrillary collagen. These
results thus indirectly validated the microconstituents in the
model. In treated hypertensives, the level of stresses was
higher, as was vascular tone. Stiffer elastin fibers were the
main changes in ECM. These data, which were expected in
response to aging and hypertension, have helped to increase
our understanding of the contribution of microcontituents
at the molecular levels of the cell-ECM relation to the me-
chanics of the arterial wall in vivo.

IV. VASCULAR SMOOTH MUSCLE CELLS
AND LARGE ARTERY STIFFNESS
DURING DEVELOPMENT AND NORMAL
AGING

A. Shear Stress and Tensile Stress as
Mechanical Factors for Arterial
Development

In this section, we briefly touch upon biomechanical factors
involved in large artery development. We refer to dedicated
embryological literature for details on the development of
the cardiovascular system. Biomechanical stimuli include
the blood flow-induced tangential wall shear stress, sensed
by the ECs, and tensile stress and strain (FIGURE 6). The wall

shear stress (�w) is calculated as �w � �
u

y
with � being the

viscosity of the blood and
u

y
the velocity gradient calcu-

lated at the endothelial interface (i.e., the slope of the veloc-
ity profile near the wall).

The primary vascular network that sets the basis for further
development comprises nascent EC tubes (embryonic cap-
illary plexus). This EC tube network is formed and grows in
the absence of any blood flow and pressure, but blood flow
is critical for the patterning and arteriovenous differentia-
tion (218, 275). This is not surprising, given that blood flow
and the resulting wall shear stress are key biomechanical
stimuli in mechanotransduction. ECs cultured in the pres-
ence of unidirectional steady flow, for instance, will alter
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their cytoskeleton and align in the direction of flow (102).
Expression of growth factor genes have been demonstrated
to be regulated differentially by fluid shear stress in the
vascular EC (326). In embryological development, pulsatile
shear patterns may be central for supporting arterial iden-
tity, with arterial gap junction alpha-5 protein (Gja5, also
known as connexin 40) expression being suggested to play
a functional role in arteriogenesis (59).

Concomitant with the establishment of blood flow, primor-
dial VSMCs are recruited to align with the EC tubes (79,
198). The embryonic origin of these cells is not the same for
the arterial tree (as described above). The recruitment of
these cells and the phenotypic maturation are likely to de-
pend on shear stress (79). At the level of the microcircula-
tion, pericytes and VSMC may differentiate into each other
in relation with arterial development. With the use of AFM,
the pericytes of the microvasculature have been demon-
strated to exert a direct mechanical stimulus at the EC-
basement membrane interface through their effective acto-
myosin-mediated contraction influencing physiological an-
giogenesis (277). Such measurements have not been
performed in adjacent VSMCs.

In embryonic development, pulsatile BP is generated as
soon as the heart starts beating. Along with the gradual
increase in BP, the VSMCs organize in layers around the
vessel, increasing its thickness. In mouse embryos, this pro-
cess is complete around day 14. The VSMCs then start
expressing structural ECM proteins, so wall thickness in-
creases through the addition of elastin and collagen be-
tween the cell layers (79).

Mechanical stretch is the most important biomechanical
stimulus of vessel organization. In vitro experiments have
demonstrated stretch-induced upregulation of the produc-
tion of elastin and collagen (79), which can also be taken
advantage of in tissue engineering (232). The mechanical
stimulus resulting from the pulsatile stretch is detected by
the VSMCs through multiple sensing mechanism. The stim-
ulus is translated, via mechanosensing pathways, into intra-
cellular signals that modulate the function of cells and the
expression of certain genes, leading for instance to cell pro-
liferation, migration, apoptosis, and vessel wall remodel-
ing. (FIGURE 2) (157). Mechanical stretch has an impact on
numerous signaling molecules (79), among which the
Notch pathway, a key regulator of vascular morphogenesis,
controlling growth of the blood vessel network, cell prolif-
eration, and the differentiation of arteries and veins (451).

B. Normal Aging of VSMCs

Aging of VSMCs includes DNA damage and telomere attri-
tion, epigenetic modifications, defects in protein processing,
reduced nutrient sensing, mitochondrial dysfunction, and
reduced stem cell availability (312, 547). These hallmarks

of aging cause an inflammatory response and thickening of
intima by VSMCs. The consequences are the progressive
loss in the immune privilege of the medial layer and in-
creased aortic stiffness which define arteriosclerosis,
thereby promoting the development of vascular diseases
including atherosclerosis (see below). Progenitor cells such
as multipotent stem cells are present into the adventitia and
may represent another source of VSMCs migrating into the
intima with aging (539). Increase of proteasome activity
and endoplasmic reticulum stress characterize the process
of unfolded protein response in VSMCs also observed in
monocytes and ECs (484).

Canonically, VSMCs undergo phenotypic switching to-
wards proliferation, migration, apoptosis, and senescence
with aging as reviewed previously (364). Regarding prolif-
eration, the mechanisms are an increased expression of milk
fat globule protein epidermal growth factor-8 (MFG-
EGF8) together with an enhanced VSMC responsiveness to
PDGF. However, contradicting results have been reported
regarding age-related proliferation and migration of
VSMCs. These discrepancies are related to in vitro/in vivo
culture conditions, animal models of aging, methodologies
to assess VSMC changes, or types of vessels. Similarly, vari-
ations in signaling pathways such as cell cycle activators
(cyclin-A, cyclin-D1, cyclin-dependent kinase-2) or inhibi-
tors (P27Kip1) as well as Akt or telomerase activation may
also occur. Increased levels of ANG II, MCP-1, calpain-I/
C-C chemokine receptor type 2 (CCR2), MGF-EGF8, and
MMP-14 associated with the decrease of MMP tissue inhib-
itor of MMP-2 (TIMP-2) lead to VSMC migration. All of
these key molecules are organized in the positive-feedback
loop combining the effects of colocalized MCP-1, MMP-2,
and TGF-�1 (566). In addition, production of MMPs by
VSMCs and alterations of cell-ECM interactions reduce
VSMC plasticity and the capacity of tissue repair. The con-
tribution of mature VSMC and progenitor cells may explain
some of the conflicting results for the age-related differences
in the phenotypic switch during aging. The controversy may
also be explained by the critical role of endothelial aging on
VSMC functions. Proliferation and migration of VSMCs is
controlled by Notch receptors and their ligands, including
Jagged1, through MAPK and PI3K/Akt pathways. Age-
associated downregulation of Jagged1 endothelial ex-
pression known to control VSMC expression of Jagged 1
enhances VSMC proliferation and migration, indepen-
dently of NO release (578). Thus the loss of endothelial
regeneration capacity aggravates intimal thickening in
aging. There is compelling evidence that vascular wall
proteoglycans modulate the effects of growth factors.
Production of sulfated proteoglycans by VSMCs from
large and small arteries contributes to reduce prolifera-
tion in response to ANG II (447, 448), but the question
still remains open in the context of the aging-induced
proinflammatory state.

VASCULAR SMOOTH MUSCLE CELLS AND ARTERIAL STIFFNESS

1581Physiol Rev • VOL 97 • OCTOBER 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (157.193.009.043) on January 31, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



In aging, VSMCs undergo an inflammatory phenotype that
does not necessarily require the involvement of inflamma-
tory cell infiltration. Activation of proinflammatory and
oxidative pathways in VSMCs occurs via several receptors
including those for advanced glycation end products
(AGE), AT1R, lectin-like oxidized LDL receptor (LOX-1),
TLRs, and Nod-like receptors (NLRs) (295). ANG II and
aldosterone represent the main factors in inflammatory
VSMC behavior leading to chronically elevated levels of
low-grade inflammatory molecules such as MCP-1/CCR2
receptor, adhesion molecules (ICAM-1, VCAM-1, MMPs),
various cytokines (IL-6, cardiotrophin-1), chemokines
(CCL2), and calpain-I. An excessive production of ROS
mainly by increased expression and activity of NAD(P)H
oxidase is not downregulated by an increased activity of
antioxidant enzymes. The production of AGEs and the
cross-talk between calpain-I and MMP-2 influence mark-
edly the mineralization of VSMCs and the development of
calcification (see below). The proinflammatory state of
VSMCs reinforces the effects of inflammatory cells on
VSMC senescence. Oxidative stress represents the main
cause of epigenetic modifications with aging (see below)
such as global DNA hypomethylation of VSMCs in patients
with atherosclerosis (421) or more specifically of the anti-
oxidant enzyme superoxide dismutase gene (259).

It appears more difficult to assume a unique effect of aging
of VSMC apoptosis. One of the key modulators is the acti-
vation or not of the cGMP-specific phosphodiesterase type
5 (PDE-5)-mediated cGMP degradation which depends on
NO signaling which can be differently affected by the aging
process. The maintenance of a high activity of PDE-5
caused an increased level of VSMC apoptosis with age. In
aged rats, it has been reported that larger, less mobile, and
highly elongated mitochondria may hasten these VSMC
functional changes, in particular at the level of cerebral
small arteries (71). The loss of mitochondrial function may
be caused by only mitochondrial DNA damage or together
with oxidative stress (587). ACE2 resulting in generation of
Ang 1 to 7 (126) exerts a protective effect on small-sized
muscular artery remodeling and arterial stiffness with age
by reducing ANG II-induced VSMC apoptosis, increased
MMP activity, and oxidative stress. The loss of ACE2 in
mice leads to an excessive aortic dilation and aneurysm in
response to ANG II (412).

VSMC senescence induced either by replication or stress
induction and revealed by nonspecific �-galactosidase
staining is characterized by the loss of arterial tissue repair
and regeneration. Endogenous sirtuin-1 (SirT1) deacetylase
expression, one of the main causes of dysregulated nutrient
sensing, was shown to be reduced in older human donor
cultured VSMCs compared with young donors, as well as in
VSMCs from atherosclerotic-diseased arteries compared
with VSMCs from a non-diseased section of the same artery
(146, 532). This was associated with decreased capacities to

proliferate and to migrate in response to stimulation. The
molecular signature is an upregulation of �H2AX, p27/
p21, and acetylated p53, markers of DNA damage and
telomere shortening, cell cycle inhibition, and cellular stress
response, respectively. Likewise, shorter telomeres and low
level of telomerase have been reported in VSMCs in athero-
sclerotic plaques (347, 399). It has been reported that te-
lomerase activation, maintenance of telomere length, and
decrease of p53 tumor suppressor protein expression pro-
mote aortic VSMC proliferation and suppress apoptosis in
SHR (65). In the context of accelerated vascular aging, it
has been reported that VSMC SirT1 can reduce arterial
stiffness in diet-induced metabolic syndrome in mice (133).
Invalidation of VSMC SirT1 also promotes abdominal aor-
tic aneurysm formation through VSMC senescence and NF-
�B-mediated transcription of MCP-1 chimiokine (75).

Age-related VSMC stiffness accelerates aortic stiffness ob-
served in hypertension (430, 490). However, if VSMC stiff-
ness similarly increases with age in both the thoracic and the
abdominal aortas, the stiffness increases more in the ab-
dominal than in the thoracic aorta in monkeys. This result
contrasts with previous studies in humans (101) and is at-
tributed mainly to the highest values of collagen-to-elastin
ratio and a marked increase of structural disarray of elastin
and collagen fibers in the abdominal compared with the
thoracic aorta both in young and old monkeys (592). De-
creased expressions of cytoskeletal desmin and a shift to-
wards calpain I-mediated vimentin cleavage together with
an increase of MHC contribute to reduced VSMC integrity
and contractile competence with age (36, 215). In aorta and
iliac arteries, the expression of genes coding for MYL9,
integrin �1, B cell leukemia/lymphoma 2 (Bcl2), VCAM-1,
and NOX4 is increased, whereas expression of collagens
and VEGF-A are downregulated with age. The overexpres-
sion of MYL9 occurs mainly in the EC layer, suggesting its
implication in EC contractility and the subsequent increase
in vascular permeability. It is only in response to vascular
injury that an increased expression of VSMC MYL9 is ob-
served during the early steps of cell proliferation (501).

Stimulation of �1-adrenoceptor or depolarization with ele-
vated extracellular potassium increased in vitro isometric
contraction, more in small-sized muscular arteries than in
large elastic arteries from adult mice (280). These discrep-
ancies are related to higher production of basal NO in the
elastic arteries which are also less sensitive to the L-type
Ca2� channel blocker. The hypothesis of different isoforms
of L-type Ca2� channels together with endothelial dysfunc-
tion has been suggested to explain the higher level of age-
related stiffness in elastic arteries. The ECM crosslinking
enzyme tissue-transglutaminase (TG2) present in ECs and
VSMCs contributes to the arterial stiffness increase with
age. TG2 may also control the activation of TGF-� com-
plex. It has been reported in mouse aorta that its activity is
normally maintained at a low level via a NO-dependent
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S-nitrosylation action. The reduction of NO bioavailability
in aging leads to a higher level of TG2 activity, increasing
large arteries stiffness. High levels of transglutaminases and
TGF-� activation as well as accumulation of AGE in aged
humans are in agreement with this hypothesis (467). The
role of the TG2/NO interaction has been confirmed using
eNOS knockout mice (220).

C. Arterial Wall Mechanical Properties in
Normal Aging

Normal aging exerts opposing effects on proximal large
elastic arteries and distal small-sized muscular arteries
(FIGURE 8) (26, 45, 209, 253). High-resolution echo-
tracking systems (26, 45, 209) and MRI (435) have
shown that age-induced enlargement predominates in
humans on proximal elastic arteries, such as the common
carotid artery or the aorta (aortic root and aortic arch)
where it is associated with a decrease in aortic arch cur-
vature. This enlargement is generally attributed to load-
bearing degradation of elastin fibers. Indeed, age, heart
rate, and carotid PP are independent determinants of
carotid lumen diameter (43).

Similarly, age-induced arterial stiffening predominates on
proximal elastic arteries, with no effect on distal medium-
sized arteries, e.g., brachial, radial, and femoral arteries (26,
45). The total amount of VSMCs and ECM (especially elas-
tin) is much higher in the media of large proximal elastic
arteries than in medium-sized distal muscular arteries
(108). In addition, the amplitude of stroke change in diam-

eter is 10-fold higher at the site of the carotid artery than at
the site of the radial artery (26, 45). The influence of
mechanical stretch (see above) on growth and apoptosis
of VSMCs is involved strongly (279, 444). Structural
alterations that occur with aging are associated with
changes in both active (reduced number of VSMC nuclei)
and passive stiffness (reduced elastin-to-collagen ratio)
(136).

The age-induced arterial stiffening attenuates the stiffness
gradient throughout the arterial tree. The stiffness gradient
is characterized by the fact that, in middle-aged healthy
humans, PWV increases from 4–5 m/s in the ascending
aorta to 5–6 m/s in the abdominal aorta, thence to 8–9 m/s
in the iliac and femoral arteries (257); concomitantly cross-
sectional distensibility decreases from 40 kPa�1 � 10�3 in
the thoracic aorta (209) to 15–25 kPa�1 � 10�3 in the ca-
rotid (26, 45, 556) and brachial (550) arteries, 10–15
kPa�1 � 10�3 in the common femoral artery (26, 45, 556),
to 5 kPa�1 � 10�3 in the radial artery (270). The imped-
ance mismatch between large elastic and small-sized mus-
cular arteries at the origin of partial wave reflections has
been detailed above. Altogether, the balance between the
opposite effects of age-induced geometrical tapering and
reduction in stiffness gradient leads to a reduction in central
BP and pressure amplification (brachial systolic BP - central
systolic BP) with aging, that plateaus after the age of 30
(172).

The age-induced geometric tapering may be larger than the
sole balance of the loss of stiffness gradient. Indeed, Segers
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FIGURE 8. Different types of arterial remodeling with
normal aging according to the location and size of large
arteries. Large proximal elastic arteries, such as the
thoracic aorta, the carotid artery, and the abdominal
aorta, enlarge (outward remodeling) and stiffen with
aging. Large proximal arteries may contain up to 80
musculo-elastic complexes (ascending aorta), whereas
distal muscular medium-sized arteries contain a
smaller number. Distal muscular medium-sized arteries
do not enlarge with aging, and their distensibility re-
mains unchanged. At both sites, normal aging is asso-
ciated with media hypertrophy (hypertrophic remodel-
ing). �, no change.
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et al. (487) showed an increase in PWV of 15% in healthy
middle-aged subjects, between the age of 35 and 55, as well
as an increase in augmentation index, reflection coefficient,
and reflection magnitude and no change in characteristic
impedance. They concluded that the increase in aortic stiff-
ness was not accompanied fully by an increase in arterial
impedance and suggested that there was a role for age-
dependent modulation of aortic cross-sectional area.

D. Age-Related Phenotypic Changes in
VSMCs and Medial Calcifications

Arterial calcification is recognized as one of the main causes
of arterial stiffness and considered as an independent risk
factor in heart failure (99). The pathogenesis of calcifica-
tions is multifactorial, implicating factors inducing and
those opposing it, along with plasma constituents maintain-
ing minerals in solution and inhibiting tissue mineral depo-
sition (190, 381, 498). Elevated extracellular inorganic
phosphate (Pi) affects multiple signaling pathways leading
to VSMC mineralization. Complex changes in miRNA ex-
pression are often referred to as master regulators mediat-
ing VSMC transdifferentiation to osteoblast-like cells (re-
viewed in Ref. 281). Calcium and Pi are synergistic to in-
duce calcification. The primary mechanism by which Pi

enters VSMC is type III Na-dependent P cotransporters
(PiT-1 and 2). The major mechanism whereby elevated ex-
tracellular calcium and Pi drives VSMC calcification is via
release of phospholipid-bound matrix vesicles recently
identified as exosomes originating from intracellular multi-
vesicular bodies (222). The most reliable markers of exo-
somes are tetraspanins CD9 and CD63. Elevated extracel-
lular calcium induces expression of sphingomyelin phos-
phodiesterase 3 (SMPD3) and cytoskeletal remodeling that
regulates exosome biogenesis and VSMC calcification
(223). These matrix vesicles containing alkaline phospha-
tase and annexins provide nucleation complexes for crys-
talline hydroxyapatite deposition within the ECM in both
media and intima. An increase in Pi leads also to an early
expression of MMP-9 responsible for ECM degradation.
Exosomes contain also miRNA-143 regulating SRF and
FAs thus potentially controlling migration and prolifera-
tion of VSMC. Inhibitory factors such as the vitamin K-de-
pendent �-carboxyglutamic acid protein (MGP) and fe-
tuin-A loaded in vesicles limit calcium deposits. Circulating
fetuin-A taken up by VSMC and subsequently loaded into
ECM vesicles stabilizes the mineralization process. Osteo-
protegerin exerts also a protective effect on vascular calci-
fications by blocking the binding of the receptor activator of
NF-�B ligand (RANKL) to its receptor RANK on the osteo-
blastic precursor cells (231). Binding of RANKL to RANK
activates both canonical and alternative NF-�B pathways as
well as increases bone morphogenetic protein (BMP)-4 pro-
duction (411). An imbalance in the RANK/RANKL/osteo-
protegerin axis orchestrates a cross-talk between bone me-
tabolism and vascular calcifications (576).

Whatever the type of calcification, high levels of osteo/
chondrogenic markers including BMP-2, osteopontin, and
Runx2/Cbfa1-dependent alkaline phosphatase characterize
VSMC transdifferentiation. The Wnt/�-catenin and the
cAMP signaling pathways are known also to be key regu-
lators of osteo/chondrogenic differentiation. Similarly to
VSMCs in the media and aortic intima, pericytes in mi-
crovessels and myofibroblasts in the adventitia can differ-
entiate in osteoblasts.

Vascular calcification is classified into intimal atheroscle-
rotic calcification or medial calcification independently of
atherosclerosis or calcific uremic arteriolopathy in arteri-
oles. In atherosclerotic calcification, environmental factors
such as inflammatory cytokines, monocyte-macrophages,
oxidative stress, and oxidized lipids initiate mineralization
of subpopulations of VSMCs. The ability of monocytes to
ingest hydroxyapatite crystals may per se accentuate the
inflammatory response (378). The time course of nodule
formation is governed by interaction between BMP-2 and
its inhibitor MGP. The question of the use of warfarin, a
vitamin K antagonist in coronary diseases but which also
acts as an MGP inhibitor in VSMCs, is not well solved.
Medial calcification is associated strongly with type 2 dia-
betes mellitus, CKD, and aging. Calcifications are preferen-
tially located along elastin fibers surrounding VSMCs in
aorta and peripheral small-size muscular arteries. VSMCs
in calcifications express markers of senescence including,
prelamin-A, BMP-2, and IL-6 that accelerate the osteogenic
differentiation. miRNA-mediated overexpression of Runx2
suppressing myocardin/SRF regulation of VSMC contrac-
tile proteins is the basic mechanism leading to arterial stiff-
ening and decreased compliance related to arterial calcifi-
cations (576).

E. Coupling Between Vascular Inflammation
and Remodeling

Chronic low-grade inflammation is well accepted as a major
determinant of large elastic artery and small-sized muscular
artery remodeling, particularly in hypertension (205, 325).
This relation between vascular inflammation and remodel-
ing is partly dependent on activation of the renin-angioten-
sin-aldosterone and the endothelin systems (see above).

Remodeling of the small artery wall, which mainly targets
the ECM, is triggered by increased oxidative stress and
production of growth factors, such as TGF-�, PDGF, IGF,
and basic fibroblast growth factor (213, 476). Adhesion
molecules contribute to the inflammation-induced remod-
eling of the small-sized muscular arteries, particularly by
reorganizing ECM-VSMC interactions and influencing the
phenotypic modulation of VSMCs (206). A large number of
cellular components of both the innate and adaptive im-
mune systems mediate this type of remodeling: monocytes,
macrophages, mast cells, natural killer cells (13), lympho-
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cytes and the cytokines they produce (470). Schiffrin et al.
(474) showed that the ANG II-induced remodeling of small
arteries involved effector T cells such as T-helper (Th) 1
[producing interleukin (IL)-2, tumor necrosis factor-�, and
interferon-�] and Th2 lymphocytes (producing IL-4, IL-5,
IL-6, and IL-10), as well as Th17 and T suppressor lympho-
cytes.

Chronic low-grade inflammation is also well accepted as a
major determinant of the remodeling of large arteries. Large
artery stiffening has been reported during various diseases
associated with chronic low-grade inflammation, such as
rheumatoid arthritis (325, 453), systemic lupus erythema-
tosus (453), systemic vasculitis (38), human immunodefi-
ciency virus (HIV) (485), and inflammatory bowel disease
(589). Various mechanisms have been suggested, including
endothelial dysfunction, activation of VSMC-MR related
to ANG II, cell release of a number of inducible MMPs,
elastocalcinosis and accumulation of proteoglycans in the
media, and finally adventitial immune cells and cytokines
released from the vasa vasorum in response to vessel isch-
emia (263). Interestingly, in untreated patients with essen-
tial hypertension, aortic stiffness (assessed through carotid-
femoral PWV) was significantly correlated with high-sensi-
tivity C-reactive protein and IL-6 (321).

F. Early Vascular Aging: Concept and
Measurement

The concept of EVA was elaborated in 2008 (391) and further
developed in additional publications (388, 389). The main
idea is that increased arterial stiffness and PP are major inde-
pendent determinants of arterial aging and cardiovascular
risk. Recently, O’Rourke et al. (383) included this notion in
the “cardiovascular ageing continuum” (397).

In contrast to optimal aging, which can be considered as a
balance between the damaging effects of mechanical, met-
abolic, and chemical stresses and the repair mechanisms,
EVA is rather a defect of repair mechanisms in face of
various stresses. EVA reinforces the cross-talk by which
small artery alterations influence large artery phenotype,
and conversely large artery alterations influence small ar-
tery phenotype, as described above, into a vicious circle of
increased peripheral vascular resistance (structural part),
increased large artery stiffness, increase in central BP, mean
levels and variability of 24 h ambulatory brachial BP (478),
and ultimately target organ damage. EVA is observed typi-
cally in young hypertensive patients who display an in-
creased Young’s elastic modulus compared with older hy-
pertensive patients or normotensive individuals (60).

The additive effects of adult life risk factors along with fetal
programming caused by intrauterine growth retardation,
which is often followed by rapid catch-up growth (17, 158),
a hallmark the EVA process, also named the “early life de-

velopmental origins” of disease (390). This concept has been
called also the “mismatch” hypothesis (144), which better
depicts a mismatch in the environmental conditions in utero
versus at birth (preprogramming of the fetus in utero is a major
challenge in research at the moment). Fetal growth retardation
leads to multiple dysfunctions, for instance, on glucose metab-
olism based both on changes in insulin sensitivity and �-cell
function (163, 351), hemodynamic control (480), neuroendo-
crine regulation (486, 569), and kidney function (177). With
regard to embryonic vascular development and the adult vas-
cular system, endothelial dysfunction including capillary rar-
efaction (159, 418) and reduced aortic diameter and diastolic
BP (287) are associated with impaired fetal growth when com-
pared with normal fetal growth.

Vascular aging and more specifically EVA is increasingly
investigated in humans using high-resolution noninvasive
measurements of arterial stiffness indexes such as carotid
intima media thickness (IMT), central BP, and endothelial
damage parameters (389, 391). Particularly, normal and
reference values of arterial stiffness, measured by carotid-
femoral PWV, have been established in 16,867 subjects and
patients originating from 13 different centers within several
European countries (531a). PWV increases with age. The
increase with age is more pronounced (i.e., EVA) for higher
BP categories and more cardiovascular risk factors (531a).

These above indices may serve as arterial “tissue biomark-
ers.” Their predictive values compared with classical “cir-
culating” biomarkers, such as high-sensitivity C-reactive
protein used to assess inflammation, are not definitely es-
tablished. The consensus today focuses more on the use of
mixed biomarkers to improve their individual predictive
value (46, 591). However, the tissue biomarkers reflect the
integration of several events but not the contribution of
specific cell types of the vascular wall. Particularly, in an
individual participant meta-analysis of prospective obser-
vational data from 17,635 subjects (25), arterial stiffness
measured by carotid-femoral PWV proved to be a signifi-
cant predictor of coronary heart disease, stroke, and cardio-
vascular events, independent of classical cardiovascular risk
factors. Moreover, there was a significant interaction with
age: the younger the subjects, the higher the predictive value
(25). Altogether, these data on arterial stiffness validate the
concept of EVA and its implementation in clinical practice.

V. GENE EXPRESSION PROFILING IN
ARTERIAL STIFFNESS FOCUSED ON
VASCULAR SMOOTH MUSCLE CELLS
AND ECM

Heritability studies indicate a moderate to substantial ge-
netic contribution to carotid artery structure or arterial
stiffness, with estimates ranging from 0.18 to 0.62 (357,
393, 472). Additional evidence in support of a substantial
genetic predisposition for accelerated arterial stiffening
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comes from recent twin studies revealing that the genetic
predisposition for accelerated arterial stiffening dominates
over shared and unshared environmental components and
age contributions (69, 70, 352).

A. Transcriptional Biomarkers

The correlation between specific patterns of genes and a
quantitative trait of arterial stiffness, i.e., PWV, has first
been investigated in aorta biopsies originating from coro-
nary heart disease patients undergoing coronary artery by-
pass grafts (116). The functional analysis of genes expressed
differentially in patients with higher versus lower aortic
stiffness and/or correlated with PWV revealed that most
annotated transcripts were related to the mechanical regu-
lation of vascular structure, cell signaling/communication,
or gene expression. In stiff human aortas, upregulation of
the gene encoding the phosphoinositide-3-kinase regulatory
subunit polypeptide 1 (p85�) and downregulation of genes
coding for protein phosphatase-1, catalytic subunit, � iso-
form (PPP1CB), or A kinase (PRKA) anchor protein (yo-
tiao) 9 (all involved in VSMC signaling driving contraction)
support a role of VSMC tone in arterial stiffening (116).
With the aim to unravel the genetic components of hyper-
tension-associated arterial remodeling, transcriptional pro-
filing of aortic media after NG-nitro-L-arginine methyl ester
(L-NAME) administration identified three biologically rele-
vant patterns of gene expression changes. The first pattern
related to VSMC proliferation including CDC-2, CKS-2,
cyclin A, and the transcription inhibitors Id1, Id2, and Id3.
The second pattern comprised genes coding for components
of ECM such as osteoadherin, periostin, osteopontin, fi-
bronectin, thrombospondin-1, the latent TGF-� binding
protein-2, SMAD6, and SMAD7. The third group of genes
belonged to the cell signaling/communication class and or-
chestrating the control of VSMC tone, in particular the
genes coding for the soluble guanylate cyclase and RGS-2
(115).

Further investigations provided genome-wide screening of
mRNA expression in various clinical settings where VSMCs
play a crucial role. An overexpression of genes involved in
VSMC migration and proliferation, in particular lumican
(LUM) and ornithine decarboxylase (ODC1), was reported
in patients with CKD (122). However, the contribution of
these two genes to molecular pathways in VSMCs leading
to arterial stiffening needs to be confirmed. A transient in-
crease in MLC gene (MYL9) expression with age in VSMC
layers in mechanically injured arteries suggested a role for
Myl9 protein phosphorylation state in age-related altera-
tions of vascular contractility (501). Actin-binding Rho ac-
tivating protein (ABRA) has been identified as a regulator of
arteriogenesis based on an overexpression of this gene trig-
gering VSMC proliferation via Rho signaling in a model of
fluid shear stress-induced collateral artery growth (536).

Two independent research groups have demonstrated dif-
ferentially expressed apoptosis-related genes in atheroscle-
rosis. Martinet et al. (336) found that nine genes were up-
regulated and eight were downregulated in human carotid
endarterectomy specimens compared with nonatheroscle-
rotic mammary arteries. Among these differentially ex-
pressed genes, the death-association protein kinase (DAPK)
gene was upregulated approximately fivefold and predom-
inantly in VSMC-derived foam cells. Although DAPK is a
proapoptotic cytoskeleton-associated serine/threonine ki-
nase that belongs to the calmodulin-regulated kinase super-
family, the induction of type I (apoptosis) or type II (au-
tophagy) programmed VSMC death by DAPK overexpres-
sion in atherosclerotic plaques remains unknown.
Marchetti et al. (334) found higher B cell CLL/lymphoma 3
(BCL3) mRNA levels in VSMCs cultured from atheroscle-
rotic carotid arteries than in nonatherosclerotic segments.
Bcl-3 is a member of the inhibitor of NF-�B (I�B) family
involved both in the positive and negative regulation of
NF-�B target genes and is endogenously located in the cy-
toplasm and nucleus of VSMCs. In addition to its role in cell
death, Bcl-3 is also involved in VSMC proliferation since
deubiquitination of Bcl-3 via the enzyme CYLD (cylindro-
matosis), thereby preventing its nuclear translocation and
subsequent activation of the NF-�B-dependent cyclin D1
pathway (341), inhibited VSMC proliferation (528).

Gene expression profiling using cDNA array analysis fo-
cused on cell cycle gene was also used to identify novel genes
or pathways that may contribute to VSMC proliferation. A
marked downregulation of genes encoding minichromo-
some maintenance (MCM) proteins 6 and 7 through per-
oxisome proliferator-activated receptor � (PPAR�) activa-
tion allowed elucidation of a molecular pathway leading to
regulation of DNA replication in VSMCs by this nuclear
factor (56).

B. Genetic Components of Quantitative
Traits by Genome-Wide Association
Studies

Based on prior pathophysiological knowledge of arterial
stiffness, the search for candidate genes associated with the
structure and the function of the arterial wall has pointed to
numerous common polymorphisms in genes encoding mol-
ecules of the renin-angiotensin-aldosterone system, elastic
fiber structural components, MMPs, inflammatory cyto-
kines, �-adrenergic and endothelin receptors, and the NO
pathway, all involved in VSMC phenotypic modulation (TA-
BLE 4) (246). However, most of these genes except
CYP11B2 (14, 422) and NOS3 (78, 357) were not posi-
tioned within the chromosomal regions identified by ge-
nome-wide linkage studies as being associated with arterial
stiffness. Genome-wide association studies (GWAS) which
do not rely on any prior biological hypothesis represent the
most relevant genetic approaches since arterial stiffness and
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Table 4. Gene polymorphisms associated with arterial stiffness and VSMC functions

Gene
Polymorphism

or Marker Chr
Type of Genetic

Study
Number of
Subjects

Arterial Parameter
Associated P Value

Role of the Encoded Protein in
VSMC Phenotype or Function

CYP11B2 rs2717594 8 GWAS (286) 644 Carotid-femoral PWV 0.003 ANG II-stimulated VSMC
proliferation (580)

rs1799998 GWLS (14) 441 Pulse pressure Suggestive
NOS3 rs3918226 7 GWLS (357) 590 Forward waves Suggestive VSMC proliferation (273)
MEF2A rs3138597 15 GWLS (357) 590 Forward and

reflected waves,
carotid-femoral
PWV

Suggestive VSMC proliferation, migration,
and senescence (595)

CHSY1 122 cM 15 GWLS (357) 590 Forward and
reflected waves,
carotid-femoral
PWV

Suggestive VSMC apoptosis (73)

ADD2 94 cM 2 GWLS (357) 590 Carotid-femoral PWV Suggestive To be elucidated
PACE4 rs900414 15 GWLS (357) 590 Forward and

reflected waves,
carotid-femoral
PWV

Suggestive Unknown

FURIN rs6227 15 Gene-centric array
(139)

61,619 Mean arterial
pressure

3.65 � 10-9 VSMC migration and apoptosis
(545)

rs4702 Genome-wide
expression
quantitative trait
loci (542)

1,428 Systemic vascular
resistance index

0.005

TACR1 94 cM 2 GWLS (357) 590 Carotid-femoral PWV Suggestive To be elucidated for VSMCs
ADRA2B 94 cM 2 GWLS (357) 590 Carotid-femoral PWV Suggestive VSMC contraction (35)
IL6 29 cM 7 GWLS (357) 590 Carotid-femoral PWV Suggestive VSMC migration and

proliferation (276)
MEF2C rs770189 5 GWAS (286) 644 Carotid-brachial

PWV
Suggestive Increase in VSMC

differentiation (410)
2.53 � 10-6

SYNE1 rs1322512 6 GWAS (286) 644 Mean arterial
pressure

Suggestive Marker of VSMC contractile
phenotype (593)

7.76 � 10-6

COL8A1 rs792833 3 GWAS (286) 644 Reflected waves Suggestive VSMC migration and
apoptosis, focal adhesion
formation (81)

6.01 � 10-6

PREX1 rs6063312 20 GWAS (286) 644 Reflected waves Suggestive Rac-1-mediated fibronectin-
dependent synthetic
phenotype of VSMC (505)

2.09 � 10-6

TNFSF9 rs348384 19 GWAS (286) 644 Forward waves Suggestive Collagen synthesis and VSMC
proliferation (402) and
VSMC apoptosis (219)

1.16 � 10-5

TNFSF11 rs10507514 13 GWAS (286) 644 Reflected waves Suggestive VSMC calcification (411)
1.28 � 10-5

TGFBR2 rs3773643 3 GWAS (286) 644 Mean arterial
pressure

Suggestive ECM synthesis and VSMC
differentiation (594)

1.99 � 10-7

COL4A1 rs3742207 13 GWAS (531) 4,221 PWV 5.94 � 10-5 Cell-basement membrane
interactions of VSMCs (531)

BCL11B rs7152623 14 Meta-GWAS
(358)

20,634 Carotid-femoral PWV 1.0 � 10-11 To be elucidated

ADM rs11042717 11 GWAS (30) 4,155 Reflection index �10-4 VSMC migration and
calcification (63)

ADAMTS7 rs3825807 15 GWAS (481) 80,849 Coronary artery
disease

1.07 � 10-12 VSMC migration (428)

Continued
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VSMC phenotypic changes are common complex traits in-
fluenced by genomic and environmental factors. Framing-
ham Heart Study data provided the first demonstration of
linkage regions for carotid-femoral PWV and identified po-
tential candidate genes in these regions: the myocyte-spe-
cific enhancer factor 2A (MEF2A), insulin-like growth fac-
tor-1 receptor (IGF1R), chondroitin synthase (CHSY1),
�-adducin (ADD2), proprotein convertases (PACE4 and
FURIN), neurokinin-1 receptor (TACR1), �2B-adrenergic
receptor (ADRA2B), and IL-6 (IL6) (357).

More contemporary studies are now focused on the analysis
of genome-wide single-nucleotide polymorphism (SNP) as-
sociations using dense panels of common SNPs or whole-
exome sequencing to target the human genome that is pro-
tein coding and identify rare variants with important phe-
notypic effects (TABLE 4). The first GWAS of arterial
stiffness, performed using a 100K panel of common SNPs
and vascular/hemodynamic phenotypes (carotid-brachial
PWV, forward and reflected pressure waves and mean BP),
has identified some interesting candidate genes involved in
arterial wall structure and function (286): myocyte en-
hancer factor 2C (MEF2C), spectrin repeat containing, nu-
clear envelope 1 (SYNE1), collagen type VIII �1
(COL8A1), phosphatidylinositol-3,4,5-trisphosphate-
dependent Rac exchange factor 1 (PREX1), tumor necrosis
factor (ligand) superfamily member 9 (TNFSF9), tumor ne-
crosis factor ligand superfamily member 11 (TNFSF11),
and TGF-� receptor II (TGFBR2). MEF2C encodes a tran-
scriptional regulator required for myocardin expression
and VSMC differentiation (410). SYNE1 codes for ne-
sprin-1 which is a marker of differentiated, contractile
VSMCs (593). COL8A1 codes for type VIII collagen, a
short-chain collagen upregulated in atherosclerosis and
known to promote FA formation and VSMC migration to
the intima while reducing VSMC apoptosis and to contrib-
ute to plaque stabilization (309). Type VIII collagen expres-
sion within carotid arteries is increased by oxidized phos-
pholipids, and in particular 1-palmitoyl-2-(5-oxovaleroyl)-
sn-glycero-3-phosphorylcholine, through Sp1-induced
activation of KLF4 (81). PREX1 codes for a guanine nucle-
otide exchange factor for the Ras homologous (Rho) family
of small GTP-binding proteins that bind to and activate
Rac1 which is able to regulate the fibronectin polymeriza-
tion-induced downregulation of �-actin and calponin and

enhancement of VSMC growth (505). TNFSF9 encodes
CD137 ligand which acts synergistically with proinflamma-
tory cytokines to reduce collagen synthesis in VSMCs (402)
and to induce the apoptosis of VSMCs, thus increasing the
vulnerability of advanced atherosclerotic plaques (219).
TNFSF11 encodes RANKL, which is upregulated by the
osteogenic transcription factor Runx2 (523). TGFBR2, di-
rectly downregulated by the miRNA-145 in VSMCs (594),
encodes a receptor which plays a role in the regulation of
ECM synthesis. Heterozygous mutations in TGFBR2 are
associated with decreased expression of contractile proteins
causing a predisposition to aneurysms and dissections
(199).

Further studies have been performed with a larger sample
size and using more informative arrays. They identified new
candidate genes, some of them being potentially involved in
VSMC function (TABLE 4). A nonsynonymous SNP in the
collagen, type IV, �1 (COL4A1) gene encoding a major
structural component of basement membranes that inter-
feres with cell-ECM interactions and VSMC differentiation
has been reported to be associated with PWV in the Sar-
diNIA study (531). A meta-analysis of GWAS data in the
AortaGen Consortium revealed an association between ca-
rotid-femoral PWV or an increased risk for coronay artery
disease and a common genetic variation in a locus in the B
cell CLL/lymphoma 11B (BCL11B) gene desert (358). This
locus spans ~97.7 MB in which is located a linkage disequi-
librium harboring a cluster of overlapping, spliced ex-
pressed sequence tags. BCL11B codes for the chicken
ovalbumin upstream promoter transcription factor-inter-
acting protein 2, a zinc finger protein that interacts directly
with SirT1 to enhance transcriptional repression of various
target genes, some of them could potentially be relevant to
VSMC phenotype and function. A GWAS performed in
subjects enrolled in the Gutenberg Health Study identified a
SNP associated independently with adrenomedullin (ADM)
gene expression and reflexion index, a marker of vascular
tone of small-size resistance arteries (30). Because adre-
nomedullin, which is produced by a wide range of cells
including VSMCs, has potent vasodilator and hypotensive
effects (48) and is able to inhibit VSMC migration and
calcification (63), this finding argues for a causal involve-
ment of the encoded protein in the regulation of vascular
tone. Several GWAS resolve the existing evidence of a non-

Table 4.—Continued

Gene
Polymorphism

or Marker Chr
Type of Genetic

Study
Number of
Subjects

Arterial Parameter
Associated P Value

Role of the Encoded Protein in
VSMC Phenotype or Function

INO80D Ser818Cys 2 WES (496) 5 Hypoplasia To be elucidated
CLEC16A rs2903692 16 Exome array

(427)
3,681 Internal diameter 4.3 � 10-7 Unknown

See text for a full list of genes. Reference numbers are given in parentheses. GWAS, genome-wide association study; GWLS, genome-wide
linkage study; WES, whole-exome study; cM, centimorgan; PWV, pulse wave velocity.
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synonymous SNP at the ADAM metallopeptidase with
thrombospondin type 1 motif, 7 (ADAMTS7) locus associ-
ated with coronary atherosclerosis (428). The causal in-
volvement of this genetic variation in VSMC function is
supported by its association with reduced VSMC migration
and thrombospondin-5 cleavage, a substrate of ADAMTS7
disintegrin produced by VSMCs and involved in VSMC
migration. Furthermore, variants associated with PP have
been extensively studied and are the focus of several recent
meta-analyses (535, 563).

More recently, whole-exome next generation sequencing,
focusing on coding regions or exons, has proven to be an
effective alternative to locus-specific and gene-panel tests in
the research of new genetic bases of several diseases (TABLE
4). Exome chips offers great potential for the identification
of rare variants which may have a greater effect. Such an
approach has already been developed to annotate a rare
missense mutation in the inositol requiring 80 (INO80)
complex subunit D gene (INO80D) as the causal variant for
a syndrome of accelerated arterial aging (496). The INO80
complex is an adenosine triphosphate-dependent chroma-
tin remodeling complex controlling cardiac gene expression
during development (161), but its role in VSMCs remains to
be elucidated. More recently, a common polymorphism of
the C-type lectin domain family 16 member A (CLEC16A)
gene was reported to be associated with the carotid internal
diameter (427). Although the major identified biological
function of CLEC16a is to control mitophagy/autophagy in
pancreatic �-cells (508), the role of Clec16a in VSMC func-
tion is unknown.

C. Epigenetics

Master regulators of VSMC plasticity, including transcrip-
tional cofactors, modulate the pattern of gene expression
(409). More recently, epigenetic regulators have emerged as
additional on-off switches. These include chromatin regu-
latory elements and pathways as well as non-protein-coding
RNA (ncRNA) (511).

Most of the experimental evidence in support of a VSMC-
specific epigenetic signature has been provided by studies in
cell culture systems, although such systems do not compile
environmental cues that regulate VSMC differentiation in
vivo. PDGF-BB-induced phenotypic changes of cultured
VSMC was associated with histone modifications (300,
586). The recent development of single-cell epigenetic as-
says allowing reliable tracking of VSMC-derived cells
within artery lesions provides further arguments in favor of
a stable and VSMC-specific enrichment of the methylation
of histone 3 lysine 4 (H3K4me2) on the VSMC marker
genes. Indeed, this epigenetic mark is acquired during
VSMC differentiation and is retained during phenotypic
switching or transition to other phenotypes (145). Empha-
sis has also been made on DNA demethylation governed by

members of the ten-eleven-translocation (TET) family of
proteins. TET2 has been identified as a master regulator of
VSMC plasticity that drives epigenetic changes both in dif-
ferentiation and de-differentiation-associated VSMC genes
(299).

Canonically, ncRNA can be divided into short ncRNAs
including (�200 nucleotides long) miRNAs that control
gene expression and long ncRNAs (lncRNAs) (length from
0.2 to 2 kb) which can target entire regulatory networks via
the transcriptional and posttranscriptional regulation of
gene expression, depending on their location in the genome.
There are exciting recent reviews available on the role of
ncRNAs as fine-tuners of the plasticity of VSMCs and as
contributors to cardiovascular diseases (21, 320, 533, 543).
Pertinent to the present review is the identification of miR-
NAs regulating arterial stiffness or lncRNAs in vascular
cells controlling VSMC-related pathways involved in arte-
rial stiffening. RNA sequencing uncovered a human-spe-
cific, vascular cell-enriched 5= overlapping antisense
lncRNA named smooth muscle and EC-enriched migration/
differentiation-associated long noncoding RNA (SENCR)
(23). Silencing of this lncRNA, which is preferentially local-
ized in the cytoplasm and exists as two spliced variants,
resulted in a reduced contractile gene signature and an in-
crease in two promigratory genes in cultured human coro-
nary artery VSMCs. As the list of identified miRNA con-
trolling VSMC functions grows, miRNA-29 has emerged as
a multifaceted regulator that may be involved in vascular
stiffness through posttranslational repression of genes cod-
ing for key components of the ECM including type III col-
lagen �1 chain (see sect. VIB), type IV collagen �5 chain,
elastin, and MMP-2 (85). Age-related epigenetic hypom-
ethylation of the miRNA-203 promoter is associated with a
decrease in FA signaling proteins Src, caveolin-1, and pax-
illin, which impair dynamic FA signaling and actin sytoskel-
eton remodeling pathways, thereby increasing VSMC stiff-
ness (386). The new concept of SNPs located within a
miRNA binding site in critical protein-coding genes con-
tributing to arterial stiffening is very exciting. In support of
this theory is the detrimental effect on arterial stiffness of a
minor allele of a SNP enhancing the binding of the miRNA-
765 to the 3=-untranslated region of the apelin gene (APLN)
resulting in the downregulation of apelin expression and
thereby in an increased vascular tone by reducing eNOS
activity via the inhibition of ERK/Akt/AMPK signaling
(293). Chromatin modifications related to histone H3-
lysine-4 trimethylation (H3K4me3) and histone H3-
lysine-36 trimethylation (H3K36me3) reveal in the rat ge-
nome a novel lncRNA dynamically upregulated by ANG II.
This lncRNA may serve as the host transcript for miRNA-
221 and miRNA-222, both known to enhance VSMC pro-
liferation (284).

Evidence for an in vivo contribution of epigenetic mecha-
nisms in arterial stiffness has been accruing steadily over the
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last two years. In old mice, endothelium-specific overex-
pression of SirT1 improved endothelium-dependent relax-
ation to acetylcholine and reduced arterial stiffness assessed
by PWV measurement via the epigenetic downregulation of
plasminogen activator inhibitor-1 (PAI-1) expression since
the binding of SirT1 to the PAI-1 promotor decreased the
acetylation of histone H4 lysine 16 (565). In the Na-expo-
sure-induced stroke-prone Dahl salt-sensitive rat model, the
increase in PWV at 6 wk of age is paralleled with a huge
increase in epigenetic regulators of histones (e.g., E1A bind-
ing protein p300, a histone acetyltransferase, the histone
deacetylase 3, and the protein arginine N-methyltransferase
5 isoform c, a histone methyltransferase) in all vessel layers
(176). The demonstration that gene-network changes as-
sessed using integrative omic strategies combining genom-
ics, transcriptomics, and epigenomics could unveil novel
mechanisms contributing to arterial stiffness was recently
provided with the TwinsUK cohort (329). In this female
population, common variants associated with PWV were
identified in the CIB2 gene encoding for calcium and integ-
rin-binding protein-2 (CIB2), and one of them was associ-
ated with lower PWV values and increased CIB2 expression
caused by hypomethylation of the promoter region. Be-
cause CIB2 is believed to regulate intracellular calcium, this

finding points toward a genetic component in the associa-
tion between vascular calcification and arterial stiffness.

VI. VASCULAR SMOOTH MUSCLE CELLS
AND LARGE ARTERY STIFFNESS IN
MONOGENIC DISEASES

A. Marfan Syndrome: Loss of Cell-ECM
Connection, VSMC Dedifferentiation, and
Arterial Stiffening

The Marfan syndrome (MFS) is an autosomal dominant
genetic disease affecting the skeletal, ocular, and cardiovas-
cular systems (540). Many mutations in the gene encoding
fibrillin-1 (FBN1) lead to subsequent elastic fiber abnormal-
ities (540).

The clinical complications and the major cause of death in
MFS is aortic root dilation and associated aortic regurgita-
tion, dissection, and rupture (373, 450, 540). The likely
mechanisms of excessive dilation involve both abnormal
elastic fibers, aortic stiffness, as well as steady and pulsatile
stresses (TABLE 5).

Table 5. Vascular changes in monogenic connective tissue disorders

Monogenic Disease Marfan Syndrome Vascular Ehlers-Danlos Syndrome Williams-Beuren Syndrome

Genetic defect Mutations in the gene encoding for
fibrillin-1

Mutations in the gene encoding for
type III procollagen

Deletion of one allele of the
elastin gene

Target protein Fibrillin-1 Type III procollagen Elastin
Initiating event Loss of VSMC attachment to elastic

laminae
Abnormal collagen I fibrillogenesis,

reducing the load-bearing ability
of the arterial wall

Primary defect in elastin
inducing proliferation of
VSMC

VSMC phenotype Dedifferentiation No major change Proliferation
Synthetic phenotype Migration
Overexpression of contractile

markers
Mature contractile

phenotype
Increased VSMC stiffness

Extracellular ECM Deficiency in connecting filament Lack of VSMC signaling in
response to wall stress

Loss of VSMC attachments to
elastic laminae

Elastic fiber calcification
Excessive deposition of ECM

elements
Inflammation Yes Yes No
Arterial stiffness Reduction in cross-sectional

distensibility limited to the
thoracic aorta

Increase in cross-sectional
distensibility

Increase in cross-sectional
distensibility

Arterial remodeling Outward remodeling limited to the
thoracic aorta

Hypotrophic remodeling Hypertrophic remodeling

Increased tensile wall stress Reduction in tensile wall
stress

Arterial
complications

Aortic root dilation, dissection, and
rupture

Arterial dissection and rupture Hypertension

Arterial stenosis
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The impaired crosslinking in elastin alters the load-bearing
capacity of the aortic wall and predisposes to degeneration
and microdissections of the elastic network and fibrosis of
the media (373, 450). By combining observations in pa-
tients with MFS and mice homozygous for a targeted hypo-
morphic allele (mgR) of Fbn1, Dietz and co-workers (58,
415) detected early loss of VSMC attachments to internal
elastic lamina leading to calcification and late ECM disor-
ganization in the aorta and medium-size muscular arteries.
Calcification of the elastic network as well as malformation
of the same network are the triggers for VSMC proliferation
in the intima. The main utrastructural changes revealed in
mgR mice are the fragmentation of elastic fibers and disrup-
tion of fibrillary bundles attached to VSMCs. This elastoly-
sis process enables inflammatory cells to infiltrate the vas-
cular wall together with the fibrotic response (presence of
myofibroblasts and collagen accumulation). VSMCs adja-
cent to elastic laminae retain expression of VSMC markers.
The synthetic repertoire of these morphologically abnormal
VSMCs in early vascular lesions include also MMP-9, a
known mediator of elastolysis, which ultimately leads to
structural collapse and stiffening of the vessel wall. An in-
creased wall stiffness of the thoracic aorta has been reported
from invasive (585) and noninvasive studies in adults and
children (180, 212, 437, 471).

More recently (94), analyses of dilated aortas from Marfan
patients showed that overexpression of collagen I and con-
tractile protein markers was caused in part by enhanced
activation of the canonical TGF-� signaling pathway and
phosphorylation of its downstream effectors SMAD2/
SMAD3. In addition, upregulation of myocardin RNA and
thereby TGF-�-mediated increased expression of its targets
such as calponin as well as overexpression of RhoA, which
is known to regulate both myocardin and SMAD activities,
are likely responsible for the increase in both VSMC and
EM stiffness measured by AFM. The increase of adhe-
some proteins such as FAK, paxillin, and vinculin and the
subcellular localization of FA in Marfan VSMCs also
contributes to increase arterial stiffness. These abormali-
ties may add to the loss of cell attachments, seen above,
both contributing to the synthesis and remodeling of a
stiffer elastic ECM, leading thus to the known aortic
rigidity that precedes or accompanies MFS aneurysm.

The increased aortic rigidity is also observed in preclini-
cal small animal model studies. Thoracoabdominal PWV
was higher in the mgR/mgR mouse, and aortic wall stiff-
ness (Young’s elastic modulus-to-wall stress ratio) was
increased fourfold. A severe fragmentation of the elastic
network was observed with no change in cross-linking,
together with aortic dilation (335), suggesting that it is
the fragmentation of the medial elastic network and not a
defect in early elastogenesis which drives aortic dilation
in MFS.

There is little information concerning PP at the site of the
ascending aorta in patients with MFS. The high pulsatile
stress (due to the dilated aorta) at the site of the aortic root
further aggravates aortic dilation and explains why the ini-
tial aortic size in MFS patients is an independent predictor
of aortic dilation (454). Only carotid PP adjusted to age and
body surface area is positively correlated with ascending
aorta diameter, whereas brachial BP and PP are not associ-
ated with aortic complications (217).

A putative sequence of events can be suggested from the
above observations, leading patients with MFS to aortic
dilation, dissection, and rupture. At the site of the ascending
aorta, an abnormal fibrillin-1 makes connecting filaments
more fragile under repeated pulsatile stress. When connect-
ing filaments break, the VSMC-ECM connection is lost and
VSMCs dedifferentiate and acquire a synthetic phenotype;
more robust actin stress fibers and rearrangement of FAs
increase stiffness of VSMCs and the ECM. In parallel, the
abnormal synthetic repertoire of abnormal VSMCs in-
creases the production of MMPs, leading to elastolysis.
These changes translate into a vicious circle, through which
arterial wall stiffening exaggerates the fatiguing effect of
repeated pulsatile stress on wall components, favoring not
only the breakage of connecting filaments at the origin of
VSMC dedifferentiation, but also increasing the vulnerabil-
ity of the damaged aortic wall to dilation, dissection, and
rupture.

B. Ehlers-Danlos Syndrome: VSMC
Hypotrophy and Increased
Circumferential Wall Stress

Ehlers-Danlos syndrome (EDS) type IV is a vascular type
(vEDS) that results from mutations in the gene for type III
procollagen (22, 414), including the COLA3A1 mutation
(TABLE 5). It is a rare inherited autosomal dominant con-
nective tissue disorder typified by four main clinical fea-
tures: a characteristic facial appearance, easy bruising, thin
translucent skin with a visible underlying venous pattern,
and arterial, hollow organ and uterine fragility (22, 414,
518). Diagnosis is often ascertained on the basis of sponta-
neous arterial dissections and ruptures which are the com-
mon cause of death, colonic perforation, or organ rupture.
Thoracic and abdominal aorta are the predominant sites of
arterial rupture. Despite the identification of the causative
genetic defect, limited progress has been made in under-
standing the pathogenesis of vascular lesions in vEDS, and
the prevention of arterial complications remains challeng-
ing in young adults (117).

Type III collagen is composed of homotrimers with 3 �1
(III) chains folded into a triple helix. The �1 (III) chains
contain a glycine residue in every third position resulting in
an ~330 (glycine-X-Y) repeating amino acid sequence,
which is a prerequisite for the assembly into a triple helical
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structure. The kinetics of the triple helical folding plays a
critical role in the pathogenesis of vEDS (426). Missense
mutations interrupting the (glycine-X-Y) sequence account
for two-thirds of disease-causing mutations and are respon-
sible for a delayed folding or misfolding of the collagen
helix in the VSMC endoplasmic reticulum and accumula-
tion of seven-eighths of abnormal type III collagen in intra-
cellular compartments. These dominant mutations thus re-
duce mature type III collagen secretion (61). Unlike the
missense mutations, nonsense and frameshift mutations in
COL3A1 lead to premature stops in translation and non-
sense-mediated mRNA decay, reducing by 50% the pro-
duction of structurally normal type III collagen, which typ-
ically produces a milder clinical phenotype (482). Mice with
mutations in type I and type III collagen exhibited prema-
ture death because of rupture of large blood vessels (302,
303).

Very few reports are available concerning the elastic and
geometric properties of conducting arteries in vEDS pa-
tients (44, 131, 510). François et al. (131) estimated aortic
stiffness from PWV measurement in a family with ecchy-
motic EDS (which actually corresponds to vEDS) and re-
ported abnormally low PWV values in five relatives. Sones-
son et al. (510) failed to demonstrate any alteration in ca-
rotid stiffness in EDS patients compared with control
subjects, but the study enrolled patients with various sub-
types of EDS and few patients with vEDS. Mean circumfer-
ential wall stress was 43% higher in vEDS patients than in
age-, gender-, and BP-matched control subjects (44). Ca-
rotid pulsatile circumferential wall stress was also signifi-
cantly (22%) higher than in control subjects. The higher
circumferential wall stress in vEDS was due mainly to the
hypotrophic remodeling, characterized by significantly
lower IMT and wall cross-sectional area, and normal inter-
nal diameter. The pathophysiological mechanism underlin-
ing the lack of wall thickening, leading to the increase in
wall stress, is unclear. Very likely, in the large artery wall of
vEDS patients, the abnormal collagen ECM does not exert
normal cell signaling for migration, adhesion, and prolifer-
ation through specific downstream signal transduction
pathways. The role of the two major classes of receptors for
collagen [the �1 family of integrins and members of the
discoidin-domain receptor (DDR) family], produced by
VSMCs, is not yet understood in vEDS.

Another explanation is suggested by the lack of significant
difference in arterial remodeling, between vEDS and con-
trols, at the site of a distal medium-sized muscular artery,
the radial artery. Indeed, unlike the carotid artery, the radial
artery wall is able to thicken in vEDS. Although there is a
significant relation between carotid IMT and radial IMT in
control subjects, there is none in vEDS. Abnormal VSMC
signaling (55) caused by abnormal type I collagen and lead-
ing to the lack of wall thickening despite high wall stress
could be unmasked under conditions of high cyclic strain

occurring at the site of the carotid artery. Indeed, the stroke
change in diameter is 18-fold higher at the site of the carotid
artery than at the site of the radial artery. In support of this
hypothesis, numerous in vitro studies have shown a greater
impact of cyclic strain on VSMC phenotype and growth
compared with static load, as well as the identification of
local PP as a significant determinant of carotid but not
radial wall thickness (42). Abnormal type I collagen fibril-
logenesis may reduce the ability of the arterial wall to with-
stand mechanical loads, resulting in an excessive weakness
of the artery and a propensity to rupture at high circumfer-
ential wall stress. However, various distal muscular arter-
ies, such as the radial artery, are also affected by arterial
dissections and ruptures in vEDS, despite a normal circum-
ferential wall stress. Thus an abnormally high wall stress
may not be a mandatory condition for the occurrence of
arterial dissection and rupture.

Recently, Morissette et al. (367) hypothesized that tissue
fragility may not be the sole mechanism involved in arterial
dissection and rupture and that inflammation could play a
major role. They reported that many of the established bio-
markers of vascular inflammation, including markers of
endothelial dysfunction, such as VCAM-1, ICAM-1, and
MCP-1, and an acute phase reactant, C-reactive protein,
were increased in patients with vEDS. In addition, circulat-
ing levels of TGF-�1 and TGF-�2 were also elevated.
TGF-�1 is abundant in platelets. Vascular damage may lead
to platelet degranulation and thereby release of this growth
factor into the circulation.

In the BBEST study (403), celiprolol, a �1-adrenoceptor
antagonist with a �2-adrenoceptor agonist action, pre-
vented arterial dissections and ruptures in patients with
vEDS, most likely through the reduction of “wearing and
tearing” of the arterial wall. Of note, common carotid ar-
tery stiffness increased in response to celiprolol (i.e., lower
distensibility and increased Young’s elastic modulus). The
mechanism involved more likely the positive loop between
�2-adrenoceptor agonist properties and activation of the
TGF-� pathway. Stimulation of the �2-adrenoceptor in re-
sponse to celiprolol leads to increased production of colla-
gen through activation of the canonical TGF-�-induced
phosphorylation of SMAD2/SMAD3. There are strong as-
sociations between �-adrenergic receptors and the TGF-�
pathway reported at the level of cardiac and skeletal muscle.
Chronic stimulation of �2-adrenoceptors would probably
enhance collagen synthesis and cardiac hypertrophy
through increased expression of TGF-� in mice (456). In-
deed, in the hypertrophied rat masseter muscle, mRNA ex-
pression of TGF-�1, TGF-�2, TGF-�3, and PDGF-BB was
upregulated in response to clenbuterol-induced �2 stimula-
tion (3). The interaction between �1- and �2-adrenoceptor
stimulation and baroreflex stimulation may also contribute
to TGF-� stimulation (395) and collagen production, thus
increasing the mechanical strength of the vascular wall
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(118, 554, 555). Treatment of Ehlers-Danlos syndrome by
celiprolol is the first clinical trial showing a significant pre-
ventive effect against arterial mechanical complications.
Whether this upregulation of TGF-� specifically affected
the abnormal type III collagen is not known, but it is likely
that both types I and III were concerned.

C. Williams Syndrome: Unregulated VSMC
Proliferation Explains the Paradoxical
Reduction in Arterial Stiffness

Williams–Beuren syndrome (WBS) is a complex medical
and neurodevelopmental disorder with a characteristic con-
stellation of problems but also considerable phenotypic
variability (419). In brief, it is characterized by mental and
statural deficiency, elfin face, infantile transient hypercalce-
mia, and cardiovascular disorders (TABLE 5). The complex-
ity arises from the deletion of more than two dozen genes in
the WBS chromosome region, whereas the variability may
be due to their interaction with products from other genes
outside this region. Although little progress has been made
in drawing connections between aspects of the neurodevel-
opmental profile and specific genes within the WBS chro-
mosome region, this is not the case for the cardiovascular
abnormalities (121, 419). The main cardiovascular abnor-
malities are aortic supravalvular stenosis (70% of patients),
narrowing of large arteries and arterial hypertension (50%
patients, often in absence of aortic/renal narrowing). These
features have been related to the deletion of one allele of the
elastin gene, which occurs in ~90% of cases (121, 387).

Transgenic animal studies indicated that elastin was not
only required for ensuring the elastic properties of the arte-
rial wall, but elastin was also a major determinant of the
terminal differentiation and quiescence of VSMCs (288,
289, 360, 420). Using VSMC from mice lacking elastin
(Eln�/�), Karnik et al. (224) showed that elastin inhibits the
proliferation of VSMCs, induces a mature contractile phe-
notype in VMSCs, regulates migration of VSMC, and sig-
nals via the G protein-coupled pathway.

In elastin-null mice (Eln�/�), increased VSMC proliferation
both in vivo and in organ culture occurred during develop-
ment (288). The aortic lumen became smaller and the aortic
wall became thicker, with the arterial lumen eventually
obliterated, and animals died soon after birth. The cellular
mechanism underlying these changes was subendothelial
accumulation of arterial smooth muscle, a process that in-
volved cell proliferation, migration, and reorganization
(288). In contrast, elastin haploinsufficiency in mice
(Eln�/�), a model closer to WBS in humans, resulted in
living animals, with a stable 25–45 mmHg increase in mean
BP compared with their wild-type counterparts (123). Aor-
tic stiffness was higher in Eln�/� than in controls, ascribed
to a higher collagen-to-elastin ratio, and this finding has
been confirmed in several reviews and analyses (240, 255,

420). Importantly, however, arterial mechanics in Eln�/�

mice have been analyzed at the physiological mean BP of
each group, and the reduced distensibility may at least be
partially explained by the higher mean BP (123). Indeed,
when the aortic diameter-pressure curve was carefully ana-
lyzed over the full range of BP (123), and comparing pa-
rameters at similar BP, there was no difference in terms of
Young’s elastic modulus between animal groups in the pres-
sure range of 0–125 mmHg, confirming that the reported
elevated stiffness is due to the higher operating BP in these
animals.

In addition, aortic and carotid wall thickness at physiolog-
ical mean BP were lower in Eln�/� than in Eln�/�, which at
first glance, is in contrast to the arterial wall hypertrophy
reported in Eln�/� mice. Importantly, on a structural level,
Eln�/� mice have an increased number of elastic lamellae
without major medial hypertrophy. As developed below,
the concept generally accepted in hypertension remodeling
(60, 260, 270) is that distensibility is increased only when
an adapted arterial wall hypertrophy occurs. Thus it is
likely that the limited arterial wall hypertrophy fully com-
pensated for the arterial stiffening induced by the reduction
in elastin-collagen ratio in hemizygous mice at low BP, and
only partially at high BP.

The hyperproliferative phenotype was associated with de-
creased stress fiber and FA formation and increased migra-
tion of cultured VSMCs from Eln�/� pups. The critical
regulatory role of elastin was demonstrated by inhibition of
VSMC migration in response to the addition of exogenous
tropoelastin, the monomer precursor of elastin polymers
(224). Additional results supporting the new concept of
direct involvement of the elastin network in proliferation
came from the demonstration that aortic VSMCs and der-
mal fibroblasts from WBS patients or patients with familial
aortic supravalvular stenosis exhibited the same inverse re-
lation between elastogenesis and proliferation. As for mice,
addition of insoluble elastin rescues a normal proliferative
rate (546). Thus the occurrence of segmental obstructive
lesions is thought to be a two-step process, consisting of the
formation of an increased number of lamellar units and
vessel wall thickening during fetal development, leading to
a uniformly altered vascular tree, followed by postnatal
injury-mediated inward remodeling (289).

Extrapolations from the Eln�/� mouse suggest that affected
people may also have stiff arteries. In addition, according to
physics laws, arterial wall hypertrophy, i.e., an increased
wall thickness, is theoretically associated with a stiffer ar-
tery if the stiffness of the wall material remains unchanged.
This is why arterial wall thickening seen with intravascular
ultrasound imaging in humans with WBS has led to the
hypothesis that hypertension could be related to a reduced
compliance of the arterial tree (440). However, although an
increased wall thickness has been confirmed at the site of
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the carotid artery in WBS children (2, 529) and young
adults (244), compared with age- and sex-matched con-
trols, reliable clinical data on arterial stiffness showed no
reduction in arterial compliance.

Indeed, the carotid wall was abnormally distensible in
young WBS adults when WBS and controls were matched
for age, sex, and mean BP (244). This was associated with a
reduction in Young’s elastic modulus. A reduction in ca-
rotid stiffness (2) or no change in aortic stiffness (328) have
been also reported in WBS children, when they were com-
pared with age-, sex-, and mean BP-matched controls.
These clinical data suggest that, in contrast to what has
been hypothesized in the 1990s, a primary defect in elastin
leads to VSMC proliferation, arterial wall hypertrophy, and
hyperdistensibility. Therefore, the main factor responsible
for hyperdistensibility observed in WBS patients is arterial
wall hypertrophy caused by the primary defect in elastin,
which induces major changes in the phenotype of VSMCs.
This also highlights the importance of the micro-structural
organization and architecture of the arterial wall for its
function: although the disease impairs the most distensible
protein of the artery, the artery as a whole has become a
more distensible structure.

VII. VASCULAR SMOOTH MUSCLE CELLS
AND LARGE ARTERY STIFFNESS IN
POLYGENIC DISEASES

A. Arterial Stiffness and Remodeling in
Essential Hypertension: Isobaric Arterial
Stiffness Does Not Increase Despite
Arterial Wall Hypertrophy, i.e., VSMC
Plays a Compensatory Role

Arterial wall hypertrophy resulting from the sustained
heightened BP in essential hypertension compensates ide-
ally for increased circumferential wall stress even if there is
some degree of cellular hypertrophy. The laws of physics
prompt us to anticipate that any increase in wall thickness,
which results in the juxtaposition of materials with identical
mechanical properties, should increase arterial stiffness for
a given BP level. Surprisingly, several studies have pointed
to a reduced Young’s elastic modulus associated with arte-
rial wall hypertrophy measured by carotid IMT in hyper-
tension with no decrease in arterial distensibility under iso-
baric conditions (isobaric arterial stiffness) or identical wall
stress (168, 271) in the carotid artery (268) or the radial
artery (270). Similar findings were observed in SHRs and
stroke-prone SHRs (SHR-SPs) in the carotid artery and the
abdominal aorta, when compared with Wistar-Kyoto rats
(32, 41). The similar or even increased arterial distensibility
in hypertensive subjects or SHR documents the involvement
of pulsatile stress rather than static conditions in arterial
stiffness (294). At the level of mesenteric arteries, reduction

of stiffening of wall components has been also observed in
essential hypertension (203). Altogether, these findings
mean that hypertension-induced arterial wall hypertrophy
is not associated with an enhanced isobaric arterial stiff-
ness, but rather with structural changes in the arterial wall
leading to its mechanical adaptation to an elevated BP.

Whether hypertension-induced arterial wall hypertrophy is
associated with a reduced or increased VSMC tone has not
yet been determined. A reduced VSMC tone would allow
normalizing isobaric arterial stiffness despite wall hypertro-
phy. An increased VSMC tone could redistribute the me-
chanical load towards elastic materials (108), in synergy
with a higher number of cell-ECM attachments and smaller
fenestrations of the internal elastic lamellae. In response to
potassium cyanide, the increase in compliance of the in situ
isolated cartotid artery is higher in SHR than in normoten-
sive rats, indicating that the activation of VSMCs plays a
causal role in arterial stiffness independently of endothe-
lium (285). Ultimately, these changes can be envisioned as
adaptative mechanisms to compensate for the deleterious
effects of wall hypertrophy and prevent excessive arterial
stiffening at high BP levels (250, 266).

B. Arterial Stiffness and Remodeling in
Diabetes: Increased Arterial Stiffness Is
Primarily Due to ECM Alteration, i.e.,
VSMCs Lag Behind ECM

Type 2 diabetes (T2D) damages the large artery wall
through its two major features: hyperglycemia and insulin
resistance (516). Both factors may act at the structural and
functional levels by a variety of mechanisms. Chronic ex-
posure to hyperglycemia induces VSMC proliferation and
enhances the production of AGE and collagen cross-linking
(98) that stiffens the arterial wall material. In addition to
the increase in expression of MMP-2 and -9, accumulation
of ANG II is increased in vascular tissue (274). In VSMCs
from small-sized muscular arteries, adhesion of glycated
proteins, particularly glycated fibronectin, via binding to
receptor for AGE (RAGE) is independent of integrin recep-
tors and involves NF-�B signaling (104). Endothelial dys-
function and a shift to a pro-inflammatory phenotype of
macrophages are associated to these phenomena.

Insulin resistance augments collagen synthesis, and in-
creases the expression of several genes involved in the in-
flammatory processes (39). Arterial stiffening and thicken-
ing are thus likely the consequence of these changes. In
addition, insulin resistance is associated with reduction of
NO synthesis, increased release of ROS, very-low-density
lipoprotein synthesis, and cholesterol transport into
VSMCs (516). The high circulating levels of free fatty acids
released from adipose tissue contribute to impair endothe-
lial function and induce a low-grade inflammation. Alto-
gether these mechanisms contribute to large artery wall
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stiffening, thickening, and remodeling, which may favor
atherosclerotic plaque development (516).

Clinical research shows that T2D is associated with accel-
erated stiffening of large elastic (e.g., carotid, ascending
aorta), small-sized muscular (e.g., femoral), and mixed elas-
tic-muscular (e.g., abdominal aorta) arteries (516). In-
creased carotid-femoral PWV was independently associated
with cardiovascular and overall mortality in a glucose tol-
erance-tested sample of the community (95). In this cohort,
mortality risk doubled in subjects with diabetes or glucose
intolerance compared with controls, and a 1 m/s increase in
carotid-femoral PWV was associated with a hazard ratio
increase of 8%. Recent data suggest that stiffening of the
carotid and the femoral arteries may have prognostic value
independent of aortic carotid-femoral PWV (553). Arterial
wall hypertrophy was also reported to be higher in T2D and
hyperglycemic patients than in age- and BP-matched con-
trols (120, 537). In hyperglycemic patients, either with im-
paired fasting glucose or T2D, glycemia proved to be a
major independent determinant of carotid IMT, whereas
local PP was not. In contrast, carotid PP, but not glycemia,
was a significant determinant of carotid IMT in control
subjects. It is likely that, above a certain glucose threshold
(6.1 mM), glycemia may attenuate the mechanical influence
of local PP on carotid IMT, through changes in the mecha-
notransduction pathways involved in the response of the
arterial wall to pulsatile load.

A recent study has compared the stiffness of VSMCs in
diabetic patients subjected to coronary artery bypass sur-
gery and controls (105). Female sex and smoking, but not
diabetes, were independent predictors of stiffening of
VSMCs from thoracic aorta, assessed using the optical mag-
netic twisting cytometry. Confirmation by clinical investi-
gation of carotid mechanics in diabetic patients is required
to conclude that VSMC stiffness plays a smaller role than
ECM protein changes in the stiffness of the arterial wall
material, or, in other words, that changes at the level of
VSMCs lag behind changes of the ECM.

C. Arterial Stiffness and Remodeling in
Chronic Kidney Disease: Maladaptive
Arterial Wall Remodeling Parallels the
Decline in Kidney Function, i.e., VSMCs
as a Target of Kidney Dysfunction

Patients with CKD demonstrate EVA (264, 389), character-
ized by an accelerated arterial enlargement and stiffening
which occurs in parallel with the decline in glomerular fil-
tration rate (51). The relationship between central hemo-
dynamics (either arterial stiffness or central BP) and glo-
merular filtration rate decline is complex and depends
mainly on both the level of BP and the stage of the disease
[early CKD, advanced CKD, or end-stage renal disease
(ESRD)] (52, 53).

Arterial remodeling is already observed in early stages and
with progression of CKD (52). In comparison with normo-
tensive and hypertensive controls, patients with CKD stage
2–5 had a significantly larger internal carotid artery diam-
eter with no significant difference in IMT, resulting in a
significant increase in circumferential wall stress, indicating
inadaptive or inadequate arterial remodeling of large arter-
ies in CKD. Carotid Young’s elastic modulus increased with
progression of CKD but was not different from hyperten-
sive controls matched for BP. A word of caution is necessary
here. Indeed, these calculations are approximate and may
be misleading, as discussed above, in case of severe remod-
eling with build-up of residual stresses and stress redistri-
bution through elongation of the vessel. In contrast to ca-
rotid stiffness, the carotid-femoral (aortic) PWV of CKD
patients was significantly higher than in hypertensive and
normotensive controls, suggesting that carotid and aortic
stiffness could progress differently in this population. Con-
sistent with this hypothesis, a prospective study has re-
vealed that reduction of aortic stiffness independently of BP
decreases all-cause and cardiovascular mortality in ESRD
(152).

In opposition with observations made in nonuremic athero-
sclerosis where carotid IMT increases with the burden of
atherosclerosis and the rate of increase is limited by lipid-
lowering treatment (89), a study has shown that carotid
IMT decreased during CKD progression (53). In this co-
hort, circumferential wall stress was the only arterial pa-
rameter independently associated with CKD progression
and the onset of ESRD. Renin-angiotensin system blockers,
often prescribed to CKD patients, could play a role in the
defect of thickening because of their antiproliferative prop-
erties (308, 544). Another hypothesis is an excess of VSMC
apoptosis. Indeed, in children with ESRD, Shroff et al. (506)
showed apoptosis related to the reduced number of VSMCs
compared with patients without CKD. In addition, in-
creased ECM turnover with high MMP activity could also
participate in the observed phenotype. MMPs are involved
in flow-induced outward vascular remodeling (407) and in
cardiovascular remodeling such as LV hypertrophy, athero-
sclerosis, or aortic aneurysm (162, 455). In CKD patients,
several studies showed variations in serum levels of MMPs
and their inhibitors (86, 189).

Finally, damage to large arteries may be related to bone
disease not only in ESRD but also in earlier stages of CKD.
In 107 CKD patients, in whom bone evaluation was per-
formed by bone densitometry and the measurement of the
bone-specific alkaline phosphatase (BSALP), bone disease
was associated with the carotid outward remodeling in par-
allel with the decline of renal function in this population
(54). This association existed only in patients with glomer-
ular filtration rates �38 ml·min-1·1.73 m-2. BSALP was in-
dependently and positively correlated with carotid internal
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diameter and explained 13% of the variance. These results
suggest a crosstalk between kidney, arterial wall, and bone.

An inverse relation between arterial calcification and stiff-
ness with bone density or bone turnover was observed in
CKD and ESRD patients (306). Arterial calcification is a
common complication of CKD and ESRD (167). Several
studies have shown that low serum levels of the soluble
calcification inhibitor fetuin-A is an independent predictor
of aortic and carotid stiffness (173). Studies in ESRD and in
the general population have shown a strong association
between vitamin D deficiency, increased arterial stiffness,
and deficient endothelial function (305).

In conclusion, these data suggest that VSMCs of large ar-
teries are targets of kidney dysfunction, implying various
mechanisms leading to maladaptive arterial remodeling.
However, these mechanisms have not been studied very
much until now, and data on apoptosis and reorganization
of the ECM are lacking.

D. Arteriosclerosis Versus Atherosclerosis:
VSMCs Are Directly Involved as Primary
Events

Undoubtedly, the clinical relevance of the interaction be-
tween arterial stiffness and atherosclerosis has been well
established in large, independent population-based cohorts.
Carotid-femoral PWV was reported to increase while the
common carotid distensibility coefficient consistently de-
creased with increasing IMT and the severity of plaques in
the Atherosclerosis Risk in Communities (ARIC) study, the
Rotterdam study, and the Multi-Ethnic Study of Athero-
sclerosis (MESA) study (298, 446, 552). In addition, an
independent correlation between intrarenal vascular resis-
tance and both aortic stiffness and carotid atherosclerotic
lesions has been demonstrated, suggesting the involvement
of small-sized muscular and large elastic arteries in theses
connections (64). While PWV was associated with echo-
genic (fibrosis and calcification) plaques independently of
age, gender, and hypertensive status, no association was
reported with echolucent plaques (69, 601), suggesting
that fibrosis and calcification may be more important
than intimal lipoprotein deposition in linking atheroscle-
rosis to arteriosclerosis. In support of the importance of
plaque morphology in this link is the reported associa-
tion between PWV and intraplaque hemorrhage resulting
from a proangiogenic phenotype of VSMCs leading to
neovascularization of advanced atherothrombotic le-
sions (181, 494).

One of the hallmarks of atherosclerosis is the involvement
of multiple cell types, ECs, VSMCs, fibroblasts but also
extravascular cells, and a large number of signaling path-
ways have extensively been reviewed previously (187). For
arteriosclerosis, it appears more simple since it is primarily

mediated by structural changes of the media which is a
privileged site, being avascular, and devoid of leukocytes.
There are, nonetheless, two common factors in arterioscle-
rosis and atherosclerosis, i.e., hemodynamic factors and
VSMC plasticity and calcification, and several steps in ath-
erosclerosis, in particular inflammation, intimal thickening,
fibrosis, thrombosis, and vascular remodeling are also di-
rectly relevant to arteriosclerosis.

The contribution of VSMCs to plaque, which is mainly
driven by their phenotypic modulation, is complex and has
probably been underappreciated in the past (187). VSMC
marker expression and VSMC lineage tracing have revealed
that excessive VSMC proliferation and transdifferentiation
into macrophages and mesenchymal stem cells contribute
to atherosclerotic plaque development (125). The reduced
expression of the ATP-binding cassette transporter A1
(ABCA1) in VSMC-derived foam cells in atherosclerotic
lesions (8) may have a role in arterial stiffening since
ABCA1-mediated serum cholesterol efflux capacity mea-
sured ex vivo by incubation of serum from healthy subjects
with macrophages was inversely correlated to PWV (124).
Recently, the dual role of VSMCs in the plaque was high-
lighted, with a deleterious effect by transformation into
foam cells contrasting with a positive effect at later stages
by production of ECM proteins to maintain plaque stability
(216). A proposed mechanism contributing to plaque insta-
bility is through KLF4-dependent VSMC phenotypic tran-
sition activating the proinflammatory properties of VSMCs
(497). Recently, AMP-activated protein kinase (AMPK)�2
deletion was shown to promote plaque instability via
NF-�B activation, resulting in binding of NF-�B p65 to the
KLF4 promoter and thereby increasing transcriptional up-
regulation of KLF4 expression in VSMCs (107). In addition
to this anti-atherogenic effect, activation of AMPK� re-
duced arterial stiffening in Klotho-deficient mice (296) or
old mice (283), providing evidence for VSMC APMK� as a
novel therapeutic target in preventing both atherosclerosis
and arteriosclerosis.

Undoubtedly, animal models recapitulating atherosclerosis,
mainly apolipoprotein E (apoE) and LDL receptor (LDLR)-
deficient mouse models, have added clear evidence support-
ing the role of VSMC in linking atherosclerosis to arterio-
sclerosis. Young’s elastic modulus of the thoracic aorta is
increased in apoE-null (apoE�/�) mice (238) or LDLR-de-
ficient mice (LDLR�/�) (112). Additional deficiency in os-
teopontin in LDLR�/� mice further increases aortic PWV
(499). Mechanisms for increased arterial stiffening include
increased expression of several ECM proteins and collagen
as well as increased activity of lysyloxidase (LOX) produc-
ing crosslinks of collagen (238). The role of apoE-contain-
ing HDL was demonstrated in a cellular model of VSMCs.
The suppressive effect of apoE on mechanically driven
VSMC collagen I and fibronectin gene expression is specific
to dedifferentiated VMSC and is mediated by the cycloox-
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ygenase-2-prostaglandin I2-prostacyclin receptor (Cox2-
PGI2-IP) pathway while miRNA-145 transduces LOX
mRNA repression (238). Another proposed pathway in-
cludes regulation of noncanonical Wnt signaling by the
LDLR-related protein 6 (LRP6). Indeed, mutation impar-
ing LRP6 activity results in diminished transcription fac-
tor 7-like 2 (TCF7L2)-dependent inhibition of Sp1-medi-
ated VSMC differentiation and increased atherosclerotic
lesions (512), and deletion of LRP6 in the vascular
smooth muscle lineage promotes upregulation of osteo-
pontin via the upstream stimulatory factor 1 (USF1) pro-
tein-DNA interactome together with increased arterial
stiffening (80). Accumulation of the glycosaminoglycan
hyaluronan in the aorta that promotes the VSMC switch
towards a synthetic phenotype has also been proposed as
a common denominator of arterial stiffening and forma-
tion of plaques, but the mechanisms involved remain
unclear (313).

A key question is the temporal dynamics of increased arte-
rial stiffness and development of atherosclerotic lesions. In
support of the concept of a causal role of elastic fiber frag-
mentation in arterial stiffening is the increase in local PWV
assessed by MRI correlating with elastin fractures at both
18 wk and 30 wk of age in apoE�/� mice (147). Interest-
ingly, the formation of atherosclerotic lesions became de-
tectable only at the age of 30 wk. Additional insight has
emerged from a study focusing on glycosphingolipids in
apoE�/� mice. Glycosphingolipids are major regulators of
lipid homeostasis, and these signaling lipids are critically
involved in superoxide radical generation and atherosclero-
sis development. Pharmaceutical inhibition of glycosphin-
golipid synthesis (with D-threo-1-phenyl-2-decanoylamino-
3-morpholino-1-propanol) resulted in a dose-dependent re-
duction in atherosclerosis and a marked improvement in
arterial elasticity in apoE�/� mice fed a Western diet (74).
Of note, the reduction in PWV occurred whatever the stage of
plaque development, at the moment of intimal thickening at
20 wk, and with advanced calcified plaques at 36 wk. Alto-
gether, these results point in the direction that an increase in
arterial stiffness precedes age-related full plaque development.

There is clear evidence that extracellular signals linked to in-
tracellular signaling pathways via cell receptors are key players
in the development of atherosclerosis and arterial stiffening.
GPCRs and integrins represent two main classes of cell surface
receptors involved in atherosclerosis and arteriosclerosis. In
the first study reporting a causal role of Rho signaling path-
ways in atherosclerosis, administration of a RhoK inhibitor
decreased the size of plaques by 30% in LDLR�/� mice, pos-
sibly by reducing NF-�B activation (327). However, assign-
ment to VSMC-specific signaling was difficult because of the
presence of GPCR signaling in all cells present in the plaque, in
particular platelets and leukocytes. In fact, the role of large G
proteins in atherosclerosis is far more complex. The two major
heterotrimeric G proteins G�q/G�11 and G�12/G�13 exert an-

tagonist regulation of VSMC differentiation at sites of vascu-
lar injury, while their downstream signaling synergistically
regulates vascular tone (9). Smooth muscle deficiency of G�12/
G�13 in apoE�/� mice promoted atherosclerosis, accompa-
nied by a reduced RhoA-mediated SRF-dependent transcrip-
tion of VSMC differentiation markers. In contrast, smooth
muscle deficiency of G�q/G�11 blocked the upregulation of
early response genes and attenuated the downregulation of
differentiation marker genes induced by vascular injury as well
as neointimal hyperplasia.

Adhesion between cells and ECM endows integrins with rele-
vant signaling pathways potentially related to both atheroscle-
rosis and arteriosclerosis. While the role of several integrins in
cell signaling altering intimal and medial functions in athero-
sclerosis has been extensively studied, their involvement in
arterial stiffening is being increasingly identified. Invalidation
of the collagen-binding integrin �1�1 in apoE�/� mice reduced
leukocyte migration, plaque area, and increased VSMCs and
collagen contents in advanced plaques (473). Invalidation of
the �1 gene alone did not result in any modification of ECM
composition, VSMC differentiation or proliferation or in ca-
rotid stiffness but reduced mechanical strength of the arterial
wall (316). Thus loss of attachments between cells and colla-
gen thereby producing a softer ECM provides a mechanism
for controlling both atherosclerosis and arteriosclerosis.
VSMCs express high levels of �v�3 integrin, and this integrin
promotes many functions such as VSMC proliferation and
migration (62). Therefore, logically its presence has been
shown to be increased in atherosclerotic plaques using in vivo
imaging in double knockout mice deficient in LDLR and apo-
lipoprotein B-48 (252). Similarly, inhibition of �v�3 limits the
recruitment of VSMCs into early atherosclerotic lesions in di-
et-fed apoE�/� mice, whereas inhibition of �5�1 integrin does
not prevent this recruitment (76). A similar differential role of
these two fibronectin-binding integrins in VSMC functions
related to arterial stiffening is less clear. During development,
specific deletion of both �5 and �v integrins in VSMCs is re-
quired to prevent cell attachment to fibronectin and the for-
mation of mature FAs and to disrupt TGF-� signaling (541).
These observations would suggest that the process of FA mat-
uration represents a most interesting target to understand the
relations between arteriosclerosis and atherosclerosis. The re-
cruitment and lifetime of FA, which depend on the equilibrium
between association and dissociation rates governed by ECM
stiffness and applied forces, are relevant in arteriosclerosis be-
cause they control the level of VSMC-ECM attachments, and
in atherosclerosis in which variations of shear stress and wall
stress correlate with the location of lesions in regions of turbu-
lence and low shear stress.

VIII. CONCLUDING REMARKS

Position statements and recommendations on arterial stiffness
have been introduced into clinical practice since arterial stiff-
ness has been referred to as an independent cardiovascular risk
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and a predictor of future events (269, 534). In parallel, more
accurate and validated devices have been developed to deter-
mine both local and systemic measurements of arterial stiff-
ness, limited to large conduction arteries for technical reasons.
Thus we have a fragmented understanding of the relative im-
portance of stiffening between elastic and muscular arteries
and the cross-talk between them. Moreover, the clinical fea-
tures of arterial stiffness are not necessarily identical consider-
ing that arterial stiffness may be a cause or a consequence, or
both, in multiple pathologies (195). One consistent lead is that
many of the pathological conditions associated with arterial
stiffness affect both ECM and VSMCs whatever their location
along the arterial tree. The importance of VSMCs and molec-
ular signaling have been established in rat models of hyperten-
sion and through the multiple effects of genetic manipulations
in mice. Experimental rodent models develop systolic hyper-
tension, intimal thickening, increased arterial contraction, de-
creased relaxation, and arterial stiffness with aging. The com-
parison between rodents and humans is only reliable if we
consider the relative quantity of elastic lamellae and VSMCs
for a species-specific artery site.

Intense efforts have been directed towards a basic under-
standing of cellular and molecular determinants of arterial
stiffness. In the most current view as depicted in FIGURE 9,
all actors claim a role, that is, hemodynamic factors and
VSMCs together with ECM in which they reside and spe-
cific cell types in the vascular wall involving ECs, inflam-
matory cells, fibroblasts, and pericytes/progenitor cells.
Our goal has been to focus on the dual cell and tissue
mechanobiology and to bring together new physiological
pathways and current clinical statements on arterial stiff-
ness. For example, the deciphering of the cellular/molecular
proinflammatory mechanisms driven by SRF at the level of
elastic arteries versus resistance muscular arteries could
provide future advances on the contribution of cellular stiff-
ness to vascular wall stiffening.

As the fields of vascular biology, signaling, biomechanical
phenotyping of arteries, and central hemodynamics mature
(FIGURE 10), advancing our knowledge is entirely depen-
dent on data-driven computational models which will de-
fine mechanistically-driven hypotheses. The prevailing view
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that arterial stiffness may be represented as separate, hemo-
dynamic, structural, or signaling cascades has to be embed-
ded in a unique complex network in which interactions
across the differents elements are ordered in a dynamic early
(reversible) to late (irreversible) process. In addition, we are
on the way to benefiting from high-resolution microscopy,
such as AFM or velocity protein mapping, to be able to
visualize in real time specific locations and movements of
individual proteins, or clusters, in FAs and actin biome-
chanics.

Another challenge will be to correlate data from genetic
analysis together with basic understanding gained from
VSMC mechanotransduction studies, for example, how
common genetic variations in a locus in the BCL11B
gene interfere with VSMC differentiation and viscoelas-
tic responses. The immuno-inflammatory balance may
also enter into the game via genetic mutations. The emer-
gence of large genetic approaches will allow the identifi-
cation of loci or exomes regulating sets of common and
rare variants involved in a complex trait such as arterial
stiffness. At present, there are no studies identifying rare
variants associated with arterial stiffness. In addition,

another level of control lies in epigenetic marks and in
noncoding RNAs.

At present, the cornerstone for preventing and treating arterial
stiffening remains the transfer of information from VSMC-
ECM interactions and genetic analyses in biomarkers to assess
tissue mechanical homeostasis. Redundancy as well as feed-
forward and feedback signaling make the search for new bio-
markers difficult. Nevertheless, the explosion of molecular im-
aging of the arterial wall and proteomics opens up new dimen-
sions and possibilities. Gaining an integrated understanding of
the mechanisms that initiate and sustain VSMC phenoconver-
sion (quiescent-to-activated cells) impacting on the continuum
of arterial stiffnening will give way to targeted therapies to halt
or even reverse progression. The development of open-access
biobanks and relevant clinical populations will strengthen
translational and reverse-translational research in the field.
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