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A B S T R A C T

This paper presents an autonomous methodology for a low-cost commercial AR.Drone 2.0 in partly unknown
indoor flight using only on-board visual and internal sensing. Novelty lies in: (i) the development of a position-
estimation method using sensor fusion in a structured environment. This localization method presents how to get
the UAV localization states (position and orientation), through a sensor fusion scheme, dealing with data pro-
vided by an optical sensor and an inertial measurement unit (IMU). Such a data fusion scheme takes also in to
account the time delay present in the camera signal due to the communication protocols; (ii) improved potential
field method which is capable of performing obstacle avoiding in an unknown environment and solving the non-
reachable goal problem; and (iii) the design and implementation of an optimal proportional - integral - derivative
(PID) controller based on a novel multi-objective particle swarm optimization with an accelerated update
methodology tracking such reference trajectories, thus characterizing a cascade controller. Experimental results
validate the effectiveness of the proposed approach.

1. Introduction

In the last few years, Unmanned Aerial Vehicles (UAVs) stir up both
scholar and commercial interest within the robotics community as the
real and potential applications are numerous [1]. To undertake the
challenging task of autonomous navigation and maneuvering, a versa-
tile flight control design is required.

A large number of studies have emerged in the literature on UAVs.
Some examples of its application can be found in precision agriculture
[2], formation control of Unmanned Ground Vehicles (UGVs) using an
UAV [3], habitat mapping [4]. Modeling, identification and control of
an UAV using on-board sensing are presented in [5]. Catching a falling
object using a single UAV, has been accomplished in [6] and for a group
of UAVs in cooperative formation in [7], where high-speed external
cameras were applied to estimate the position of both the objects and
UAVs. Simultaneous localization and mapping (SLAM) was im-
plemented to navigate UAV in working space [8]. Current im-
plementations in UAV still require collision avoidance, adaptive path-
planing and optimal controller. There exists a need to design meth-
odologies to cope with these requirements to increase the degree of
intelligence and therefore autonomy of UAV.

An autonomous UAV consists of four essential requirements: (i)
perception, the UAV uses its sensors to extract meaningful information;
(ii) localization, the UAV determines its pose in the working space; (iii)
cognition and path planning, the UAV decides how to steer to achieve its
target; (iv) motion control, the UAV regulates its motion to accomplish
the desired trajectory.

The path planning problem can be divided into classical methods
and heuristic methods [9]. The most important classical methods con-
sist of cell decomposition method (CD), potential field method (PFM),
subgoal method (SG) and sampling-based methods. Heuristic methods
include neural network (NN), fuzzy logic (FL), nature inspired methods
(NIM) and hybrid algorithms. The potential field method (PFM) is
particularly attractive since it has a simple structure, low computational
complexity and easy to implement. In literature, there has been a sig-
nificant amount of work based on this method applied to ground agents
path planning [10–13]. An interesting work on implementing and flight
testing of this approach on an UAV is studied in [14]. To operate in real-
time, a layered approach is developed in uncharted terrain: plan glob-
ally and react locally. The global planner is based on an implementation
of Laplace equation that generates a potential function with a unique
minimum at the target. The local planner uses modification of
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conventional potential field method in which not only the position of
the UAV (as in the traditional PFM) but also the relative angles between
the goal and obstacles are taken into account. However, this approach
sometimes encounters problems when the repulsion from obstacles
exceeds the physical constraints of the UAV. It is pointed out that the
potential field method has several inherent limitations [15] in which
the non-reachable target problem is the most serious one and is worth
investigating since it causes an incomplete path in the navigation task.

As an UAV is a complex system in which electromechanical dy-
namics is involved, the robust controller is an essential requirement. In
[16], the dynamical characteristics of a quadrotor are analyzed to de-
sign a controller which aims to regulate the posture (position and or-
ientation) of the quadrotor. An autonomous control problem of a
quadrotor UAV in GPS-denied unknown environments is studied
[17,18]. In order to obtain reasonable dynamical performance, guar-
antee security and sustainable utilization of equipment and plants,
controller performance has to be constantly optimal.

In the current study, a real-time implementation for an AR. Drone
2.0 UAV autonomous navigation in indoor environment is proposed to
trigger its identification, able to estimate the UAV pose, detect ob-
stacles, generate the suitable path and to perform the parametric op-
timization of its optimal proportional-integral-derivative (PID) con-
troller. The main contributions are the development of: (i) a position-
estimation method based on sensor fusion using only on-board visual
and inertial sensing considering the time delay of the camera signal and
reducing drift errors; (ii) a solution to solve the non-reachable target
problem in conventional PFM; (iii) multi-objective optimization PID
controller based on a proposed multi-objective particle swarm optimi-
zation (MOPSO) with an accelerated update methodology to execute
navigation task. The motivation behind this research is to illustrate that
autonomous navigation is feasible on low-cost UAV devices.

This paper is structured as follows: the next section gives a de-
scription of AR.Drone 2.0, identification, system setup and localization.
Section 3 discusses UAV path planning based on improved potential
field method. Multi-objective particle swarm optimization algorithm for
control parameters optimization and simulation results are described in
detail in Section 4. Next, the effectiveness of the proposed real-time
collision-free path planning for an AR. Drone 2.0 UAV using only on-
board visual and inertial sensing application in indoor environment is
presented in Section 5. The final section summarizes the main outcome
of this contribution and presents the next challenges.

2. System setup, identification and localization

A description of the Ar.Drone 2.0 main characteristics, system
identification, sensory equipment, system setup and localization are
presented in this section.

2.1. Ar.Drone 2.0 description and coordinates system

There are four basic motions of this UAV: pitch, roll, throttle, yaw
and translational movements over x, y and z, as shown in Fig. 1 (Left).

It is worth mentioning that the coordinate system described above
(x; y; z), represents a relative coordinate system used by the internal
controllers (low layer). Using such a coordinate system instead of ab-
solute coordinates (e.g., X; Y; Z) in the high layer will yield errors. For
example, notice that by rotating the quadrotor, the relative coordinates
(x; y) will change with respect to the absolute coordinates, as depicted
in Fig. 1 (Right). In which, the rotation angular of XY coordinate
system respect to the absolute xy coordinate system is γ. It is possible to
state that the relation between the two-coordinate system depends di-
rectly of this angle.

The IMU provides the software with pitch, roll and yaw angle
measurements. Communication between Ar.Drone and a command
station is performed via Wi-Fi connection within a 50m range.
AR.Drone 2.0 is equipped with two cameras in the bottom and in frontal
parts with the resolutions of 320×240 pixels at 30 frames per second
(fps) and 640×360 pixels at 60 fps, respectively.

2.2. Analysis of inputs and outputs and system identification

The developed Software Development Kit (SDK) mode allows the
quadrotor to transmit and receive the information roll angle (rad), pitch
angle (rad), the altitude (m), yaw angle (rad) and the linear velocities
on longitudinal/transversal axes (m/s). They are denoted by {θout, ϕout,
ζout, ψout, ẋ , ẏ} respectively. The system is executed by four inputs {V ,in

x

V ,in
y ζ̇ ,in ψ̇in} which are the linear velocities on longitudinal/ transversal

axes, vertical speed and yaw angular speed references as depicted in
Fig. 2.

An Ar. Drone is a multi-variable and naturally unstable system.
However, due to the internal low layer control implemented in the
embedded operative system, it is considered as a Linear Time Invariant
(LTI) System, which is able to be decomposed into multiple single input
single output (SISO) loops. Transfer functions are obtained via para-
metric identification using the prediction error method (PEM) and
Pseudo-Random Binary Signal (PRBS) input signals [19]. A sampling
time of 5 ms for yaw and 66 ms for other degrees of freedom are chosen
based on the analysis of dynamics characteristic. The identified transfer
functions are given in Eq. (1).

Validation of transfer function of pitch/roll, altitude and yaw are
presented in Fig. 3. The validation of the transfer function is made
against a different set of data to prove that quadrotor movements are
approximated appropriately.
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Fig. 1. The movements of an AR.Drone 2.0 in absolute and relative planes (Left) and UAV
displacement on (x; y) plane respect to the absolute plane (Right). Fig. 2. Inputs and Outputs of an AR.Drone 2.0.
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2.3. System setup and localization using sensor fusion

In our approach, the localization based on the sensor fusion ap-
proach which fuses data from ground patterns and IMU data is shown in
Fig. 4a. A time delay is presented in the camera signal due to the
communication protocols. Time delay depends directly on the resolu-
tion of the camera, i.e: 0.33 second approximately for a size of
320×240 pixels. Fig. 4b explains the information channels for cameras
and IMU speed sensors. The sensor fusion localization allows Ar. Drone
2.0 to determine its location and orientation in a working space.

Fig. 5 presents all components of our navigation approach. The first
component is sensor fusion and the second one is a cascade control,
which guides the quadrotor to follow the designed trajectories.

First, the velocity data of the drone in the local coordinate system
are transformed into the world coordinate system, then the position is
retrieved by using Euler integration:

= ⎡
⎣⎢

− ⎤
⎦⎥

= + △

velocity velocity
cos yaw sin yaw
sin yaw cos yaw

pos prevpos velocity time

*
( ) ( )
( ) ( )world local

world world world (2)

The bottom camera uses a grid of ground patterns to estimate the
pose of the drone. Each pattern inside this grid represents (x, y) co-
ordinates which are calculated based on the information in the first and
second rows. Each row includes three bits, the white and black ones are
corresponding to ‘0’ and ‘1’. Fig. 6 represents the position of the ground
pattern with ( = =x y1, 3) coordinates calculated as below:

Fig. 3. Validation of pitch/roll (a), altitude (b), yaw (c) transfer function of an AR.Drone
2.0.

Fig. 4. Optical sensor and IMU for localization of the Ar.Drone 2.0.

Fig. 5. Our navigation approach of an AR.Drone 2.0.
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The rectangle at the right bottom of the pattern is used to approx-
imate the orientation of the quadrotor. The distance between two pat-
terns is 50 cm to ensure that there is always at least one pattern visible
in one image.

Due to the quadrotor having different pitch angles during flight, the
center of the image from the bottom camera is not always pointing
perpendicular to the ground (Fig. 7(a)). Therefore, a correction to this
center needs to be made using the information from the on board pitch
sensors. This offset is dependent on the pitch/roll angles of the quad-
rotor and the field of view (FOV) of the camera which can be calculated
using trigonometry rules as illustrated in Fig. 7(b). In order to correct
the offset for x and y, the following relationships can be used:

=

=

=
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image
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The image processing algorithm is depicted in flowchart as shown in
Fig. 8 in which the input image is converted into gray image, then
applied a suitable threshold to find the contours. This threshold de-
pends on the light condition and therefore has to be appropriately
chosen.

In this work, the proposed solution to achieve a reliable position
estimation consists of combining the information from the two sensors.
In order to reduce the drift effect and noise, IMU is used to read the
variations and the optical sensor is used to find an offset-free mea-
surement. The simplest and functional combination consists of using the
optical sensor only when the standard deviation of the last five samples
obtained from odometry is bigger than a tolerance value. The first step
is to synchronise the two signals (video and speeds) as is shown in the
Fig. 4b.

The position obtained from the camera represents the offset-free
position n samples before, where n represents the time delay in samples
(i.e., n= 5 with Ts =66 (ms)). Next, it is possible to integrate the speed
values of the last five samples, in order to obtain the position estimation
from odometry up to time −n 1. Eq. (5) presents the method to elim-
inate the time delay effect on the video signal using a combination with
odometry, assuming the dead time is a multiple of the sample time for y
axis.

∑= +
=− −

y T v i y N( ) ( )s
i N

y cam d
( 1)

0

d (5)

where y is the final position in meters, Nd = Td/Ts, and Ts is the sample
time: 66 ms; i represents the samples; vy is the speed on the y axis; and
ycam represents the position obtained from the camera with a constant
time delay Td = 200 ms. The position of the quadrotor in x axis is
calculated in similar way.

Fig. 9 shows an estimation of the position with odometer (IMU),
optical sensor (camera) and the combination which fuses two sensors. It
is clear that it is not possible to only use the camera for position esti-
mation as it starts to drift very quickly. The IMU has a robust position
estimation but it is not very accurate. The sensor fusion combines the
advantages of both signals. It is a robust estimation without noise.

2.4. Obstacle detection

The proposed method in this paper considers both unknown and
known obstacles, where the known obstacles are predefined from the
beginning. This information could be extracted from the provided map
or from previous flights through that environment. Unknown obstacles
become only visible upon detection, which may force the algorithm to

Fig. 6. A Ground pattern representing position (x = 1, y = 3).

Fig. 7. (a) Center of the image versus the actual position of the quadrotor; (b) Calculation
of the offset to the center.

Fig. 8. Image process flowchart of pattern based localization.

Fig. 9. Position values in an open loop obtained from the image processing-optical sensor
(green), the IMU-odometry (blue) and the fused response (red). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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adjust the previous trajectory. The corners on the obstacle are marked
by colored (blue) patterns in order to distinct them from the rest of the
room as it can be seen in Fig. 10. The orientations of the triangles also
provide information the obstacle’s geometry. The obstacle and its lo-
cation can still be detected when is only partially visible to the frontal
camera. In order to estimate the distance to the obstacle, the size of the
triangles in the image can be used. The larger they appear, the closer
they are and vice-versa.

3. Path planning based on improved potential field method

Path planning is defined as designing a collision-free path in a
working environment with obstacles. A path is a set of configuration →q
= {q0, q1, ... , qgoal} R∈ n of the agent that connects the starting po-
sition q0 and the final position qgoal.

Although the conventional PFM generates an effective path, it suf-
fers from the non-reachable target problem. This problem occurs when
the target is close to obstacles. In that case, when the agent approaches
the target, it approaches the obstacles as well. As a consequence, the
attractive force reduces while the repulsive force increases. Therefore,
the agent is trapped in local minima and oscillations might occur.

Fig. 11 (Left) presents the case that there are several obstacles lo-
cated near the target.The repulsive force is considerably larger than the
attractive force, therefore the agent is repulsed away rather than
reaching the target.

Fig. 12 (Left) illustrates another case in which the attractive field
and the repulsive field are co-linear in opposite directions and the total
force approximates zero thus the agent is trapped in local minima.

3.1. Proposed attractive and repulsive potential

The crucial cause of the non-reachable target problem is that the
goal position is not a global minimum of the total potential U in Eq. (6).
When the agent reaches the target, attractive potential Uatt is equal to
zero; however, the repulsive potential Urep is none-zero if there is at
least one obstacle which satisfies the condition d(q, qobs)< d0. To
overcome that drawback, a proposed attractive and repulsive potential
is proposed to ensure that the total potential field force has the unique
global minimum at the target position.

Obviously, if the repulsive potential approaches zero as the agent
reaches the target, the total potential attains the global minimum at the

goal. As a consequence, it is necessary to introduce the relative distance
between the agent and the target (d(q, qgoal)) into the formula of re-
pulsive potential. Furthermore, since the agent is unable to stop sud-
denly at the target position while it is moving at a high speed, the agent
velocity term (q̇) is taken into account in the proposed attractive po-
tential formula. The total potential = +U U Uatt rep obtains the global
minimum (0) if and only if =q qgoal and =q̇ 0. The MPFM are for-
mulated as follows:

⎜ ⎟
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= +
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where ρp, ρv, α, β are positive coefficients; d0 is the affected distance of
obstacle; d(q, qgoal) is the distance between the agent and the target; d(q,
qobs) is the minimum distance between the agent and the obstacles.

The attractive force and repulsive force are the negative gradients of
attractive potential and repulsive potential as follows:

⎜ ⎟

⎜ ⎟

= +
= − −

= ⎧
⎨⎩

+ ≤
>

= − ⎛
⎝

− ⎞
⎠

= − ⎛
⎝

− ⎞
⎠

−

F F F
F ρ d q q ρ q

F
F F d q q d

d q q d

F α
d q q d

d q q
d q q

F
αβ

d q q d
d q q

2 ( , ) 2 ˙

if ( , )
0 if ( , )

1
( , )

1 ( , )
( , )

2
1

( , )
1 ( , )

att rep

att p goal v

rep
rep rep obs

obs

rep
obs

β
goal

obs

rep
obs

β
goal

1 2 0

0

1
0

2

2
0

2
1

(7)

Applying conventional PFM, the agent is not successful in autono-
mous navigation tasks when the obstacles are located near the target as
mentioned before. However, the proposed method can handle such
problems properly because it reduces the repulsive force when the
agent moves towards the target. Thus, the agent enables to reach the
target successfully as shown in Fig. 11 (Right) and Fig. 12 (Right). It
indicates that the proposed method effectively solves the non-reachable
target problem when the obstacles are located near the target.

The proposed approach is developed to appropriately work in
known and unknown complex environment. First, the global agent path
planning is generated based on the proposed modified potential field
method (MPFM), then this path is renovated when the agent senses a
new obstacle until reaching the target (local path). The algorithm is
presented in Fig. 13.

3.2. Simulation results in complex environment

To validate the proposed algorithm, simulations are executed under
various complex environment conditions with known and unknown

Fig. 10. Detected Obstacle by ArDrone 2.0.

Fig. 11. The problem and the solution when the position of target is very close to ob-
stacles. Left: the non-reachable target problem of conventional PFM, Right: Avoid local
minima solving the target non-reachable problem of MPFM.

Fig. 12. The problem and the solution when the agent, obstacle and target are aligned in
which the obstacle in the middle and the attractive force approximates the repulsive
force. Left: the non-reachable target problem of conventional PFM, Right: Avoid local
minima solving the target non-reachable problem of MPFM.
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obstacles. There are large obstacles with different dimensions and
shapes located in the way of the agent. Fig. 14 illustrates two different
cases of complex indoor environment with completely known obstacles
in which the agent arrives at the target without collision with obstacles
using MPFM.

Fig. 15 shows the result of the algorithm in complex scenarios with
unknown obstacle. The known obstacle is presented in red while the
unknown obstacle is presented in black. Since agent has no information
about the black obstacle in advance, the trajectory is generated to avoid
only red obstacles as displayed in Fig. 15 (Left). However, it updates
the path immediately (local path) as soon as detecting a new obstacle
(the obstacle changes its color to orange) as shown in Fig. 15 (Right).
The results prove the feasibility and effectiveness of the algorithm in
complex environment with known and unknown obstacles.

4. Control parameters optimization based on particle swarm
optimization algorithm

Unlike the existing approaches, in our work the PID controllers of
UAV are designed and implemented based on the proposed multi-ob-
jective particle swarm optimization (MOPSO) with an accelerated up-
date methodology. This algorithm aims to facilitate convergence to
optimal set of PID parameters. This section is structured as follows. In
Section 4.1, a proposed accelerated particle updates of MOPSO is pre-
sented. MOPSO-based PID controller approach is described in
Section 4.2. The final subsection presents Ar.Drone 2.0 control results.

4.1. Proposed accelerated particle updates of MOPSO

In the conventional PSO, the particle’s position is updated based on
both the current global best Gb and the personal best Pbi (or local best)
[20]. The purpose of using the local best is primarily to expand the
diversity of the quality solutions, however, the diversity can be simply
simulated by some randomness. Therefore, to accelerate the con-
vergence of the algorithm, it is possible to use the global best only.
Based on that statement, the velocity vector and position vector are
formulated as:

+ = + + −V t V t c r c Gb t X t( 1) ( ) ( ( ) ( ))i i i1 2 (8)

+ = + +X t X t V t( 1) ( ) ( 1)i i i (9)

where:
c1 ∈ [0.1 0.5]*( −UB LB);
c2 ∈ [0.1 0.7];
r is a uniform random number in [0,1] that brings the stochastic

state to the algorithm.
Gb(t) is the global best in iteration t;

+V t V t( ), ( 1)i i are velocities of particles i in iteration t, t+1;
+X t X t( ), ( 1)i i are positions of particles i in iteration t, t+1;

LB, UB are lower bound and upper bound of X. In this study, the
values of LB and UB are (0, 0, 0) and (50, 50, 50).

To reduce the randomness as iterations are updated, the value of c1
can be designed as:

= −c c ξ UB LB*( )t
1 0 (10)

where c0 ∈ [0.1 0.5] is the initial value of the randomness parameter
while t is the number of the iterations and ξ ∈ (0 1) is a control
parameter. The pseudo code is presented in Algorithm 1.

4.2. A proposed MPSO-based PID controller approach

Starting from the transfer function of a PID controller:

= + +G s K K
s

K s( )PID p
i

d (11)

The controller parameters Kp, Ki, Kd are chosen to satisfy prescribed
performance criteria regarding the settling times (Ts) and the rise time
(Tr), the overshoot (OS) and the steady-state error (SSE). Since the PID
is a very well-known controller, the definition of Tr, Ts, OS and SSE are
not mentioned in this paper. The three desired objective functions are:

=
=
= −

J X SSE
J X OS
J X T T

( )
( )
( ) s r

1

2

3 (12)

where X is a set of parameters to be optimized, X = (Kp, Ki, Kd).
The block diagram of MPSO-based PID controller approach is pre-

sented in Fig. 16. In this procedure, the dimension of the particle is 3.

Fig. 13. The flowchart of the agent path planning in known and unknown environment
based on MPFM.

Fig. 14. Proposed MPFM under the complex environment.

Fig. 15. Proposed MPFM under the complex partial known environment, Left: The agent
collides black (unknown) obstacle. Right: The agent re-plans the path according to
perceived environment.
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Initially, PSO algorithm assigns arbitrary values of Kp, Ki, Kd and
computes the objectives function and continuously update the con-
troller parameters until the objective functions are optimized. A com-
posite objective optimization for PSO-based PID controller is obtained
by summing values of three mentioned objective functions through the
following weighted-sum method.

= + +J X β J X β J X β J X( ) ( ) ( ) ( )1 1 2 2 3 3 (13)

where β1, β2 and β3 are positive constants; J1(X), J2(X) and J3(X) are the
objective functions defined as in equation (12). In this study, those
values are set as =β 0.59,1 =β 0.492 and =β 0.883 .

4.3. Ar.Drone 2.0 control results

The proposed algorithm MOPSO used a set of parameters as: the
swarm size =N 50, the maximum number of iterations =T 50,max c0 =
0.2; c2 = 0.7; ξ = 0.97 in the following simulations.

Having the dynamic model of the Ar.Drone 2.0 (Section 2.2), con-
trollers parameters is obtained by applying proposed MOPSO-based PID
controller as presented in Section 4.2. PID controllers’ optimal para-
meters are obtained through simulations. It is worth noting that the
models obtained for X and Y position controllers are the same, therefore
their controllers have the same topology and parameters. Fig. 17 show
the results of X(Y) position control using Frtool [21], PID tuner Matlab
toolbox and the proposed MOPSO. The optimal Kp, Ki, Kd parameter sets
obtained by the proposed MOPSO method together with rise time,
settling time, overshoot, peak and the cost function of each Ar. Drone
2.0 controller are shown in Table 1. The proposed MOPSO is used to
minimize three cost functions in the term of settling times/ rise time
( −T Ts r), overshoot (OS) and steady-state error (SSE) of each controller.
As shown in Table 1, all designed controllers have no overshoot, zero
steady state error, extremely short rise time and setting time.

The results of the proposed approach (blue solid curves, name PSO-
PID) are compared with the PID using Frtool (green dash-dot curves)
and PID tuner Matlab toolbox (red dot curves). Both PSO-PID and PID-
Frtool have better performances than the third one with no overshoot.
However, the setting time is clearly less for the proposed MPSO-PID
controller than for PID-Frtool and PID tuner.

In order to investigate the robustness and sensitivity of the approach
in changing of the weighted constants, the parameters β1, β2 , β3 are
modified in the range of 20% those values. Therefore, the composite
objective optimization is as following:

= ± + ± + ±J X β β J X β β J X β β J X( ) ( Δ ) ( ) ( Δ ) ( ) ( Δ ) ( )1 1 1 2 2 2 3 3 3 (14)

where:
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Fig. 16. The proposed MOPSO-based PID controller approach.
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β1, β2, β3 are defined in Section 4.2.
Δβ1≤ 0.2β1; Δβ2≤ 0.2β2; Δβ3≤ 0.2β3.
Fig. 18 illustrates different MOPSO-PID controllers for X(Y) position

on Ar.Drone 2.0 obtained by randomly changing the weights of three
objective functions. It was observed that all MOPSO-PID controllers
react very fast and without overshoot and track the reference input very
well. In addition, there are only slightly difference between MPSO-PID
controllers’ outputs. In conclusion, the proposed approach is highly
robust and not very sensitive in term of changing of the weighted
constants.

5. Experimental validation

The proposed solution structure of this study is depicted in Fig. 19.
At the first stage, the quadrotor uses its sensor to extract obstacles in-
formation then generates MPFM path based on the proposed path
planning algorithm. At this phase, the quadrotor should know its pose
based on localization process and decides how to steer to achieve its
goal. After that the drone regulates its motion to accomplish the desired
trajectory. In real experiments, a cascade control is designed such that
the Ar.Drone 2.0 accurately performs this task. There are two parts of
the cascade controller: inner-loop controller and outer-loop controller.
The inner-loop controller is performed inside the quadrotor as a black-
box. The model identified in Section 2.2 is used to identify the re-
lationships between the inputs and the outputs of this black-box. The
outer-loop controller or MOPSO-PID is represented by the command
station, which defines the references to the internal controllers located
in the low layer.

In the outer-loop controller, the localization process provides the
current Ar.Drone 2.0 pose in the world coordinate based on the ground
patterns. The obtained free-collision trajectory using MPFM is sent to
the controller by a list of way-points. However, due to missing com-
munication, oscillating and uncertain noise, the Ar.Drone 2.0 may be
unable follow the designed trajectory. Therefore, it is necessary to
generate a compensation path, named,

⎯ →⎯⎯⎯
Tar that guides the quadrotor to

return to the designed trajectory.
To perform the compensation, several definitions are introduced.

Suppose the drone is currently in the position with the two nearest way-
points, named, Previous way-point and Next way-point.

• Path error: the distance between the drone and the designed path at
a time during flight.

• ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯
TargetWP: the vector from Previous way-point to the Next way-point

• ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯
Targetpathline as the vector towards the perpendicular path

A schematic representation is depicted as shown in Fig. 20. The
compensation

⎯ →⎯⎯⎯
Tar is only executed when the Path error (L) is larger

than threshold value L0. The formula of the target vector is:

Fig. 17. X(Y) position step response with MPSO tuning, Frtool, PID tuner.

Table 1
Optimal control parameter selected by pso algorithm for AR. Drone 2.0 PID controllers.

MOPSO-PID Altitude
controller

X controller Y controller YAW
controller

Kp 21.9820 43.9582 43.9582 24.0011
Ki 38.1941 40.9473 40.9473 43.4267
Kd 42.8751 9. 2215 9.2215 29.6480
Rise time (s) 0.0363 0.0072 0.0072 5.3959e-04
Settling time (s) 0.2368 0.0129 0.0129 0.0010
Overshoot 0 0 0 0
Peak 0.9976 0.9999 0.9999 0.9925
Cost function

value
0.26 0.21 0.21 0.2950

Fig. 18. Simulation results obtained from MOPSO-PID X(Y) control in the variance of β1,
β2 , β3.

Fig. 19. The proposed solution structure with cascade control.
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⎯ →⎯⎯⎯
=

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯
+ −

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯
Tar λ Target λ Target* (1 )*WP pathline (15)

where λ is defined parameter as following:

= ⎧
⎨⎩

− <
>

λ
L L L L

L L
1 ( / ) if
0 if

n
0 0

0

It is important to notice that the
⎯ →⎯⎯⎯
Tar should not significantly change

when the drone is around the trajectory with a small Path error and
should quickly react with a large Path error. For our system, =n 4 and

=L 0.50 m has been chosen.
In this work, a virtual environment is developed in order to monitor

on-line and facilitate off-line tests of the quadrotor navigation tasks as
presented in Fig. 21. In this figure, the comparison between the virtual
environment (Lelf) and actual environment (Right) is shown. When the

drone detects the real obstacle in actual environment, that one is dis-
played in the virtual environment as black box. The MPFM is generates
the path in order taking account the ArDrone 2.0 dimension. The start
point, the target and the dimensions of the working space are also
shown in the virtual environment.

The results obtained with pattern-based localization, MPFM and
optimal PID control in the real system are presented in Fig. 22. The
bounded rectangle presents the walls of indoor working environment.
The red obstacles are known obstacles and the yellow one is unknown
obstacle. In the beginning, MPFM generate the black trajectory which
collides with unknown (yellow) obstacle since the drone only avoid red
obstacles. However, it updates the path immediately (local path-blue
path) as soon as its detecting a new (yellow) obstacle as shown in
Fig. 22. The green path is the real path obtained by experiment. It is
possible to observe that the quadrotor has few deviations to the desired
trajectory, with an acceptable overshoot at the moment of performing
sharp bends.

6. Conclusions

This paper proposed an autonomous navigation approach for a low-
cost commercial AR. Drone 2.0 using only on-board visual and internal
sensing. The main achievements for this work are: (i) sensor fusion for
localization in a structured environment taking into account camera
signals time delay; (ii) proposed potential field method for path plan-
ning; and (iii) the design and implementation of an optimal PID con-
troller based on a proposed multi-objective particle swarm optimization
(MOPSO) with an accelerated update methodology that allows ac-
complishing path-following task using a cascade control approach. The
proposed modified potential filed method enables to solve the non-
reachable target problem and successfully avoids unknown obstacles.
The performed tests using the virtual environment and real-time ex-
periment demonstrate the feasibility of the proposed strategy, which
opens new possibilities of autonomous navigation for the mobile agent
in complex known and unknown environment.

Regarding future work, the approach is currently implemented in a
dynamic working space. An extension to multiple UAVs and a combi-
nation with ground vehicles is also under inspection.
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