SUPPORTING INFORMATION

Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: a system analysis

Yue Wang^{$\nabla,\#$}, Hongmin Dong^{$\nabla,\#,*$}, Zhiping Zhu^{$\nabla,\#$}, Pierre J. Gerber^{Δ,\P}, Hongwei Xin^{\perp}, Pete Smith[‡], Carolyn Opio^{Δ}, Henning Steinfeld^{Δ}, Dave Chadwick[§]

 $^{\nabla}$ Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

[#] Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China

 $^{\Delta}$ Animal Production and Health Division, Food and Agriculture Organization, 00153 Rome, Italy

[¶]Animal Production Systems group, Wageningen University, PO Box 338, Wageningen, The Netherlands

 $^{\perp}$ Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States

[‡] Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St.

Machar Drive, Aberdeen AB24 3UU, United Kingdom

[§] Environment Centre Wales, School of Environment, Natural Resources and Geography, Deiniol Rd., Bangor University, Bangor LL57 2UW, United Kingdom

* Corresponding author: <u>donghongmin@caas.cn</u>; Phone/fax: 86-10-82109979

Including 78 pages, 12tables and 2 figures

SI text

Overview

The main purpose of this supporting information (SI) is to present brief description of some manure management terms; also the detailed methods, equations, parameters, and assumptions for calculating the emissions for baseline and mitigation scenarios of each phase and whole systems. The calculation steps are fully documented in the SI information and can be followed in Dataset S1, specific tabs and cells of which we reference in the text below.

1 Description of manure management terms

1.1 The terms of land application method

Slurry injection: slurry being directly injected into the soil by using high-pressure injector.

Slurry/solid incorporation: the slurry or solid manure being applied onto the surface of the soil first, followed with being covered by soil through ploughing or rotary harrow, etc. Here "rapid" means limit the time gap between manure being surface applied and incorporated into soil less than 6 hours.

Slurry band spreading: Slurry is pumped to a manifold distributor, and then the connected trailing pipes can part the crop and make sure that slurry being applied directly onto the surface of the soil.

1.2 Mitigation measures

1.2.1 Mitigation measures for in-house management

LCP diet: lower crude protein content (usually 2%-4%) of the feed than the control diet.

Feed additive: feed supplements such as vitamins, amino acids, fatty acids, and minerals.

Biofilter: using a bioreactor containing living material to capture and biologically degrade pollutants.

1.2.2 Mitigation measures for outdoor slurry or solid manure management

Slurry covering: using cover material to keep rain out and odours and ammonia in,

while the cover material are various in type including straw, oil, plastic, granule, etc.

Cooling: decrease the manure temperature such as using cold water.

Slurry acidification: decrease the slurry pH by adding sulphuric acid (H_2SO_4) or hydrochloric acid (HCl), etc.

Compost additive: adding alum, zeotile, the acidifying agent or ammonia absorbent to compost.

Compost cover: similar meaning as slurry cover.

1.2.3 Mitigation measures for manure land application

The liquid or solid manure surface spreading was seen as a reference, thus changing surface spreading to injection or incorporation was set as mitigation measures.

Digested manure vs. raw manure: using digested manure to substitute raw manure as fertilizer in land application.

Nitrification inhibitor (NI): chemical supplements which can inhibite the transformation of N via the nitrification pathway, thus being deeded as having the

potential to reduce N loss from soils and increase N use efficiency when fertilized with manure.

2 Calculation of gas emissions from baseline scenario of four manure management systems

2.1 Calculation of CH₄ emissions

CH₄ emissions from each manure management system were the sum of emissions from each phase; however, those from manure land application were omitted, as little CH₄ would be emitted from crop production with the exception of rice paddy production. For the separation-based system, when the separated solid and liquid manure was transferred to outdoor, the total emission should be calculated as the sum of the emissions from the liquid and solid components of the manure. According to calculations based on the study by De Vries et al.,¹ for in-house separation, 4% and 96% of volatile solid (VS) were preserved in the liquid and solid fractions, respectively. Therefore, we assumed that CH₄ emission factors from the subsequent storage of liquid manure would be 4% of the total CH₄ emission factor when all slurry was poured into the lagoon, and CH₄ emission factor when all slurry compost would be 96% of the total CH₄ emission factor when all manure was composted. CH₄ emissions from each manure management system were calculated based on the equations below.

For CH₄ emissions from deep-pit-based system (A_E_{CH4} DPS) (DeepPitBasedSystem tab, cell O5 in Dataset S1):

$$A_{E_{CH4}}DPS = P_{E_{CH4}}IN_{dp} + P_{E_{CH4}}OU_{lg}$$
[S1]

where:

 $P_{-E_{CH4}IN_{dp}}$ is the CH₄ emission factor for in-house deep-pit storage (see Table S3, also D5 in EmissionFactors tab in Dataset S1);

 $P_{E_{CH4}}OU_{lg}$ is the CH₄ emission factor from outdoor lagoon storage (see Table S4, also D22 in EmissionFactors tab in Dataset S1).

For CH₄ emissions from the pull-plug-based system (A_E_{CH4} PPS) (PullPlugBasedSystem tab, cell O5 in Dataset S1):

$$A_{E_{CH4}}PPS = P_{E_{CH4}}IN_{PP} + P_{E_{CH4}}OU_{lg}$$
[S2]

where:

 $P_{-}E_{CH4}IN_{PP}$ is the CH₄ emission factor for the in-house pull-plug manure collection practice (see Table S3, also D6 in EmissionFactors tab in Dataset S1).

For CH₄ emissions from the bedding-based system ($A_{E_{CH4}}BDS$) (BeddingBasedSystem tab, cell M5 in Dataset S1):

$$A_{E_{CH4}}BDS = P_{E_{CH4}}IN_{bd} + P_{E_{CH4}}OU_{cm}$$
[S3]

where:

 $P_{E_{CH4}IN_{bd}}$ is the CH₄ emission factor for in-house bedding (see Table S3, also D7 in EmissionFactors tab in Dataset S1);

 $P_E_{CH4}OU_{cm}$ is the CH₄ emission factor for outdoor manure composting (see Table S4, also D23 in EmissionFactors tab in Dataset S1).

For CH₄ emissions from the separation-based system ($A_{E_{CH4}}$ SPS) (SeparationBasedSystem tab, cell N5 in Dataset S1):

$$A_{E_{CH4}}SPS = P_{E_{CH4}}IN_{sp} + A_{E_{CH4}}OU_{lg_SPS} + A_{E_{CH4}}OU_{cm_SPS}$$
[S4]

$$A_{E_{CH4}}OU_{\lg_SPS} = 0.04 \times P_{E_{CH4}}OU_{\lg}$$
[S5]

$$A_{E_{CH4}}OU_{cm_{SPS}} = 0.96 \times P_{E_{CH4}}OU_{cm}$$
[S6]

where:

 $P_{E_{CH4}IN_{sp}}$ is the CH₄ emission factor for in-house separation (see Table S3, also D8 in EmissionFactors tab in Dataset S1).

2.2 Calculation of the direct N₂O emissions

The integrated baseline N₂O emissions from four MMSs were calculated based on the N mass flow method. The direct N₂O emissions from outdoor phase and land application phase should be calculated by using the emission factor (kg N₂O-N (kg TN)⁻¹) multiplying by N input at each phase, whereas the N input for outdoor phase was calculated as annual N excreta ($P_N_{ex} = 94.9$ kg N AU⁻¹ yr⁻¹, see Table S10) minus N loss in-house, and N input for land application phase was calculated based on the N input for outdoor phase minus the N loss during the outdoor phase. Finally, the system level N₂O emission would be the sum of the three phases.

Deep-pit-based system

The direct N₂O emissions from the deep-pit-based MMS ($A_{E_{N2O}}$ DPS) were the sum of the emissions from each phase, according to the formula below (DeepPitBasedSystem tab, cell P5 in Dataset S1):

$$A_{E_{N20}}DPS = P_{E_{N20}}IN_{dp} + A_{E_{N20}}OU_{lg} + A_{E_{N20}}IA_{ls_DPS}$$
 [S7]
where:

 $P_{E_{N2O}IN_{dp}}$ is the N₂O emission factor for in-house deep-pit storage (see Table S3, also D13 in EmissionFactors tab in Dataset S1);

 $A_E_{N2O}OU_{lg}$ is N₂O emission from the lagoon;

 $A_E_{N2O}IA_{Is_DPS}$ is N₂O emission from surface broadcasting of the liquid slurry in the deep-pit-based system.

 $A_{E_{N2O}}OU_{lg}$ and $A_{E_{N2O}}IA_{ls_{DPS}}$ are calculated according to Eq.S8 and Eq. S9:

$$A_{E_{N20}}OU_{lg} = P_{EF_{N20}}OU_{lg} \times (P_{N_{ex}} - A_{N_{loss}}IN_{dp}) \times \frac{44}{28}$$
[S8]

$$A_{E_{N20}}LA_{ls_{DPS}} = P_{EF_{N20}}LA_{ls} \times (P_{N_{ex}} - A_{N_{loss}}IN_{dp} - A_{N_{loss}}OU_{lg}) \times \frac{44}{28}$$
 [S9]
where:

 $P_EF_{N2O}OU_{lg}$ is the N₂O-N emission factor from the lagoon (see Table S4, also D25 in EmissionFactors tab in Dataset S1);

 $P_EF_{N20}LA_{ls}$ is the N₂O-N emission factor from the surface broadcasting of liquid manure (see Table S5, also D43 in EmissionFactors tab in Dataset S1);

 $A_N_{loss}IN_{dp}$ and $A_N_{loss}OU_{lg}$ represent N loss from in-house deep-pit storage and outdoor lagoon storage, respectively. These two variables were calculated according to Eq.S10 and Eq. S11:

$$A_{N_{loss}}IN_{dp} = P_{E_{NH3}}IN_{dp} \times \frac{14}{17} + P_{E_{N20}}IN_{dp} \times \frac{28}{44}$$
[S10]

$$A_N_{loss}OU_{lg} = A_E_{NH3}OU_{lg} \times \frac{14}{17} \div P_Frac_{lg} \frac{NH3_Nloss}{TNloss}$$
[S11]

where:

 $P_{-}E_{NH3}IN_{dp}$ and $P_{-}E_{N20}IN_{dp}$ represent NH₃ and N₂O emission factors, respectively, during in-house deep-pit storage (Table S3, also D9 and D13 in EmissionFactors tab in Dataset S1, respectively).

The formula for calculating $A_N_{loss}IN_{dp}$ was based on the 2006 IPCC Guideline,² as the values of N loss due to volatilization of N-NH₃ and N-NOx (in terms of the

percentage of TN content, %) from deep pit (25%) or liquid/slurry storage (48%) are the same as total N loss from the corresponding phases of manure management. Thus, in this study, N loss from NH_3 -N and N_2O -N during in-house slurry management was used to substitute TN loss as data about in-house TN loss were not available.

 $A_{E_{NH3}}OU_{lg}$ represents NH₃ emissions from outdoor lagoon storage, and P_Frac_lg $\frac{NH3_Nloss}{TNloss}$ represents the ratio of NH₃-N loss to TN loss for slurry stored in the lagoon (see Table S11, also D10 in NLossRatio tab in Dataset S1). The calculation of $A_N_{loss}OU_{lg}$ was designed based on the 2006 IPCC Guideline, as TN loss from lagoon storage (78%) was much higher than the sum of N-NH₃ and N-NOx loss (40%), and as such, was calculated based on P_Frac_lg $\frac{NH3_Nloss}{TNloss}$ driven by meta-analysis.

Pull-plug-based system

For the direct N_2O emissions from the pull-plug-based system, the calculations were similar to those used for deep-pit-based system. The specific parameters that changed in accordance with this type of management are not detailed here.

Bedding-based system

The direct N₂O emissions from the bedding-based manure management system $(A_E_{N2O}BDS)$ were the sum of the emissions from each phase, according to the formula below (BeddingBasedSystem tab, cell N5 in Dataset S1):

$$A_{E_{N20}}BDS = P_{E_{N20}}IN_{bd} + A_{E_{N20}}OU_{cm_{BDS}} + A_{E_{N20}}lA_{ss_{BDS}}$$
[S12]
where:

where:

 $P_{-}E_{N20}IN_{bd}$ is the N₂O emission factor for in-house bedding (see Table S3, also D15 in EmissionFactors tab in Dataset S1);

 $A_{E_{N20}}OU_{cm_{BDS}}$ is N₂O emission from outdoor manure composting;

 $A_{E_{N2O}}lA_{ss_{BDS}}$ is N₂O emission from the surface broadcasting of solid manure. The variables were calculated according to Eq.S13 and Eq. S14:

$$A_{E_{N20}}OU_{cm_{BDS}} = P_{EF_{N20}}OU_{cm} \times (P_{N_{ex}} - A_{N_{loss}}IN_{bd}) \times \frac{44}{28}$$
[S13]

$$A_{E_{N20}}lA_{ss_BDS} = P_{EF_{N20}}LA_{ss} \times (P_{N_{ex}} - A_{N_{loss}}IN_{bd} - A_{N_{loss}}OU_{cm_BDS}) \times \frac{44}{28}$$
[S14]

where:

 $P_{EF_{N20}}OU_{cm}$ is the N₂O-N emission factor from outdoor composting (see Table S4, also D26 in EmissionFactors tab in Dataset S1),

 $P_EF_{N2O}LA_{ss}$ is the N₂O-N emission factor from the surface broadcasting of solid manure (see Table S5, also D47 in EmissionFactors tab in Dataset S1);

 $A_N_{loss}IN_{bd}$ and $A_N_{loss}OU_{cm_BDS}$ represent N loss from in-house bedding and outdoor composting of bedding-based system, respectively, which were calculated according to Eq.S15 and Eq. S16:

$$A_N_{loss}IN_{bd} = P_E_{NH3}IN_{bd} \times \frac{14}{17} \div P_Frac_sp \frac{NH3_Nloss}{TNloss}$$
[S15]

$$A_N_{loss}OU_{cm_BDS} = A_E_{NH3}OU_{cm_BDS} \times \frac{14}{17} \div P_Frac_cm \frac{NH3_Nloss}{TNloss}$$
[S16]

where:

 $P_{E_{NH3}IN_{bd}}$ represents the NH₃ emission factor for in-house bedding (see Table S3, D11 in EmissionFactors tab in Dataset S1);

P_Frac_sp $\frac{NH3_Nloss}{TNloss}$ represents the ratio of NH₃-N loss to TN loss for stockpile outdoor (see Table S11, D8 in NLossRatio tab in Dataset S1).

While considering the similarities between solid manure storage in-house and outdoor, P_Frac_sp $\frac{NH3_N loss}{TN loss}$ was used to substitute the ratio of NH₃-N loss to TN loss of in-house bedding, due to the lack of available data on the ratio of N loss during this process. The formula was set based on the 2006 IPCC Guideline, as the values of N loss due to volatilization of N-NH₃ and N-NOx (in terms of the percentage of TN content, %) from in-house bedding is 40%, and the default value of TN loss from in-house bedding is 50%. Thus, TN loss from in-house bedding in this study was calculated based on P_Frac_sp $\frac{NH3_N loss}{TN loss}$ driven by meta-analysis. $A_{_}E_{NH3}OU_{cm_BDS}$ represents NH₃ emissions from outdoor composting in the bedding-based system, and P_Frac_cm $\frac{NH3_N loss}{TN loss}$ represents the ratio of NH₃-N loss to TN loss during composting (see Table S11, also D9 in NLossRatio tab in Dataset S1). The calculation was designed as NH₃-N loss was only part of the TN loss during manure composting; thus, TN loss from outdoor composting was calculated based on P_Frac_cm $\frac{NH3_N loss}{TN loss}$ driven by meta-analysis.

Separation-based system

The direct N₂O emissions from the separation-based manure management system $(A_E_{N2O}SPS)$ were the sum of the emissions from each phase, as manure was separated into liquid and solid parts in-house. Thus, GHG from outdoor phase and land application phase should include both the liquid and solid components of the

manure. $A_{E_{N20}}$ SPS was calculated based on Eq. S17 (SeparationBasedSystem tab, cell O5 in Dataset S1):

$$A_{E_{N20}}SPS =$$

$$P_{E_{N20}}IN_{sp} + A_{E_{N20}}OU_{lg_{SPS}} + A_{E_{N20}}OU_{cm_{SPS}} + A_{E_{N20}}lA_{ls_{SPS}} +$$

$$A_{E_{N20}}lA_{ss_{SPS}}$$
[S17]

where:

 $P_{-}E_{N20}IN_{sp}$ is the N₂O emission factor for in-house separation (see Table S3, also D16 in EmissionFactors tab in Dataset S1);

 $A_{E_{N20}}OU_{lg_SPS}$ and $A_{E_{N20}}OU_{cm_SPS}$ represent N₂O emissions from lagoon storage of the separated liquid fraction and composting of the separated solid fraction, respectively (Eq. S18 and Eq. S19).

 $A_{E_{N20}}lA_{ls_{SPS}}$ and $A_{E_{N20}}lA_{ss_{SPS}}$ represent N₂O emissions from surface broadcasting of the separated liquid and solid fractions, respectively (Eq. S20 and Eq. S21).

According to calculations based on data from De Vries et al.,¹ for in-house separation, 40% of TN is preserved in the liquid fraction and 60% is preserved in the solid fraction. Therefore, the N flow should be partitioned into liquid and solid components, and considered in the corresponding calculations.

$$A_{E_{N20}}OU_{\lg_SPS} = P_{EF_{N20}}OU_{\lg} \times (P_{N_{ex}} - A_{N_{loss}}IN_{sp}) \times 0.4 \times \frac{44}{28}$$
[S18]

. .

$$A_{E_{N20}}OU_{\rm cm_SPS} = P_{EF_{N20}}OU_{cm} \times (P_{N_{ex}} - A_{N_{loss}}IN_{\rm sp}) \times 0.6 \times \frac{44}{28}$$
[S19]

$$A_{E_{N20}}lA_{ls_SPS} = P_{EF_{N20}}LA_{ls} \times ((P_{Nex} - A_{N_{loss}}IN_{sp}) \times 0.4 - A_{N_{loss}}OU_{lg_SPS}) \times \frac{44}{28}$$
[S20]

S11

$$A_{E_{N20}} lA_{ss_{SPS}} = P_{EF_{N20}} LA_{ss} \times ((P_{N_{ex}} - A_{N_{loss}} IN_{sp}) \times 0.6 - A_{N_{loss}} OU_{cm_{SPS}}) \times \frac{44}{28}$$
[S21]

where:

 $A_N_{loss}IN_{sp}$ is N loss from in-house separation, and should be calculated according to Eq.S22:

$$A_N_{loss}IN_{\rm sp} = P_E_{NH3}IN_{\rm sp} \times \frac{14}{17} + P_E_{N20}IN_{\rm sp} \times \frac{28}{44}$$
[S22]

where:

 $P_E_{NH3}IN_{sp}$ is the NH₃ emission factor for in-house separation (Table S3, also D12 in EmissionFactors tab in Dataset S1).

 $A_N_{loss}OU_{lg_SPS}$ and $A_N_{loss}OU_{cm_SPS}$ are N loss from outdoor lagoon storage of the separated liquid fraction and N loss from composting of the separated solid fraction, respectively, and should be calculated as:

$$A_N_{loss}OU_{lg_SPS} = A_E_{NH3}OU_{lg_SPS} \times \frac{14}{17} \div P_Frac_lg\frac{NH3_Nloss}{TNloss}$$
[S23]

$$A_N_{loss}OU_{cm_SPS} = A_E_{NH3}OU_{cm_SPS} \times \frac{14}{17} \div P_Frac_cm\frac{NH3_Nloss}{TNloss}$$
[S24]

where:

 $A_{E_{NH3}}OU_{lg_{SPS}}$ and $A_{E_{NH3}}OU_{cm_{SPS}}$ are NH₃ emissions from outdoor lagoon storage of the separated liquid and compost of the separated solid fractions, respectively. The calculation method is introduced in the NH₃-related section of the text below (section 3.3).

2.3 Calculation of NH₃ emissions

The integrated baseline emissions of NH₃ for the four manure management systems were calculated based on the N mass flow method. The NH₃ emissions from outdoor

phase and land application phase should be calculated by using the emission factor $(kg NH_3-N (kg TN)^{-1})$ multiplying by N input at each phase. The N input for outdoor phase was calculated as annual N excreta minus N loss in-house, and N input for land application phase was calculated based on the N input for outdoor phase minus the N loss during the outdoor phase, as indicated in the former section of N₂O emission calculation. Finally, the system level NH₃ emission would be the sum of the three phases.

Deep-pit-based system

NH₃ emissions from the deep-pit-based manure management system ($A_{E_{NH3}}$ DPS) were the sum of the emissions from each phase (DeepPitBasedSystem tab, cell Q5 in Dataset S1), according to the formula below:

$$A_{E_{NH3}}DPS = P_{E_{NH3}}IN_{dp} + A_{E_{NH3}}OU_{lg} + A_{E_{NH3}}lA_{ls_{DPS}}$$
 [S25]
where:

 $P_E_{NH3}IN_{dp}$ is the NH₃ emission factor for in-house deep-pit storage (see Table S3, also D9 in EmissionFactors tab in Dataset S1);

 $A_E_{NH3}OU_{lg}$ is the NH₃ emission from lagoon storage (Eq. S26);

 $A_{E_{NH3}}lA_{ls_{DPS}}$ is NH₃ emissions from surface broadcasting of liquid slurry in the deep-pit-based system (Eq. S27).

$$A_{E_{NH3}}OU_{lg} = P_{EF_{NH3}}OU_{lg} \times (P_{N_{ex}} - A_{N_{loss}}IN_{dp}) \times \frac{17}{14}$$
[S26]

 $A_{E_{NH3}} l A_{ls_{DPS}} = P_{EF_{NH3}} L A_{ls} \times (P_{N_{ex}} - A_{N_{loss}} l N_{dp} - A_{N_{loss}} O U_{lg}) \times \frac{17}{14}$ [S27] where:

S13

 $P_EF_{NH3}OU_{lg}$ is the NH₃-N emission factor for slurry lagoon storage (see Table S4, also M28 in EmissionFactors tab in Dataset S1);

 $P_EF_{NH3}LA_{ls}$ is the NH₃-N emission factor for surface broadcasting of liquid slurry (see Table S5, also D37 in EmissionFactors tab in Dataset S1).

Pull-plug-based system

For NH₃ emissions from the pull-plug-based system, the calculation procedures were similar to that used for the deep-pit-based system. The parameters that changed in accordance with the pull-plug-based system are not detailed here.

Bedding-based system

NH₃ emissions from the bedding-based system (A_E_{NH3} BDS) were the sum of the emissions from each phase (BeddingBasedSystem tab, cell O5 in Dataset S1), according to the formula below (Eq. S28):

$$A_{E_{NH3}}BDS = P_{E_{NH3}}IN_{bd} + A_{E_{NH3}}OU_{cm_{BDS}} + A_{E_{NH3}}lA_{ss_{BDS}}$$
 [S28]
where:

 $P_{L}E_{NH3}IN_{bd}$ is the NH₃ emission factor for in-house bedding (see Table S3, D11 in EmissionFactors tab in Dataset S1),

 $A_E_{NH3}OU_{cm_BDS}$ is NH₃ emission from outdoor manure composting (Eq. S29),

 $A_{E_{NH3}} lA_{ss_{BDS}}$ is NH₃ emission from the surface spreading of solid manure in bedding-based system (Eq. S30)

$$A_{E_{NH3}}OU_{cm_{BDS}} = P_{EF_{NH3}}OU_{cm} \times (P_{N_{ex}} - A_{N_{loss}}IN_{bd}) \times \frac{17}{14}$$
[S29]

$$A_{E_{NH3}} lA_{ss_BDS} = P_{EF_{NH3}} LA_{ss} \times (P_{N_{ex}} - A_{N_{loss}} IN_{bd} - A_{N_{loss}} OU_{cm_BDS}) \times \frac{17}{14}$$
[S30]

where:

 $P_EF_{NH3}OU_{cm}$ is the NH₃ emission factor from outdoor manure composting (see Table S4, also D29 in EmissionFactors tab in Dataset S1);

 $P_EF_{NH3}LA_{ss}$ is the NH₃ emission factor from the surface spreading of solid manure (see Table S5, also D41 in EmissionFactors tab in Dataset S1).

Separation-based system

NH₃ emissions from the separation-based system ($A_{E_{NH3}}$ SPS) were the sum of the emissions from each phase. As manure was separated into liquid and solid components in-house, the GHG emissions from outdoor manure storage and land application should include both the liquid and solid components of the manure (SeparationBasedSystem tab, cell P5 in Dataset S1), according to the following calculation (Eq. S31):

$$A_{E_{NH3}}SPS =$$

$$P_{E_{NH3}}IN_{sp} + A_{E_{NH3}}OU_{lg_SPS} + A_{E_{NH3}}OU_{cm_SPS} + A_{E_{NH3}}lA_{ls_SPS} +$$

$$A_{E_{NH3}}lA_{ss_SPS}$$
[S31]

where:

 $P_{L_{NH3}IN_{sp}}$ is the NH₃ emission factor for in-house separation (see Table S3, also D12 in EmissionFactors tab in Dataset S1);

 $A_{E_{NH3}}OU_{lg_SPS}$ and $A_{E_{NH3}}OU_{cm_SPS}$ represent NH₃ emissions from outdoor lagoon storage of the separated liquid fraction and compost of the separated solid fraction, respectively (Eq. S32 and Eq. S33). $A_{E_{NH3}}lA_{ls_{SPS}}$ and $A_{E_{NH3}}lA_{ss_{SPS}}$ represent NH₃ emissions from surface broadcasting of the separated liquid and solid fractions in separation-based system, respectively (Eq. S34 and Eq. S35).

As stated in the SI text (section 3.2), for in-house separation, 40% of the TN is preserved in the liquid fraction and 60% is preserved in the solid fraction. Therefore, the N flow should be partitioned into liquid and solid parts, and considered in the corresponding calculation.

$$A_{E_{NH3}}OU_{\lg_SPS} = P_{EF_{NH3}}OU_{\lg} \times (P_{N_{ex}} - A_{N_{loss}}IN_{sp}) \times 0.4 \times \frac{17}{14}$$
[S32]

$$A_{E_{NH3}}OU_{\text{cm}_SPS} = P_{EF_{NH3}}OU_{cm} \times (P_{N_{ex}} - A_{N_{loss}}IN_{\text{sp}}) \times 0.6 \times \frac{17}{14}$$
[S33]

$$A_{E_{NH3}} l A_{ls_SPS} = P_{EF_{NH3}} L A_{ls} \times ((P_{N_{ex}} - A_{N_{loss}} I N_{sp}) \times 0.4 - A_{N_{loss}} O U_{lg_SPS}) \times \frac{17}{14}$$
[S34]

$$A_{E_{NH3}} lA_{ss_SPS} = P_{EF_{NH3}} LA_{ss} \times ((P_{N_{ex}} - A_{N_{loss}} lN_{sp}) \times 0.6 - A_{N_{loss}} OU_{cm_SPS}) \times \frac{17}{14}$$
[S35]

2.4 Calculation of indirect N₂O emissions

The indirect N_2O emission comprises the N_2O emission from atmospheric deposition of N volatilized from every phase of manure management, and leaching/runoff of manure N applied to land. Thus the indirect N_2O emission from the whole manure management chain should be calculated as following (Eq. S36):

$$A_{E_{N20-ind}} = A_{E_{N20-vol}IN} + A_{E_{N20-vol}OU} + A_{E_{N20-vol}LA} + A_{E_{N20-leach}LA}$$
[S36]

where:

 $A_{E_{N2O-ind}}$ indicates the indirect N_2O emission from the whole manure management chain;

 $A_{E_{N2O-vol}IN}$, $A_{E_{N2O-vol}OU}$ and $A_{E_{N2O-vol}LA}$ indicate the indirect N_{2O} emission from deposition of N volatilized from in-house phase, outdoor phase and land-application phase, respectively;

 $A_E_{N2O-leach}LA$ indicates the indirect N₂O emission due to N leaching/runoff from land application phase;

First, the $A_{E_{N2O-vol}}$ (including $A_{E_{N2O-vol}IN}$, $A_{E_{N2O-vol}OU}$ and $A_{E_{N2O-vol}LA}$) should be calculated as following (Eq. S37):

$$A_{E_{N20-vol}} = A_{E_{NH3}} \times \frac{14}{17} \times EF4 \times \frac{44}{28}$$
[S37]

where:

 $A_{E_{N2O-vol}}$ indicates the indirect N_2O emissions from deposition of N volatilized from manure management

 $A_{_}E_{NH3}$ indicates the NH₃ that volatilized from each phase of manure management, EF4 indicates emission factor for N₂O emissions from atmospheric deposition of nitrogen on soils and water surfaces, kg N₂O-N (kg NH₃-N + NOx-N volatilised)⁻¹; default value is 0.01 kg N₂O-N (kg NH₃-N +NOx-N volatilised)⁻¹ based on IPCC 2006; while the NOx-N volatilized is not considered here.

Then, $A_E_{N2O-leach}LA$ should be calculated as following (Eq. S38):

$$A_{E_{N2O-leach}}LA = N_{leaching} \times EF5 \times \frac{44}{28}$$
[S38]

 $N_{leaching} = N_{land-application} \times Frac_{leachMS}$ [S39]

where:

EF5 indicates the emission factor for N_2O emissions from nitrogen leaching and runoff, kg N_2O -N/kg N leaching and runoff (default value 0.0075 kg N_2O -N (kg N leaching/runoff)⁻¹, IPCC 2006).

 $N_{leaching}$ indicates the amount of N being lost due to leaching and runoff during manure land application phase;

 $N_{land-application}$ indicates the N being transferred to the land-application phase after some part of excreted N being lost during in-house phase and outdoor phase;

Frac_{leachMS} indicates the fraction of managed manure N losses due to leaching/runoff during manure land application phase (default value 0.3 kg N/kg of manure N, IPCC 2006),

3 Calculation of gas emissions under mitigation scenarios for four manure management systems

3.1 For mitigation measures with known gas emission factors under the mitigation mode, the emission factor in the mitigation mode was used to substitute the emission factor in the baseline mode to calculate the gas emissions from the mitigation scenario. For example NH₃ emission from injection of liquid slurry during land application phase in the deep-pit based system ($A_{LRNH3} lA_{linj_DPS}$) (K11 in DeepPitBasedSystem tab in Dataset S1) was calculated as:

$$A_{E_{NH3}}lA_{\text{linj}_{DPS}} = P_{EF_{NH3}}LA_{\text{linj}} \times (P_{N_{ex}} - A_{N_{loss}}IN_{dp} - A_{N_{loss}}OU_{\text{lg}}) \times \frac{17}{14}$$
[S40]

where:

 $P_EF_{NH3}LA_{linj}$ is the NH₃-N emission factor of liquid manure injection (see Table S5, also D38 in EmissionFactors tab in Dataset S1);

 P_N_{ex} is N excreta of swine per AU per year; $A_N_{loss}IN_{dp}$ is N loss from in-house deep-pit storage phase;

 $A_N_{loss}OU_{lg}$ is N loss from outdoor lagoon storage.

3.2 For mitigation measures without available gas emission factors in the mitigation mode, but with known gas ME for the corresponding phase, the total mitigated emission was calculated based on the baseline emission factor multiplied by the ME. For example, NH₃ emission from acidified slurry for the deep-pit-based system $(A_{E_{NH3}}OU_{lg_AC})$ (H9 in DeepPitBasedSystem tab in Dataset S1) was calculated as Eq. S41:

$$A_{E_{NH3}}OU_{\lg_AC} = A_{E_{NH3}}OU_{\lg} \times \left(1 + P_{ME_{NH3}}OU_{\lg_AC}\right)$$
[S41]

where:

 $A_E_{NH3}OU_{lg}$ is the NH₃ emission from lagoon storage;

 $P_M E_{NH3} O U_{lg_AC}$ is the median value of ME for NH₃ emission from lagoon storage with acid additive compared to control slurry storage without acidification (Table S8).

3.3 Because N-gas emissions were calculated on the basis of N flow, N flow influenced by each mitigation option should also be taken into account, such as N

excreta (N_{ex}) affected by a low CP diet (N_{ex_lowCP} , Eq. S42), or the use of biofilter in animal house.

a) Calculation of N₂O emissions for mitigation scenario of low CP diet

For low CP diet, as N transferred to the next phase would also be eliminated simultaneously, NH₃ emissions in the outdoor phase and land application phase were also influenced in the whole system.

$$N_{ex_lowCP} = 94.9 \times \left(1 + P_Ratio_{Nex_lowCP}\right)$$
[S42]

where:

 $P_Ratio_{Nex_lowCP}$ is the median value of ME of Nex with low CP treatment (Table S9).

b) Calculation of N related gas emissions for mitigation scenario of biofilter

Biofilters are an effective technology for gas mitigation in livestock buildings. During the filtration process, the polluted air stream is slowly pumped through the biofilter and the NH₃ emissions are reduced by being absorbed into the biofilter media material. Some NH₃ can be converted into N₂O during this phase, as reported by Melse et al.,³ who demonstrated that for a full-scale packed-bed biotrickling filter, 5% of the removed NH₃-N was converted into N₂O-N in the biofilter and emitted as N₂O $(P_Frac_bf \frac{N2O_N produced}{NH_3_N removed} = 5\%)$. For simplicity, we present a detailed, step-by-step numerical example of N₂O emission calculation from the mitigation scenario of biofilter in deep-pit-based system (Scenario 2 in the DeepPitBasedSystem tab of Dataset S1), while the determination of ME for in-house CH₄ and NH₃ is the same as other mitigation measures. N₂O emissions from the in-house phase with biofilter treatment ($A_E_{N2O}IN_{biofilter}$) should be calculated based on the following formula:

 $A_{E_{N20}IN_{biofilter}} = A_{E_{N20}IN_{conditioned\ reference}} + A_{E_{N20_change}}$ [S43] where:

 $A_{E_{N20}IN_{conditioned\ reference}}$ is N₂O emissions under the conditioned reference scenario without the use of a biofilter (Eq. S44)

 $A_{E_{N20}}$ represents N₂O emissions from the conversion of removed NH₃ in the biofilter (Eq. S45).

For calculation of $A_{E_{N20}}IN_{conditioned\ reference}$, if there is other treatment in-house but not a biofilter (such as Scenario 7, the combined function of low CP and biofilter), then the $A_{E_{N20}}IN_{conditioned\ reference}$ represents the N₂O emission with low CP function (D6 in DeepPitBasedSystem tab in Dataset S1), and should be calculated based on Eq. S41:

 $A_{E_{N2O}IN_{conditioned \, reference}} = P_{E_{N2O}IN} \times (1 + P_{ME_{N2O}IN_{mitigation \, option}})$ [S44] where:

 $P_{ME_{N2O}}IN_{\text{mitigation option}}$ indicates the N₂O ME of the other mitigation option used;

 $P_{E_{N20}IN}$ includes $P_{E_{N20}IN_{dp}}$, $P_{E_{N20}IN_{pp}}$, $P_{E_{N20}IN_{bd}}$, and $P_{E_{N20}IN_{sp}}$. For calculation of $A_{E_{N20}change}$

 $A_E_{N20_change} = A_E_removed_{NH3} \times \frac{14}{17} \times P_Frac_bf\frac{N20_Nproduced}{NH3_Nremoved} \times \frac{44}{28}$ [S45] where: A_E_removed_{*NH*3} indicates the mitigated NH₃ due to the biofilter, and should be calculated based on Eq. S46:

 $A_E_removed_{NH3} = A_E_{NH3}IN_{conditioned\ reference} \times P_ME_{NH3}IN_{BF}$ [S46] where:

 $P_M E_{NH3} I N_{BF}$ represents the NH₃ ME due to the biofilter (Table S8, also E56 in MitigationEffect tab in dataset S1);

 $A_{E_{NH3}}IN_{conditioned\ reference}$ indicates NH₃ emissions under the conditioned reference scenario with or without the use of a biofilter. If there is no other treatment in-house, it refers to $P_{E_{NH3}}IN$, including $P_{E_{NH3}}IN_{dp}$, $P_{E_{NH3}}IN_{pp}$, $P_{E_{NH3}}IN_{bd}$, and $P_{E_{NH3}}IN_{sg}$ (here, it means E5 in Deep-pit-based system in Dataset S1). If there is other treatment in-house but not a biofilter, it should be calculated based on the following equation:

 $A_{E_{NH3}IN_{conditioned\ reference}} = P_{E_{NH3}IN} \times (1 + P_{ME_{NH3}IN_{mitigation\ option}})$ [47] where $P_{ME_{NH3}IN_{mitigation\ option}}$ refers to the NH₃ ME of the other mitigation option used.

N flow to the next phase with biofilter treatment

For N flow influenced by biofilters, as removed N is absorbed by the biofilter media material, which is facilitated in outdoor storage, biofilter-removed N cannot be preserved in the manure in-house, and thus cannot be transferred to the next phase. Therefore, N transferred to the next phase ($N_{trans}IN_{biofilter}$) with biofilter used is calculated as the N that is preserved in-house when biofilter function is not taken into consideration. Finally, $N_{trans}IN_{biofilter}$ should be calculated by subtracting $N_{loss}IN_{biofilter}$ from the P_N_{ex} , meaning

$$N_{trans}IN_{biofilter} = P_N_{ex} - N_{loss}IN_{biofilter}$$
(S48)
where:

 $N_{loss}IN_{biofilter}$ is N loss in-house when using a biofilter, and can be calculated in two modes because of the different scenarios of in-house manure management:

For in-house lagoon, pull-plug, and segregation practices:

$$N_{loss}IN_{biofilter} = A_{E_{NH3}}IN_{conditioned\ reference} \times \frac{14}{17} + A_{E_{N20}}IN_{conditioned\ reference} \times \frac{28}{44}.$$
[S49]

For the in-house bedding practice:

$$N_{loss}IN_{biofilter} = A_E_{NH3}IN_{conditioned\ reference} \times \frac{14}{17} \div P_Frac_sp \frac{NH3_Nloss}{TNloss}$$
[S50]

3.4 For manure with biogas fermentation treatment, there were no available data on the ME of GHG and NH₃ emissions; thus, the total mitigated gas emissions were calculated based on biogas production, biogas leakage and the emission from biogas digestate storage and land application. Calculation methods were shown as below.

Assuming that biogas digester treatment just occurs in the deep-pit and pull-plug based systems (Scenario 3 in the DeepPitBasedSystem tab and PullPlugBasedSystem tab in Dataset S1), the slurry from those two systems would be fed into biogas digesters after being removed out from house. The gas emissions from in-house storage, biogas digester treatment, digestate storage, and land application should be summed to obtain the emissions of the whole system; among which, the emissions from the in-house phase are not influenced by biogas digester treatment. In the biogas treatment scenario, we assume that, with the exception of VS and TN that being decomposed during the in-house phase, the remaining amounts of VS and TN are fully transferred into biogas digesters. The degradation fraction of VS in biogas digester ($P_Frac_{deg}BG_{VS}$) is set as 80% (Table S10), while the N degradation factor in biogas digester ($P_Frac_{loss}BG_N$) is 0% (Table S10). A total of 10% CH₄ produced in biogas digester may leak ($P_MCF_{bgleak} = 10\%$, Table S10), and should be taken into account in the GHG emissions. All of the biogas digester effluent would be stored in the lagoon and finally applied to land, and gas emissions would occur from both the digestate storage and land application phases. For simplicity, we present a detailed, step-by-step numerical example of CH₄, N₂O, and NH₃ emission calculations from the mitigation scenario of biogas (Scenario 3) in deep-pit-based system.

a) Calculation of CH₄ emissions for mitigation scenario of biogas

CH₄ emissions from the whole system of biogas treatment ($A_E_{CH4}BDS_{bg}$) should be the sum of CH₄ emissions from in-house storage ($P_E_{CH4}IN_{dp}$), biogas leakage ($A_E_{CH4_leak}$), and outdoor lagoon storage of biogas digestate ($A_E_{CH4}OU_{lg_digestate}$), and should be calculated as Eq. S51:

$$A_{E_{CH4}BDS_{bg}} = P_{E_{CH4}IN_{dp}} + A_{E_{CH4}leak} + A_{E_{CH4}OU_{lg_digestate}}$$
[S51]
where:

A_E_{CH4_leak} (L8 in DeepPitBasedSystem tab in dataset S1) and $A_E_{CH4}OU_{lg_digestate}$ (F8 in DeepPitBasedSystem tab in dataset S1) should be calculated as Eq. S52 and Eq. S53:

$$A_E_{CH4_leak} = (P_V S_{ex} - A_V S_{loss_inhouse}) \times P_B_O \times P_M CF_{bgleak} \times 0.67$$
[S52]

$$A_{E_{CH4}}OU_{\lg_digestate} = A_{V}S_{digestate} \times P_{EF_{CH4}}OU_{\lg_digestate}$$
[S53]

For calculation of $A_{E_{CH4}leak}$ (Eq. S47), $P_{VS_{ex}}$ is VS excreta of swine per AU per year (Table S10), P_{B_0} is the maximum CH₄ producing capacity for swine manure (Table S10), $P_{MCF_{bgleak}}$ is the CH₄ ratios of biogas leakage from the biogas system (Table S10), 0.67 is the conversion factor of m³ CH₄ to kilograms CH₄ (Table S10), and $A_{VS_{loss_inhouse}}$ is the amount of VS loss in-house, and is calculated based on the following Eq. S54:

$$A_V S_{\text{loss_inhouse}} = P_E_{CH4} \text{IN}_{\text{dp}} \div P_B_O \div P_M CF_{pit} \div 0.67$$
[S54]

where: P_MCF_{pit} is the CH₄ conversion factor for deep pit storage (Table S10).

For calculation of $A_{E_{CH4}}OU_{lg_digestate}$ (Eq. S53), it means that VS remaining in the digestate ($A_VS_{digestate}$) should multiply by the meta-analysis results of the CH₄ emission factor for biogas digestate ($P_{EF_{CH4}}OU_{lg_digestate}$, Table S12, also C12 in EmissionofDigestate tab in Dataset S1).

For $A_VS_{digestate}$, the VS discharged from in-house would be decomposed in the biogas plant, and thus the VS remained in digestate would be stored in the digestate lagoon, and should be calculated as Eq. S55:

$$A_V S_{digestate} = (P_V S_{ex} - A_V S_{loss_inhouse}) \times (1 - P_F rac_{deg} BG_{VS})$$
 [S55]
where: $P_F rac_{deg} BG_{VS}$ is the VS degradation ratio in the biogas digester (Table S10).

b) Calculation of NH₃ emissions for mitigation scenario of biogas

NH₃ emissions from the whole system of biogas treatment $(A_E_{NH3}BDS_{bg})$ should be the sum of NH₃ emissions from the in-house phase $(P_E_{NH3}IN_{dp})$, those from outdoor storage of biogas digestate $(A_E_{NH3}OU_{lg_digestate})$, and biogas digestate land application $(A_E_{NH3}LA_{ls_digestate})$, and should be calculated as Eq. S56, here we assumed there were no NH₃ emissions in the biogas digester plant.

 $A_{E_{NH3}}BDS_{bg} = P_{E_{NH3}}IN_{dp} + A_{E_{NH3}}OU_{lg_digestate} + A_{E_{NH3}}LA_{ls_digestate}$ [S56] where:

 $A_{E_{NH3}}OU_{lg_digestate}$ (H8 in DeepPitBasedSystem tab in Dataset S1) and $A_{E_{NH3}}LA_{ls_digestate}$ (K8 in DeepPitBasedSystem tab in Dataset S1) should be calculated as Eq. S57 and Eq. S58, respectively:

$$A_{E_{NH3}}OU_{lg_digestate} = A_{T}N_{digestate} \times P_{E}F_{NH3}OU_{lg_digestate} \times \frac{17}{14}$$

$$A_{E_{NH3}}LA_{ls_digestate} = A_{E}F_{NH3}LA_{ls_digestate} \times (P_{Nex} - A_{N_{loss}}IN_{dp} - A_{N_{loss}}OU_{lg_digestate}) \times \frac{17}{14}$$

$$[S57]$$

For calculation of $A_{E_{NH3}}OU_{lg_digestate}$ (Eq. S57), $A_{T}N_{digestate}$ is N contained in the digestate, which can be calculated as Eq. S59:

$$A_T N_{digestate} = (P_N_{ex} - A_N_{loss} I N_{dp}) \times (1 - P_F rac_{loss} B G_N)$$
(S59)
where:

 $A_N_{loss}IN_{dp}$ refers to N loss for in-house deep pit storage (Eq. S10), $P_Frac_{loss}BG_N$ is the N loss ratio in biogas digester (Table S10).

 $P_EF_{NH3}OU_{lg_digestate}$ is the NH₃-N emission factor for biogas digester effluent stored in lagoon (see Table S12, also C11 in EmissionofDigestate tab in Dataset S1)

For calculation of $A_{E_{NH3}}LA_{ls_digestate}$ (Eq. S58), $A_{EF_{NH3}}LA_{ls_digestate}$ is the ratio of NH₃-N to TN for the surface broadcasting of digestate, and is calculated based on the meta-analysis results of the ME of NH₃ emissions from land application of digestate compared to land application of raw manure ($P_{ME_{NH3}}LA_{digestate}$, table S8, also E80 in Mitigation eEffect tab in Dataset S1), and the formula is as follows:

$$A_{EF_{NH3}}LA_{ls_digestate} = P_{EF_{NH3}}LA_{ls} \times (1 + P_{ME_{NH3}}LA_{digestate})$$
[S60]

Then, N loss during outdoor lagoon storage of digestate $(A_N_{loss}OU_{lg_digestate})$ is calculated as:

$$A_N_{loss}OU_{lg_digestate} = A_E_{NH3}OU_{lg_digestate} \div P_Frac_lg\frac{NH3_Nloss}{TNloss} \times \frac{14}{17}$$
 [S61]
c) Calculation of N₂O emissions for mitigation scenario of biogas

N₂O emissions from the whole system of biogas treatment should be the sum of N₂O emissions from the in-house phase ($P_{-}E_{N20}IN_{dp}$), those from outdoor lagoon storage of biogas digestate ($A_{-}E_{N20}OU_{lg_digestate}$), and those from the surface broadcasting of biogas digestate ($A_{-}E_{N20}U_{ls_digestate}$).

$$A_E_{N20}BDS_{bg} = P_E_{N20}IN_{dp} + A_E_{N20}OU_{lg_digestate} + A_E_{N20}LA_{ls_digestate}$$
[S62]

For $A_E_{N2O}OU_{lg_digestate}$, it is regarded that no N₂O emission occurred from digestate stored in the lagoon (G8 in DeepPitBasedSystem tab in Dataset S1).

 $A_E_{N20}LA_{ls_digestate}$ (J8 in DeepPitBasedSystem tab in Dataset S1) is calculated as Eq. S63:

$$A_{E_{N2O}}LA_{ls_digestate} = A_{EF_{N2O}}LA_{ls_digestate} \times (P_{Nex} - P_{E_{N2O}}IN_{dp} - A_{N_{loss}}OU_{lg_digestate}) \times \frac{44}{28}$$
[S63]

where:

 $A_EF_{N2O}LA_{ls_digestate}$ refers to the ratio of N₂O-N to TN for the surface broadcasting of digestate, and is calculated based on the meta-analysis results of the ME of N₂O emissions from land application of digestate compared to land application of raw manure ($P_ME_{N2O}LA_{digestate}$, Table S7, also E51 in MitigationEffect tab in Dataset S1), and the formula is as follows:

$$A_{EF_{N20}}LA_{ls_digestate} = P_{EF_{N20}}LA_{ls} \times (1 + P_{ME_{N20}}LA_{digestate})$$
[S64]

SI tables

Table S1. Unit conversion of emission data in the literature.

Original units	Calculation of unit conversion to kg/AU/yr
g/AU/d	$\times 365 \left(\frac{d}{yr}\right) \times 0.001 \left(\frac{kg}{g}\right)$
g/herd/d	× $365\left(\frac{d}{yr}\right) \times 0.001\left(\frac{kg}{g}\right) \times 500\left(\frac{kg}{AU}\right) \div \text{ pig weight}(\frac{kg}{\text{herd}})$
g/pig/period	$\div \text{ period}(d) \times 365 \left(\frac{d}{\text{yr}}\right) \times 0.001 \left(\frac{\text{kg}}{\text{g}}\right) \times 500 \left(\frac{\text{kg}}{\text{AU}}\right) \div \text{ pig weight}(\frac{\text{kg}}{\text{herd}})$
g/d/site	$\times 365\left(\frac{d}{yr}\right)$ ÷ pig number in this site $\left(\frac{herd}{site}\right) \times 0.001\left(\frac{kg}{g}\right) \times 500\left(\frac{kg}{AU}\right)$ ÷ pig weight $\left(\frac{kg}{herd}\right)$
g/m ² /d	× site area $\left(\frac{m^2}{site}\right)$ × 365 $\left(\frac{d}{yr}\right)$ × 0.001 $\left(\frac{kg}{g}\right)$ ÷ pig number in this site $\left(\frac{herd}{site}\right)$ × 500 $\left(\frac{kg}{AU}\right)$ ÷ pig weight $\left(\frac{kg}{herd}\right)$

Original units	Calculation of unit conversion to kg/AU/yr
g/AU/d	$\times 365 \left(\frac{d}{yr}\right) \times 0.001 \left(\frac{kg}{g}\right)$
g/herd/d	× $365\left(\frac{d}{yr}\right)$ × $0.001\left(\frac{kg}{g}\right)$ × $500\left(\frac{kg}{AU}\right)$ ÷ pig weight($\frac{kg}{herd}$)
g/d/site	× $365\left(\frac{d}{yr}\right)$ ÷ pig number in this site $\left(\frac{herd}{site}\right)$ × $0.001\left(\frac{kg}{g}\right)$ × $500\left(\frac{kg}{AU}\right)$ ÷ pig weight $\left(\frac{kg}{herd}\right)$
g/m ² lagoon/d	× lagoon surface area $(\frac{m^2}{\text{site}})$ × $365\left(\frac{d}{\text{yr}}\right)$ × $0.001\left(\frac{\text{kg}}{\text{g}}\right)$ ÷ pig number in this site $(\frac{\text{herd}}{\text{site}})$ × $500\left(\frac{\text{kg}}{\text{AU}}\right)$ ÷ pig weight $(\frac{\text{kg}}{\text{herd}})$

Table S1B. Emissions from outdoor slurry storage (CH₄, NH₃)

To calculate the N-related gas using the N flow method, the NH₃ emission factor from outdoor lagoon storage in units of kg AU⁻¹ yr ⁻¹ ($P_E_{NH3}OU_{lg}$) should be converted into kg NH₃-N (kg TN)⁻¹ ($P_EF_{NH3}OU_{lg}$) with Eq. S65:

$$P_{E}F_{NH3}OU_{lg} = P_{E_{NH3}}OU_{lg} \times \frac{14}{17} \div (P_{N_{ex}} - A_{N_{loss}}IN)$$
[S65]

where: P_N_{ex} is N excreta of swine per AU per year;

 $A_{N_{loss}}IN$ is N loss from the in-house phase. As the slurry in outdoor lagoon storage usually comes from the effluent from in-house deep pit or pull-plug storage, the N loss in-house $(A_{N_{loss}}IN)$ was assumed to be the mean of N loss from in-house deep-pit $(A_{N_{loss}}IN_{dp})$ or pull-plug $(A_{N_{loss}}IN_{pp})$ storage, meaning $A_{N_{loss}}IN$ should be calculated with Eq. S66:

$$A_N_{loss}IN = \frac{1}{2} \times (A_N_{loss}IN_{dp} + A_N_{loss}IN_{pp})$$
[S66]

Table S1C. CH₄ emissions from compost or solid stocking pile

Original units	Calculation of unit conversion to kg/AU/yr
g/kg manure	× 15650(kg manure/AU/year) × $0.001 \left(\frac{\text{kg}}{\text{g}}\right)^*$
g (cumulative emission)/pile	÷ manure quality of the pile ($\frac{\text{kg manure}}{\text{pile}}$) × 15650(kg manure/AU/year) × 0.001($\frac{\text{kg}}{\text{g}}$)
CH ₄ -C/TC	× TC $\left(\frac{g}{\text{kg DM}}\right) \times \frac{16}{12} \times (1 - \text{moisture content}) \left(\frac{\text{kg DM}}{\text{kg manure}}\right) \times 0.001 \left(\frac{\text{kg}}{\text{g}}\right)$

* Manure production rate=84 kg/1000 kg LW/d =15650 kg manure/AU/year (table S10)

Table S1D. NH₃ emission factor of manure composting or solid stocking pile

Original units	Calculation of unit conversion to NH ₃ -N/TN
g NH ₃ -N/kg manure	\div TN content of the manure($\frac{g}{kg \text{ manure}}$)

Table S1E. N₂O emission factor of manure composting or solid stocking pile

Original units	Calculation of unit conversion to N ₂ O-N/TN
g N ₂ O-N/kg manure	\div TN content of the manure($\frac{g}{kg \text{ manure}}$)

Table S1F. CH₄ emission factor of field manure application

Original units	Calculation of unit conversion to kg CH ₄ /AU/yr					
kg CH ₄ /ha	\div manure application rate($\frac{\text{kg manure}}{\text{ha}}$) × 15650(kg manure/AU/year)					

Table S1G. NH₃ emission factor of field manure application

Original units	Calculation of unit conversion to NH ₃ -N/TN
g NH ₃ -N/kg manure	\div TN content of the manure($\frac{g}{kg \text{ manure}}$)
kg NH ₃ -N/ha	\div TN application rate($\frac{\text{kg N}}{\text{ha}}$)
NH ₃ -N/TAN	$\times \frac{\text{TAN}}{\text{TN}}^*$

* If the ratio of TAN/TN is not available in the target study, then choose the default value of 56% (Data source: table S10)

Original units	Calculation of unit conversion to N ₂ O-N/TN
g N ₂ O-N/kg manure	\div TN content of the manure($\frac{g}{kg \text{ manure}}$)
kg N ₂ O-N/ha	\div TN application rate($\frac{\text{kg N}}{\text{ha}}$)

Table S2. Description of the reference scenarios and emission mitigation measures used for the analysis of each manure management system: (a)

deep-pit system; (b) pull-plug system; (c) bedding system; (d) separation system.

Table S2A. Deep-pit system	
----------------------------	--

	In-house						Outdoor			Land application	
	Scenario ID	Dietary CP content		Biofilter	Solid-liquid	D'	Slurry/liquid	Solid	manure/	Slurry/liquid	Solid manure/solid
	Scenario ID			Diointer	separation	Biogas	fractions	solid fr	actions	fractions	fractions
DPS-Ref	Deep-pit system reference	Conventio	onal	No biofilter			Lagoon			Surface broadcasting	
DPS-S1	Low CP	Low CP		No biofilter			Lagoon			Surface broadcasting	
DPS-S2	Biofilter	Conventi	onal	Biofilter			Lagoon			Surface broadcasting	
DPS-S3	Biogas	Conventi	onal	No biofilter		Biogas	Lagoon			Surface broadcasting	
DPS-S4	Slurry acidification	Conventio	onal	No biofilter			Acidification			Surface broadcasting	
DPS-S5	Slurry plastic cover	Conventio	onal	No biofilter			Plastic cover			Surface broadcasting	
DPS-S6	Slurry injection	Conventi	onal	No biofilter			Lagoon			Injection	
DPS-S7	Low CP + biofilter	Low CP		Biofilter			Lagoon			Surface broadcasting	
DPS-S8	Low CP + slurry acidification	Low CP		No biofilter			Acidification			Surface broadcasting	
DPS-S9	Low CP + slurry acidification + slurry injection	Low CP		No biofilter			Acidification			Injection	
DPS-S10	Low CP + slurry plastic cover	Low CP		No biofilter			Plastic cover			Surface broadcasting	

		I	n-hou	se			Outdoor			Land ap	oplication
	Scenario ID	Dietary content	СР	Biofilter	Solid-liquid separation	Biogas	Slurry/liquid fractions	Solid solid fra	manure/ ctions	Slurry/liquid fractions	Solid manure/solid fractions
DPS-S11	Low CP + slurry plastic cover + slurry injection	Low CP		No biofilter			Plastic cover			Injection	
DPS-S12	Biofilter + slurry acidification + slurry injection	Convention	nal	Biofilter			Acidification			Injection	
DPS-S13	Biofilter + slurry plastic cover + slurry injection	Convention	nal	Biofilter			Plastic cover			Injection	
DPS-S14	Biogas + slurry injection	Convention	nal	No biofilter		Biogas	Lagoon			Injection	
DPS-S15	Biofilter + biogas + slurry injection	Convention	nal	Biofilter		Biogas	Lagoon			Injection	
DPS-S16	Low CP + biogas+ slurry injection	Low CP		No biofilter		Biogas	Lagoon			Injection	
DPS-S17	Low CP + biofilter + biogas + slurry injection	Low CP		Biofilter		Biogas	Lagoon			Injection	
DPS-S18	Low CP + biofilter + slurry acidification	Low CP		Biofilter			Acidification			Surface broadcasting	
DPS-S19	Low CP + biofilter + slurry acidification + slurry injection	Low CP		Biofilter			Acidification			Injection	
DPS-S20	Low CP + biofilter + slurry plastic cover	Low CP		Biofilter			Plastic cover			Surface broadcasting	
DPS-S21	Low CP + biofilter + slurry plastic cover + slurry injection	Low CP		Biofilter			Plastic cover			Injection	
DPS-S22	Separation	Convention	nal	No biofilter	Centrifuge		Lagoon	Compost	t	Surface broadcasting	Surface spreading
DPS-S23	Separation (Liquid biogas)	Convention	nal	No	Centrifuge	Separated	Lagoon	Compost	t	Surface	Surface spreading

			In-hou	use			Outdoor		Land application		
	Scenario ID	Dietary	СР	CP Dis Citiens	Solid-liquid	Slurry/liquid	Solid manure/	Slurry/liquid	Solid manure/solid		
		content		Biofilter	separation	Biogas	fractions	solid fractions	fractions	fractions	
				biofilter		liquid for			broadcasting		
						biogas					
DPS-S24 DPS-S25	Low CP + biofilter + separation Low	Low CP	low CP	Biofilter	Centrifuge		Lagoon	Compost	Surface	Surface spreading	
		Low CI					Lagoon	Compose	broadcasting	Surface spreading	
	Low CP + biofilter + separation								Surface		
	(solid compost additive + liquid	Low CP		Biofilter	Centrifuge		Acidification	Compost additive	broadcasting	Surface spreading	
	slurry acidification)								bibadeasting		
DPS-S26	Low CP + biofilter + separation								Surface		
	(solid compost additive +	Low CP		Low CP	Centrifuge		Plastic cover	Compost additive	broadcasting	Surface spreading	
	Liquid slurry plastic cover)								broudcusting		
	Low CP + biofilter + separation										
DPS-S27	(solid compost incorporation +	Low CP		Low CP	Centrifuge		Lagoon	Compost	Injection	Incorporation	
	Liquid slurry injection)										
	Low CP + biofilter + separation										
	(solid compost additive + liquid										
DPS-S28	slurry plastic cover + Solid	Low CP		Biofilter	Centrifuge		Plastic cover	Compost additive	Injection	Incorporation	
DPS-S29	compost incorporation + Liquid										
	slurry injection)										
	Low CP + biofilter + separation										
	(solid compost additive + liquid										
	slurry acidification + Solid	Low CP		Biofilter	Centrifuge		Acidification	Compost additive	Injection	Incorporation	
	compost incorporation + Liquid										
	slurry injection)										

Table S2B. Pull-plug system

		In-ł	nouse			Outdoor		Land app	lication
	Scenario ID	Dietary CP content	Biofilter	Solid-liquid separation	Biogas	Slurry/liquid fractions	Solid manure/solid fractions	Slurry/liquid fractions	Solid manure/solid fractions
PPS-Ref	Pull-plug system reference	Conventional	No biofilter			Lagoon		Surface broadcasting	
PPS-S1	Low CP	Low CP	No biofilter			Lagoon		Surface broadcasting	
PPS-S2	Biofilter	Conventional	Biofilter			Lagoon		Surface broadcasting	
PPS-S3	Biogas	Conventional	No biofilter		Biogas	Lagoon		Surface broadcasting	
PPS-S4	Slurry acidification	Conventional	No biofilter			Acidification		Surface broadcasting	
PPS-S5	Slurry plastic cover	Conventional	No biofilter			Plastic cover		Surface broadcasting	
PPS-S6	Slurry injection	Conventional	No biofilter			Lagoon		Injection	
PPS-S7	Low CP + biofilter	Low CP	Biofilter			Lagoon		Surface broadcasting	
PPS-S8	Low CP + slurry acidification	Low CP	No biofilter			Acidification		Surface broadcasting	
PPS-S9	Low CP + slurry acidification + slurry injection	Low CP	No biofilter			Acidification		Injection	
PPS-S10	Low CP + slurry plastic cover	Low CP	No biofilter			Plastic cover		Surface broadcasting	
PPS-S11	Low CP + slurry plastic cover + slurry injection	Low CP	No biofilter			Plastic cover		Injection	
PPS-S12	Biofilter + slurry acidification + slurry injection	Conventional	Biofilter			Acidification		Injection	
PPS-S13	Biofilter + slurry plastic cover + slurry injection	Conventional	Biofilter			Plastic cover		Injection	
PPS-S14	Biogas + slurry injection	Conventional	No biofilter		Biogas	Lagoon		Injection	

		In-J	house			Outdoor		Land app	lication
	Scenario ID	Dietary CP content	Biofilter	Solid-liquid separation	Biogas	Slurry/liquid fractions	Solid manure/solid fractions	Slurry/liquid fractions	Solid manure/solid fractions
PPS-S15	Biofilter + biogas + slurry injection	Conventional	Biofilter		Biogas	Lagoon		Injection	
PPS-S16	Low CP + biogas + slurry injection	Low CP	No biofilter		Biogas	Lagoon		Injection	
PPS-S17	Low CP + biofilter + biogas + slurry injection	Low CP	Biofilter		Biogas	Lagoon		Injection	
PPS-S18	Low CP + biofilter + slurry acidification	Low CP	Biofilter			Acidification		Surface broadcasting	
PPS-S19	Low CP + biofilter + slurry acidification + slurry injection	Low CP	Biofilter			Acidification		Injection	
PPS-S20	Low CP + biofilter + slurry plastic cover	Low CP	Biofilter			Plastic cover		Surface broadcasting	
PPS-S21	Low CP + biofilter + slurry plastic cover + slurry injection	Low CP	Biofilter			Plastic cover		Injection	
PPS-S22	Separation	Conventional	No biofilter	Centrifuge	Separate	Lagoon	Compost	Surface broadcasting	Surface spreading
PPS-S23	Separation (Liquid biogas)	Conventional	No biofilter	Centrifuge	d liquid for biogas	Lagoon	Compost	Surface broadcasting	Surface spreading
PPS-S24	Low CP + biofilter + separation	Low CP	Biofilter	Centrifuge	U	Lagoon	Compost	Surface broadcasting	Surface spreading
PPS-S25	Low CP + biofilter +	Low CP	Biofilter	Centrifuge		Acidification	Compost	Surface broadcasting	Surface spreading

			In-h	ouse			Outdoor		Land app	lication
	Scenario ID	Dietary content	СР	Biofilter	Solid-liquid separation	Biogas	Slurry/liquid fractions	Solid manure/solid fractions	Slurry/liquid fractions	Solid manure/solid fractions
	separation (Solid compost							additive		
	additive + Liquid slurry acidification)									
	Low CP + biofilter +									
PPS-S26	separation (Solid compost additive + Liquid slurry	Low CP		Biofilter	Centrifuge		Plastic cover	Compost additive	Surface broadcasting	Surface spreading
	plastic cover)									
PPS-S27	Low CP + biofilter + separation (solid compost incorporation + liquid slurry injection)	Low CP		Biofilter	Centrifuge		Lagoon	Compost	Injection	Incorporation
PPS-S28	Low CP + biofilter + separation (solid compost additive + liquid slurry plastic cover + solid compost incorporation + liquid slurry injection)	Low CP		Biofilter	Centrifuge		Plastic cover	Compost additive	Injection	Incorporation
PPS-S29	Low CP + biofilter + separation (solid compost additive + liquid slurry acidification + solid compost incorporation + liquid slurry injection)	Low CP		Biofilter	Centrifuge		Acidification	Compost additive	Injection	Incorporation

Table	S2C.	Bedding	system
-------	------	---------	--------

		In-h	ouse	Outdoor	Land application
	Scenario ID	Dietary CP content	Biofilter	Solid manure	Solid manure
BDS-Ref	Bedding system reference	Conventional	No biofilter	Compost	Surface spreading
BDS-S1	Low CP	Low CP	No biofilter	Compost	Surface spreading
BDS-S2	Biofilter	Conventional	Biofilter	Compost	Surface spreading
BDS-S3	Compost cover	Conventional	No biofilter	Compost cover	Surface spreading
BDS-S4	Compost additive	Conventional	No biofilter	Compost additive	Surface spreading
BDS-S5	Compost incorporation	Conventional	No biofilter	Compost	Incorporation
BDS-S6	Low CP + biofilter	Low CP	Biofilter	Compost	Surface spreading
BDS-S7	Low CP + compost cover + compost incorporation	Low CP	No biofilter	Compost cover	Incorporation
BDS-S8	Biofilter + compost cover + compost incorporation	Conventional	Biofilter	Compost cover	Incorporation
BDS-S9	Biofilter + compost additive + compost incorporation	Conventional	Biofilter	Compost additive	Incorporation
BDS-S10	Low CP + compost additive	Low CP	No biofilter	Compost additive	Surface spreading
BDS-S11	Low CP + compost additive + compost incorporation	Low CP	No biofilter	Compost additive	Incorporation
BDS-S12	Low CP + biofilter + compost cover	Low CP	Biofilter	Compost cover	Surface spreading
BDS-S13	Low CP + biofilter + compost cover + compost incorporation	Low CP	Biofilter	Compost cover	Incorporation
BDS-S14	Low CP + biofilter + compost additive	Low CP	Biofilter	Compost additive	Surface spreading
BDS-S15	Low CP + biofilter + compost additive + compost incorporation	Low CP	Biofilter	Compost additive	Incorporation

Table S2D. Separation system

		In-h	ouse	0	outdoor	Land app	lication
	Scenario ID	Dietary CP content	Biofilter	Slurry/liquid fractions	Solid manure/solid fractions	Slurry/liquid fractions	Solid manure/solid fractions
SPS-Ref	Separation system reference	Conventional	No biofilter	Lagoon	Compost	Surface broadcasting	Surface spreading
SPS-S1	Low CP	Low CP	No biofilter	Lagoon	Compost	Surface broadcasting	Surface spreading
SPS-S2	Biofilter	Conventional	Biofilter	Lagoon	Compost	Surface broadcasting	Surface spreading
SPS-S3	Compost additive (slurry acidification)	Conventional	No biofilter	Acidification	Compost additive	Surface broadcasting	Surface spreading
SPS-S4	Compost cover (slurry acidification)	Conventional	No biofilter	Acidification	Compost cover	Surface broadcasting	Surface spreading
SPS-S5	Compost additive (slurry plastic cover)	Conventional	No biofilter	Plastic cover	Compost additive	Surface broadcasting	Surface spreading
SPS-S6	Compost cover (slurry plastic cover)	Conventional	No biofilter	Plastic cover	Compost cover	Surface broadcasting	Surface spreading
SPS-S7	Compost incorporation (slurry injection)	Conventional	No biofilter	Lagoon	Compost	Injection	Incorporation
SPS-S8	Low CP + biofilter	Low CP	Biofilter	Lagoon	Compost	Surface broadcasting	Surface spreading
SPS-S9	Low CP + compost additive (slurry acidification)	Low CP	No biofilter	Acidification	Compost additive	Surface broadcasting	Surface spreading
SPS-S10	Low CP + compost additive (slurry acidification) + compost incorporation (slurry injection)	Low CP	No biofilter	Acidification	Compost additive	Injection	Incorporation
SPS-S11	Low CP + compost additive (slurry plastic cover)	Low CP	No biofilter	Plastic cover	Compost additive	Surface broadcasting	Surface spreading
SPS-S12	Low CP + compost additive (slurry plastic cover) + compost incorporation (slurry injection)	Low CP	No biofilter	Plastic cover	Compost additive	Injection	Incorporation
SPS-S13	Low CP + compost cover (slurry acidification)	Low CP	No biofilter	Acidification	Compost cover	Surface broadcasting	Surface spreading
SPS-S14	Low CP + compost cover(slurry acidification) + compost incorporation	Low CP	No biofilter	Acidification	Compost cover	Injection	Incorporation

		In-he	ouse	0	utdoor	Land app	lication
	Scenario ID	Dietary CP content	Biofilter	Slurry/liquid fractions	Solid manure/solid fractions	Slurry/liquid fractions	Solid manure/solid fractions
	(slurry injection)						
SPS-S15	Low CP + compost cover (slurry plastic cover)	Low CP	No biofilter	Plastic cover	Compost cover	Surface broadcasting	Surface spreading
SPS-S16	Low CP + compost cover (slurry plastic cover) + compost incorporation (slurry injection)	Low CP	No biofilter	Plastic cover	Compost cover	Injection	Incorporation
SPS-S17	Biofilter + compost additive (slurry acidification) + compost incorporation (slurry injection)	Conventional	Biofilter	Acidification	Compost additive	Injection	Incorporation
SPS-S18	Biofilter + compost additive (slurry plastic cover) + compost incorporation (slurry injection)	Conventional	Biofilter	Plastic cover	Compost additive	Injection	Incorporation
SPS-S19	Biofilter + compost cover (slurry acidification) + compost incorporation (slurry injection)	Conventional	Biofilter	Acidification	Compost cover	Injection	Incorporation
SPS-S20	Biofilter + compost cover (slurry plastic cover) + compost incorporation (slurry injection)	Conventional	Biofilter	Plastic cover	Compost cover	Injection	Incorporation
SPS-S21	LCP + biofilter + compost additive (slurry acidification)	Low CP	Biofilter	Acidification	Compost additive	Surface broadcasting	Surface spreading
SPS-S22	LCP + biofilter + compost additive (slurry acidification) + compost incorporation (slurry injection)	Low CP	Biofilter	Acidification	Compost additive	Injection	Incorporation

			In-ho	use	0	utdoor	Land app	lication
	Scenario ID	Dietary content	СР	Biofilter	Slurry/liquid fractions	Solid manure/solid fractions	Slurry/liquid fractions	Solid manure/solid fractions
SPS-S23	LCP + biofilter + compost cover (slurry acidification)	Low CP		Biofilter	Acidification	Compost cover	Surface broadcasting	Surface spreading
SPS-S24	LCP + biofilter + compost cover (slurry acidification) + compost incorporation (slurry injection)	Low CP		Biofilter	Acidification	Compost cover	Injection	Incorporation
SPS-S25	LCP + biofilter + compost additive (slurry plastic cover)	Low CP		Biofilter	Plastic cover	Compost additive	Surface broadcasting	Surface spreading
SPS-S26	LCP + biofilter + compost additive (slurry plastic cover) + compost incorporation (slurry injection)	Low CP		Biofilter	Plastic cover	Compost additive	Injection	Incorporation
SPS-S27	LCP + biofilter + compost cover (slurry plastic cover)	Low CP		Biofilter	Plastic cover	Compost cover	Surface broadcasting	Surface spreading
SPS-S28	LCP + biofilter + compost cover (slurry plastic cover) + compost incorporation (slurry injection)	Low CP		Biofilter	Plastic cover	Compost cover	Injection	Incorporation

		Parameter	Range	Mean(se)	Median	IQR ^a	Ν	Reference
	Deep-pit	$P_E_{CH4}IN_{dp}$	3.10~235.29	69.32(13.69)	64.37	64.37	8(25)	4-11
	Pull-plug	P_E_{CH4} IN _{PP}	16.79~265.70	81.80(26.29)	47.09	47.09	2(9)	12,13
CH ₄ (kg AU ⁻¹ y ⁻¹)	Bedding	P_E_{CH4} IN _{bd}	4.80~44.20	14.56(2.50)	10.63	10.63	7(21)	4,5, 14-18
	Separation	P_E_{CH4} IN _{sg}	3.50~15.98	10.28(1.73)	10.93	10.93	2(8)	19,20
	Deep-pit	$P_E_{NH3}IN_{dp}$	3.64~53.55	14.96(1.72)	11.99	11.99	11(37)	4-8, 8-11,,21-24
	Pull-plug	$P_E_{NH3}IN_{pp}$	1.20~21.79	11.94(2.24)	14.98	14.98	4(7)	6,7, 22, 23
NH_3 (kg AU^{-1} y ⁻¹)	Bedding	$P_E_{NH3}IN_{bd}$	1.94~54.02	13.54(2.69)	8.05	8.05	9(24)	4,5, 14-18, 24,25
	Separation	$P_E_{NH3}IN_{sg}$	9.76~17.42	13.61(0.95)	13.79	13.79	2(7)	20, 24
	Deep-pit	$P_E_{N20}IN_{dp}$	0.00~2.59	0.78(0.17)	0.7	0.7	7(22)	4-9, 11
	Pull-plug	$P_E_{N20}IN_{pp}$	0.00~0.55	0.14(0.09)	0	0	3(6)	6,7, 13
N_2O (kg AU ⁻¹ y ⁻¹)	Bedding	$P_E_{N2O}IN_{bd}$	0.00~29.29	9.10(2.13)	4.7	4.7	7(20)	4, 5, 15-18, 25
	Separation	$P_E_{N20}IN_{sg}$	0.20~0.31	0.26(0.03)	0.27	NA ^b	1(3)	19

Table S3. Meta-analysis results of CH₄, NH₃, and N₂O emission factors for in-house manure management (these data also appear in the EmissionFactors tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

^a IQR = Interquartile range; ^b NA = not applicable

		Parameter	Range	Mean(se)	Median	IQR ^a	N	Reference
		I arameter	Kange	Weah(se)	Wedian	IQK	1	Reference
	lagoon	P_E_{CH4} OU _{lg}	5.60~191.99	53.36(16.09)	50.37	63.5	6(11)	7, 13, 26-29
$CH_4 (kg AU^{-1} y^{-1})$	compost	P_E_{CH4} OU _{cm}	0.00~202.81	42.99(11.47)	11.14	78.6	8(30)	30-37
	stockpile	P_E_{CH4} OU _{sp}	4.49~33.39	14.41(3.40)	9.44	17.05	5(9)	38-42
	lagoon	$P_EF_{N2O}OU_{lg}$	0.0000~0.01	0.0012(0.0011)	0	0	6(11)	29, 43-47
N ₂ O-N/TN (kg N ₂ O-N kg TN ⁻¹)	compost	$P_EF_{N2O}OU_{cm}$	0.0001~0.112 2	0.028(0.004)	0.017	0.037	12(39)	30- 37,48-51
	stockpile	$P_EF_{N2O}OU_{sp}$	0.000~0.046	0.012(0.004)	0.0017	0.03	8(13)	39-42, 52-55
	lagoon	$P_EF_{NH3}OU_{lg}$	0.025~0.920	0.310(0.066)	0.17	0.48	6(19)	7, 56-60
NH ₃ -N/TN (kg NH ₃ -N kg TN ⁻¹)	compost	$P_EF_{NH3}OU_{cm}$	0.035~0.489	0.235(0.020)	0.249	0.18	10(36)	30, 32-37, 48, 50, 51
	stockpile	$P_EF_{NH3}OU_{sp}$	0.0015~0.308	0.086(0.028)	0.047	0.13	7(13)	40, 41, 52, 54, 55, 61, 62

Table S4. Meta-analysis results of CH₄, NH₃, and N₂O emission factors for outdoor manure management (these data also appear in the EmissionFactors tab

in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

^a IQR = Interquartile range

Table S5. Meta-analysis results of CH₄, NH₃ and N₂O emission factors for land application of manure in paddy field and upland, respectively: (a) for paddy field, (b) for upland (these data also appear in the EmissionFactors tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

Table S5A. Paddy field

	Manure style	Management option	Parameter	range	mean(se)	median	IQR ^a	Ν	Reference
CH ₄ (kg AU ⁻¹ y ⁻¹)	Pig manure	Incorporation	P_EF _{CH4} LA _{paddy}	19.10~375.60	163.5(67.1)	113.4	282.3	3(5)	63-65
N_2O -N/TN (kg N_2O -N kg TN ⁻¹)	Pig manure	Incorporation	$P_EF_{N2O}LA_{paddy}$	0.0000~0.0023	0.0012(0.0005)	0.0013	0.00	3(4)	64, 66, 67
NH ₃ -N/TN (kg NH ₃ -N kg TN ⁻¹)	Pig manure	Incorporation						0(0)	
^a IQR = Interquartile range									

Table S5B. Upland

	Manure style	Management option	Parameter	range	mean(se)	median	IQR ^a	Ν	Reference
		Surface broadcasting						0(0)	
CH_4		Injection						0(0)	
(kg	Liquid manure	Rapid incorporation						0(0)	
AU ⁻¹		Band spreading						0(0)	
y ⁻¹)	0.1.1	Surface spreading						0(0)	
	Solid manure	Incorporation	$P_EF_{CH4}LA_{sinc}$			8.29		1(1)	68
NILL	Liquid manure	Surface broadcasting	$P_EF_{NH3}LA_{ls}$	0.0870~0.5034	0.3028(0.0226)	0.3177	0.18	5(26)	69-73
NH3- J/TN		Injection	$P_EF_{NH3}LA_{linj}$	0.0000~0.0638	0.0103(0.0038)	0.0049	0.01	4(17)	69, 71, 72, 74
(kg		Rapid incorporation	$P_EF_{NH3}LA_{linc}$	0.0120~0.2490	0.0986(0.0117)	0.0995	0.06	3(22)	69, 73, 74
NH ₃ -		Band spreading	P_EF _{NH3} LA _{bds}	0.0405~0.1792	0.0861(0.0122)	0.073	0.08	4(15)	71, 72, 74, 75
N kg TN ⁻¹)	G 11 1	Surface spreading	$P_EF_{NH3}LA_{ss}$	0.1180~0.3450	0.184(0.0219)	0.18	0.09	3(10)	70, 76, 77
IN)	Solid manure	Incorporation	$P_EF_{NH3}LA_{sinc}$	0.0070~0.0670	0.0294(0.0077)	0.024	0.04	2(9)	68, 76
		Surface broadcasting	$P_EF_{N2O}LA_{ls}$	0.0009~0.049	0.0093(0.0017)	0.0058	0.01	8(37)	78-85
J₂O- I∕TN	Liquid manure	Injection	<i>P_EF_{N20}LA</i> _{linj}	0.0005~0.123	0.0256(0.0057)	0.015	0.03	9(25)	74, 78-80, 83,86-89
(kg	Liquiu manure	Rapid incorporation	$P_EF_{N2O}LA_{linc}$	0.0000~0.1850	0.0365(0.0074)	0.017	0.04	10(44)	74, 85, 89-96
№0- Л kg		Band spreading	$P_EF_{N2O}LA_{lbds}$	0.0022~0.0135	0.0074(0.0017)	0.0078	0.01	3(6)	74, 86,90
N kg ΓΝ ⁻¹) Sc		Surface spreading	$P_EF_{N20}LA_{ss}$	0.00000~0.00020	0.00008(0.00004)	0.0001	0.0001	2(5)	53, 76
	Solid manure	Rapid incorporation	$P_EF_{N2O}LA_{sinc}$	0.0001~0.0190	0.0047(0.0021)	0.0009	0.01	5(11)	53, 68, 76, 91, 9

^a IQR = Interquartile range

		Mitigation option	Parameter	Min-Max	Mean	SE	Median	IQR ^a	P value	Ν	Reference
		low crude protein diet	$P_ME_{CH4}IN_{LCP}$	(-0.32)~0.15	-0.1517	0.0712	-0.17	0.2825	0.116	5(6)	10, 96-99
In-house		feed additive	$P_ME_{CH4}IN_{FA}$	0.12~0.25	0.2	0.04041	0.23	0.130	0.109	1(3)	97
		biofiltration	$P_ME_{CH4}IN_{\rm BF}$	(-0.83)~0.10	-0.2629	0.05654	-0.24	0.195	0.002	4(14)	100-103
		straw cover	$P_ME_{CH4}OU_{lg_SC}$	(-0.50)~2.47	0.0264	0.1037	-0.14	0.465	0.49	4(14)	43, 104-106
		oil cover	$P_ME_{CH4}OU_{lg_OC}$	(-0.13)~(-0.10)	-0.115	0.015	-0.12	0.030	0.18	1(2)	105
	T · · 1	plastic cover*	$P_ME_{CH4}OU_{lg_PC}$				0.00				
	Liquid	granule cover	$P_ME_{CH4}OU_{lg_GC}$	(-0.17)~(0.14)	-0.052	0.05598	-0.09	0.225	0.357	3(5)	44, 104,105
		cooling	$P_ME_{CH4}OU_{lg_{CL}}$	(-0.61)~(-0.23)	-0.3933	0.05542	-0.38	0.215	0.028	2(6)	107, 108
Outdoor		acid additive	$P_ME_{CH4}OU_{lg_AC}$	(-0.99)~(-0.31)	-0.7625	0.15553	-0.88	0.543	0.068	2(4)	109, 110
		Stockpile									
		Cover	P_ME _{CH4} OU _{sp_C}				-0.88			1(1)	38
	Solid	Compost									
		Additive	$P_ME_{CH4}OU_{cm_AD}$	(-0.63)~0.15	-0.165	0.17333	-0.09	0.650	0.465	1(4)	111
		Cover	$P_ME_{CH4}OU_{cm_CV}$	0.32~0.72	0.4533	0.03556	0.48	0.145	0.028	2(6)	32, 33
		For rice paddy									
		Without manure vs. manure	$P_ME_{CH4}LA_{no\ manure}$	(-0.97)~0.05	-0.5276	0.0655	-0.57	0.473	0	15(21)	63-67,
		without manure vs. manure	<i>F_MECH4LA</i> no manure	(-0.97)~0.05	-0.3270	0.0055	-0.57	0.475	0	13(21)	112-121
Land		For upland									
applicati		Slurry injection	$P_ME_{CH4}LA_{l_{INJ}}$							0(0)	
on		Slurry incorporation	$P_ME_{CH4}LA_{l_{INC}}$							0(0)	
		Solid incorporation	P_ME _{CH4} LA _{s_INC}							0(0)	
		Digested slurry	$P_ME_{CH4}LA_{digestate}$							0(0)	
		NI addition	$P_ME_{CH4}LA_{NI}$							0(0)	

Table S6. Meta-analysis results of changes of CH₄ emissions under different mitigation measures at their corresponding phase of manure management (these data also appear in the MitigationEffect tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

^a IQR = Interquartile range

		Mitigation option	Parameter	Min-Max	Mean	SE	Median	IQR ^a	P value	Ν	Reference
		low crude protein diet	$P_ME_{N2O}IN_{LCP}$	0.05~0.96	0.3633	0.29846	0.08	0.910	0.109	3(3)	97-99
In-ho		feed additive	$P_M E_{N20} I N_{FA}$	(-0.01)~0.25	0.1167	0.07513	0.11	0.260	0.285	1(3)	97
use		biofiltration	$P_M E_{N20} I N_{\rm BF}$	(-0.22)~0.81	0.1331	0.07252	0.12	0.260	0.195	3(13)	101-103
		straw cover	$P_ME_{N20}OU_{lg_SC}$	4.68~396.00	110.188	73.691	28.96	24.193	0.043	3(5)	43, 104, 106
		oil cover	$P_ME_{N20}OU_{lg_OC}$							0(0)	
Outd oor -	Liquid	plastic cover	$P_ME_{N20}OU_{lg_PC}$				0.00			0(0)	
		granule cover	$P_ME_{N20}OU_{lg_GC}$	2.62~2.80	2.71	0.09	2.71	NA^b	0.18	1(2)	104
		cooling	$P_ME_{N20}OU_{lg_CL}$							0(0)	
		acid additive	$P_ME_{N20}OU_{lg_AC}$							0(0)	
		Stockpile									
		Cover	$P_M E_{N20} O U_{sp_AD}$				-0.99	NA		1(1)	38
	Solid	Compost									
		Additive	$P_M E_{N20} O U_{\rm cm_AD}$	(-0.94)~(-0.09)	-0.45	0.09776	-0.32	0.660	0.003	4(11)	48-50, 111
		Cover	$P_M E_{N20} O U_{\rm cm_CV}$	(-0.39)~(0.19)	-0.1233	0.08445	-0.16	0.348	0.173	2(6)	32, 33
		For rice paddy									
		Without manure vs.		$(0.77) \in 10$	0.509	0.5002	0.22	1.170	0.575	9(10)	<i>CA_CE_</i> 115_120
		manure	<i>P_ME_{N20}LA</i> _{no manure}	(-0.77)~5.12	0.598	0.5993	-0.23	1.169	0.575	8(10)	64, 65, 115-120
Land		For upland									
appli catio		Slurry injection	<i>P_ME_{N20}LA_{1_INJ}</i>	(-0.34)~10.00	2.05	0.72346	0.84	2.820	0.003	6(15)	78-80, 83, 88, 122
1		Slurry incorporation	$P_ME_{N2O}LA_{1_{INC}}$	(-0.11)~0.49	0.18	0.12689	0.17	0.490	0.273	3(4)	79, 85, 122
		Solid incorporation	$P_ME_{N2O}LA_{s_{INC}}$	(-0.83)~45.71	4.196	4.164	-0.31	2.330	0.79	2(11)	53, 76
		Digested slurry	$P_ME_{N20}LA_{digestate}$	(-0.71)~2.33	-0.0484	0.11252	-0.25	0.608	0.158	8(32)	84, 86, 89, 93. 123-12
		NI addition	$P_M E_{N20} L A_{\rm NI}$	(-0.83)~0.34	-0.3333	0.10267	-0.28	0.590	0.016	5(12)	83, 123, 125, 127, 128

Table S7. Meta-analysis results of changes of N₂O emissions under different mitigation measures at their corresponding phase of manure management (these data also appear in the MitigationEffect tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

^a IQR = Interquartile range; ^b NA = not applicable

		Mitigation option	Parameter	Min-Max	Mean	SE	Median	IQR ^a	P value	Ν	Reference
T 1		low crude protein diet	$P_M E_{NH3} I N_{LCP}$	(-0.62)~(-0.23)	-0.3878	0.04867	-0.30	0.255	0.008	6(9)	10, 96-99, 129
In-hou		feed additive	$P_M E_{NH3} I N_{FA}$	(-0.510~(-0.10)	-0.3467	0.12548	-0.43	NA^b	0.109	1(3)	97
se		biofiltration	$P_M E_{NH3} I N_{\rm BF}$	(-0.86)~0.01	-0.6343	0.07497	-0.72	0.240	0.001	4(14)	101-103, 130
		straw cover	P_ME _{NH3} OU _{lg_SC}	(-0.89)~0.00	-0.5923	0.08433	-0.75	0.520	0.002	4(13)	43, 104, 105 131
		oil cover	$P_M E_{NH3} O U_{lg_OC}$	(-1.00)~(-0.50)	-0.816	0.08606	-0.85	0.315	0.043	3(5)	105, 131, 132
	T :	plastic cover	$P_ME_{NH3}OU_{lg_PC}$	(-1.00)~(-0.74)	-0.946	0.05154	-1.00	0.135	0.039	3(5)	131-133
	Liq uid	granule cover	$P_M E_{NH3} O U_{lg_GC}$	(-1.00)~(-0.17)	-0.8029	0.05298	-0.87	0.265	0.000	5(17)	104, 105, 13 132, 134
Dutdo		cooling	$P_M E_{NH3} O U_{lg_CL}$				-0.60	NA		1(1)	108
or		acid additive	$P_M E_{NH3} O U_{lg_AC}$	(-0.84)~0.00	-0.54	0.09356	-0.56	0.330	0.018	4(8)	109, 110, 13 136
		Stockpile									
	G 1'	Cover					-0.12	NA		1(1)	38
	Soli d	Compost									
	u	Additive	$P_M E_{NH3} O U_{\rm cm_AD}$	(-0.92)~0.86	-0.3675	0.14131	-0.42	0.390	0.028	4(11)	48, 50, 111, 13
		Cover	$P_M E_{NH3} O U_{cm_CV}$	(-0.35)~(-0.03)	-0.16	0.04442	-0.14	0.155	0.028	2(6)	32, 33
		For rice paddy									
		Without manure vs.	P MFIA							0(0)	
and		Without manure vs. manure	P_ME _{NH3} LA _{no manure}							0(0)	
			P_ME _{NH3} LA _{no manure}							0(0)	
Land applic ation		manure	P_ME _{NH3} LA _{no manure} P_ME _{NH3} LA _{1_INJ}	(-0.99)~(-0.70)	-0.936	0.02077	-0.99	0.069	0.001	0(0) 5(15)	69, 72, 83, 13 139

Table S8. Meta-analysis results of changes of NH₃ emissions under different mitigation measures at their corresponding phase of manure management (these data also appear in the MitigationEffect tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

 Solid incorporation	$P_M E_{NH3} L A_{s_{INC}}$	(-0.94)~(-0.44)	-0.788	0.0618	-0.85	0.258	0.012	1(8)	76
Digested slurry	$P_ME_{NH3}LA_{digestate}$	(-0.44)~(0.67)	0.119	0.23103	-0.06	1.002	0.686	2(5)	84, 140
NI addition	$P_M E_{NH3} L A_{\rm NI}$	(-0.17)~(0.00)	-0.045	0.04173	-0.01	0.130	0.18	4(4)	83, 127, 128, 141

^a IQR = Interquartile range; ^b NA = not applicable

Table S9. Meta-analysis result of the response ratio of N excreta because of dietary CP reduction (these data also appear in the NExcretaResult tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

	Parameter	range	mean(se)	media n	IQR ^a	P value	Ν	Reference	
N excreta	D Datio	-0.27~0.0	-0.153(0.02	0.170	0 165	0.001	6	00 120 142 145	
change ratio	P_Ratio _{Nex_lowCP}	3	3)	-0.170	0.165	0.001	(16)	99, 129, 142-145	

^a IQR = Interquartile range

Table S10. Parameters used in calculation

Item	Meaning	Value	Reference
P_N _{ex}	N excreta of swine per AU per year	94.9	146
P_VS _{ex}	VS excreta of swine per AU per year	1551.25	146
P_Manure _{ex}	Total manure excreta of swine per AU per year	15650	146
P_B ₀	maximum methane producing capacity for swine manure	$0.45 \text{ m}^3 \text{ CH}_4 \text{ kg}^{-1} \text{ VS}$	2
P_MCF _{bg}	methane conversion factors for biogas leakage	10%	2
0.67	conversion factor of $m^3 CH_4$ to kilograms CH_4		2
P_MCF _{pit}	methane conversion factors for pit	42%	2
P_Frac _{deg} BG _{VS}	VS degradation ratio in biogas digester	80%	147
$P_Frac_{loss}BG_N$	N loss ratio in biogas digester	0%	148

Table S11. Meta-analysis result of the ratio of NH₃-N loss to TN loss for different manure management (these data also appear in the NLossRatio tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

Managemen t option	Parameter	range	mean(se)	median	IQR ^a	N	Reference
Stockpile	P_Frac_sp <u>NH3_Nloss</u> <u>TNloss</u>	0.42~0.48	0.4500(0.02900)	0.45	NA ^b	1(2)	61
Compost	P_Frac_cm <u>NH3_Nloss</u> TNloss	0.24~0.93	0.7250(0.03358)	0.71	0.19	4(22)	32, 33, 35, 48
Lagoon	P_Frac_lg <u>NH3_Nloss</u> TNloss	0.41~0.84	0.6238(0.06529)	0.6408	0.2906	1(6)	149

^a IQR = Interquartile range; ^b NA = not applicable

Table S12. Meta-analysis result of CH_4 and NH_3 emission factors for biogas digestate stored in lagoon (these data also appear in the EmissionOfDigestate tab in Dataset S1; see dynamic links to other tabs that present the raw data in Dataset S1).

Emission factors	Parameter	Range	Mean (se)	Median	IQR ^a	N	Reference
NH ₃ -N/TN							
(kg NH ₃ -N kg TN ⁻¹)	$P_EF_{NH3}OU_{lg_digesta}$	4.30~33.00	16.90(4.95)	0.16	0.212	1(6)	149
CH ₄ emission factor							149
$(kg CH_4 kg VS^{-1})$	$P_EF_{CH4}OU_{lg_digestat}$	t 0.00~0.01	0.0056(0.0022)	0.0045	0.01	1(6)	

^aIQR = Interquartile range

SI figures

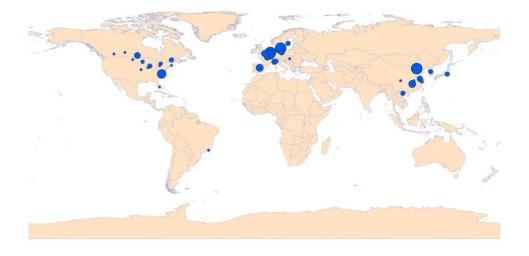
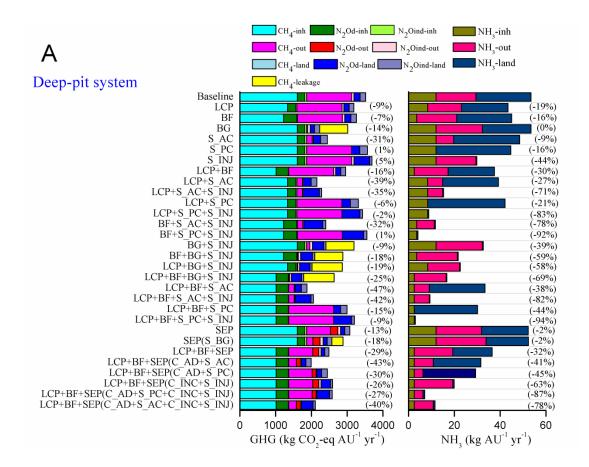
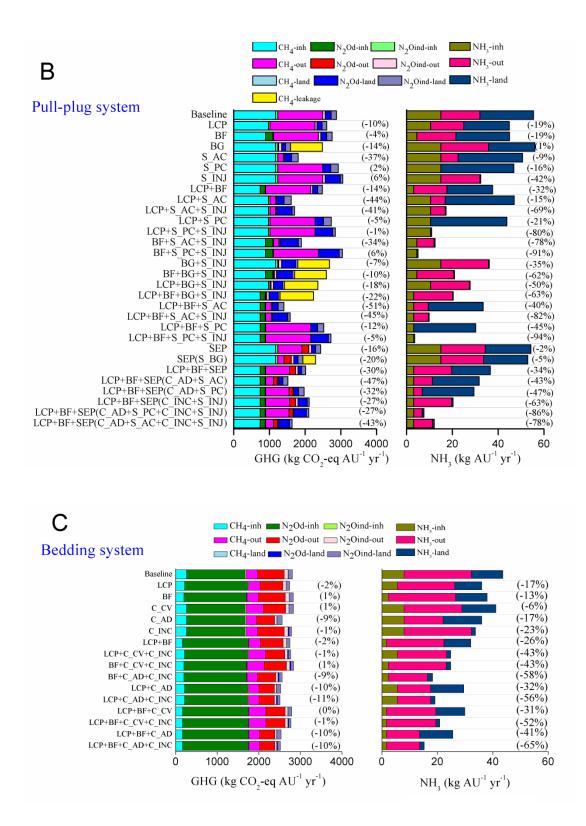




Figure S1. The location and distribution of the literature sources used in this study (Larger circles means more literatures available in the specific region).

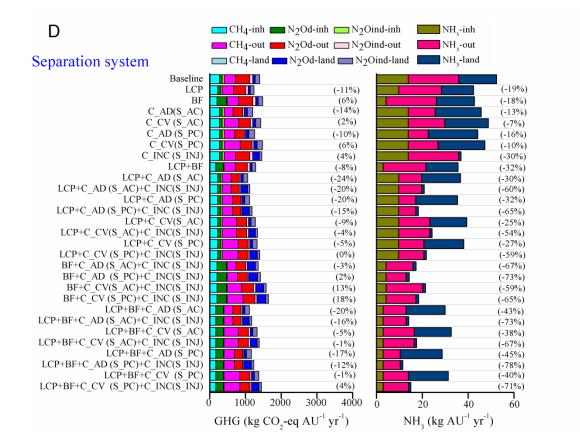


Figure S2. GHG and NH₃ emissions in baseline and mitigation scenarios for each system; the numbers in parentheses indicate the mitigation efficiency: Deep-pit system (A), Pull-plug system (B), Bedding system (C), Separation system (D). N₂Od=direct N₂O emission; N₂Oind=indirect N₂O emission; in=in-house; out=outdoor; land=land application; LCP=low crude protein; BF=biofilter; BG = biogas; S_AC=slurry acidification; SEP=outdoor separation; S_BG = separated slurry for biogas fermentation; C_AD=compost additive; C_INC=compost incorporation; S_PC=slurry plastic cover; S_INJ=slurry injection; AU=animal unit (1AU= 500kg).

SI Reference

- De Vries, J. W.; Aarnink, A. J.; Groot Koerkamp, P. W.; De Boer, I. J. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management. *Environ. Sci. Technol.* 2013, 47(3):1589-1597.
- Intergovernmental Panel on Climate Change (IPCC). IPCC 2006 Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry, and Other Landuse. Institute for Global Environmental Strategies, Hayama, Japan, 2006
- Melse, R. W.; Ploegaert, J. P.; Ogink, N. W. Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. *Biosys. Eng.* 2012, *113*(3):242-252.
- 4. Philippe, F. X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks, B. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter. *Livest. Sci.* **2007**, *111*(1):144-152.
- Cabaraux, J. F.; Philippe, F. X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks,
 B. Gaseous emissions from weaned pigs raised on different floor systems. *Agric Ecosyst. Environ.* 2009, 130(3):86-92.
- Osada, T.; Rom, H. B.; Dahl, P. Continuous measurement of nitrous oxide and methane emission in pig units by infrared photoacoustic detection. *Trans. ASAE*. 1998, 41(4):1109-1114.
- 7. Stinn, J. P.; Xin, H.; Shepherd, T. A.; Li, H.; Burns, R. T. Ammonia and greenhouse gas emissions from a modern US swine breeding-gestation-farrowing

system. Atmos. Environ. 2014, 98:620-628.

- Zong, C.; Li, H.; Zhang, G. Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. *Agric. Ecosyst. Environ.* 2015, 208:94-105.
- 9. Shafiqur, R. Greenhouse gas (GHG) emissions from mechanically ventilated deep pit swine gestation operation. *J. Civil Environment. Eng.* **2012**, 2(1): 104.
- Hansen, M. J.; Nørgaard, J. V.; Adamsen, A. P. S.; Poulsen, H. D. Effect of reduced crude protein on ammonia, methane, and chemical odorants emitted from pig houses. *Livest. Sci.* 2014, *169*:118-124.
- Van Ransbeeck, N.; Van Langenhove, H.; Demeyer, P. Indoor concentrations and emissions factors of particulate matter, ammonia and greenhouse gases for pig fattening facilities. *Biosys. Eng.* 2013, *116*(4):518-528.
- Sharpe, R.; Harper, L.; Simmons, J. Methane emissions from swine houses in North Carolina. *Chemosphere* 2001, 3(1):1-6.
- Zhang, Q.; Zhou, X.; Cicek, N.; Tenuta, M. Measurement of odour and greenhouse gas emissions in two swine farrowing operations. *Canadian Biosyst. Eng.* 2007, 49:6.13-6.20.
- Dong, H.; Kang, G.; Zhu, Z.; Tao, X.; Chen, Y.; Xin, H.; Harmon J. D. Ammonia, methane, and carbon dioxide concentrations and emissions of a hoop grower-finisher swine barn. T. ASABE. 2009, 52(5):1741-1747.
- 15. Nicks, B.; Laitat, M.; Vandenheede, M.; Désiron, A.; Verhaeghe, C.; Canart, B. Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor

in the raising of weaned pigs on straw-based and sawdust-based deep litters. *Anim. Res.* **2003**, *52*(3):299-308.

- Philippe, F. X.; Laitat, M.; Wavreillec, J.; Bartiaux-Thillc, N.; Nicksa, B.; Cabarauxa, J. F. Ammonia and greenhouse gas emission from group-housed gestating sows depends on floor type. *Agric. Ecosyst. Environ.* 2011, 140(3):498-505.
- Philippe, F. X.; Laitat, M.; Wavreille, J.; Nicks, B.; Cabaraux, J.F. Influence of permanent use of feeding stalls as living area on ammonia and greenhouse gas emissions for group-housed gestating sows kept on straw deep-litter. *Livest Sci* 2013, 155(2):397-406.
- Philippe, F. X.; Laitat, M.; Nicks, B.; Cabaraux, J. F. Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. *Agric. Ecosyst. Environ.* 2012, 150:45-53.
- Dong, H.; Zhu, Z.; Shang, B.; Kang, G.; Zhu, H.; Xin, H. Greenhouse gas emissions from swine barns of various production stages in suburban Beijing, China. Atmos. Environ. 2007, 41(11):2391-2399.
- 20. Koger, J.; O'Brien, B. K.; Burnette, R. P.; Kai, P.; vanKempen, M. H. J. G.; vanHeugten, E.; vanKempen T. A. T. G. Manure belts for harvesting urine and feces separately and improving air quality in swine facilities. *Livest. Sci.* 2014, 162:214-222.
- 21. Heber A. J.; Ni, J. Q.; Lim, T. T.; Diehl, C. A.; Sutton, A. L.; Duggirala, R. K.; Haymore, B.L.; Kelly, D. T.; Adamchuk, V. I. Effect of a manure additive on

ammonia emission from swine finishing buildings. *T. ASAE*. **2000**, *43*(6):1895-1902.

- Aarnink, A.; Keen, A.; Metz, J.; Speelman, L.; Verstegen, M. Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors. J Agr. Eng. Res. 1995, 62(2):105-116.
- Aarnink, A., Van Den Berg, A.; Keen, A.; Hoeksma, P.; Verstegen, M. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs. *J. Agr. Eng. Res.* **1996**, *64*(4):299-310.
- Kim, K. Y.; Ko, H. J.; Kim, H. T.; Kim, Young, Y. S.; Roh, M.; Lee, C. M.; Kim,
 C. N. Quantification of ammonia and hydrogen sulfide emitted from pig buildings in Korea. *J. Environ. Manage.* 2008, 88(2):195-202.
- Groenestein, C.; Van Faassen, H. Volatilization of ammonia, nitrous oxide and nitric oxide in deep-litter systems for fattening pigs. J. Agr. Eng. Res. 1996, 65(4):269-274.
- Sharpe, R.; Harper, L. A.; Byers, F. M. Methane emissions from swine lagoons in Southeastern US. Agric. Ecosyst. Environ. 2002, 90(1):17-24.
- 27. Flesch, T. K.; Verge, X. P.; Desjardins, R. L.; Worth, D. Methane emissions from a swine manure tank in western Canada. *Can. J. Anim. Sci.* **2013**, *93*(1):159-169.
- DeSutter, T. M.; Ham, J. M. Lagoon-biogas emissions and carbon balance estimates of a swine production facility. *J. Environ. Qual.* 2005, 34(1):198-206.
- 29. Laguee, C.; Gaudet, E.; Agnew, J.; Fonstad, T. Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. *T. ASAE.* **2005**, *48*(6):

2289-2296.

- 30. Fukumoto, Y.; Osada, T.; Hanajima, D.; Haga, K. Patterns and quantities of NH₃, N₂O and CH₄ emissions during swine manure composting without forced aeration--effect of compost pile scale. *Bioresour. Technol.* **2003**, *89*(2):109-114.
- Sommer, S. G.; Moller, H. Emission of greenhouse gases during composting of deep litter from pig production-effect of straw content. J. Agr. Sci. 2000, 134(3):327-335.
- 32. Jiang, T.; Schuchardt, F.; Li, G. Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting. *T. CSAE.* 2011, 27(10): 212-217. (in Chinese with English abstract)
- Jiang, T.; Schuchardt, F.; Li, G. X.; Guo, R.; Luo, Y. M. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system. *Chemosphere* 2013, 90(4):1545-1551.
- 34. Szanto, G.; Hamelers, H.; Rulkens, W.; Veeken, A. NH₃, N₂O and CH₄ emissions during passively aerated composting of straw-rich pig manure. *Bioresour. Technol.* 2007, 98(14):2659-2670.
- 35. Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. *J. Environ. Qual.* 2011, 23(10):1754-1760.
- 36. Paillat, J. M.; Robin, P.; Hassouna, M.; Leterme, P. Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. *Atmos. Environ.* 2005, *39*(36):6833-6842.

- 37. Jiang, T.; Li, G.; Tang, Q.; Ma, X.; Wang, G.; Schuchardt, F. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale. *J. Environ. Qual.* 2015,31:124-132.
- 38. Hansen, M. N.; Henriksen, K.; Sommer, S. G. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: Effects of covering. *Atmos. Environ.* 2006, 40(22):4172-4181.
- 39. Wolter, M.; Prayitno, S.; Schuchardt, F. Greenhouse gas emission during storage of pig manure on a pilot scale. *Bioresource Technol.* **2004**, *95*(3): 235-244.
- Feng, L. Emission of greenhouse gases and ammonia from swine manure storage. Master thesis. Huazhong Agricultural University, Wuhan, China, 2014 (in chinese with english abstract).
- Hassouna M, Espagnol, S.; Robin, P.; Paillat, J.M.; Levasseur, P.; Li, Y. Monitoring NH₃, N₂O, CO₂ and CH₄ emissions during pig solid manure storage effect of turning. *Compost Sci. Util.* **2008**, *16*(4):267-274.
- Dong, H.; Zhu, Z.; Zhou, Z.; Xin, H.; Chen, Y. Greenhouse gas emissions from swine manure stored at different stack heights. *Anim. Feed Sci. Technol.* 2011, 166: 557-561.
- Petersen, S.O.; Dorno, N.; Lindholst, S.; Feilberg, A.; Eriksen, J. Emissions of CH₄, N₂O, NH₃ and odorants from pig slurry during winter and summer storage. *Nutr. Cycl. Agroecosys.* 2013, 95(1):103-113.
- 44. Li, N. GHG emission from slurry storage of swine farm. Master thesis. Chinese Academy of Agricultural sciences, Beijing, China, 2008 (in Chinese with english

abstract).

- 45. Moset, V.; Cambra-López, M.; Estellés, F.; Torres, A.G.; Cerisuelo, A. Evolution of chemical composition and gas emissions from aged pig slurry during outdoor storage with and without prior solid separation. *Biosys. Eng.* 2012, *111*(1): 2-10.
- 46. Park, K. H.; Thompson, A. G.; Marinier, M.; Clark, K.; Wagner-Riddle, C. Greenhouse gas emissions from stored liquid swine manure in a cold climate. *Atmos. Environ.* 2006, 40(4): 618-627.
- Harper, L. A.; Sharpe, R. R.; Parkin, T. B. Gaseous nitrogen emissions from anaerobic swine lagoons: Ammonia, nitrous oxide, and dinitrogen gas. *J. Environ. Qual.* 2000, 29(4): 1356-1365.
- 48. Zheng, J.; Wei, Y. S.; Wu, X. F.; Zeng, X. L.; Han, S. H.; Fang, Y. Nutrients conservation of N & P and greenhouse gas reduction of N₂O emission during swine manure composting. *Environ. Sci.* 2011, *32*(7): 2047-2055 (in Chinese with English abstract)
- 49. Fukumoto, Y.; Suzuki, K.; Osada, T.; Kuroda, K.; Hanajima, D.; Yasuda, T.; Haga, K. Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria. *Environ. Sci. Technol.* 2006, 40(21):6787-6791.
- Fukumoto, Y.; Suzuki, K.; Kuroda, K.; Waki, M.; Yasuda, T. Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH₃, N₂O and NO during swine manure composting. *Bioresour. Technol.* 2011, *102*(2):1468-1474.
- 51. Luo, W.; Yuan, J.; Luo, Y.; Li, G. X.; Nghiem, L.; Price, W. Effects of mixing and

covering with mature compost on gaseous emissions during composting. Chemosphere **2014**, *117*:14-19.

- 52. Webb, J.; Sommer, S. G.; Kupper, T.; Groenestein, K.; Hutchings, N. J.; Eurich-Menden, B.; Rodhe, L.; Misselbrook, T. H.; Amon, B. Emissions of ammonia, nitrous oxide and methane during the management of solid manures. In *Agroecology and Strategies for Climate Change*, Lichtfouse, E., Eds.; Springer: Heidelberg 2012, pp 67-107.
- 53. Thorman, R.; Chadwick, D.; Harrison, R.; Boyles, L.; Matthews, R. The effect on N₂O emissions of storage conditions and rapid incorporation of pig and cattle farmyard manure into tillage land. *Biosys. Eng.* 2007, 97(4):501-511.
- 54. Ding, G.; Han, S. H.; Yuan, Y. L.; Luo, L.; Wang, L. G.; Li, H.; Li, P. Emissions of NH₃, N₂O, and NO from Swine Manure Solid Storage in Winter. *Environ. Sci.* 2014, *35*(7): 2807-2815 (in Chinese with English abstract)
- 55. Yuan, Y.; Wang, L. G.; Li, H.; Ding, G. Q.; Han, S. H.; Wei, J. H. Nitrogenous gas emissions from solid swine manure under natural composting conditions. J. Agro-environment Sci. 2014, 33(7):1422-1428. (in Chinese with English abstract)
- Blunden, J.; Aneja, V. P. Characterizing ammonia and hydrogen sulfide emissions from a swine waste treatment lagoon in North Carolina. *Atmos. Environ.* 2008, 42(14):3277-3290.
- 57. Lim, T. T.; Heber, A. J.; Ni, J. Q.; Sutton, A. L.; Shao, P. Odor and gas release from anaerobic treatment lagoons for swine manure. *J. Environ. Qual.* 2003, 32(2):406-416.

- Aneja, V. P.; Chauhan, J.; Walker, J. Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons. J. Geophys Res. 2000, 105(D9):11535-11545.
- 59. Szogi, A.; Vanotti, M.; Stansbery, A. Reduction of ammonia emissions from treated anaerobic swine lagoons. *T. ASAE*. **2006**, *49*(1):217-225.
- Szogi, A.; Vanotti, M. Abatement of ammonia emissions from swine lagoons using polymer-enhanced solid-liquid separation. *Appl. Eng. Agric.* 2007, 23(6):837-845.
- 61. Petersen, S. O.; Lind, A. M.; Sommer, S. G. Nitrogen and organic matter losses during storage of cattle and pig manure. *J. Agr. Sci.* **1998**,*130*(01):69-79.
- 62. Dai, X. R.; Saha, C. K.; Ni, J. Q.; Heber, A. J.; Blanes-Vidal, V.; Dunn, J. L. Characteristics of pollutant gas releases from swine, dairy, beef, and layer manure, and municipal wastewater. *Water Res.* 2015, 76: 110–119.
- 63. Vu, Q. D.; de Neergaard, A.; Tran, T. D.; Hoang, Q. Q.; Ly, P.; Tran, T. M.; Jensen,
 L. S. Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. *Nutr. Cycl. Agroecosys.* 2015, *103*(3): 329-346.
- 64. Pandey, A.; Mai, V. T.; Vu, D. Q.; Bui, T. P. L.; Mai, T. L. A.; Jesen, L. S.; de Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. *Agric. Ecosyst. Environ.* 2014, 196: 137-146.
- 65. Kim, S. Y.; Pramanik, P.; Bodelier, P. L. E.; Kim, P. J. Cattle manure enhances

methanogens diversity and methane emissions compared to swine manure under rice paddy. *PloS one* **2014**, *9*(12): e113593.

- 66. Sun, G.; Zheng, J.; Chen, L.; He, J.; Zhang, Y. Effects of pig manure and biogas slurry application on CH4 and N2O emissions and their greenhouse effects on paddy field. Journal of China Agricultural University 2012, 17(5):124-131. (in Chinese with English abstract)
- 67. Yang, J.; Wang, C. Q.; Cai, Y.; Bai, G. C.; You, L. Y.; Yi, Y. L.; Huang, F.; Li, X.
 X. Life cycle greenhouse gases emission of rice production with pig manure application. Chinese Journal of Eco-Agriculture 2015, 23(9):1131-1141.(in Chinese with English abstract)
- Wan, H.; Zhao, C. Y.; Zhong, J.; Ge, Z.; Wei, Y. S.; Zheng, J. X.; Wu, Y. L.; Han,
 S. H.; Zheng, B. F.; Li, H. M. Emission of CH₄, N₂O, NH₃ from vegetable Field Applied with Animal Manure Composts. *Environ. Sci.* 2014, *35*(3): 892-900. (in Chinese with English abstract)
- 69. Huijsmans, J.; Hol, J.; Vermeulen, G. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. *Atmos. Environ.* **2003**, *37*(26):3669-3680.
- Dinuccio, E.; Gioelli, F.; Balsari, P.; Dorno, N. Ammonia losses from the storage and application of raw and chemo-mechanically separated slurry. *Agric. Ecosyst. Environ.* 2012, 153:16-23.
- 71. Malgeryd, J. Technical measures to reduce ammonia losses after spreading of animal manure. *Nutr. Cycl. Agroecosys.* **1998**, 51(1):51-57.

- 72. Huijsmans, J.; Hol, J.; Hendriks, M. Effect of application technique, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to grassland. *NJAS-Wagen. J. Life. Sc.* 2001,49(4):323-342.
- 73. Anglo-Dutch experiments on odour and ammonia emissions following the spreading of piggery wastes on arable land. Institute of Agricultural Engineering: Wageningen, The Netherlands, 1991; http://library.wur.nl/WebQuery/wurpubs/fulltext/255776
- Weslien, P.; Klemedtsson, L.; Svensson, L.; Galle, B.; Kasimir-Klemedtsson, A.; Gustafsson, A. Nitrogen losses following application of pig slurry to arable land. *Soil Use Manage* 1998, 14(4):200-208.
- 75. Meade, G.; Pierce, K.; O'Doherty, J. V.; Mueller, C.; Lanigan, G.; Mc Cabe, T. Ammonia and nitrous oxide emissions following land application of high and low nitrogen pig manures to winter wheat at three growth stages. *Agric. Ecosyst. Environ.* 2011, 140(1):208-217.
- 76. Webb, J.; Chadwick, D.; Ellis, S. Emissions of ammonia and nitrous oxide following incorporation into the soil of farmyard manures stored at different densities. *Nutr. Cycl. Agroecosys.* 2004, 70(1):67-76.
- 77. Webb, J.; Thorman, R.; Fernanda-Aller, M.; Jackson, D. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types. *Atmos. Environ.* **2014**, 82:280-287.
- 78. Velthof, G.; Mosquera, J. The impact of slurry application technique on nitrous oxide emission from agricultural soils. *Agric. Ecosyst. Environ.* 2011,

140(1):298-308.

- Velthof, G. L.; Kuikman, P. J.; Oenema, O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. *Biol Fertility Soils* 2003, 37(4):221-230.
- Vallejo, A.; García-Torres, L.; Díez, J. A.; Arce, A.; López-Fernández, S. Comparison of N losses (NO₃⁻, N2O, NO) from surface applied, injected or amended (DCD) pig slurry of an irrigated soil in a Mediterranean climate. *Plant Soil* 2005, 272(1-2):313-325.
- Tenuta, M.; Mkhabela, M.; Tremorin, D.; Coppi, L.; Phipps, G.; Flaten, D.;
 Ominske, K. Nitrous oxide and methane emission from a coarse-textured grassland soil receiving hog slurry. *Agric. Ecosyst. Environ.* 2010, *138*(1):35-43.
- Whalen, S.; Phillips, R.; Fischer, E. Nitrous oxide emission from an agricultural field fertilized with liquid lagoonal swine effluent. *Global Biogeochem. Cy.* 2000, 14(2):545-558.
- 83. Aita, C.; Gonzatto, R.; Miola, E. C. C.; dos Santos, D. B.; Rochette, P.; Angers, D. A.; Chantigny, M. H.; Pujol, S. B.; Giacomini, D. A.; Giacomini, S. J. Injection of dicyandiamide-treated pig slurry reduced ammonia volatilization without enhancing soil nitrous oxide emissions from no-till corn in Southern Brazil. *J. Environ. Qual.* 2014, 43(3):789-800.
- 84. Chantigny, M. H.; Angers, D. A.; Rochette, P.; Belanger, G.; Masse, D; Cote, D. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. *J. Environ. Qual.* 2007, *36*(6):1864-1872.

- 85. López-Fernández, S.; Diez, J. A.; Hernáiz, P.; Arce, A.; García-Torres, L.; Vallejo, A. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. *Nutr. Cycl. Agroecosys.* 2007, 78(3):279-289.
- 86. Thomsen, I. K.; Pedersen, A. R.; Nyord, T.; Petersen, S. O. Effects of slurry pre-treatment and application technique on short-term N₂O emissions as determined by a new non-linear approach. *Agric. Ecosyst. Environ.* 2010, *136*(3):227-235.
- 87. Gao, X.; Tenuta, M.; Buckley, K. E.; Zvomuya, F.; Ominski, K. Greenhouse gas emissions from pig slurry applied to forage legumes on a loamy sand soil in south central Manitoba. *Can. J. Soil Sci.* **2014**, *94*(2):149-155.
- Sistani, K.; Warren, J.; Lovanh, N.; Higgins, S.; Shearer, S. Greenhouse gas emissions from swine effluent applied to soil by different methods. *Soil Sci. Soc. Am. J.* 2010, 74(2):429-435.
- Severin, M.; Fuß, R.; Well, R.; Garlipp, F.; Van den Weghe, H. Soil, slurry and application effects on greenhouse gas emissions. *Plant Soil. Environ.* 2015, 61(8):344-351.
- 90. Rodhe, L. K. K.; Abubaker, J.; Ascue, J.; Pell, M.; Nordberg, A. Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. *Biosys. Eng.* 2012, *113*(4):379-394.
- 91. Dambreville, C.; Morvan, T.; Germon, J. C. N₂O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany.

Agric. Ecosyst. Environ. 2008, 123(1):201-210.

- 92. Kariyapperuma, K. A.; Furon, A.; Wagner-Riddle, C. Non-growing season nitrous oxide fluxes from an agricultural soil as affected by application of liquid and composted swine manure. *Can. J. Soil. Sci.* 2012, 92(2):315-327.
- 93. Chantigny, M. H.; Rochette, P.; Angers, D. A.; Bittman, S.; Buckley, K.; Massé, D.; Bélanger, G.; Eriksen-Hamel, N.; Gasser, M.O. Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure. *J Environ. Qual.* 2010, 39(5):1545-1553.
- 94. Jarecki, M. K.; Parkin, T. B.; Chan, A. S. K.; Kaspar, T. C.; Moorman, T. B.; Singer, J. W.; Kerr, B. J.; Hatfield, J. L.; Jones, R. Cover crop effects on nitrous oxide emission from a manure-treated Mollisol. *Agric. Ecosyst. Environ.* 2009, 134(1):29-35.
- 95. Rochette, P.; Angers, D. A.; Chantigny, M. H.; Bertrand, N.; Côté, D. Carbon dioxide and nitrous oxide emissions following fall and spring applications of pig slurry to an agricultural soil. *Soil Sci. Soc. Am. J.* **2004**, *68*(4):1410-1420.
- Velthof, G. L.; Nelemans, J. A.; Oenema, O.; Kuikman, P. J. Gaseous nitrogen and carbon losses from pig manure derived from different diets. *J. Environ. Qual.* 2005, 34(2):698-706.
- 97. Montalvo, G.; Morales, J.; Pineiro, C.; Godbout, S.; Bigeriego, M. Effect of different dietary strategies on gas emissions and growth performance in post-weaned piglets. *Span J. Agric. Res.* **2013**, *11*(4):1016-1027.
- 98. Philippe F. X., Laitat, M.; Canart, B.; Farnir, F.; Massart, L.; Vandenheede, M.;

Nicks, B. Effects of a reduction of diet crude protein content on gaseous emissions from deep-litter pens for fattening pigs. *Anim. Res.* 2006, *55*(5):397-407

- 99. Le, P.; Aarnink, A.; Jongbloed, A. Odour and ammonia emission from pig manure as affected by dietary crude protein level. *Livest. Sci.* **2009**, *121*(2):267-274.
- 100.Melse, R. W.; van der Werf, A. W. Biofiltration for mitigation of methane emission from animal husbandry. *Environ. Sci. Technol.* **2005**, *39*(14):5460-5468.
- 101.Janni, K.; Jacobson, L.; Hetchler ,B.; Oliver, J.; Johnston, L. Semi-continuous air sampling versus 24-hour bag samples to evaluate biofilters on a swine nursery in warm weather. *T. ASABE*. **2014**, *57*(5):1501-1515.
- 102.Akdeniz, N.; Janni, K. A. Full-scale biofilter reduction efficiencies assessed using portable 24-hour sampling units. J. Air Waste Manage. Assoc. 2012, 62(2):170-182.
- 103.Hood, M.; Shah, S.; Kolar, P.; Li, L. W.; Stikeleather, L. Biofiltration of ammonia and ghgs from swine gestation barn pit exhaust. *T. Asabe*. **2015**, *58*(3):771-782.
- 104.Berg, W.; Brunsch, R.; Pazsiczki, I. Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agric. Ecosyst. Environ. 2006, 112(2):129-134.
- 105.Guarino, M.; Fabbri, C.; Brambilla, M.; Valli, L.; Navarotto, P. Evaluation of simplified covering systems to reduce gaseous emissions from livestock manure storage. *T. ASAE*. 2006, 49(3):737-747.

106.Hansen, R. R.; Nielsen, D. A.; Schramm, A.; Nielsen, L. P.; Revsbech, N. P.;

Hansen, M. N. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry. *J. Environ Qual.* **2009**, *38*(3):1311-1319.

- 107.Groenestein, K.; Mosquera, J.; Van der Sluis, S. Emission factors for methane and nitrous oxide from manure management and mitigation options. *J. Integr. Environ. Sci.* 2012, 9(sup1):139-146.
- 108.Dinuccio, E.; Berg, W.; Balsari, P. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. *Atmos. Environ.* 2008, 42(10):2448-2459.
- 109.Wang, K.; Huang, D.; Ying, H.; Luo, H. Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry. *Biosys. Eng.* 2014, 122:23-30.
- 110.Petersen, S. O.; Højberg, O.; Poulsen, M.; Schwab, C.; Eriksen, J. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J. Appl. Microbiol. 2014, 117(1):160-172.
- 111.Luo, Y.; Li, G. X.; Wang, K.; Jiang, T.; Luo, W. H. Efects of additive superphosphate on NH₃, N₂O and CH₄ emissions during pig manure composting. *T. CSAE.* 2012, 28(22): 235-242.(in Chinese with English abstract)
- 112.Chen, W.; Lu, W.; Duan, B.; Wassmann, R.; Lantin, R. S. Impacts of application of pig manure and biogas sludge on methane emission in the double-cropping rice fields. *Acta Ecologica Scinica* **2001**, *21*(2):265-270.(in Chinese with English abstract)
- 113.Wang, Z. Y.; Xu. Y. C.; Li, Z. Methane emissions from irrigated rice fields and its

control. Acta Agronomica sinica 2001, 27(6):757-769

- 114.Huo, L.; Ji, X.; Wu, J.; Peng, H.; Zhu, J. The effect of organic manures application on methane emission and its simulation in paddy fields. *Journal of Agro-Environment Science* **2013**, *32*(10): 2084-2092. (in Chinese with English abstract)
- 115.Zou, J.; Huang, Y.; Zong, L.; Wang, Y.; Sass, R. L. Integrated Effect of Incorporation with Different Organic Manures on CH₄ and N₂O Emissions from Rice Paddy. *Chinese Journal of Environmental Science* 2003, 24(4):7-12. (in Chinese with English abstract)
- 116.Qin, X.; Li, Y.; Liu, K.; Wan, Y. Methane and nitrous oxide emission from paddy field under different fertilization treatments. *T. CSAE.* 2006, 22(7):143-148.(in Chinese with English abstract)
- 117.Liu, X.; Li, Z.; Pan, G.; Li, L. Greenhouse Gas Emission and C Intensity for a Long-term Fertilization Rice Paddy in Tai Lake Region, China. *Journal of Agro-Environment Science* **2011**, *30*(9):1783-1790.(in Chinese with English abstract)
- 118.Wang, J.; Chen, Z.; Ma, Y.; Sun, L.; Xiong, Z.; Huang, Q.; Sheng, Q. Methane and nitrous oxide emissions as affected by organic–inorganic mixed fertilizer from a rice paddy in southeast China. *J Soil Sediment* **2013**, *13*(8): 1408-1417.
- 119.Huo, L.; Ji, X.; Wu, J.; Peng, H.; Zhu, J. Effects of applications of exogenous organic carbon on methane emissions and oxidizable organic carbon in paddy soil. *Research of Agricultural Modernization*, 2013, 34(4): 496-501. (in Chinese with

English abstract)

- 120.Li, B.; Rong, X. M.; Xie, G. X.; Zhou, L.; Zhang, Y.; Yi, Z. Y.; Wang, X. X.
 Effect of combined application with organic and inorganic fertilizers on methane emission in double-cropping paddy fields. *Ecology and Environment Sciences* 2013, 22(2):276-282.(in Chinese with English abstract)
- 121.Wang, Z. Y.; Xu, Y. C.; Li, Z.; Guo, Y. X.; Wassmann, R. Neue, H. U.; Lantin, R. S.; Buendia, L. V.; Ding, Y. P. A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. *Nutr. Cycl. Agroecosys.* 2000, 58:55-63
- 122.Sommer, S. G., Sherlock, R., Khan, R. Nitrous oxide and methane emissions from pig slurry amended soils. *Soil Biol. Biochem.* **1996**, *28*(10):1541-1544.
- 123.Meijide, A.; Díez, J. A.; Sánchez-Martín, L.; López-Fernández, S.; Vallejo, A. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. *Agric. Ecosyst. Environ.* 2007, *121*(4):383-394.
- 124.Bertora, C.; Alluvione, F.; Zavattaro, L.; van Groenigen, J. W.; Velthof, G.;
 Grignani, C. Pig slurry treatment modifies slurry composition, N₂O, and CO₂
 emissions after soil incorporation. *Soil Biol. Biochem.* 2008, 40(8):1999-2006.
- 125.Vallejo, A.; Skiba, U.; García-Torres, L.; Arce, A.; López-Fernández, S.;
 Sánchez-Martín, L. Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilization with treated pig slurries and composts. *Soil Biol. Biochem.* 2006, *38*(9):2782-2793.

- 126.Petersen, S. O. Nitrous oxide emissions from manure and inorganic fertilizers applied to spring barley. *J. Environ. Qual.* **1999**, *28*(5): 1610-1618.
- 127.Mkhabela, M.; Gordon, R.; Burton, D.; Madani, A.; Hart, W. Effect of lime, dicyandiamide and soil water content on ammonia and nitrous oxide emissions following application of liquid hog manure to a marshland soil. *Plant Soil* 2006, 284 (1-2): 351-361.
- 128.Mkhabela, M. S.; Gordan, R.; Burton, D.; Madani, A.; Hart, W.; Elmi, A. Ammonia and nitrous oxide emissions from two acidic soils of Nova Scotia fertilised with liquid hog manure mixed with or without dicyandiamide. *Chemosphere* **2006**, *65*(8):1381-1387.
- 129.Canh, T. T.; Aarnink, A. J. A.; Schutte, J. B.; Sutton, A.; Langhout, D. J.; Verstegen, M. W. A. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. *Livest Prod Sci* 1998, 56(3):181-191.
- 130.Melse, R.; Mol, G. Odour and ammonia removal from pig house exhaust air using a biotrickling filter. *Water Sci Technol* **2004**, *50*(4):275-282.
- 131.Hörnig, G.; Türk, M.; Wanka, U. Slurry covers to reduce ammonia emission and odour nuisance. J. Agr. Eng. Res. **1999**, 73(2):151-157.
- 132.Portejoie, S.; Martinez, J.; Guiziou, F.; Coste, C. Effect of covering pig slurry stores on the ammonia emission processes. *Bioresour. Technol.* 2003, 87(3):199-207.
- 133.Scotford, I.; Williams, A. Practicalities, Costs and effectiveness of a floating

plastic cover to reduce ammonia emissions from a pig slurry lagoon. J. Agr. Eng. Res. 2001, 80(3):273-281.

- 134.Balsari, P.; Dinuccio, E.; Gioelli, F. A low cost solution for ammonia emission abatement from slurry storage. *International Congress Series*, 2006, 1293:323-326.
- 135.Kai, P.; Pedersen, P.; Jensen, J.; Hansen, M. N.; Sommer, S. G. A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions. *Eur. J. Agron.* 2008, 28(2):148-154.
- 136.Dai, X. R.; Blanes-Vidal, V. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration. *J. Environ. Manage.* **2013**, *115*:147-154.
- 137.Bautista, J. M.; Kim, H.; Ahn, D. H.; Zhang, R.; Oh, Y. S. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. *Korean J. Chem. Eng.* **2011**, *28*(1):189-194.
- 138.Dell, C. J.; Kleinman, P. J.; Schmidt, J. P.; Beegle, D. B. Low-disturbance manure incorporation effects on ammonia and nitrate loss. J. Environ. Qual. 2012, 41(3):928-937.
- 139.Dendooven, L.; Bonhomme, E.; Merckx, R.; Vlassak, K. Injection of pig slurry and its effects on dynamics of nitrogen and carbon in a loamy soil unter laboratory conditions. *Biol. Fer.t Soils* **1998**, *27*(1):5-8.
- 140.Ni, K.; Pacholski, A.; Gericke, D.; Kage, H. Analysis of ammonia losses after field application of biogas slurries by an empirical model. *J. Plant Nutr. Soil Sc.*

2012, *175*(2): 253-264.

- 141.Dendooven, L.; Bonhomme, E.; Merckx, R.; Vlassak, K. N dynamics and sources of N2O production following pig slurry application to a loamy soil. *Biol. Fert. Soils* 1998, 26(3):224-228.
- 142.Galassi, G.; Colombini, S.; Malagutti, L.; Crovetto, G. M.; Rapetti, L. Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. *Anim. Feed Sci. Technol.* 2010, 161(3-4):140-148.
- 143.Hernández, F.; Martínez, S.; López, C.; Megías, M. D.; López, M.; Madrid, J. Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. *Animal* 2011, 5(08):1290-1298.
- 144.Leek, A. B.; Hayes, E. T.; Curran, T. P.; Callan, J. J.; Beattie, V. E.; Dodd, V. A. O'Doherty, J. V. The influence of manure composition on emissions of odour and ammonia from finishing pigs fed different concentrations of dietary crude protein. *Bioresour. Technol.* 2007, *98*(18):3431-3439.
- 145.Portejoie, S.; Dourmad, J. Y.; Martinez, J.; Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. *Livest Prod Sci* 2004, *91*(1):45-55.
- 146.ASAE Standards D384.1: Manure Production and Characteristics. American Society of Agricultural Engineers, St. Joseph, USA, 2004
- 147.Lindorfer, H.; Corcoba, A.; Vasilieva, V.; Braun, R.; Kirchmayr, R. Doubling the

organic loading rate in the co-digestion of energy crops and manure-A full scale case study. *Bioresour. Technol.* **2008**, *99*(5):1148-1156.

148.Development document for the final revisions to the national pollutant discharge elimination system regulation and the effluent guidelines for concentrated animal feeding operations. U.S. Environmental Protection Agency: Washington, D.C. 2002.

https://cfpub.epa.gov/npdes/docs.cfm?document_type_id=7&view=Technical%2 0and%20Issue%20Papers&program_id=7&sort=name

149.Wang, Y.; Dong, H.; Zhu, Z.; Li, L.; Zhou, T.; Jiang, B.; Xin, H. CH₄, NH₃, N₂O and NO emissions from stored biogas digester effluent of pig manure at different temperatures. *Agric. Ecosyst. Environ.* **2016**, *217*:1-12.