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Abstract

The health and financial cost of falls has spurred research to differentiate the characteristics of 

fallers and non-fallers. Postural stability has received much of the attention with recent studies 

exploring various measures of entropy. This study compared the discriminatory ability of several 

entropy methods at differentiating two paradigms in the center-of-pressure (COP) of elderly 

individuals: 1.) eyes open (EO) versus eyes closed (EC) and 2.) fallers (F) versus non-fallers (NF). 

Methods were compared using the area under the curve (AUC) of the receiver-operating 

characteristic (ROC) curves developed from logistic regression models. Overall, multiscale 

entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 

0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, 

the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest 

researchers and clinicians attempting to create clinical tests to identify fallers should consider a 

combination of every entropy method when creating a classifying test. Additionally, MSE and 

CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, 

encouraging more research into the most appropriate time series for postural stability entropy 

analysis.
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3.0 Introduction

Numerous studies examining the issue of fall risk have been conducted recently as attention 

has been placed on both the health and financial costs of falls in the elderly and other at-risk 

groups. Postural stability and stabilometric measures from quiet standing are able to identify 

differences in individuals with a history of falls (i.e., fallers) from individuals with no 

history of falls (i.e., non-fallers) 1–6. However, the conclusions about postural sway as a 

clinical predictor of falls are remain unclear 7. Recently, various dynamical system analyses 

have been applied to the center-of-pressure (COP) time-series to help further clarify the 

associations between quiet standing and fall history. Within these tools, entropy measures, 

which quantify the amount of information contained within the signal (Shannon entropy, 

Renyi entropy) and the complexity and regularity of the signal (approximate entropy, sample 

entropy), have shown utility 8–11.

The two forms of entropy currently used to analyze biomechanical data are those that 

quantify the amount of information contained within the signal (state entropy) and those that 

examine the repetition of patterns within a signal (sequence entropy). The first type of 

entropy is derived from Shannon’s information theory 12 and evaluates the repetition of 

certain states within a signal. Shannon (ShanEn) and Renyi (RenyEn) entropies are this form 

and are measures of the probability of the signal occupying discrete states. Within COP 

time-series data, Shannon and Renyi entropies examine the frequency that a COP position 

(an x, y vector) is visited throughout the signal without regarding the path to or from that 

position 10. In comparison, the second type, which includes approximate entropy (ApEn) 

and its derivatives (sample entropy, multiscale entropy, composite multiscale entropy), 

examines the frequency of series of values rather than single values. These sequence 

entropies evaluate the probability that particular values occur within a signal given that the 

sequence preceding that value is similar to a template sequence. Thus, while Shannon and 

Renyi entropies consider the repetition of instantaneous states, the sequence entropies 

consider the repetition of paths.

Using sample entropy (SaEn), Borg & Laxåback 8 found that the anterior-posterior (AP) 

COP data was more complex, as indicated by higher entropy values representing fewer 

instances of pattern repetition within the AP COP data, in fallers compared to non-fallers 

during eyes closed quiet standing. Costa et al. 9 used a multiscale version of sample entropy 

known as multiscale entropy (MSE) and found opposite results; the complexity (i.e. 

irregularity of patterns within the data) of the anterior-posterior (AP) COP data was 

significantly higher for non-fallers. Ramdani et al. 13 used recurrence quantification analysis 

entropy (RQAEn) to differentiate fallers from non-fallers using the mediolateral (ML) COP 

signals. In a different application of these methods, Gao et al. 10, observed a recovery in 

postural stability over time in athletes who sustained a concussion, which often causes short- 
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to long-term balance impairments 14, 15, using the Shannon and Renyi entropies of the COP 

time-series. Though the COP entropy analyses have shown usefulness, the number of similar 

entropy algorithms and sometimes contradictory results can be confusing to researchers who 

wish to perform these analyses.

While the difference between state and sequence entropies is important in selecting the 

correct algorithm for a particular analysis, multiple sequence entropy algorithms exist which 

can further complicate the decision. ApEn was introduced by Pincus 16 as a practical 

application of the Kolmogorov-Sinai (K-S) entropy. Nearly all other forms of sequence 

entropy follow from ApEn. Unlike K-S entropy, which requires an infinite (or near-infinite) 

time-series and zero signal noise, ApEn can be used with relatively short data lengths and 

with signals containing noise. ApEn utilizes three parameters: the sample length, N, the 

tolerance for similitude, r, and the length of the template vector, m. ApEn is the sum of 

natural logs of a conditional probability that a data point vi will be similar to the template 

point ui given that the m-dimensional preceding vector [vi−m,…, vi−1] is similar to the 

template vector [ui−m,…,ui−1], where similarity is defined as within ± r for each entry of the 

m-dimensional vector. Because ApEn involves taking the natural log of a conditional 

probability, the algorithm includes self-matches, v=u. This introduces a bias towards low 

ApEn values for shorter time series 17 caused by the decrease in the number of vectors 

throughout the signal that match the reference vector, thereby increasing the weight of the 

self-match. Therefore, not only does the selection of m and r affect the outcome, but the data 

length N carries significant weight as well.

Sample entropy (SaEn) was developed to reduce the effects of sample length seen in ApEn 

by eliminating self-matches 18. The process is identical to that used by ApEn, except that the 

constraint v ≠ u is imposed. Complexity values obtained from SaEn and ApEn are limited to 

the time scale used in the sampling frequency of the data acquisition in the experimental set 

up. Multiscale entropy (MSE) offers another variation on ApEn and SaEn, calculating either 

value at a variety of time scales by averaging the points along the time series at various 

scales using a coarse-graining technique 19. In the MSE method with time scale τ, the length 

of the coarse-grained time series is reduced by the factor of τ which partially insulates MSE 

from the record length sensitivities of SaEn and ApEn in shorter time series 20. Furthermore, 

composite multiscale entropy (CompMSE) uses a moving average procedure to compute 

MSE in the time scale τ. CompMSE then takes the mean value of MSE over the time series 

to reduce the effect of shortening the time series due to the scale factor 21.

Similar to the previously described entropies, RQAEn has also been applied to 

biomechanical and COP data. Unlike the state and sequence entropies discussed above, 

RQAEn is an entropy algorithm applied to the recurrence plot rather than to the time-series 

directly. RQAEn uses ShanEn to determine the probability of line segment lengths from the 

recurrence plot 22, 23. Even though ShanEn is used in the analysis, the recurrence plot is 

formulated from a reconstructed state-space often involving time-delayed embedding 13. 

RQAEn quantifies the probability that nearby state-space trajectories remain nearby as the 

signal moves forward in time. RQAEn is thus similar to the sequence entropies described 

above in that it measures the repetition of patterns; yet unique in that it measures the length 

of time similar patterns persist.
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Though all these techniques are called entropy, the calculations and the interpretation of 

results are quite different from method to method. Previous studies have compared one or 

more measures against each other to assess their sensitivity to data length 17 and noise 24 but 

no study has examined all measures side by side to look at the sensitivity to changes in a 

large population. Specifically, no study has examined which measures may be most sensitive 

to the COP changes between fallers and non-fallers. Such a comparison, across many 

different forms and types of COP entropy analyses may be useful to researchers and heath 

care professionals in generating an effective fall risk assessment tool. Additionally, a 

comparison of two common sensory feedback conditions (eyes open, eyes closed) across a 

wide range of entropy measures can serve as a guide to future researchers on any COP 

analysis. To address this need, this study sought to compare the ShanEn, RenyEn, ApEn, 

SaEn, MSE, CompMSE, and RQAEn calculated from the COP data during eyes open and 

eyes closed quiet standing in both fallers and non-fallers. The goals of this study were to 

compare the discriminatory ability of different entropy methods to two paradigms 1.) eyes 

open versus eyes closed postural stability which are known to elicit different postural 

responses 25 and 2.) fallers and non-fallers postural stability.

4.0 Materials and Methods

4.1 Participants

Seventy-six elderly individuals, mean age (SD) = 74.4 (9.0) years, were recruited from the 

northern Virginia area for this study as part of the Northern Virginia Fall Prevention 

Coalition. One subject’s data were not analyzed because it was missing the eyes closed 

postural stability measurement. Participant demographics for the remaining 75 participants 

is shown in Table 1. The data was collected as part of a free Community Fall Risk Screening 

Event that involved meetings with medical personnel and pharmacists, and a series of 

mobility tasks for the elderly at local community centers. Participants were required to be 

generally healthy with no history of musculoskeletal disorders. Exclusion criteria included 

cardiovascular problems (e.g. chronic heart failure, enlarged heart, weakened heart, foot pain 

associated with chronic diabetes, etc.), respiratory problems (e.g. difficulty breathing during 

normal walking), neurological problems (e.g. stroke resulting in weakness in one of both 

legs, Parkinson’s disease), and musculoskeletal problems (e.g. persistent muscle weakness, 

recent ankle injury, routine back/neck pain, etc.). All participants signed an informed 

consent form and the procedure was reviewed and approved by the Virginia Tech 

Institutional Review Board.

4.2 Experimental Procedure

Participants were asked to stand quietly with the arms at their sides for one minute while 

standing on a force plate (AMTI, Model # BP400600-2K, Advanced Mechanical 

Technology, Inc., Watertown, MA, USA) with their eyes open (EO). The participants were 

then given a short break to sit down before repeating the procedure with their eyes closed 

(EC). Other tasks, which were recorded but not presented here, included a timed get-up and 

go task, a ten-meter walk task, and a sit-to-stand task. During the postural stability tasks, the 

participants’ stance width was standardized to 6 inches between the inside of their feet to be 

consistent with the recommended standardized foot placement for balance testing 26 and to 
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control for the effect of stance width variation on postural stability 27, 28. The postural 

stability data COP data were collected through the force plate at 1000 Hz for both the eyes 

closed and eyes open conditions for the complete sixty-second duration.

4.3 Data Analysis

COP data were calculated using the force plate data and were down-sampled to 100 Hz to 

reflect the upper limit for sampling postural stability data 29. Traditional COP measures of 

95% ellipsoidal area, COP velocity, ML standard deviation (x SD) and AP standard 

deviation (y SD) were calculated and compared to the entropy methods. For all entropies 

except RenyEn and ShanEn, non-stationarities in the data were removed using bivariate 

empirical mode decomposition 30, removing intrinsic mode functions (IMFs) with 

frequencies below 1 Hz 9. The full 60 seconds of data were analyzed using each of the 

entropies discussed below. All analyses were performed in MATLAB (MATLAB and 

Statistics Toolbox Release 2014a, The MathWorks, Inc., Natick, Massachusetts, United 

States).

4.3.1 Renyi and Shannon Entropy—RenyEn is defined as the sum of the probabilities 

that a data point will fall within one of the pre-specified discrete areas within the overall 

signal 10. Following the procedure described by Gao et al. 10, RenyEn was calculated using a 

box size of 5 mm × 5 mm. The Renyi order α can be adjusted to increase or decrease the 

influence of outliers within the data. In this study, α was set at 2 to match previous studies 

which calculated RenyEn for COP data 10.

For data with limited outliers, RenyEn can be modified to take the form of Shannon entropy. 

For calculating ShanEn, the generalized equation for RenyEn is calculated for an order of α 

→ 1 31. Although higher order RenyEn can eliminate skew from the less visited areas, 

ShanEn can provide information on the characteristics of the data. For our analysis of 

ShanEn, the same window size as that of the RenyEn (5 mm × 5 mm) was chosen for 

consistency. Both RenyEn and ShanEn represent the amount of information within a signal. 

Thus, higher RenyEn and ShanEn values indicate the COP exists more equally across the 

various states (boxes). Lower RenyEn and ShanEn values indicate the COP tends to reside 

within some discrete areas more often than others.

4.3.2 Approximate and Sample Entropy—Approximate entropy (ApEn) analyzes the 

predictability and regularity of changes in a time-series. A full description of the procedure 

was presented by Pincus 16. Succinctly, ApEn is a conditional probability measure of the 

system’s regularity described by 

(1)

where u is a time series of data, m defines the length of the compared vectors, r defines the 

tolerance of the comparison, and N defines the length of the time series. Our analysis used N 
= 6000 (60 seconds at 100 Hz), m = 3, and r = 20% of the standard deviation of the COP 

values, based on the original values used by Pincus 16.

Fino et al. Page 5

Ann Biomed Eng. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast to previous studies, the COP position radius, R = √(x2+y2), with the origin R = 0 

at the centroid of the data, and the position angle, Ψ = tan−1(y/x), (Figure 1) were used 

instead of values for the separate x and y COP coordinates 8, 9, 13. While using the x and y 
coordinates independently can yield information about the AP (forward-backward) and ML 

(side to side) control, the position vector represents the overall displacement from mean. If 

the COP trace lies within an individual’s basin of stability 32–34, the radius R represents the 

deviation from the center of that basin towards the unstable edges. Furthermore, changes in 

Ψ represent the tendency of the individual at returning back to the mean COP position (e.g. 

no change in Ψ shows a straight path towards or away from the origin, while changes in Ψ 

demonstrates a circuitous route away from or back to the origin). However, the use of Ψ did 

introduce a discontinuity in the data when the bounds of +π or −π were crossed, as seen in 

the right half of Figure 1. To address this, an additional condition was applied to the 

matching criteria in Equation 1 for all Ψ time-series to adjust the tolerance r to reflect this 

discontinuity:

(2)

Sample entropy (SaEn) is a slight modification to ApEn which eliminates self-matches. 

Presented in detail by Richman & Moorman 17, SaEn provides a measure that is less 

sensitive to the data length N. In this analysis, SaEn was calculated using the same 

parameters m = 3, r = 20% standard deviation that were used in the ApEn calculation.

Higher ApEn and SaEn values represent more complex signals with less regularity 16. Thus, 

low entropy signals have patterns that are more likely to repeat and repeat for longer 

durations. Because ApEn and SaEn are nearly identical calculations, they tend to follow the 

same direction; signals with high ApEn will likely have high SaEn, and vice versa. However, 

directionality differences can occur in signals with low ApEn values. At low ApEn, self-

matches of v=u account for a larger proportion of pattern matches. Removing those self-

matches can result in greater SaEn compared to ApEn. For identical signals, different trends 

between SaEn and ApEn likely represent a large proportion of self-matches in the ApEn 

calculation.

4.3.4 Multiscale and Composite Multiscale Entropy—While ApEn and SaEn 

examine the regularity of signals, those methods do not account for the varying time scales 

within the data. Multiscale entropy (MSE) calculates the SaEn of a signal over multiple time 

scales to address multiple characteristic time scales 19. In this analysis, MSE values were 

calculated for 10 time scales (τ = 1 to 10), corresponding to characteristic timescales from 

0.04 to 0.4 seconds, for the COP radius R and angle Ψ. For consistency with SaEn and ApEn 

methods, the vector length and tolerance were defined as m=3 and r= 20% of the standard 

deviation. For each data series, complexity indices are computed by calculating the slope of 

linear least square fit and the area under the MSE versus scale factor curve. The slope 

represents the change in entropy across increasing time scales, while the area represents the 

cumulative magnitude of entropy of the signal across multiple time scales. Composite 

multiscale entropy (CompMSE) is an extension of MSE where, for each time scale τ, there 

are τ coarse-grained time series 21. As such, the corresponding MSE values are obtained by 
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shifting averaging windows from the data point i to i + τ, consecutively. The same 

parameters and complexity indices used for MSE were used for CompMSE. Both MSE and 

CompMSE were calculated with the R, Ψ and x, y time series to compare the results of each 

choice of time series. Both MSE and CompMSE tend to produce very similar results. 

However, CompMSE tends to provide better estimates at high scale factors because the 

length of the data series is better preserved than during MSE.

4.3.5 Recurrence Quantification Analysis Entropy—The RQAEn was calculated 

according to the procedure outline by Ramdani et al. 13 using code from Hasson et al. 35. 

Rather than use individual x and y coordinates, the COP radius, R, and angle, Ψ, were used 

for RQAEn in order to be consistent across each method. This study used the same 

parameters as Ramdani et al. 13 who examined RQAEn of COP data in elderly fallers and 

non-fallers. An embedding dimension of m = 8, a time delay of T = 6, and a radius of ε = 

30% of the mean of all distances were used for this study to be consistent with previous 

results 13. To correct for the discontinuity in the Ψ time-series, single dimension distances 

within the reconstructed phase space greater than 2π − ε, indicating a boundary crossing, 

were transformed back to the unbounded distance by subtracting 2π and taking the absolute 

value.

4.4 Statistical Analysis

Univariate statistics for each entropy measure (ShanEn, RenyEn, ApEn, SaEn, MSE, 

CompMSE, RQAEn) and for traditional COP measures (COP area, COP velocity, SD) were 

calculated for EO and EC conditions and for faller (F) and non-faller (NF) groups. Fallers 

were designated as individuals who had fallen at least 1 time in the past year. Logistic 

regression modeled the probability that an individual had their eyes closed during the 

measurement using either one (R or Ψ) or two independent variables/predictors (R and Ψ). 

Receiver operating characteristic (ROC) curves were created using the logistic regression 

probabilities from each regression model. Logistic regression models were also run using the 

rectangular x, y coordinates’ entropy measures and traditional postural stability measures 

COP area, COP velocity, x standard deviation, and y standard deviation as predictors. The 

areas under the curve (AUC) for each ROC curve were compared to determine the predictive 

ability of each entropy method at differentiating the two conditions, EO and EC. To compare 

the ability of each method to discriminate F and NF, the process was repeated using only EC 

data. Logistic regression modeled the probability the individual was a faller based on either 

one or two predictors, as described above, and the AUC statistics were compared. An AUC 

statistic of 1 indicates perfect performance at discriminating the two groups, while an AUC 

close to zero indicates very poor performance 36. An AUC of 0.5 represents the same 

performance as classifying by random chance, such as a fair coin flip. The AUC represents 

the probability that a randomly chosen person from group 1 would have a larger test value 

than a randomly chosen person from group 236. The entropy methods which resulted in 

higher AUC values represented better classifiers in these data.

Cumulative entropy classifiers were modeled for the EC/EO and F/NF comparisons using 

logistic regression with all 16 R, Ψ based entropy measures as predictors/independent 

variables. An optimal combination was also computed where separate logistic regression 
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models were run for every combinations of entropy measures, and the model with the 

highest AUC was retained as the optimal combination of predictors for each comparison 

(EO/EC, F/NF).

5.0 Results

Univariate statistics and AUC values for EO and EC conditions are shown in Table 2. 

Univariate statistics and AUC values for fallers and non-fallers are shown in Table 3.

The cumulative classifiers had AUC’s of 0.796 for the EO/EC paradigm and 0.908 for the 

F/NF groups. The optimal EO/EC classifier had an AUC of 0.802 and consisted of all 

entropy measures except MSESlope R, and MSESlope Ψ, ShanEn. The optimal F/NF classifier 

had an AUC of 0.911 and consisted of all measures except ApEn R, ApEn Ψ, CompMSEArea 

Ψ.

6.0 Discussion

In this paper, different entropy techniques, namely ShanEn, RenyEn, ApEn, SaEn, MSE, 

CompMSE, and RQAEn, were compared to evaluate the performance of each method at 

differentiating two different paradigms: eyes open (EO) versus eyes closed (EC) and fallers 

(F) versus non-fallers (NF). Using the AUC from the ROC curves of each entropy measure, 

CompMSE and MSE showed the best quality at differentiating both EO from EC and F from 

NF, likely because MSE and CompMSE use multiple timescales where the other methods 

were limited to a single timescale of interest.

While several studies have reported statistical differences in various COP entropy measures 

between fallers and non-fallers, the clinically relevant question is whether these entropy 

calculations are high-quality discriminators. Though statistical differences between fallers 

and non-fallers have been reported using ApEn 11, MSE 9, and RQAEn 13, the present 

comparison between methods shows MSE can be a slightly better classifier than ApEn. 

Importantly, the entropy measures outperformed the traditional COP measures of sway area, 

velocity, and standard deviation for both EO/EC and F/NF comparisons. These results are 

particularly relevant to researchers and clinicians who wish to develop clinical COP tests 

which can detect fallers or fall-prone individuals from non-fallers. While several methods 

can detect significant differences, the best individual classifiers are CompMSE and MSE 

according to these results.

Notably, every individual measure, including CompMSE and MSE, produced fair to poor 

classification (AUC < 0.80) results for both EO/EC and F/NF classifications. However, when 

multiple measures were combined, the discriminatory capability of the optimal classifier 

exceeded 0.90, an excellent classifier. Even though every measure was calculated from the 

same data and represented the regularity of the signal, the cumulative combination resulted 

in an improved logistic regression model. For researchers and clinicians hoping to use 

nonlinear tools to discriminate patients or populations, this result suggests multiple measures 

of regularity should be calculated and assessed together, rather than selecting a single 

entropy method.
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For MSE and CompMSE, the entropy values were based on the slope of the linear fit and 

area under the curve of the linear fit of the complexity indices. While Costa et al. 9 used the 

area under the linear fit, we found that the slope gave considerably better results, particularly 

when assessing the standard rectangular x,y data. Assessing the entropy based on the slope 

of the linear fit may therefore be another entropy method for MSE and CompMSE in lieu of 

the area and worthy of further investigation.

Interestingly, while we predicted the discrimination between EO and EC would be easier 

than between F and NF, most individual methods performed better discriminating fallers 

from non-fallers. The primary difference between the EO and EC conditions is the 

elimination of visual feedback in the EC condition. With no visual feedback, the 

proprioceptive and vestibular systems are placed under greater demand to maintain stability. 

Typically, the interruption or elimination of visual feedback (EC condition) results in 

significantly different COP results compared to the EO condition 25. Conversely, elderly 

fallers typically experience a degradation, but not elimination, of multiple sensory 

systems 37, 38 which can be more challenging to detect given the varying degrees of 

degradation. However, previous studies have examined low frequency fluctuations in the 

COP, as opposed to the relatively high frequencies (2.5 to 25 Hz) examined here. It’s 

possible the muscle tension or other factors produce a difference in sway in these high 

frequencies 29.

Additionally, polar coordinates (R and Ψ) may be more suited to detecting this sensory 

degradation compared to standard x (ML), y (AP) time series. We found the standard AP, 

ML COP data (slope) and polar R, Ψ data performed similarly when differentiating eyes 

open and eyes closed postural stability. However, the polar coordinate COP data displayed a 

slight superiority when discriminating fallers from non-fallers using two predictors. The 

polar data’s superiority may be indicative of nested correlations between the AP and ML 

series which are not considered in the x, y entropy analyses. Muscle co-contraction may be a 

contributing factor. Greater muscle co-contraction between the tibialis anterior and 

gastrocnemius has been reported in fall-prone elderly compared to healthy elderly 39, and 

high levels of co-contraction have also been associated with aging 40, 41. These co-

contractions may create correlations between the AP and ML data which standard entropy 

measures cannot address, but polar coordinates, constructed using both AP and ML time 

series, may retain some of these correlations. While this analysis only explored univariate 

entropy methods, newer entropy analyses which can consider these multivariate data have 

been developed and warrant future investigation 42.

In the rectangular coordinate data, complexity decreased in fallers for all methods, agreeing 

with previous studies9. However, polar coordinates showed inconsistent results, with 

increasing complexity in fallers for SaEn, CompMSE, and MSE Ψ timeseries, and decreased 

complexity for all R entropy measures except ApEn and SaEn. Because of the inconsistent 

trends, it is difficult to interpret the complexity indices in polar coordinates. Therefore, 

despite their superior classification, further research must identify and explain the consistent 

changes before polar coordinate entropy calculations can be recommended, especially when 

classifying individuals without a priori knowledge of their condition (e.g. predictive fall risk 

screenings).
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ShanEn, and RenyEn, performed the worst when discriminating fallers from non-fallers. In 

the case of ShanEn and RenyEn, the regularity of the time-series (i.e., the repetition of 

sequences) is not considered at all. Instead, ShanEn and RenyEn measure the regularity of 

the state of the signal (i.e. the repetition of values, not sequences). As state entropies, 

ShanEn and RenyEn appear less suited to distinguishing COP times-series when compared 

to sequence entropies (ApEn, SaEn, MSE, CompMSE). While RQAEn does not consider the 

regularity of the time-series itself, it was well-suited to discriminating F from NF, agreeing 

with results from Ramdani et al. 13, who found significant differences between F and NF 

using RQAEn.

This analysis provides some direction for researchers wishing to choose an entropy analysis 

for COP data. Both MSE and CompMSE showed the best ability to discriminate fallers from 

non-fallers suggesting these two methods should be considered first for future COP 

analyses. Multivariate entropy analyses should also be highly considered for COP analyses 

to address any correlations between the two data series. However, the increased quality of 

the cumulative and optimal classifiers suggests that each entropy method should be 

calculated and considered. Each measure of entropy appears to have its own utility at 

differentiating the postural control of healthy and fall prone elderly. For researchers and 

clinicians attempting to create a clinical test to identify fall prone elderly, a cumulative 

approach should be adopted, with each entropy method included in the decision. Using a 

combination of multiple forms of entropy, this study successfully differentiated fallers and 

non-fallers with only 60 seconds of postural stability data; no other clinical metrics (e.g., 

Activities-specific Balance Confidence score, vision, etc.) were considered. Therefore, each 

postural stability entropy measure should be considered an important predictor in future fall-

risk assessments.

This study had two primary limitations. Primarily, the testing environment of the participants 

was not identical, nor completely free of distractions. Being a field study, the participants 

were tested in a community center with noises and other distractions that may have affected 

the balance during testing. Though the inter-study variation tends to be extremely high in 

studies reporting fall risk due to methodological variables (time of day, specific population, 

definition of fallers, instrumentation, analyses parameters) 13, the relatively large sample 

size used in this study removes a limitation of previous work 9. The second limitation was 

that only 60 seconds of postural stability data were collected for each condition due to the 

difficulties with testing elderly subjects and the possibility of early fatigue. Future work 

should increase the length of data collection to at least 2 minutes to provide an adequate 

record length for the entropy analysis 10. An additional minor limitation was the 

standardization of foot width. While the standardization did eliminate potential confounds of 

stance width, it may have placed a small number of participants in an uncomfortable or 

unnaturally narrow or wide stance. However, this effect was minimized by following the 

recommended stance width given by McIlroy and Maki 26.
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Figure 1. 
(Left) Diagram of the two time-series (radius R and angle Ψ) used in the analysis. The radius 

R is calculated for each point in time as the distance from the mean of the entire COP trace 

to that point. Similarly, the angle Ψ was calculated for each point in time using the mean of 

the time series as the origin. (Right) The one dimensional time-series R (upper right) and Ψ 

(bottom right) for one individual during eye’s open quiet standing.
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Table 1

Mean (SD) demographic data for all participants, stratified into fallers and non-fallers.

Fallers Non-Fallers

N 7M/23F 9M/36F

Height (cm) 167 (9) 167 (10)

Mass (kg) 76.8 (18.0) 73.9 (15.2)

Falls in past 12 months 2.4 (1.8) 0 (0)
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