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1. Defining Urbanization 

With 7,4 billion world citizens, of which 54% are settled down in urban environments, and 

with a projected increase of up to 66% residing in urban areas by 2050 (UN, 2015a; UN, 2015b), 

cities are expanding rapidly and urbanization represents one of the most intense and long-lasting 

anthropogenic modifications of natural systems (Blair, 1996; McKinney M.L., 2002; Evans et 

al., 2011; Seress and Liker, 2015).  

“Urbanization” however can be viewed in various ways. From a socioeconomic perspective, 

it can give an indication of the amount of people residing in urban areas, whereas the concept 

“urban” is based on available information for each country (population density, minimum 

population threshold, presence of infrastructure, education and health services) (UN, 2015a). 

Belgium, for example, belongs to one of the most urbanized countries in the world with 

approximately 97.8% of the civilians living in urban areas, and considers a commune to be 

“urban” when it accommodates minimally 5000 inhabitants (UN, 2015a). On the contrary, the 

ecological perspective primarily focuses on the “environmental urbanization”, where the 

emphasis lies on the urban expansion in space and the subsequent effects on animals and plants. 

This urban expansion is characterized by the conversion of (semi)natural (e.g. forests, pastures, 

agricultural areas) into urban areas (i.e. a high amount of built-up area and roads and a decrease 

in vegetation-density), which are specifically created to satisfy the human needs (Blair, 1996; 

Marzluff et al., 2001; McKinney, 2006; Seress et al., 2014). However, besides the expansion of 

the urban environment in space, the ecologists are also interested in the colonization and 

adaptation of animal and plant species to urban environments, which can also be seen as a form 

of ‘urbanization’ (Evans et al., 2009a; Møller et al., 2014). As such, the response of animal and 

plant communities to various degrees of urbanization (i.e. along an urbanization gradient) has 

been extensively studied in conservational and ecological research (Bókony et al., 2012; Seress 

et al., 2012; Seress et al., 2014). Also in this thesis, this approach was used while studying the 

relationship between urbanization, avian health and pathogen occurrence.  

When using urban gradients for ecological studies, the parameters applied for the 

quantification of landscape urbanization should be mentioned in order to facilitate the 

comparison of different studies, different cities and different countries (Marzluff et al., 2001; 

Bókony et al., 2012; Seress et al., 2014). These characteristic habitat parameters can be obtained 

by means of manual scoring or semi-automated scoring using satellite images, and by the use 

of geographic information systems (GIS) (Seress et al., 2014). Nevertheless, despite the use of 

definitions it is logistically not always possible to compare the effect of urbanization on 
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biodiversity and ecosystem health between different countries, within a country, and even 

within the same city due to differences in urban design (with respect to habitat fragmentation 

and patch size of green areas), in human activities, in the socioeconomic status of the 

inhabitants, in the surrounding region of the cities, latitudinal differences and presence or 

absence of nonnative (invasive) species (Shaw et al., 2008; Evans et al., 2009c; Ferenc et al., 

2013; Snep et al., 2016). 

With a population density of 475 inhabitants per km² in Flanders, which is on average four 

times higher than the density in the European Union (ENRD, 2015), Flanders is highly 

subjected to urban sprawl (Fig. 1) (EEA, 2006). Urban sprawl can be viewed in various ways, 

but has most commonly been defined as ‘the physical pattern of low-density expansion of large 

urban areas,..., mainly into the surrounding agricultural areas. Sprawl is the leading edge of 

urban growth and implies little planning control of land subdivision. Development is patchy, 

scattered and strung out, with a tendency for discontinuity…’ (cited from EEA, 2006). In 

Flanders, urban sprawl intensified by the end of the 19th century and was highly influenced by 

economic growth, political decisions, expansion of the public transport and the common 

cultural idea “to possess a nonurban single-family house with a garden” (De Meulder et al., 

1999; De Decker, 2011; Tempels et al., 2012). This patchwork of buildings and connecting 

roads contributes highly to fragmentation of landscapes and suburbanization in between the 

cities, the so-called suburban areas of intermediate urbanization, which makes it difficult to 

draw a clear-cut line between urban and rural areas (Kesteloot, 2003; De Decker, 2011; Tempels 

et al., 2012; De Coster et al., 2015). 

 Grey background represents the level of build-up area in Flanders, 

based on the Large Scale Reference Database (LRD) 
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2. The urban climate and stressors 

As a consequence of changes in landscape features, such as an increase in building density, 

roads and pavements and a decrease in greenery in urbanized areas, a specific “urban 

microclimate” is created within cities (Landsberg, 1981; Kuttler, 2008; Trusilova et al., 2008). 

The “urban heat island effect”, an increase in urban environmental temperature, is formed 

through the combined action of several factors: the higher daytime storage of heat in e.g. 

buildings and the subsequent increased nocturnal heat release, the lower wind velocity, the 

increased pollution, and the lower evaporation efficacy due to presence of impermeable 

surfaces with increased water runoff and due to the removal of vegetation (Gartland, 2008; 

Kuttler, 2008; Trusilova et al., 2008). This urban climate could be favorable since the energetic 

demands of especially smaller birds decrease during winter and nighttime (Zuckerberg et al., 

2011; Murthy et al., 2016). Nevertheless, besides the “heat island effect” stressors such as 

chemical, light and noise pollution can impact animal health, physiology and behavior (Peach 

et al., 2008; Bichet et al., 2013; Meillère et al., 2015a; Ouyang et al., 2017). In order to assess 

the impact of urbanization on animal and human wellbeing, using highly sedentary birds as a 

study object has many advantages: birds are relatively easy to observe (e.g. thanks to the many 

bird watchers, citizen science projects can be used more widely: De Coster et al., 2015) and 

capture (Pollack et al., 2017) and some of these sedentary species such as the house sparrow 

(Passer domesticus) are ubiquitous and have adapted to anthropogenic resources, i.e. they can 

be used to study interpopulation differences to compare the effect of urbanization worldwide. 

As such birds have been used as a biomonitoring tool (Pollack et al., 2017) for the presence of 

chemical contaminants and heavy metals (Roux and Marra, 2007; Bichet et al., 2013), the effect 

of light and noise pollution (Slabbekoorn, 2013; Ouyang et al., 2017), the risk and presence of 

infectious diseases including zoonoses (Niskanen et al., 2003; Giraudeau et al., 2014; Neiderud, 

2015). 

3. Urbanization and Biotic Homogenization 

Urbanization highly influences species assemblages, communities and ecosystems 

(McKinney, 2002). In this perspective avian species have been classified as: 1) “urban 

avoiders”, which are not able to tolerate the constraints of the urban environment and reach 

highest densities in the most natural areas, 2) “urban adapters”, when they are able to adapt to 

urban constraints and maintain populations in urban environments and 3) “urban exploiters”, 

which are more or less dependent on anthropogenic resources and reach highest densities in 
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urbanized areas (Blair, 1996; McKinney, 2002; Croci et al., 2008). Consequently, many studies 

have focused on identifying species specific traits that allow species to tolerate, or even flourish, 

in urban environments (Blair, 1996; Kühn and Klotz, 2006; Croci et al., 2008; Sol et al., 2014). 

For example, life history traits linked to habitat, diet, reproductive behavior, sociability and 

migratory status have been shown to influence urban bird communities (Croci et al., 2008; Sol 

et al., 2014). Such a filtering of species, based on their biological traits, reduces native 

biodiversity and ultimately results in a ‘biotic homogenization’ of urban communities 

(McKinney, 2002; McKinney, 2008; Evans et al., 2009c; Ferenc et al., 2013), where globally, 

urbanized areas are dominated by a set of successful urban exploiters, such as for example the 

house sparrow (Blair, 1996; McKinney, 2002; Evans et al., 2009c; Meillère et al., 2015b). 

Recent studies have paid more attention to the intermediate levels of urbanization, the suburban 

areas, which, due to the combination of additional resources supplied by humans and the 

proximity and connectivity of various vegetation types (Marzluff and Rodewald, 2008; 

Vangestel et al., 2010), could sustain an increased species richness (Blair, 1996; Chace and 

Walsh, 2006; Marzluff and Rodewald, 2008; McKinney, 2008; Seress and Liker, 2015), which 

mostly belong to the “suburban adapters”. In addition to higher species richness, these suburban 

areas have the possibility to even sustain higher bird densities (Blair, 1996; Marzluff and 

Rodewald, 2008), compared to both rural and highly urbanized areas.  

4. Urbanization and house sparrows 

4.1. The house sparrow, a perfect urban exploiter  

House sparrows belong to the order of the Passeriformes, family Passeridae (BirdLife 

International, 2016a). With an estimated >540.000.000 individuals globally, and an extremely 

wide distribution range (Fig. 2), house sparrows, although decreasing in numbers, are 

considered as “Least Concern” on the global Red List of the International Union for the 

Conservation of Nature and Natural Resources (IUCN) (BirdLife International, 2016a). The 

IUCN Red List provides an overview of the conservation status and estimated risk of extinction 

for a specific animal, plant and fungal species, which is based on data on population dynamics 

and size and the geographic distribution of the species. As such, when evaluated and not “data 

deficient”, species can be listed as “Least Concern”, “Near Threatened”, “Vulnerable”, 

“Endangered”, “Critically Endangered”, “Regionally Extinct”, “Extinct in the Wild” and 

“Extinct” (IUCN, 2001; Devos et al., 2016).  
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House sparrows reside in flocks along the entire urbanization gradient, from rural over 

suburban to urban areas, where the close proximity to humans is striking (Summers-Smith, 

1963; Heij and Moeliker, 1990). They have shown to exhibit an extremely sedentary lifestyle, 

mostly staying within two km of the breeding colony (Summers-Smith, 1963; Vangestel et al., 

2010). Mainly due to their granivorous lifestyle, apart from the insectivorous nestling period, 

house sparrows were notorious for destroying crops in agricultural areas, sometimes flocking 

together in fields in populations of over 1000 birds (Summers-Smith, 1963; Heij and Moeiliker, 

1990). To control their numbers, eradication based on pesticides and mechanical manners 

(traps) was used to chase the sparrows away or kill them (Heij, 1985), after which they were 

sometimes even served as a delicatesse for humans (Fig. 3) (Raffald, 1769). 

 

 

 

BirdLife International. 2017. Passer domesticus.  
The IUCN Red List of Threatened Species 2017: 

e.T103818789A111172035. Accessed on 31st of May 2017 

Esri, HERE, DeLorme, MapmyIndia. © OpenStreetMap 

contributors, and the GIS user community 
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4.2. The decline  

Although the future looked bright for the house sparrow in the first half of the 20th century – 

“What of the future? We are steadily creating more built-up areas, the prime habitat for the 

house sparrow. Unless man exterminates himself in a nuclear war, the future looks bright for 

the bird” (Quote: Summers-Smith, 1963) 

– this has changed rapidly during the forthcoming decennia (Summers-Smith, 2003; Robinson 

et al., 2005; De Laet and Summers-Smith, 2007; De Coster et al., 2015) and the bird has been 

listed as “Vulnerable” on the Red List from various European countries, such as the regional 

Red List of Flanders (Belgium) and on the national Red List of the Netherlands (Klok et al., 

2006; Devos et al., 2016). 

In northwestern European countries, as well as in southeast Asian Countries, house sparrow 

declines have been observed in both rural and urban areas (Crick et al., 2002; Summers-Smith, 

2003; Robinson et al., 2005; De Laet and Summers-Smith, 2007; Kamath et al., 2014; De Coster 

et al., 2015; Modak, 2015). In contrast to the rural declines, which have stabilized at a lower 

population level, the urban declines have led to house sparrow free urban centers in some cities 

and are thought to be still in progress (Summers-Smith, 2003; De Laet and Summers-Smith, 

2007; De Coster et al., 2015). This, in combination with the observation that the onset of the 

rural declines preceded the urban declines and the outcome of the declines differed between the 

two habitats (Crick et al., 2002; De Laet and Summers-Smith, 2007), have led to the hypothesis 

that, most likely, a combination of different underlying factors are responsible for the observed 

declines (Crick et al., 2002; Summers-Smith, 2003; Robinson et al., 2005).  

Fig. 3 House sparrow-recipe (Elizabeth Raffald, 1769) 
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4.2.1. Factors potentially contributing to the house sparrow declines 

The rural declines have been linked to and co-occurred with the agricultural intensification, 

which involved the more intensive use of herbicides and insecticides, replacement of horses by 

the combustion engine, higher harvesting efficiency, better grain storage, the reduction of 

habitat diversity and deterioration of the habitat quality, which altogether affected many 

farmland birds (Crick et al., 2002; Hole et al., 2002; Robinson and Sutherland, 2002; Summers-

Smith; 2003; Robinson et al., 2005; De Laet and Summers-Smith, 2007).  

The reasons for the observed urban declines are much less clear and differences between 

cities complicate the situation even more. In London, Glasgow, Edinburg (Dott and Brown, 

2000), Kortrijk (de Bethune, 2004), Ghent, Antwerp and Brussels (De Laet and Summers-

Smith, 2007) declines, up to the brink of extinction, have occurred. This in contrast to 

populations in Paris and East Berlin, where no such declines have been observed (Summers-

Smith, 2003; Robinson et al., 2005) and Wales, where populations even seem to have increased 

in urban and suburban areas (Crick et al., 2002). 

Different factors have been suggested which could influence the urban house sparrow 

populations:  

4.2.1.1. Predation  

The predators most likely influencing house sparrows in multiple ways are the domestic cat 

(Felis catus) and the sparrowhawk (Accipiter nisus) (Barnard, 1980; Summers-Smith, 2003; 

Woods et al., 2003; MacLeod et al., 2006; Bell et al., 2010; Seress et al., 2011). The effect of 

the killing itself could potentially have an influence on the population numbers (Woods et al., 

2003). Considering the domestic cat, different studies have tried to estimate the numbers of 

birds killed over a defined time period (Woods et al., 2003; Loss et al., 2013), which 

approximated 2.5 billion birds over the period of one year in the United Stated and 27.1 million 

birds over a 5 month timespan in Great Britain (Woods et al., 2003; Loss et al., 2013) and as 

such, cats are most likely participating in declines of specific bird species (Loss et al., 2013). 

With respect to the sparrowhawks, after a sharp decline in Europe in the 1950-1960s due to the 

widespread use of organochlorine pesticides, the predator bird has made a comeback (Bell et 

al., 2010; BirdLife International, 2016b). The timing of the recolonization events of rural and 

later urban areas preceded, and have been suggested to be correlated to, the observed house 

sparrow declines in the respective areas (Bell et al., 2010). Besides the effect of the actual kill, 

the presence or absence of a predator could potentially influence the house sparrows’ behavior 
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and morphology (adaptive mass regulation related to predation risk) (Barnard CJ, 1980; 

MacLeod et al., 2006; Seress et al., 2011; Bókony et al., 2012). House sparrows living in urban 

areas with high densities of sparrowhawks, with higher levels of interfering background noise 

or with a lower availability of cover habitat were found to show higher antipredator response 

in comparison with their rural counterparts (Vangestel et al., 2010; Seress et al., 2011; Meillère 

et al., 2015a). This behavior could potentially constrain them from early morning feeding in the 

winter, rendering them more susceptible to variations in food predictability and thus starvation 

(MacLeod et al., 2006). 

4.2.1.2. Habitat alterations 

Although house sparrows have since long been associated with the presence of humans and 

are considered urban exploiters, recent urban developments have suggested to negatively 

impact populations, possibly aggravating or even causing the observed declines (Summers-

Smith, 2003; Robinson et al., 2005; Chamberlain et al., 2007; Snep et al., 2016). In order to 

support viable house sparrow populations, foraging, nesting and hiding habitats need to be 

maintained and well connected (Snep et al., 2016) which is often problematic in urbanized areas 

(Robinson et al., 2005; Shaw et al., 2008; Snep et al., 2016). House sparrows preferentially nest 

in roof cavities or under tiles, however, these nesting locations are often sealed or removed 

while renovating the buildings (Wotton et al., 2002; Shaw et al., 2008). Supplementary food 

sources in suburban and urban areas (Shochat, 2004; Reynolds et al., 2017), could aid birds in 

harsh periods, although the mostly lower food quality of these supplements could adversely 

affect the body condition and lower the overall fitness of the birds (Shochat, 2004). In addition, 

the reduced availability of high qualitative invertebrate prey (such as insects, which have 

declined massively the past decades (Vogel, 2017)), is detrimental for the reproductive success 

of house sparrows (Peach et al., 2008; Seress et al., 2012). Peach et al. (2008) and Seress et al. 

(2012) compared the reproductive success of house sparrows along an urbanization gradient 

and clearly demonstrated a reduced number of fledglings (due to increased nestling mortality 

from starvation) and a reduced body condition of fledglings in the more urbanized areas (which 

is a proxy for post-fledging survival). They attributed this reproductive difference to the lower 

quality and lower abundance of certain insect prey (e.g. caterpillars, beetles). In addition, 

providing supplementary mealworms to house sparrows in more urbanized areas increased the 

reproductive output, demonstrated by an increased clutch size and fledging success (Peach et 

al., 2014). The presence and high abundance of insects (aphids, caterpillars, beetles,…) depends 

on the presence of native plants and the absence of insecticides or herbicides (Robinson et al., 
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2005; Chamberlain et al., 2007; Peach et al., 2008; Seress et al., 2012), which can even vary 

within cities. Socioeconomically deprived areas mostly consist of a higher amount of native 

bushes and green spaces, providing cover and invertebrates, in contrast to gardens in affluent 

areas, with higher proportion of paved areas, nonnative plants and presence of pesticides and 

insecticides (Robinson et al., 2005; Chamberlain et al., 2007; Shaw et al., 2008). Traffic and 

related air pollution, which includes the use of unleaded petrol and heavy metals, have been 

shown to change hematologic values, the oxidative stress, reproductive success and prevalence 

of infectious disease in house sparrows (Roux and Marra, 2007; Peach et al., 2008; Bichet et 

al., 2013). 

5. The impact of urbanization on avian health 

Various parameters have been assessed in order to enhance our understanding regarding 

avian health and stress in urbanized regions. However, we need to keep in mind that most 

parameters are influenced by variables related to diet, reproductive status, season, diurnal 

variation, hydration and nutritional status, infectious and noninfectious diseases, which 

complicates their interpretation (Romero and Romero, 2002; Breuner et al., 2013; Salmón et 

al., 2016): 

- Morphological parameters (as a proxy for the stress the animal has been subjected to in the 

past, although it can be related to specific biotic and abiotic characteristics):  

Stress has been shown to affect the animals’ condition and appearance (Breuner et al., 2013; 

Maute et al., 2013), resulting in a decreased body mass and body condition due to the 

increased gluconeogenesis and lipolysis when exposed to chronic stress (Breuner et al., 

2013). In this perspective, studies along urbanization gradients have attempted to assess the 

amount of stress birds are subjected to, based on morphological criteria such as the 

combination of body size (e.g. tarsal length, wing length, beak height, body weight) and 

body condition index (Liker et al., 2008; Vangestel and Lens, 2011; Bókony et al., 2012; 

Salleh Hudin et al., 2016; Meillère et al., 2017). The latter can be calculated in various ways 

(Peig and Green, 2009) and similarly to the weight, can be prone to behavioral, diurnal, 

seasonal and reproductive variation (Maute et al., 2013; Milenkaya et al., 2013; Salleh Hudin 

et al., 2016). In addition, ptilochronology as a measure for nutritional stress, and fluctuating 

asymmetry as a measure for developmental stability, which can be related to genetic or 

environmental stress, have received great attention (Vangestel et al., 2011; De Coster et al., 

2013; Salleh Hudin et al., 2016; Meillère et al., 2017), however, also the interpretation of the 
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latter parameters can be difficult to interpret (Vangestel and Lens, 2011; De Coster et al., 

2013). 

- Physiological and genetic parameters (as a proxy for acute or chronic stress, although 

confounding factors should also be accounted for):  

Plasma, feather and faecal corticosterone, has been used in order to estimate the amount of 

stress individuals and populations are subjected to (Touma and Palme, 2005; Bortolotti et 

al., 2008; Chávez-Zichinelli, 2010; Meillère et al., 2015b). However we did not consider 

corticosterone in our research, since plasma corticosterone is subjected to great natural 

variation such as seasonal and circadian cycles, variation in life history stage (Lattin and 

Romero, 2015; Schwabl et al., 2017), interspecific variation (Sheriff et al., 2011), presence 

of infections (Dhont and Dobson, 2017), the chronicity of the stress where the animal is 

subjected to (Rich and Romero, 2005), capture induced variation (Romero and Reed, 2005) 

and since fundamental research to identify how corticosterone is deposited in feathers and 

faeces is still missing (Sheriff et al., 2011; Harris et al., 2017; Fischer et al., 2017). Besides 

the direct marker of stress, downstream changes in hematology and immunology 

(hematocrit, heterophil/lymphocyte ratio, immunoglobulin concentration) (Verbrugghe et 

al., 2012; Breuner et al., 2013; Milenkaya et al., 2013), blood chemistry (e.g. glucose, free 

fatty acids), reproductive hormones (Sheriff et al., 2011; Breuner et al., 2013) and genetic 

changes (telomere length, which has been shown to decrease when subjected to stress such 

related to urban environments) (Salmón et al., 2016; Ouyang et al., 2017) can be assessed to 

give a more complete image of the stress the animal is subjected to. However, species 

variations must be accounted for and the lack of reference values for blood chemistry and 

complete blood cell count (Harr et al., 2002; Geffré et al., 2009) hampers the use of these 

parameters in wild living animals (Bounous et al., 2000; Davis et al., 2008).  

Ideally a combination of different (e.g. morphological, genetic and physiological) 

parameters should be assessed in order to have a more complete view regarding the stress 

animals are subjected to (Breuner et al., 2013).  

6. The impact of urbanization on pathogens 

An underexplored aspect of urban ecology that could help to unravel underlying ecological 

mechanisms driving population dynamics, is how urbanization impacts disease ecology, 

including its potential to alter wildlife-pathogen interactions (Daszak et al., 2000; Keesing et 

al., 2006; Bradley and Altizer, 2007; Evans et al., 2009b; Delgado-V and French, 2012; Hamer 
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et al., 2012). Birds are increasingly being recognized as important vectors or potentially even 

reservoirs for various diseases (Artois et al., 2001), nevertheless only few studies have focused 

on differential pathogen exposure between urban and rural areas and the effect on avian body 

condition consequently (Bichet et al., 2013; Delgado-V and French, 2012; Galbraith et al., 

2017). 

For frequency as well as density dependent and for generalist as well as specialist pathogens, 

a dilution or amplification effect can be observed in urbanized regions (Keesing et al., 2006; 

Bradley and Altizer, 2007). The following examples show how disease dynamics can be 

affected by urbanization:  

1) An altered biodiversity and an increased density of several urban exploiters in cities (Blair, 

1996; McKinney, 2002; Croci et al., 2008), could change the intra- as well as interspecific 

interactions and could affect the suitability of the host community to sustain a pathogen, 

hereby altering the disease transmission and stress, related to these interactions, which could 

change the disease outcome (Keesing et al., 2006; Becker et al., 2015). 

2) An altered environmental survival of pathogens, or their vectors (when the pathogens are 

vectorborne), due to microclimate (heat island effect and precipitation) or habitat differences 

in between cities and natural habitats (Tashiro et al., 1991; Keesing et al., 2006; Trusilova 

et al., 2008; Krawiec et al., 2015) could increase or decrease the pathogen occurrence, 

persistency and transmission in the habitat (Keesing et al., 2006). 

3) An increased level of stress, an increased exposure to pollutants or lower quality of food, 

can all affect host’s immune function, host susceptibility, disease progression and pathogen 

excretion (Verbrugghe et al., 2012; Becker et al., 2015; Pollack et al., 2017). 

Avian pathogens such as Salmonella enterica subspecies enterica and enteropathogenic 

Yersinia species, mainly transmitted through faeco-oral transmission routes (Brittingham and 

Temple, 1988; Refsum et al., 2003; Krawiec et al., 2015), which are believed to have the 

potential to establish a reservoir in birds (Tizard 2004; Benskin et al., 2009; Lawson et al., 2014; 

Mather et al., 2016) are of particular interest.  

6.1. Salmonella Typhimurium 

Salmonella enterica subspecies enterica serotype Typhimurium, a gram negative bacterium 

which belongs to the family of the Enterobacteriaceae, can cause disease outbreaks in 

endothermic animals, such as Passeriformes and humans (Alley et al., 2002; Lawson et al., 

2014). In Britain, Salmonella Typhimurium definite phage types (DT)40, DT56(v) and DT160, 
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accounted for the majority of passerine salmonellosis incidents, most often recognized in 

greenfinches (Chloris chloris) and house sparrows (Pennycott et al., 2006; Lawson et al., 2010, 

Lawson et al., 2014). Despite the observation of some phage types being host adapted, DT2 and 

DT99 in pigeons (Columba livia) (Pasmans et al., 2003), DT40 and DT56(v) in passerines 

(Lawson et al., 2011), the latter two phage types have been isolated from captive birds and 

mammals and have been linked to disease in humans (Pennycott et al., 2006; Lawson et al., 

2014; Horton et al., 2013). Infection with Salmonella Typhimurium in birds can result in one 

of several scenarios: 1) an asymptomatic intestinal carrier stage, 2) an acute, rapidly fatal 

septicemia with or without enteritis, 3) or chronic localized infections that may or may not be 

clinically apparent (Alley et al., 2002; Pennycott et al., 2002; Connolly et al., 2006; Hughes et 

al., 2008; Verbrugghe et al., 2012 and 2016). The chronic infection is most often related to host 

adapted Salmonella strains through their ability to spread systemically within macrophages and 

reach various internal organs (Rabsch et al., 2002; Pasmans et al., 2003). The best described 

scenario in passerines is the acute death during disease outbreaks, with the most obvious 

pathological lesions: spleno- and hepatomegaly and (caseous) necrotic lesions present in the 

crop and oesophagus, spleen, liver and brains (Alley et al., 2002; Refsum et al., 2003; 

Giovannini et al., 2013). Almost all Salmonella outbreaks in wild birds occur during stress 

periods, such as cold stress in winter (Alley et al., 2002; Refsum et al., 2002; Pennycott et al., 

2006; Lawson et al., 2010), in areas marked by severe habitat alteration suggesting 

environmental contamination from human, or livestock activities and can be easily spread 

through the use of bird feeders (Fenlon, 1981; Brittingham and Temple, 1988; Cízek et al., 

1994; Alley et al., 2002; Pennycott et al., 2002). However, not much is known about the ability 

of host adapted strains to cause chronic disease in passerines and potentially lower the body 

condition through trade off (e.g. continuous or intermittent stimulation of the immune system) 

(Lochmiller and Deerenberg, 2000; Wobeser, 2006). 

6.2. Yersinia spp. 

Yersinia spp. are gram negative bacteria of the family of the Enterobacteriaceae, of which 

three species are considered important human pathogens (Reuter et al., 2014). The vectorborne 

Yersinia pestis, etiologic agent of plague (Reuter et al., 2014) will not be further discussed. The 

enteropathogenic Y. enterocolitica and Y. pseudotuberculosis are the etiologic agents of 

yersiniosis (Reuter et al., 2014; EFSA and ECDC, 2015) and, similar to Salmonella 

Typhimurium, are transmitted through faeco-oral contact (Brittingham and Temple, 1988). In 

humans, yersiniosis is most frequently caused by Yersinia enterocolitica biotype (BT) 1B and 
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2-5 and to a lesser extent by Y. pseudotuberculosis (Thoerner et al., 2003; EFSA and ECDC, 

2015). In passerines, the facultative pathogen Y. pseudotuberculosis is the most probable 

etiologic agent of yersiniosis which often has an acute enteric disease progression (Clark and 

Locke, 1962; Mair, 1973; Cork, 1999), but has on several occasions been isolated from 

apparently healthy birds (Mackintosh and Henderson, 1984; Niskanen et al., 2003) (Table 1). 

The most remarkable pathological lesions in passerines (based on autopsy reports of canaries 

(Serinus canaria), zebrafinch (Taeniopygia guttata) and common grackles (Quiscalus 

quiscula)) are a severe enteritis with granulomas in the caecal tonsils in combination with 

hepato- and splenomegaly with granulomatous lesions (Clark and Locke, 1962; Cork et al., 

1999). 

Apart from the known pathogenic Yersinia species, other Yersinia species such as Y. 

aldovae, Y. aleksiciae, Y. bercovieri, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. 

mollaretii, Y. rohdei, but also Y. enterocolitica biotype 1A, which are mostly regarded as 

nonpathogenic can be detected in the faeces of wild terrestrial animals (Sulakvelidze, 2000; 

Niskanen et al., 2003; Kisková et al., 2011; Oda et al., 2015) and should be differentiated from 

the known pathogenic species. The detection of a combination of chromosomal-borne (ail-

attachment invasion locus-gene; ystA-heat stable enterotoxin YstA-gene, ystB-heat stable 

enterotoxin YstB-gene, inv-invasin protein-gene) and pYV-plasmid-borne (virF- and LcrF-

gene for Y. enterocolitica and Y. pseudotuberculosis respectively) virulence genes (Thoerner et 

al., 2003), has been used extensively to distinguish pathogenic isolates from nonpathogenic 

isolates (Thoerner et al., 2003; Van Damme et al., 2015).  

 

Bird species involved 

 

Pathogen prevalence (S = 

Salmonella Typhimurium; Yps 

= Yersinia pseudotuberculosis) 

Country Reference 

Black-capped chickadee (Poecile 

atricapillus), tufted titmouse (Baeolophus 

bicolor), white-breasted nuthatch (Sitta 

carolinensis), red-breasted nuthatch (Sitta 

canadensis), cardinal (Cardinalis 

cardinalis), purple finch (Haemorhous 

purpureus), pine siskin (Spinus pinus), 

American goldfinch (Spinus tristis), dark-

eyed junco (Junco hyemalis) 

S: 0% Winsconsin, 

USA 

Brittingham 

et al. (1988) 
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Starling (Sturnus vulgaris: Sv), house 

sparrow (Pd), house finch (Haemorhous 

mexicanus: Hm), purple finch (Hp), song 

sparrow (Melospiza melodia: Mm), 

American goldfinch (St), American robin 

(Turdus migratorius: Tm) 

S: 7,1% (Sv); 1,07% (Pd); 0% 

(Hm, Hp, Mm, St, Tm) 

Ohio, USA Morishita et 

al. (1999) 

House sparrow (A,B), chaffinch (Fringilla 

coelebs) (A,B), greenfinch (Chloris chloris) 

(A), blackbird (Turdus merula) (A), blue tit 

(Cyanistes caeruleus) (A,B), starling (A), 

jackdaw (Corvus monedula) (A) 

S: 48% (bird feeder A with 

occasional mortality reports),  

S: 2% (bird feeder B, no reports 

of mortality)  

Scotland Pennycott et 

al. (2002) 

Migratory Corvidae, Turdidae, Sturnidae S: 0% Sweden Hernandez 

et al. (2003) 

House sparrow, greenfinch S: 2% (64% during outbreak) Norway Refsum et 

al. (2003) 

House sparrow, greenfinch, chaffinch, 

starling, blackbird 

S: 4% (in proximity to passerines 

who died due to salmonellosis) 

Scotland Grant et al. 

(2007) 

House sparrow, barn swallow (Hirundo 

rustica), white wagtail (Motacilla alba), 

starling, Eurasian blackcap (Sylvia 

atricapilla), Cetti’s warbler (Cettia cetti), 

Rock pigeon (Columba livia) 

S: Overall Salmonella spp. 

prevalence 1.85% (0.46% far 

from pig premises vs. 3.46 close 

to pig premises) 

Spain Andrès et al. 

(2013) 

Eurasian siskins (Carduelis spinus) S: 0% Switzerland Giovannini 

et al. (2013) 

Song trush (Turdus philomelos), redwing 

(Turdus iliacus) were found to be positive 

(in total 468 samples of 57 bird species 

examined mainly belonging to  

Anseriformes and Passeriformes) 

Yps: 0,6% (bioserotype 1/O:2) Sweden Niskanen et 

al. (2003) 

Dunnock (Prunella modularis) Yps: 0% Slovakia Kisková et 

al. (2011) 

House sparrow (Pd), Starling (Sv) Yps: 2,3% (Pd: O:1), 1.7% (Sv: 

O:1) (survey in the proximity of a 

red deer (Cervus elaphus) farm 

with known yersiniosis outbreak) 

New 

Zealand 

Mackintosh 

and 

Henderson 

(1984) 

Table 1. Selected information regarding the prevalence of Salmonella Typhimurium and Yersinia 

pseudotuberculosis in apparently healthy (and predominantly) Passeriformes. 
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6.3. The role of other hosts 

Bacterial enteropathogens such as Salmonella Typhimurium (although not all phage types), 

Y. pseudotuberculosis and Y. enterocolitica have a broad host range, with many animals (e.g. 

birds and mammals) potentially serving as carriers or even reservoir hosts (Hubbert 1972; 

Rabsch, 2002; Battersby et al., 2002; Niskanen et al., 2003; Traweger et al., 2006; Lawson et 

al., 2014). Due to their ubiquity and synantropic lifestyle, certain rodent and bird species have 

been the subject of different studies related to food safety, whereby these animals have been 

appointed as source of feed contamination of livestock (Mackintosh and Henderson, 1984; 

Daniels et al., 2003). When investigating the effect of urbanization on host-pathogen 

relationships, the comparison of pathogen occurrence in animal species, with small home ranges 

(e.g. some avian species and rodents (Daniels et al., 2003; Backhans et al., 2011; Nkogwe et 

al., 2011; Han et al., 2015; Pollack et al., 2017)), along urbanization gradients will be most 

informative. 

The Brown rat (Rattus norvegicus), originally from Asia, is an opportunistic and omnivorous 

rodent species which has been able to colonize large parts of the world thanks to its synantropic 

lifestyle (Ruedas, 2016) and is widely distributed in Flanders (Fig. 4). The species has been 

shown to carry different (zoonotic) pathogens (Battersby et al., 2002; Himsworth et al., 2013; 

Firth et al., 2014) for which the prevalence can be highly variable between nearby located rat 

populations (Himsworth et al., 2013). Most likely the territorial and extremely sedentary 

lifestyle, whereby rats usually run over specific routes in between their foraging areas and 

harborages (Davis et al., 1948; Traweger et al., 2006; Brown, 2007; Himsworth et al., 2014), 

contributes to this population specific pathogen dynamics (Himsworth et al., 2013). In cities, 

roads have been demonstrated to form a barrier, which will (only seldom) be crossed when for 

example the rats are in search for new home ranges (e.g. dispersal of juvenile rats, due to 

resource limitation, as a result of habitat destruction) (Traweger et al., 2006; Feng and 

Himsworth, 2014). As such, home ranges, often expressed as the average distance a rat travels 

along a runway, are thought be smaller in urban areas, delineated by city-blocks, compared to 

more rural habitats (Traweger et al., 2006; Feng and Himsworth, 2014). Although conflicting 

results have been published regarding whether the home range depends on the sex of the rats 

(no home range difference between the sexes (Brown, 2007), versus males having a significant 

larger home range than females (Lambert, 2003)), also in rural areas the home ranges of rats 

have been demonstrated to be small (Davis et al., 1948; Lambert, 2003; Brown, 2007) and can 

depend on the proximity of a farm (home range average of 25,4m (female) - 35,2m (male) in 
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the proximity of a farm, versus 131.6m (female) - 160,8m (male) in the field margins (Lambert, 

2003)).  

Since these rats share similar feeding sites with birds (e.g. on supplementary feeding 

stations) (Banyas and Artigues, 2000; Sánchez-García et al., 2015) enhanced faeco-oral contact 

within and in between different species can be expected, which increases the chance of an 

infectious disease to spread easily in between and within species on these aggregation sites.  

  

Fig 4. Distribution of brown rats in Flanders, based on the capture locations of the rats in this thesis. 
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Despite the general recognition that urbanization highly influences ecosystems and wildlife 

communities, how urbanization impacts urban disease ecology is still underexplored. This 

knowledge, however, is of great importance in order to better understand the effects of 

urbanization on animal health, including the mechanisms driving population dynamics.  

The general scientific aim of this thesis was to gain insights into urban wildlife disease 

ecology by assessing the pathogen exposure along an urbanization gradient and the effect on 

the body condition of an urban exploiter consequently.   

The specific scientific aims of this thesis were: 

- To determine the differential pathogen pressure presented by the presence of 

Salmonella enterica subspecies enterica serotype Typhimurium (Chapter 2) and 

pathogenic Yersinia species (Chapter 3) in the faeces of urban, suburban and rural house 

sparrow (Passer domesticus) populations, clustered in three Flemish regions of 

Belgium.  

- To identify correlations between environmental variables (granivore diversity, 

environmental temperature, urbanization level), presence or absence of different 

Yersinia species and variations in the house sparrow’s body condition (scaled mass 

index) (Chapter 3).  

- To assess the importance of other synantropic animal species such as the brown rat 

(Rattus norvegicus), as a potential reservoir host from which Yersinia can spread to 

susceptible animals, in the ecology of enteropathogenic Yersinia species in Flanders 

(Chapter 4).
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Overarching methodology: spatial scale 

The house sparrow represents a species which has shown to be highly sedentary (Summers-

Smith, 1963) and, due to its ubiquity, has been widely used in studies. In order to assess the 

urbanization intensity or to classify different habitat types, previous research focusing on this 

species have used a 1 km² grid (Liker et al., 2008; Bókony et al., 2012; Meillère et al., 2017) or 

1 km² circle surface (corresponding approximately to a circle with radius 565m) (Chávez-

Zichinelli, 2010). Bichet et al. (2013) even used a circle with radius 10km to compare 

surrounding habitat structures. 

In our research (Chapter 2 and 3) we have relied on studies performed by Vangestel et al. 

(2010) who used radio-telemetry to more accurately assess the home ranges of house sparrow 

populations along an urban gradient within the region of Ghent in Flanders. Vangestel et al. 

(2010) considered two spatial scales. The first scale combined the surface of habitat patches 

effectively used by the house sparrows, and consisted of clusters of different habitat patches, 

ranging between 0.0032-0.49ha. The second scale comprised the total surface area utilized by 

the sparrows, encompassing all the separate clusters and ranging between 0.028-2.86ha 

(Vangestel et al., 2010). Since home range sizes, at both spatial scales, varied significantly 

between populations inhabiting different urbanization levels (largest home ranges in rural 

populations) (Vangestel et al., 2010), we have agreed upon using the largest home range, being 

a spatial scale within a circle with 100m radius (3.14ha) and representing the most important 

foraging and thus transmission sites for enteropathogens (Chapter 3) (= “core home range”). 

Although, when including infrequently used foraging and roosting sites, referring to the 

maximum inter distance between point fixes of radiotagged house sparrows as determined by 

Vangestel et al. (2010), a home range scale with a circle of 400m radius can also be used as a 

proximate for the “maximum daily mobility range” (Chapter 2). Since house sparrows tend to 

live in close proximity to human settlements, thus inherently increasing the built-up (BU) 

density at the local home range scale, the addition of a larger landscape scale, following the 

suggestion of a multiscale approach, was indicated (Wiens, 1989; Melles et al., 2003; Litteral 

and Shochat, 2017). The landscape scale (within a circle of 1600m radius), based on the scale 

where different house sparrow populations can genetically be considered independent from 

each other (Vangestel et al., 2011), was chosen and used to differentiate the urbanization levels 

(“urban”, “suburban”, “rural”) (Chapter 2 and 3). 
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Prior to the fieldwork (Chapter 2 and 3): A hierarchical (plot-subplot) stratified sampling design 

was used: 

1) A stratified random sampling design was used to select 18 plots of 3x3km², differing in 

their level of urbanization (Fig. 5), within a 4655 km2 polygon demarcated by the cities of 

Ghent, Antwerp, Leuven and Brussels (Flanders, Belgium). The stratification was performed at 

the urbanization (“high”, “moderate” and “low” urbanization) as well as the regional level 

(Ghent, Antwerp and Leuven). These 18 plots were a subset of a larger set of 27 plots chosen 

for another project focussing on a wide array of taxa, including the house sparrows (SPatial and 

environmental determinants of Eco-Evolutionary DYnamics- anthropogenic environments as a 

model: SPEEDY). The level of urbanization was calculated based on the percentage of built-

up structures within these defined areas. A built-up structure being defined as “a sustainable 

construction that encloses a space accessible for humans” (e.g. houses, garages, municipal 

buildings) (AGIV, 2013a). The cut-off points for the percentage of BU-areas were set at 0-3% 

for “rural” plots (lowest level of urbanization), 5-10% for “suburban” plots (intermediate level 

of urbanization), and >15% for “urban” plots (highest level of urbanization) and were calculated 

with ArcGIS v9.2 using the very high resolution (i.e. 0.15m pixels) ‘Large-scale Reference 

Database’ (LRD) (AGIV, 2013b). The urbanization levels in between the rural, suburban and 

urban plots (being 3-5% and 10-15% BU-area) were not considered when designating the plots 

in order to assure that house sparrow populations were searched for in the most contrasting plot 

levels. To ensure a more natural environment for the lowest urbanization class, only plots 

comprising >20% of ecologically valuable areas, as described by the ‘Biologische 

Waarderingskaart’ (Vriens et al., 2011) were chosen.  

2) Every plot was subdivided in 200x200m² subplots (Fig. 6) in which 2 house sparrow 

populations were searched for (based on inventories collected during the winter of 2012-2013 

and on citizen science projects), being located at least 1km apart from each other in most 

contrasting subplots, based on the levels of urbanization within each subplot (e.g. >15% BU-

area and <3% BU-area). 

In summary, this resulted in 36 paired house sparrow populations in 18 plots, following a 

hierarchical sampling design which was stratified at the urbanization as well as the regional 

level. 
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Fig 5. Sampling plots of house sparrow populations:  

Color code: Red: Urban; Yellow: Suburban; Green: Rural.  

Ghent region: Ghent (Gh),Oudenaarde (Ou), Beervelde (Be), Hillegem (Hi), Kalken (Ka), Melsen (Mel);  

Antwerp region: Antwerp (An), Mechelen (Me), Ruisbroek (Ru), Lint (Li), Pulderbos (Pu), Herenthout (He);  

Leuven region: Leuven (Le), Tienen (Ti), Overijse (Ov), Wezemaal (We), Houwaart (Ho), Kerkom (Ke)   

 

 

 

 

 

 

 

 

 

Fig 6. Subdivision of subplots (e.g. 

Hillegem plot)  

Color-code: Red: >15% BU-area; 

Orange: 10-15% BU; Yellow: 5-10% 

BU; Light Green: 3-5% BU, Dark 

Green: <3% BU 
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After the fieldwork: 

3) However, the urbanization level, which is representative for house sparrow populations 

that are found at the border of a plot or subplot, will vary from the a priori calculated 

urbanization level in the respective plot and subplot. Therefore, the level of urbanization was 

recalculated for all the populations, at two “local” scales (100m and 400m radius around the 

centre of the main capture site) and a “landscape” scale (1600m radius around the centre of the 

main capture site, thereby excluding the 100m and 400m radius of the local scale respectively) 

(Fig. 7). Since the urbanization level, after recalculation, also included plots and subplots with 

urbanization levels of 3-5% BU-area and 10-15% BU-area, these BU-levels were merged with 

the three urbanization levels (“Urban”, “Suburban”, “Rural”). Initially the recombination of the 

urbanization levels was performed in order to resemble the original SPEEDY design as closely 

as possible (which resulted in “urban” (>13%), “suburban” (5-13%), and “rural” (<5%)). 

However, since also by using these cut-off values the original level of stratification based on 

the urbanization level could not be guaranteed, this idea was abandoned and the recombination 

of the urbanization levels was changed into “urban” (red: >10%), “suburban” (yellow: 5-10%) 

and “rural” (green: <5%), based on close examination of the environment at landscape scale 

level.  

 

Fig 7. House sparrow population with circular BU-areas measured within the local scale (100m) and the 

landscape scale (1600m, excluding the BU-area within the 100m) radius:  

Adapted color code: Urban-Red: >10% BU-area; Suburban-Yellow: 5-10% BU; Rural-Green: <5% BU  

  



OVERARCHING METHODOLOGY 

45 
 

Table 2. Urbanization level calculated for the different house sparrow populations:  

Overview of the level of Built Up (BU) area at different nested scales around the pairwise clustered house sparrow 

populations in the respective regions. (G) = least urbanized subplot; (R) = most urbanized subplot; Coordinates 

(LONG = Longitude; LAT = Latitude); outer = the percentage of BU-area within the outer shell, after extracting 

the BU-area of the respective inner shell; inner = the percentage of BU-area within the inner shell. 

Region Plot (Subplot) LONG LAT 1600m 
1200m-

outer 

400m-

inner 

1500m-

outer 

100m-

inner 

GHENT 

Ghent (G) 3,69 51,05 18,29 18,80 10,55 18,27 23,58 

Ghent (R) 3,72 51,06 38,99 38,09 52,51 38,98 41,39 

Oudenaarde (G) 3,59 50,87 9,68 10,16 2,47 9,68 10,03 

Oudenaarde (R) 3,61 50,86 17,17 17,16 17,23 17,17 14,63 

Beervelde (G) 3,87 51,07 4,64 4,57 5,71 4,62 10,52 

Beervelde (R) 3,84 51,08 7,33 6,81 15,10 7,30 15,80 

Hillegem (G) 3,85 50,88 4,66 4,81 2,35 4,65 5,97 

Hillegem (R) 3,86 50,90 4,69 4,16 12,62 4,62 22,17 

Kalken (G) 3,93 51,02 3,76 3,89 1,83 3,74 10,67 

Kalken (R) 3,92 51,04 4,68 4,23 11,38 4,62 20,88 

Melsen (G) 3,72 50,93 2,15 2,08 3,22 2,13 7,20 

Melsen (R) 3,70 50,96 3,85 3,46 9,78 3,81 13,97 

ANTWERP 

Antwerp (G) 4,38 51,22 7,58 6,99 16,29 7,51 23,51 

Antwerp (R) 4,42 51,19 24,64 24,25 30,42 24,52 55,03 

Mechelen (G) 4,50 51,02 16,54 16,89 11,42 16,58 6,28 

Mechelen (R) 4,47 51,02 22,16 21,66 29,62 22,14 27,37 

Lint (G) 4,52 51,14 4,35 4,36 4,10 4,30 16,91 

Lint (R) 4,50 51,13 11,87 11,27 20,85 11,79 31,61 

Ruisbroek (G) 4,30 51,09 3,10 3,24 0,98 3,09 5,95 

Ruisbroek (R) 4,33 51,09 6,14 5,71 12,63 6,09 19,97 

Pulderbos (G) 4,71 51,23 2,57 2,66 1,26 2,56 5,11 

Pulderbos (R) 4,70 51,22 3,70 3,34 9,00 3,68 7,04 

Herenthout (G) 4,72 51,12 1,91 1,98 0,76 1,91 1,72 

Herenthout (R) 4,73 51,13 2,82 2,59 6,24 2,72 27,83 

LEUVEN 

Leuven (G) 4,69 50,89 16,96 17,42 10,05 16,97 14,02 

Leuven (R) 4,71 50,87 27,92 26,91 43,08 27,90 33,75 

Tienen (G) 4,93 50,82 10,84 11,05 7,81 10,86 7,73 

Tienen (R) 4,94 50,81 17,88 16,56 37,73 17,85 27,20 

Wezemaal (G) 4,73 50,96 4,69 4,77 3,39 4,69 3,28 

Wezemaal (R) 4,75 50,95 5,41 4,78 14,87 5,31 30,83 

Overijse (G) 4,52 50,78 8,97 9,26 4,63 8,99 3,71 

Overijse (R) 4,54 50,77 8,36 7,55 20,48 8,23 39,41 

Houwaart (G) 4,84 50,92 1,53 1,57 0,96 1,50 10,12 

Houwaart (R) 4,86 50,93 1,72 1,45 5,78 1,66 17,13 

Kerkom (G) 4,89 50,84 1,84 1,82 2,07 1,82 7,16 

Kerkom (R) 4,87 50,86 2,03 1,75 6,34 1,99 14,32 
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Abstract  

In recent decades major declines in urban house sparrow (Passer domesticus) populations 

have been observed in northwestern European cities, whereas suburban and rural house sparrow 

populations have remained rather stable or are recovering from previous declines. Differential 

exposure to avian pathogens known to cause epidemics in house sparrows may in part explain 

this spatial pattern of declines. Here we investigate the potential effect of urbanization on the 

development of a bacterial pathogen reservoir in free ranging house sparrows. This was 

achieved by comparing the prevalence of Salmonella enterica subspecies enterica serotype 

Typhimurium in 364 apparently healthy house sparrows captured in urban, suburban and rural 

regions across Flanders, Belgium between September 2013 and March 2014. In addition 12 

dead birds, received from bird rescue centers, were necropsied. The apparent absence of 

Salmonella Typhimurium in fecal samples of healthy birds, and the identification of only one 

house sparrow seropositive for Salmonella spp., suggests that during the winter of 2013-2014 

these birds did not represent any considerable Salmonella Typhimurium reservoir in Belgium 

and thus may be considered naïve hosts, susceptible to clinical infection. This susceptibility is 

demonstrated by the isolation of two different Salmonella Typhimurium strains from two of the 

deceased house sparrows: one DT99, typically associated with disease in pigeons, and one 

DT195, previously associated with a passerine decline. The apparent absence (prevalence: 

<1.3%) of a reservoir in healthy house sparrows and the association of infection with clinical 

disease suggests that the impact of Salmonella Typhimurium on house sparrows is largely 

driven by the risk of exogenous exposure to pathogenic Salmonella Typhimurium strains. 

However, no inference could be made on a causal relationship between Salmonella infection 

and the observed house sparrow population declines. 
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Introduction  

Salmonella enterica subspecies enterica serotype Typhimurium has the potential to cause 

disease outbreaks in Passeriformes. In Britain, definite phage types (DT)40, DT56(v) and 

DT160, accounted for the majority of passerine salmonellosis incidents, most often recognized 

in greenfinches (Chloris chloris) and house sparrows (Passer domesticus) (Pennycott et al., 

2006; Lawson et al., 2010; Lawon et al., 2014). Outbreaks of salmonellosis in Passeriformes 

occur mostly during the winter period (Alley et al., 2002; Refsum et al., 2002a; Pennycott et 

al., 2006; Lawson et al., 2010) with sometimes marked annual variation in salmonellosis 

incidents between winter periods of consecutive years (Refsum et al., 2002a; Lawson et al., 

2010; Lawon et al., 2014). Harsh weather conditions (Daoust et al., 2000) and contaminated 

foraging areas (Cízek et al., 1994; Morishita et al., 1999; Andrés et al., 2013), sometimes related 

to supplemental feeding (Pennycott et al., 2002; Refsum et al., 2003) have been associated with 

a higher prevalence of Salmonella spp. (Daoust et al., 2000; Cízek et al., 1994; Morishita et al., 

1999; Andrés et al., 2013; Pennycott et al., 2002; Refsum et al., 2003). Although some phage 

types of Salmonella Typhimurium are considered host adapted, DT2 and DT99 in pigeons 

(Pasmans et al., 2003), DT40 and DT56(v) in passerines (Lawson et al., 2011), the latter two 

phage types have been isolated from captive birds and mammals and have been linked to disease 

in humans (Refsum et al., 2002b; Pennycott et al., 2006; Giovannini et al., 2013; Horton et al., 

2013; Lawon et al., 2014). In this perspective, most of the studies on prevalence and 

epidemiology of Salmonella spp. in free living birds have been performed in the surroundings 

of farms in order to evaluate food safety and human health risks areas (Cízek et al., 1994; Kirk 

et al., 2002; Andrés et al., 2013), or have been related to disease in animals or humans (Refsum 

et al., 2002b; Giovannini et al., 2013; Lawon et al., 2014). Other studies, none of which were 

conducted in Belgium, assessed the presence of pathogenic bacteria in moribund birds, or dead 

birds submitted for necropsy, whether or not related to epidemics in wild birds (Pennycott et 

al., 2006; Lawson et al., 2010; Refsum et al., 2002a; Refsum et al., 2003; Giovannini et al., 

2013). While these studies provide important insights in the epidemiology and pathogenesis of 

these bacteria, they cannot be used to estimate the prevalence of long-term carrier birds. Few 

studies have been performed to assess the prevalence of Salmonella spp. in apparently healthy 

migrating and nonmigrating wild Passeriformes, not specifically related to ongoing disease 

outbreaks. A low prevalence (≤ 2%) of Salmonella spp. was demonstrated in these studies 

(Brittingham et al., 1988; Morishita et al., 1999; Hernandez et al., 2003; Refsum et al., 2003; 

Andrés et al., 2013; Hamer et al., 2012). Since host adapted Salmonella enterica strains could 
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potentially reduce the reproduction success in their respective reservoir hosts (Faddoul and 

Fellows, 1965; Uzzau et al., 2000), it is important to understand to what extent passerines are 

indeed long term carriers of Salmonella Typhimurium, as birds in general have already been 

appointed as potential reservoirs for Salmonella enterica subspecies enterica (Morishita et al., 

1999; Pasmans et al., 2004; Krawiec et al., 2015).  

Little research has been performed to specifically assess the differences in prevalence of 

Salmonella enterica subspecies enterica in wild passerines inhabiting urban versus rural 

environments (Hamer et al., 2012). Previous studies have suggested that the prevalence of 

Salmonella enterica subspecies enterica may depend on microclimate differences between 

urban (heat island effect) and rural areas (Hamer et al., 2012; Krawiec et al., 2015). As such, 

this pathogen might be partly responsible for discrepant population dynamics in avian hosts 

from urban and rural areas, such as observed in house sparrows (Passer domesticus). In recent 

decades, urban populations of this species have indeed suffered dramatic declines throughout 

northwestern Europe and southeast Asia, whereas suburban and rural populations have 

remained rather stable or are recovering from previous declines (De Laet and Summers-Smith, 

2007; Kamath et al., 2014). Understanding the role, if any, of house sparrows as Salmonella 

Typhimurium reservoirs is important for understanding infection and disease dynamics. This 

might help to explain the massive population declines observed, possibly related to disease 

outbreaks during the winter and lower reproduction successes in spring.  

We here assess the prevalence of Salmonella Typhimurium in apparently healthy house 

sparrows along urban gradients, in order to reveal potential correlates with the ongoing 

population declines in urban areas. To achieve this goal, feces and blood samples of house 

sparrows, collected in urban, suburban and rural populations, were tested for the presence of 

Salmonella Typhimurium and anti-Salmonella antibodies respectively. In addition, a total of 

twelve deceased house sparrows, obtained from the bird rescue centers of Ostend and 

Merelbeke, and submitted for necropsy, were tested for the presence of Salmonella 

Typhimurium. 

Materials and methods  

Since Salmonella Typhimurium outbreaks in passerines are reported mostly during the 

winter period (Alley et al., 2002; Refsum et al., 2002a; Refsum et al., 2003; Pennycott et al., 

2006, Lawson et al., 2010; Giovannini et al., 2013; Krawiec et al., 2015), feces and blood 

samples of 364 individual house sparrows were collected between September 11th and 
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December 20th, 2013 (first sampling) and between January 10th and March 28th 2014 (second 

sampling). Samples were collected in 36 house sparrow populations located in 9 urban, 9 

suburban and 18 rural regions clustered pairwise around the Flemish cities of Ghent, Antwerp 

and Louvain, every population being sampled at least once per sampling period. House 

sparrows are treated as species of Least Concern on the IUCN Red List of Threatened Species 

(http://www.iucnredlist.org/), and all ringers involved in this study were holders of a scientific 

ringing certificate issued annually by the Agency for Nature and Forest. All sparrows were 

captured on private land for which oral permission was granted by the respective land owners. 

All trapping and sampling protocols were approved by the Ethical Committee VIB Ghent site 

(EC2013-027).  

The level of built up area (BU) in circular plots around each trapping site was calculated 

from GIS layers at two nested scales, i.e. a local scale (radius of 400m) and a landscape scale 

(radius of 1600m) (Large-scale Reference Database (LRD)) the former corresponding to the 

average home-range size of Flemish house sparrows (De Laet and Summers-Smith, 2007; 

Vangestel et al., 2010). Built up values for the three urbanization classes were empirically set 

as “urban” >13% BU; “suburban” 5-13% BU; “rural” <5% BU, and neighboring populations 

were at least 1km apart. The landscape scale was used for the classification of the urbanization 

levels, whereas the local scale provides more detail regarding the urbanization of the center of 

each individual class, being the direct habitat of the house sparrows.  

House sparrows were captured with standard mist nets after which each bird was individually 

put in an autoclaved cotton bag (approved by the Ethical Committee VIB Ghent site: EC2013-

027). Feces were collected in sterile micro centrifuge tubes, 50 µl blood was collected in 200µl 

absolute ethanol and each individual was sexed, measured and equipped with a unique metal 

ring before being released at its original trapping site. The Scaled Mass Index (SMI) of the 

house sparrows was calculated using the equation of the linear regression of ln-body mass 

(measured with a digital balance: ±0.01g) on ln-tarsus length (measured with a digital caliper: 

±0.01mm) estimated by type-II (standardized major axis; SMA) regression (Peig and Green, 

2009). The regression slope and average tarsus length were fitted in the calculation [body mass 

x (average tarsus length/tarsus length)^regression slope] to measure the SMI in order to have 

an estimation of the body condition of the birds, and compared to the different urbanization 

levels at both scales (400m and 1600m radius) using ANOVA in R.  

The ISO 6579:2002 method (ISO-6579, 2002), for the isolation of different Salmonella 

serotypes including Salmonella Typhimurium, was initiated within 24 hours of sampling. In 
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summary, the fecal samples were pre-enriched overnight at 37°C in nonselective Buffered 

peptone water (Oxoid, Hampshire, UK), after which the samples were simultaneously added to 

selective “Tetrathionate brilliant-green enrichment broth for Microbiology’ (Merck, Belgium) 

and “Rappaport Vassiliadis medium with Soya Peptone Broth” (Oxoid, Hampshire, UK) for 

overnight enrichment at 37°C and 41°C respectively. Xylose Lysine Deoxycholate (XLD) agar 

(Oxoid, Hampshire, UK) and Brilliant Green agar (BGA) (Oxoid, Hampshire, UK), incubated 

overnight at 37°C, were used for plating out the samples after the enrichment procedures. 

Indirect ELISA was performed on the blood samples. The preparation of ELISA plates was 

conducted according to Leyman et al. (2011) using a formol-inactivated Salmonella 

Typhimurium DAB69 (pigeon strain) for plate-coating. Before initiation of the indirect-ELISA 

the plates were washed with a 1% skim milk powder solution in distilled water. The blood 

samples, stored in ethanol were thoroughly vortexed, after which 100μl of a 1/100 dilution of 

the samples in Sample Diluent Buffer (0.6 g NaH2PO4·2H2O, 5.6 g NaH2PO4. 12H2O, 0.5 

ml Tween 20 (Merck, Germany), 12.5 g NaCl, 22g skim milk powder, 1000ml distilled water) 

was added to the wells. The plate was incubated for 1 hour at 37°C after which the plate was 

washed three times with washing buffer (0.6 g NaH2PO4·2H2O, 5.6 g NaH2PO4. 12H2O, 0.5 

ml Tween 20, 12.5 g NaCl, 1000ml distilled water). A 1/1000 dilution of Polyclonal Goat Anti-

Bird IgG (H+L)-horseradish peroxidase (HRP) conjugate (Cat-number: 90520, Alpha 

Diagnostics Intl. Inc., San Antonio, Texas, USA), reactive against sparrow and dove antibodies, 

was added to the wells. The plates were incubated at 37°C for 1 hour and washed three times, 

after which 100μl of 3,3′,5,5′-Tetramethylbenzidine (TMB) Liquid Substrate System for ELISA 

(Sigma Aldrich Chemie Gmbh, Steinheim Germany) was added. After 15min incubation at 

room temperature in a dark environment, the reaction was stopped using stop reagent for TMB 

substrate (Sigma Aldrich Chemie Gmbh, Steinheim Germany), and the optical density was 

measured (450nm). Blood in ethanol of Salmonella infected pigeons (infected with the DAB69 

strain) served as a positive control. The control blood was obtained from another study 

approved by the Ethical Committee of the Faculty of Veterinary Medicine and Bioscience 

Engineering, Ghent University (EC2014/96). The cut-off point for the optical density (OD) was 

calculated as the mean OD from three Salmonella free pigeons, calculated from an entire 96-

well plate, plus three times the standard deviation (0.238). All measurements were performed 

in duplicate. The pigeons used for calculation of the cut-off value for the OD were ascertained 

Salmonella free, since they were retrieved at 4 weeks of age from a Salmonella negative colony, 

whereafter they were housed strictly separately from other pigeons following the biosecurity 
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measurements and were tested for several weeks by the use of ISO 6579:2002 method on mixed 

feces. In addition the individual pigeons were screened for the presence of Salmonella 

Typhimurium by performing bacteriology on cloacal swabs and a rapid slide agglutination test 

on serum. The positive control consisted of an experimentally Salmonella Typhimurium 

infected pigeon.  

During 2013-2014, bird rescue centers were asked to transfer deceased house sparrows to 

the lab facilities of the Faculty of Veterinary Medicine (Ghent University), for necropsy. A total 

of twelve birds, received between May 2013 and December 2014 were tested for the presence 

of Salmonella Typhimurium. The entire intestinal tract, heart, lungs, liver, spleen, kidneys, 

reproductive organs and brains were checked for abnormalities. If obvious lesions were present, 

these were aseptically swabbed, prior to enrichment, and immediately plated out onto BGA and 

Columbia agar with sheep blood plus (COLS) (Oxoid, Wesel, Germany) for overnight 

incubation at 37°C and onto MacConkey agar (Oxoid, Hampshire, UK) for overnight 

incubation at 30°C. Direct microscopic investigation was conducted on the intestinal content. 

Unless postmortem decay was too advanced, cytology was performed on the liver, spleen, 

kidney and lungs and a separate enrichment according to the ISO 6579:2002 protocol was 

initiated for the intestinal content, liver, spleen, and organs with lesions.  

If fecal or autopsy samples were positive for Salmonella spp., these Salmonella spp. were 

further analysed by serotyping at the ‘Belgian Scientific Institute of Public Health (WIV-ISP)’ 

and by phage typing at the ‘Bacteriology Reference Department of the Public Health of England 

(BRD-PHE)’.  

In order to estimate the probability of absence of Salmonella serotypes in our population, we 

applied the epi.detectsize function of the R library ‘epiR’ (Stevenson, 2015). This test 

determines the number of individuals that need to be randomly sampled to declare a population 

free from a pathogen at a certain confidence level. The test is based on the pathogen prevalence 

level we want to be able to reveal, the population size and test sensitivity and specificity. Based 

on literature regarding Salmonella prevalence among passerines, we can expect the between- 

and within-population prevalence to be lower than 2% (Brittingham et al., 1988; Morishita et 

al., 1999; Hernandez et al., 2003; Refsum et al., 2003; Hamer et al., 2012; Andrés et al., 2013). 

Average sparrow population size in our study area was estimated at about 25 birds. The analyses 

are based on the highly sensitive ISO 6579:2002 method outlined above. This test is 

characterised by a sensitivity of at least 0.90 and a specificity of at least 0.99 (Hyeon et al., 

2012; Mainar-Jaime et al., 2013). ISO based analyses yield a conservative estimate of the power 
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and precision of our analyses. In addition, we used the truePrev function of the R library 

‘prevalence’ (Devleesschauwer et al., 2015) to obtain a Bayesian estimate of true prevalence 

from apparent prevalence obtained by testing individual samples, using the sensitivity and 

specificity values mentioned above.  

Results 

In total, feces and blood of 364 house sparrows were screened for the presence of Salmonella 

Typhimurium and the presence of anti-Salmonella antibodies. The house sparrows consisted of 

42.6% female birds, 57.1% male birds and 1 undefined young house sparrow, which belonged 

to urban house sparrow populations (28.3%), suburban populations (21.15%), and to rural 

populations (50.55%). Nineteen birds were recaptured within or between both sampling 

periods, from which 19 fecal and 11 blood samples were obtained, respectively. The recaptured 

birds all originated from the same house sparrow population as the one they were first captured 

from. Sparrow SMI (95%CI: mean=27.68g+/-3.86g) did not vary across urbanization gradients 

(1600m scale: ANOVA F1,352= 2.19, P-value = 0.14; 400m scale: F1,352 = 1.70, P-value: 0.19) 

and all trapped individuals appeared healthy, with the exception of one bird which was 

diagnosed with poxvirus based on the macroscopic cutaneous lesions and the detection of 

typical intracytoplasmic Bollinger bodies within the epidermal cells. Salmonella Typhimurium 

was not isolated from any of these fecal samples. One house sparrow (0.27%) trapped in the 

city of Ghent (Ghent: 51,052083 /3,694134: U), proved to be positive for anti-Salmonella 

antibodies (mean OD: 0.388). 

Statistical analyses show that to be 95% certain that Salmonella Typhimurium is not present 

in the study area (i.e. prevalence < 1%), if all tests were to be negative, we would need to sample 

12 sparrows from 18 populations (216 sparrows in total), which is close to our actual sampling 

(364 birds from 36 populations). As our sampling represents a stratified random sampling along 

urbanization gradients across Flanders, our results can be regarded as representative for the 

whole region. House sparrows are unlikely to number more than one million birds in Flanders 

(Vermeersch et al., 2004), and calculations show that a minimum of 331 sparrows need to be 

sampled to confirm the absence of Salmonella serotypes in Flanders. Bayesian analyses showed 

we can be 95% certain that the true prevalence in Flanders varies between 0 and 1.3%. 

Twelve deceased house sparrows, received from the bird rescue centers of Merelbeke (7) 

and Ostend (5), were necropsied and screened for the presence of Salmonella Typhimurium. 

Two of these individuals, collected in the city of Ostend, showed macroscopically visible 
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granulomas (1.5mm and 3mm diameter) in the cerebrum, histologically consisting of an 

accumulation of heterophilic granulocytes and macrophages. Ziehl Nielsen, PAS and Gram 

staining of the granulomas yielded negative results for Mycobacterium spp., fungi and Gram-

positive bacteria respectively. Both house sparrows however tested positive for Salmonella 

Typhimurium, which was isolated in pure culture from the granulomas in the brains. Serotyping 

and phage typing revealed the presence of Salmonella Typhimurium var. Copenhagen 

(O:1,4,12) DT195 and a pigeon specific phage type DT99. The former bird also showed a black 

intestinal content suggestive for hemorrhagic diathesis, while the latter house sparrow was 

found to be positive for cestodes using direct microscopic investigation of intestinal content. 

Because of the postmortem decay, the other organs, besides the brains, were not subjected to 

histology. Nevertheless cytology of the liver, spleen and lungs was performed and did not reveal 

any Atoxoplasma inclusions, whereas a slight infiltration of granulocytes and macrophages was 

present in the lungs of the house sparrow infected with DT99. No other major abnormalities 

were detected. Six house sparrows brought in for necropsy, died due to trauma (2 cases), 

coccidiosis (2 cases), predation (1 case) or predation with additional Pasteurella multocida 

infection (1 case) while four other individuals died due to unknown reasons. Unfortunately, no 

information regarding the habitat type nor the level of urbanization was available for the 

necropsied house sparrows. 

Discussion  

Since the onset of the severe population declines in rural and urban house sparrows, 

researchers have been searching for possible explanations (reviewed in ‘De Laet and Summers-

Smith, 2007’). Loss of nesting and foraging areas, changes in socioeconomic status, 

electromagnetic radiation, predation, depletion of food resources, pesticides, herbicides, the use 

of unleaded petrol and pathogens have all been suggested to cause these declines, either 

separately or in synergy (De Laet and Summers-Smith, 2007; Kamath et al., 2014; Summers-

Smith, 2003; Everaert and Bauwens, 2007; Shaw et al., 2008). While the impact that pathogens 

have on the population health when present in sublethal doses or in carrier birds is not very well 

known, it could potentially depend on infection pressure, which has been suggested to be higher 

in urban environments (Benskin et al., 2009; Krawiec et al., 2015).  

Our findings suggest that house sparrow populations across Flemish urban gradients, during 

the winter of 2013-2014, do not constitute a considerable Salmonella Typhimurium reservoir, 

such that birds could overall be considered naïve to infection. Not isolating Salmonella 
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Typhimurium from the feces and a seroprevalence for Salmonella spp. of 0.27% in the house 

sparrows screened during this study, indeed suggests a very low prevalence of Salmonella 

Typhimurium. Bayesian estimates confirm that true Salmonella Typhimurium prevalence is 

unlikely to be higher than 1.3%. Annual variation in salmonellosis incidents (Lawson et al., 

2010; Lawson et al., 2014) should however be kept in mind when interpreting the results, since 

the study was limited to a single winter period (2013-2014). Based on our results, no patterns 

regarding Salmonella prevalence in house sparrow populations along an urban-rural gradient 

could be demonstrated and no inference could be made on a causal relationship between 

Salmonella and the house sparrow declines. Despite the lack of historical data regarding the 

prevalence of Salmonella in apparently healthy Passeridae in Belgium, our findings are 

consistent with those obtained from house sparrow populations in Northern Spain (Andrés et 

al., 2013), which investigated the difference in prevalence of Salmonella in house sparrows 

living close to or far from pig premises, and in Ohio (Morishita et al., 1999), which focused on 

house sparrows and other birds in the surrounding of human settlements. Both studies detected 

low prevalence of Salmonella spp. in these birds (Morishita et al., 1999; Andrés et al., 2013), 

especially in birds inhabiting areas far from pig premises (Andrés et al., 2013). Occasional 

detection of Salmonella in feces from apparently healthy house sparrows (Morishita et al., 1999; 

Refsum et al., 2003; Andrés et al., 2013), which were not corroborated by follow up data, may 

reflect mechanical or temporal carriage after foraging in contaminated areas, or could indicate 

the presence of Salmonella excreting birds still in the incubation period of the disease, rather 

than the demonstration of the presence of actual Salmonella carrier birds. 

Anti-Salmonella antibodies were detected in one of 364 house sparrows. To the authors’ 

knowledge, this is the first study to detect antibodies against Salmonella spp. in apparently 

healthy wild passerines. Serum-IgG-antibodies have proved to provide a good indication of 

Salmonella Typhimurium infection as they increase already 2 weeks after primary infection has 

taken place and as they can persist in the blood for several months (Hassan et al., 1991; Barrow, 

1992; Proux et al., 1998). Despite this knowledge, the onset of the antibody response and the 

height of the antibody titer depends on the maturity of the immune system, on whether or not 

the infection is a primary infection or a reinfection and on the susceptibility of the bird to 

Salmonella Typhimurium (Hassan et al., 1991; Barrow, 1992; Proux et al., 1998). The main 

advantage of ELISA, when performed in conjunction with isolation methods and recapture of 

birds, is that ELISA could provide a better assessment of the prevalence of long term carriers 
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and survivors and could aid in the detection of intermittent shedders, however, more research 

is needed for the accurate interpretation of the results.  

Two out of 12 deceased house sparrows sent for autopsy tested positive for Salmonella 

Typhimurium var. Copenhagen (O:1,4,12) DT99 and DT195, isolated from granulomatous 

brain lesions. Although the sole demonstration of these cerebral lesions, without concurrent 

hepatomegaly, splenomegaly and granulomatous lesions in the upper alimentary tract, is not 

typical for a Salmonella Typhimurium infection in passerines, histological evidence of 

encephalitis has previously been demonstrated in passerines and brain abscesses have been 

recognized in pigeons in the past (Faddoul and Fellows, 1965; Connolly et al., 2006; Giovannini 

et al., 2013). Phage type DT195 has been shown to be pathogenic for a variety of animals 

including humans (Palmgren et al., 2006; Ewen et al., 2007). DT99, on the contrary, is regarded 

a pigeon adapted variant of Salmonella Typhimurium (Pasmans et al., 2003) which has 

previously caused morbidity and mortality in mice (Pasmans et al., 2004) as well as in 

passerines (Refsum et al., 2002a). Since Salmonella Typhimurium DT99 circulates endemically 

in feral pigeons that can reach high local densities in urbanized areas (Pasmans et al., 2004), 

feral pigeons constitute a potential source for Salmonella Typhimurium DT99 associated 

disease in passerines in urbanized areas.  

Conclusion  

These results suggest the apparent absence (prevalence: <1.3%) of a Salmonella 

Typhimurium reservoir in apparently healthy house sparrows and an association of Salmonella 

Typhimurium infection with clinical disease which is most likely driven by the risk of 

exogenous exposure to pathogenic Salmonella Typhimurium strains. However, no inference 

could be made on a causal relationship between Salmonella and the house sparrow population 

declines. 

Acknowledgments  

We would like to thank Pieter Vantieghem, Hans Matheve, Lies Ghysels and Hadia 

Mahmood for their help with catching house sparrows and collection of feces, Dr. Marc 

Verlinden and Dr. An Garmyn for assisting with autopsies, and Liesbeth De Neve for advice 

on the study design. We are further indebted to the Bird Rescue Centers of Ostend and 

Merelbeke for providing deceased house sparrows.  



CHAPTER 2: SALMONELLA TYPHIMURIUM IN HOUSE SPARROWS ACROSS URBAN GRADIENTS  

59 
 

References 

Alley MR, Connolly JH, Fenwick SG, Mackereth GF, Leyland MJ, Rogers LE, et al. 2002. An Epidemic of 

Salmonellosis Caused by Salmonella Typhimurium DT160 in Wild Birds and Humans in New Zealand. N Z 

Vet J. 50(5):170-176. DOI:10.1080/00480169.2002.36306 

Andrés S, Vico JP, Garrido V, Grilló MJ, Samper S, Gavín P, et al. 2013. Epidemiology of Subclinical 

Salmonellosis in Wild Birds from an Area of High Prevalence of Pig Salmonellosis: Phenotypic and Genetic 

Profiles of Salmonella Isolates. Zoonoses Public Health. 60(5):355-365. DOI:10.1111/j.1863-

2378.2012.01542.x 

Barrow PA. 1992. Further observations on the serological response to experimental Salmonella typhimurium 

in chickens measured by ELISA. Epidemiol Infect. 108:231-241. DOI:10.1017/S0950268800049712 

Benskin C McW H., Wilson K, Jones K, Hartley IR. 2009. Bacterial Pathogens in Wild Birds: a Review of 

the Frequency and Effects of Infection. Biol Rev. 84:349-373. DOI:10.1111/j.1469-185X.2008.00076.x 

Brittingham MC, Temple SA, Duncan RM. 1988  Survey of the Prevalence of Selected Bacteria in Wild 

Birds. J Wildl Dis. 24(2):299-307. DOI:10.7589/0090-3558-24.2.299 

Cízek A, Literák I, Hejlícek K, Treml F, Smola J. 1994. Salmonella Contamination of the Environment and 

its Incidence in Wild Birds. J Vet Med B. 41:320-327. DOI:10.1111/j.1439-0450.1994.tb00234 

Connolly JH, Alley MR, Dutton GJ, Rogers LE. 2006. Infectivity and persistence of an outbreak strain of 

Salmonella enterica serotype Typhimurium DT160 for house sparrows (Passer domesticus) in New Zealand. 

N Z Vet J. 54(6):329-332. DOI:10.1080/00480169.2006.36719 

Daoust P-Y, Busby DG, Ferns L, Goltz J, McBurney S, Poppe C, et al. 2000. Salmonellosis in songbirds in 

the Canadian Atlantic provinces during winter-summer 1997-98. Can Vet J. 41(1):54-59 

De Laet J, Summers-Smith JD. 2007.The Status of the Urban House Sparrow Passer domesticus in North-

Western Europe: a Review. J Ornithol. 148(2):S275-278. DOI:10.1007/s10336-007-0154-0 

Devleesschauwer B, Torgerson P, Charlier J, Levecke B, Praet N, Roelandt S, et al. 2015. Prevalence: Tools 

for prevalence assessment studies. R package version 0.4.0; Available: http://cran.r-

project.org/package=prevalence 

Everaert J, Bauwens D. 2007. A Possible Effect of Electromagnetic Radiation from Mobile Phone Base 

Stations on the Number of Breeding House Sparrows (Passer domesticus). Electromagn Biol Med. 26:63-72. 

DOI:10.1080/15368370701205693 

Ewen JG, Thorogood R, Nicol C, Armstrong DP, Alley M. 2007. Salmonella Typhimurium in Hihi, New 

Zealand. Emerg Infect Dis. 13(5):788-789. DOI:10.3201/eid1305.060824  

Faddoul GP, Fellows GW. 1965. Clinical manifestations of paratyphoid infection in pigeons. Avian Dis. 

9(3):377-381. DOI: 10.2307/1588367 

Giovannini S, Pewsner M, Hüssy D, Hächler H, Ryser Degiorgis M-P, von Hirschheydt J, et al. 2013. 

Epidemic of Salmonellosis in Passerine Birds in Switzerland with Spillover to Domestic Cats. Vet Pathol. 

50(4):597-606. DOI: 10.1177/0300985812465328 

Hamer SA, Lehrer E, Magle SB. 2012. Wild birds as sentinels for multiple zoonotic pathogens along an urban 

to rural gradient in Greater Chicago, Illinois. Zoonoses Public Health. 59:355-364. DOI:10.1111/j.1863-

2378.2012.01462.x 



CHAPTER 2: SALMONELLA TYPHIMURIUM IN HOUSE SPARROWS ACROSS URBAN GRADIENTS  

60 
 

Hassan JO, Mockett  APA, Catty D, Barrow PA. 1991. Infection and Reinfection of chickens with Salmonella 

Typhimurium: Bacteriology and Immune Responses. Avian Dis. 35(4):809-819. DOI: 10.2307/1591614 

Hernandez J, Bonnedahl J, Waldenström J, Palmgren H, Olsen B. 2003. Salmonella in Birds Migrating 

Through Sweden. Emerg Infect Dis. 9(6):753-755. DOI:10.3201/eid0906.030072 

Horton RA, Wu G, Speed K, Kidd S, Davies R, Coldham NG, Duff JP. 2013. Wild birds carry similar 

Salmonella enterica serovar Typhimurium strains to those found in domestic animals and livestock. Res Vet 

Sci. 95:45-48. DOI:10.1016/j.rvsc.2013.02.008 

Hyeon JY, Park JH, Chon JW, Wee SH, Moon JS, Kim YJ, Seo KH. 2012. Evaluation of selective enrichment 

broths and chromogenic media for Salmonella detection in highly contaminated chicken carcasses. Poult Sci. 

95(5):1222-1226. DOI:10.3382/ps.2011-01936 

ISO-6579 : 2002 (E) 4th Ed. Microbiology- General Guidance on Methods for the detection of Salmonella, 

International Organisation for Standardization, Geneve, Switzerland. 

Kamath V, Mathew AO, Rodrigues LLR. 2014. Indian Sparrows on the Brink of Extinction: Population 

Dynamics Combined with Ecological Changes. International Journal of Renewable Energy and 

Environmental Engineering. 2(1):17-22.   

Kirk JH, Holmberg CA, Jeffrey JS. 2002. Prevalence of Salmonella spp. in Selected Birds Captured on 

California Dairies. J Am Vet Med Assoc. 220(3):359-362. DOI: 10.2460/javma.2002.220.359 

Krawiec M, Kuczkowski M, Kruszewicz AG, Wieliczko A. 2015. Prevalence and Genetic Characteristics of 

Salmonella in Free-Living Birds in Poland. BMC Vet Res. 11(15):1-10. DOI 10.1186/s12917-015-0332-x 

Lawson B, Howard T, Kirkwood JK, Macgregor SK, Perkins M, Robinson RA, et al. 2010. Epidemiology of 

Salmonellosis in Garden Birds in England and Wales, 1993 to 2003. Ecohealth. 7:294-306. 

DOI:10.1007/s10393-010-0349-3 

Lawson B, Hughes LA, Peters T, de Pinna E, John SK, Macgregor SK, et al. 2011. Pulsed-Field Gel 

Electrophoresis supports the presence of host-adapted Salmonella enterica subsp. enterica serovar 

Typhimurium strains in the British garden bird population.  Appl Environ Microbiol. 77(22):8139-8144. 

DOI:10.1128/AEM.00131-11  

Lawson B, de Pinna E, Horton RA, Macgregor SK, John SK, Chantrey J, et al. 2014. Epidemiological 

Evidence that Garden Birds are a Source of Human Salmonellosis in England and Wales. PLOS ONE. 

9(2):e88968. DOI:10.1371/journal.pone.0088968 

Leyman B, Boyen F, Van Parys A, Verbrugghe E, Haesebrouck F, Pasmans F. 2011. Salmonella 

Typhimurium LPS Mutations for Use in Vaccines Allowing Differentiation of Infected and Vaccinated Pigs. 

Vaccine. 29:3679-3685. DOI:10.1016/j.vaccine.2011.03.004 

Mainar-Jaime RC, Andrés S, Vico JP, San Román B, Garrido V, Grilló MJ. 2013. Sensitivity of the ISO 

6579:2002/Amd 1:2007 Standard Method for the Detection of Salmonella spp. On Mesenteric Lymph Nodes 

from Slaughter Pigs. J Clin Microbiol. 51(1):89-94. DOI:10.1128/JCM.02099-12 

Morishita TY, Aye PP, Ley EC, Harr BS. 1999. Survey of Pathogens and Blood Parasites in Free-Living 

Passerines. Avian Dis. 43:549-552. DOI:10.2307/1592655 

Palmgren H, Aspán A, Broman T, Bengtsson K, Blomquist L, Bergström S, et al. 2006. Salmonella in Black-

headed Gulls (Larus ridibundus); Prevalence, Genotypes and Influence on Salmonella Epidemiology. 

Epidemiol Infect. 134(3):635–644. DOI:10.1017/S0950268805005261  



CHAPTER 2: SALMONELLA TYPHIMURIUM IN HOUSE SPARROWS ACROSS URBAN GRADIENTS  

61 
 

Pasmans F, Van Immerseel F, Heyndrickx M, Martel A, Godard C, Wildemauwe C, et al. 2003. Host 

Adaptation of Pigeon Isolates of Salmonella enterica subsp. enterica Serovar Typhimurium variant 

Copenhagen Phage Type 99 is Associated with Enhanced Macrophage Cytotoxicity. Infect Immun. 

71(10):6068-6074. DOI:10.1128/IAI.71.10.6068–6074.2003 

Pasmans F, Van Immerseel F, Hermans K, Heyndrickx M, Collard J-M, Ducatelle R, et al. 2004. Assessment 

of Virulence of Pigeon Isolates of Salmonella enterica subsp. enterica Serovar Typhimurium Variant 

Copenhagen for Humans. J Clin Microbiol. 42(5):2000-2002. DOI:10.1128/JCM.42.5.2000–2002.2004 

Peig J, Green AJ. 2009. New perspectives for estimating body condition from mass/length data the scaled 

mass index as an alternative method. Oikos. 118(12):1883-1891. DOI:10.1111/j.1600-0706.2009.17643.x 

Pennycott TW, Cinderey RN, Park A, Mather HA, Foster G. 2002. Salmonella enterica subspecies enterica 

serotype Typhimurium and Escherichia coli O86 in wild birds at two garden sites in south-west Scotland. 

Vet Rec. 151(19):563-567. DOI:10.1136/vr.151.19.563 

Pennycott TW, Park A, Mather HA. 2006. Isolation of Different Serovars of Salmonella enterica from Wild 

Birds in Great Britain between 1995 and 2003. Vet Rec. 158:817-820. DOI:10.1136/vr.158.24.817 

Proux K, Humbert F, Guittet M, Colin G, Bennejean G. 1998. Vaccination du pigeon contre Salmonella 

typhimurium. Avian Pathol. 27:161-167. DOI:10.1080/03079459808419318 

Refsum T, Handeland K, Baggesen DL, Holstad G, Kapperud G. 2002a. Salmonellae in Avian Wildlife in 

Norway from 1969 to 2000. Appl Environ Microbiol. 68(11):5595-5599. DOI:10.1128/AEM.68.11.5595-

5599.2002. 

Refsum T, Heir E, Kapperud G, Vardund T, Holstad G. 2002b. Molecular Epidemiology of Salmonella 

enterica Serovar Typhimurium Isolates Determined by Pulsed-Field Gel Electrophoresis: Comparison of 

Isolates from Avian Wildlife, Domestic Animals, and the Environment in Norway. Appl Environ Microbiol. 

68(11):5600-5606. DOI:10.1128/AEM.68.11.5600-5606.2002 

Refsum T, Vikøren T, Handeland K, Kapperud G, Holstad G. 2003. Epidemiologic and Pathologic Aspects 

of Salmonella Typhimurium Infection in Passerine Birds in Norway. J Wildl Dis. 39(1):64-72. 

DOI.org/10.7589/0090-3558-39.1.64 

Shaw LM, Chamberlain D, Evans M. 2008. The House Sparrow Passer domesticus in Urban Areas: 

Reviewing a Possible Link between Post-Decline Distribution and Human Socioeconomic Status. J Ornithol. 

149:293-299. DOI:10.1007/s10336-008-0285-y 

Stevenson M, with contributions from Nunes T, Heuer C, Marshall J, Sanchez J, Thornton R, et al. 2015. 

epiR: Tools for the analysis of epidemiological data. R package version 0.9-69; Available: http://cran.r-

project.org/package=epiR 

Summers-Smith JD. 2003. The Decline of the House Sparrow: a Review. British Birds. 96:439-446 

Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, et al. 2000. Review: Host adapted serotypes of 

Salmonella enterica. Epidemiol Infect. 125:229-255 

Vangestel C, Braeckman BP,  Matheve H, Lens L. 2010. Constraints on Home Range Behaviour Affect 

Nutritional Condition in Urban House Sparrows (Passer domesticus). Biol J Linn Soc Lond. 101:41-50. 

DOI:10.1111/j.1095-8312.2010.01493.x 

Vermeersch G, Anselin A, Devos K, Herremans M, Stevens J, Gabriëls J, et al. 2004. Huismus: Passer 

domesticus. In: Atlas van de Vlaamse broedvogels 2000-2002. Mededelingen van het Instituut voor 



CHAPTER 2: SALMONELLA TYPHIMURIUM IN HOUSE SPARROWS ACROSS URBAN GRADIENTS  

62 
 

Natuurbehoud, 23. Instituut voor Natuurbehoud, Ministerie van de Vlaamse Gemeenschap Afdeling Natuur 

en Natuurpunt vzw: Brussel. 418-419. ISBN 90-403-0215-4



 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: EFFECTS OF URBANIZATION ON HOST- 

PATHOGEN INTERACTIONS, USING YERSINIA IN HOUSE 

SPARROWS AS A MODEL



 

 

EFFECTS OF URBANIZATION ON HOST-PATHOGEN INTERACTIONS, USING 

YERSINIA IN HOUSE SPARROWS AS A MODEL 

 

Lieze Oscar Rouffaer1, Diederik Strubbe2, Aimeric Teyssier2,3, Noraine Salleh Hudin2,4, 

Anne-Marie Van den Abeele5, Ivo Cox5, Roel Haesendonck1, Michel Delmée6, Freddy 

Haesebrouck1, Frank Pasmans1, Luc Lens2 and An Martel1  

 

1Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, 

Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;  

2Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstreet 35, 

9000 Ghent, Belgium;  

3Department of Biology, Faculty of Science, Antwerp University, Antwerp, Belgium;  

4Department of Biological Sciences, Faculty of Science & Mathematics, Universiti Pendidikan 

Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia;  

5Microbiology Laboratory, AZ Sint Lucas Ghent, Groenebriel 1, 9000 Ghent, Belgium; 

6Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, 

Belgium 

 

 

 

 

 

 

Adapted from: 

Rouffaer LO, Strubbe D, Teyssier A, Salleh Hudin N, Van den Abeele A-M, Cox I, Haesendonck R, 

Delmée M, Haesebrouck F, Pasmans F, Lens L, Martel A. 2017. PLOS ONE. 12(12) 



CHAPTER 3: YERSINIA AND HOUSE SPARROWS ACROSS URBAN GRADIENTS 

65 
 

Abstract 

Urbanization strongly affects biodiversity, altering natural communities and often leading to 

a reduced species richness. Yet, despite its increasingly recognized importance, how 

urbanization impacts on the health of individual animals, wildlife populations and on disease 

ecology remains poorly understood. To test whether, and how, urbanization driven ecosystem 

alterations influence pathogen dynamics and avian health, we use house sparrows (Passer 

domesticus) and Yersinia spp. (pathogenic for passerines) as a case study. Sparrows are 

granivorous urban exploiters, whose western European populations have declined over the past 

decades, especially in highly urbanized areas. We sampled 329 house sparrows originating from 

36 populations along an urbanization gradient across Flanders (Belgium), and used isolation 

combined with ‘matrix-assisted laser desorption ionization- time of flight mass spectrometry’ 

(MALDI-TOF MS) and PCR methods for detecting the presence of different Yersinia species. 

Yersinia spp. were recovered from 57.43% of the sampled house sparrows, of which 4.06%, 

53.30% and 69.54% were identified as Y. pseudotuberculosis, Y. enterocolitica and other 

Yersinia species, respectively. Presence of Yersinia was related to the degree of urbanization, 

average daily temperatures and the community of granivorous birds present at sparrow capture 

locations. Body condition of suburban house sparrows was found to be higher compared to 

urban and rural house sparrows, but no relationships between sparrows’ body condition and 

presence of Yersinia spp. were found. We conclude that two determinants of pathogen infection 

dynamics, body condition and pathogen occurrence, vary along an urbanization gradient, 

potentially mediating the impact of urbanization on avian health.  
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Introduction 

With growing human populations, cities are expanding rapidly and urbanization represents 

one of the most intense anthropogenic modifications of natural systems, strongly affecting 

species, communities and ecosystems (Grimm et al., 2000; Evans et al., 2009b). The direction 

and strength of responses of bird species to urbanization is function of their life history 

strategies (Sol et al., 2014). This has led to the ‘biotic homogenization’ of urban bird 

communities (McKinney, 2008), i.e. whereby the latter become gradually dominated by a 

limited number of ‘urban exploiter’ species, such as house sparrows (Passer domesticus) 

(McKinney, 2002). Studies focussing on how avian communities respond to urbanization find 

that bird species richness (Blair, 1996; Chace and Walsh, 2006; McKinney, 2008) and 

population densities (Blair, 1996) are often highest at intermediate levels of urbanization. 

However, although several authors have addressed the effects of urbanization on avian stress 

levels and body condition (e.g. Vangestel et al., 2010; Bókony et al., 2012; Salleh Hudin et al., 

2016; Meillère et al., 2017), how individuals of urban exploiters successfully cope with urban 

environments, remains poorly understood.  

How urbanization affects disease ecology, wildlife-pathogen interactions and animal health 

remains particularly underexplored, despite its potential effect on ecological and evolutionary 

mechanisms driving population dynamics (Keesing et al., 2006; Bradley and Altizer, 2007; 

Evans et al., 2009a; Delgado-V and French, 2012; Hamer et al., 2012). In addition, wildlife is 

increasingly being recognized as an important vector, or potentially even reservoir, for various 

human diseases (Artois et al., 2001), such as yersiniosis, the third most commonly reported 

bacterial zoonotic disease in Europe in 2013 (EFSA and ECDC, 2015) In humans, yersiniosis 

is most frequently caused by Yersinia enterocolitica biotype (BT) 1B and 2-5 and to a lesser 

extent by Y. pseudotuberculosis (Thoerner et al., 2003; EFSA and ECDC, 2015). In passerines, 

the facultative pathogen Y. pseudotuberculosis is the most probable etiologic agent of 

yersiniosis, which typically has an acute enteric disease progression (Clark and Locke, 1962; 

Mair, 1973; Cork, 1999), but has on several occasions been isolated from apparently healthy 

birds (Mackintosh and Henderson, 1984; Niskanen et al., 2003). Although it is possible that 

these birds were in the incubation phase of the disease, it has been speculated that wild ranging 

birds maintain the bacteria at low level, developing acute disease when subjected to stressful 

conditions (Niskanen et al., 2003). Yet, the potential existence of subclinical effects on avian 

health and body condition remains a gap in our knowledge.  
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So far only few studies have focused on the combination of differential pathogen exposure 

along urbanization gradients and the effects on the body condition of their avian hosts (e.g. 

Delgado-V and French, 2012; Bichet et al., 2013; Galbraith et al., 2017). With respect to 

Yersinia, their psychrotolerant nature (Tashiro et al., 1991) potentially renders these bacteria 

susceptible to microclimate differences (e.g. heat island effect) between urbanized and rural 

areas (Trusilova et al., 2008). In addition, the distinct metabolic flexibility of various Yersinia 

species (Reuter et al., 2014) may affect environmental survival and persistence, enhancing the 

survival of the less pathogenic environmental strains with higher metabolic capacity compared 

to the more pathogenic strains which are metabolically more constrained and are more 

dependent on the presence of suitable hosts. Depending on the pathogen suitability of the hosts, 

higher host diversity or density may both reduce or amplify the bacterium load in the 

environment (Keesing et al., 2006), and hence, the faeco-oral transmission of pathogenic 

Yersinia species. Not only can Yersinia affect birds’ health, but vice versa, avian health, related 

to stress and estimated by body condition (Peig and Green, 2009), could affect the excretion of 

pathogens in the environment (Kisková et al., 2011; Verbrugghe et al., 2012).   

In order to gain more insights into urban wildlife disease ecology, we assessed the prevalence 

of an important zoonotic and avian pathogen (i.e. Yersinia spp.) in house sparrows along an 

urbanization gradient. House sparrows constitute an adequate study species as they inhabit 

rural, suburban and urban areas, they are considered to be very sedentary, and they have 

experienced severe population declines over the last decades, especially in urban centres (De 

Laet and Summers-Smith, 2007; Everaert and Bauwens, 2007; Vangestel et al., 2011; De Coster 

et al., 2015). We evaluated how urbanization and the local community of granivorous birds 

impact on house sparrows’ body condition and on the presence of Yersinia spp. in their faeces, 

in combination with the two-way host-pathogen interaction, taking into account temperature 

and time of sparrow capture during sampling.  

Materials and methods 

House sparrow sampling and environmental data 

Since disease outbreaks most often occur during winter (Mair, 1972; Mackintosh and 

Henderson, 1984; Cork et al., 1995), faecal samples from 329 house sparrows were collected 

during two consecutive sampling periods, i.e. 3 October till 20 December 2013 (‘autumn’) and 

10 January until 28 March 2014 (‘winter-early spring’), respectively. Sampled house sparrows 

originated from 36 populations located in 11 ‘urban’, 7 ‘suburban’ and 18 ‘rural’ regions 
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(details on urbanization levels are given in the supporting information: S1 Table) clustered 

pairwise around the Flemish cities of Ghent, Antwerp and Leuven (Fig. 8), every population 

being sampled at least once per sampling period.  

 

 

The sampling protocol is as described in Rouffaer et al. (2016). Upon capture, each individual 

was ringed, sexed, weighed (±0.01g: digital balance) and their tarsus length was measured 

(±0.01mm: digital calliper). To quantify sparrow body condition, we applied the scaled-mass 

index (SMI), which adjusts the mass of all individuals to that which they would have obtained 

if they all had the same body size, using the equation of the linear regression of ln-body mass 

on ln-tarsus length estimated by type-II (standardized major axis; SMA) regression (Peig and 

Green, 2009). Two outliers were present in the data (i.e. |standardized residuals| > 3), these two 

observations were not considered for deriving the SMI relationship. The regression slope was 

1.50 and average tarsus length was 18.8 mm. We thus calculated the SMI as body mass x 

(18.8/tarsus length)^1.50 (Peig and Green, 2009). House sparrows are considered species of 

Least Concern on the ‘IUCN Red List of Threatened Species’ (BirdLife International, 2016) 

and all people involved in the sampling were holders of a scientific ringing certificate issued 

annually by the Agency for Nature and Forest. The sparrows were captured on private land for 

which oral permission was granted by the respective land owners. All trapping and sampling 

protocols were approved by the Ethical Committee VIB Ghent site (EC2013-027).  

Fig 8. Sampled house sparrow populations clustered around three cities in Flanders (Ghent, Antwerp, 

Louvain) 
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As environmental predictors, we considered the degree of urbanization, the average air 

temperatures at the day of sampling and the presence of other granivorous birds. In order to 

quantify the degree of urbanization at sampling sites, the level of built-up area (BU) was 

calculated in circular plots around each trapping site based on the very high resolution (i.e. 

0.15m pixels) ‘Large-scale Reference Database’ (LRD) GIS layers (AGIV, 2013a and 2013b), 

both at a local ‘home range’ scale (using a 100 m radius around the capture site) and at a 

‘landscape’ scale (using a 1600 m radius around capture site, thereby excluding the 100 m 

radius of the home range scale) (Melles et al., 2003; Vangestel et al., 2011). The extent of the 

home range scale was based on radio-telemetric observations of habitat use by Flemish house 

sparrows (Vangestel et al., 2010) and represents the extent of daily foraging movements. The 

landscape scale was based on population genetic estimates (Vangestel et al., 2011) and reflects 

the average distance at which sparrow populations can genetically be considered independent 

from each other. To ensure a more natural environment for the lowest urbanization class, we 

only selected plots comprising >20% of ecologically valuable areas, as described by the Flemish 

Governments’ Biological Valuation Map (Vriens et al., 2011). Urbanization at the home range 

scale was modelled as a continuous variable (range 1.72-55.04% BU area), while at the 

landscape scale, it was modeled as class variable, i.e. ‘rural’ (<5% built-up area), ‘suburban’ 

(5-10%) or ‘urban’ (>10%) (Teyssier et al., 2018). Average daily temperatures were derived 

from the nearest located weather station and were provided by the Belgian Royal 

Meteorological Institute (RMI). For every house sparrow population under study, a granivore-

index was calculated, i.e. indicating the degree to which a local bird assemblage is dominated 

by granivorous species which could, through similar foraging strategies, have a higher potential 

of exchanging enteropathogenic bacteria through the faeco-oral transmission route 

(Brittingham and Temple, 1988; Pennycott et al., 2002; Refsum et al., 2003; Perkins et al., 

2007). Since conducting bird surveys during sampling was not feasible because of logistic 

reasons, we relied on data collected during the most recent Flemish breeding bird atlas 

(Vermeersch et al., 2004a) whereby the Flemish region was divided in a grid of 5km x 5km. 

Within each of these squares, bird surveyors were instructed to carry out two one-hour long 

visits to sets of eight fixed 1km x 1km squares in order to arrive at a list of breeding bird species 

(see Vermeersch et al. 2004b for details). For each sparrow sampling site, we determined the 

closest (5x5 km) grid cell sampled by the breeding bird atlas (using Euclidean distance) and 

extracted the species list for that grid cell. Each bird species present was assigned a ‘granivore 

score’, varying from 0 to 1, based on bird diets as mentioned in Cramp and Perrins (1985). 

Following Sol et al. (2014), scoring was as follows: 0 = no grains, 0.1 = occasionally grains, 
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0.5 = frequently grains, 1 = almost exclusively grains. In order to obtain an overall ‘granivore-

index’ for each sparrow sampling site, we summed the granivore-scores of all birds present in 

a grid cell and divided this sum by the total number of bird species present.  

Yersinia isolation and identification 

Faecal samples were subjected to a cold enrichment procedure in combination with an alkali 

(KOH) treatment as described in Rouffaer et al. (2017). This isolation method has previously 

been demonstrated to be the most successful method for the isolation of Y. pseudotuberculosis 

and Y. enterocolitica, even when only small numbers of bacteria are present in a sample 

(Niskanen et al., 2002; Niskanen et al., 2003). All the colonies suspicious for Yersinia were 

biochemically tested at 30°C using Kligler (Oxoid, Ltd), Aesculine (Oxoid, Ltd.) and Urea 

(Oxoid, Ltd), before performing MALDI-TOF MS (Matrix-Assisted Laser Desorption 

Ionization-Time of Flight Mass Spectrometry) at the Department of Clinical Microbiology, 

Laboratory Medicine, AZ Sint-Lucas in Ghent. Every MALDI-TOF assigned-Y. enterocolitica 

and Y. pseudotuberculosis was subjected to virulence PCR on chromosomal- (ail, ystA, ystB, 

inv) and plasmid-borne (virF) virulence genes, according to the PCR-protocol and primers used 

by Thoerner and others (2003). Yersinia pseudotuberculosis (22.36a), human pathogenic Y. 

enterocolitica 4/O:3 (75.55b) and Y. enterocolitica BT1A (FAVV208) were used as positive 

controls. If virulence genes were detected, Y. pseudotuberculosis isolates were serotyped at the 

National Reference Center Yersinia (IREC).  

Although PCR on the combination of chromosomal- and plasmid-borne virulence genes and 

MALDI-TOF MS has previously been used for the identification of (enteropathogenic) Y. 

enterocolitica and Y. pseudotuberculosis (Thoerner et al., 2003; Singh and Virdi, 2004; 

Ayyadurai et al., 2010; Stephan et al., 2011; Stephan et al., 2013; Rouffaer et al., 2017), the 

accurate species identification of the latter technique is highly dependent on the validation of 

the reference library used to identify the bacterial isolates, resulting in high sensitivity and 

specificity for the validated species (Seng et al., 2009; Ayyadurai et al., 2010; Stephan et al., 

2011). This validation was performed for Y. pseudotuberculosis and Y. enterocolitica on the 

Bruker Daltonik MALDI Biotyper at the Department of Clinical Microbiology (CLSI, 2015), 

but not for other Yersinia species. As such, the Yersinia species other than Y. enterocolitica and 

Y. pseudotuberculosis were not identified up to species level and are included in the statistics 

as “Yersinia species”. 
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Statistical analyses 

First, in order to test whether Yersinia spp. prevalence was related to the degree of 

urbanization and presence of possible host species (expressed by the granivore-index), we 

applied Generalized Linear Mixed Models (GLMM) (Bates et al., 2015; Bates et al., 2016) with 

a binomial error distribution, using the R ‘lme4’, ‘lmerTest’, ‘Hmisc’, ‘plyr’ and ‘effects’ 

packages (Bates et al., 2016; Fox et al., 2016; Harrell, 2016; Wickham, 2016). Degree of 

urbanization at home range and landscape scales (and the two-factor interaction), granivore-

index, daily average temperature, sex and host SMI were modelled as fixed effects, while 

sampling period was modeled as a random effect using the glmer command. To account for 

possible spatial autocorrelation in Yersinia prevalence, latitude and longitude of sampling 

locations were included as fixed effects (Dormann et al., 2007). Separate models were run to 

identify factors influencing the distribution of “Y. enterocolitica”, “Y. pseudotuberculosis”, 

“Yersinia spp. other than Y. enterocolitica and Y. pseudotuberculosis”. We applied a model 

selection procedure based on Akaike’s Information Criterium AIC (Burnham and Anderson, 

2002) and calculated AICc values for all possible models, using the R MuMIn package (Barton, 

2015). Models were ranked based on their AICc values, and the relative importance of variables 

was assessed by summing the AICc weights of all models in which the variable under 

consideration was included. Important variables are characterized by a high AICc weight (i.e. 

>0.5) and model-averaged estimates that are higher than their standard errors (Anderson, 2008).  

Second, to test whether host SMI was impacted by Yersinia spp. along the urbanization level, 

we applied a linear mixed model (LMM) using a Gaussian error distribution, including presence 

or absence of Y. enterocolitica, Y. pseudotuberculosis or other Yersinia spp., degree of 

urbanization at home range and landscape scales (and two-factor interaction), sex, granivore-

index, daily average temperature and time (hour) of capture as fixed effects, and sampling 

period as random effect, using the same packages as for the GLMM, and the lmer-function. 

Model residuals were normally distributed (Shapiro-Wilk W > 0.95). Since the AIC-weight of 

the two-way interaction (see higher) was low (<0.5) for all the GLMM and LMM analyses, 

models were rerun without interaction to obtain final AIC-weights. All analyses were conducted 

in R (R Development Core Team)  
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Results 

In total, 329 house sparrows (143 females, 186 males) were captured from rural (51%), 

suburban (14%) and urban habitats (35%) (S1 Table). All individuals, with the exception of one 

bird which was diagnosed with poxvirus (Rouffaer et al., 2016), were apparently healthy. 

Yersinia species were isolated from 59% (193/329) of the examined hosts with Y. enterocolitica 

being the most commonly isolated Yersinia species, isolated from 31% (103/329) of the 

individuals (S1 Table). Except for the ystB-gene, identified in 92 (89%) of the Y. enterocolitica 

isolates, none of the isolates harbored the examined virulence genes. Y. pseudotuberculosis was 

recovered from 2% (8/329) of the hosts (S1 Table). With four isolates, serotype I was the most 

encountered serotype. Two isolates were identified as serotype II and two as serotype III and V 

respectively. All the isolates, apart from both serotype II isolates, originated from different 

house sparrow populations. Except for serotype III and V, which did not possess the virF 

plasmid-borne virulence gene, both the inv- and virF-gene were detected in the different 

serotypes. Yersinia species, other than Y. enterocolitica and Y. pseudotuberculosis were isolated 

from 41% (134/329) of the house sparrows. In total 51 house sparrows harbored multiple 

Yersinia species in their faeces. 

When testing for drivers of different Yersinia spp. presence in house sparrow’ faeces, AIC-

based model averaging appointed different variables as important explanatory variables, 

depending on the Yersinia species tested (Table 3). Presence of Y. pseudotuberculosis was best 

explained by the granivore-index, for which a positive relationship was observed (AIC-weight: 

0.90, estimate ± standard error: 1.18±0.59; Table 4 and 5). In addition, landscape-level 

urbanization influences Y. pseudotuberculosis distribution: compared to rural habitats, this 

species tends to be most prevalent in suburban habitats, and to a lesser extent in urban habitats 

(AIC-weight: 0.61, estimate: 2.83±1.35 and 1.95±1.08 resp.; Table 4 and 5). No strong evidence 

for an effect of host SMI, sex, daily average temperature and home range level factor on 

presence of Y. pseudotuberculosis was evident (AIC-weights <0.5; Table 4). Variables best 

explaining the presence of Y. enterocolitica were, in order of importance, daily average 

temperature, the granivore-index, the percentage of built-up area at the home range scale and, 

to a lesser extent, at the landscape scale. Yersinia enterocolitica was negatively correlated to 

daily average temperatures (AIC-weight: 1.00, estimate: -0.68±0.17), to the granivore-index 

(AIC-weight: 0.92, estimate: -0.39±0.15) and to the percentage of built-up area at home range 

level (AIC-weight: 0.75, estimate: -0.32±0.16) (Table 4 and 5). At the landscape level, the 

prevalence of Y. enterocolitica tends to be lower in suburban house sparrows, compared to the 
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urban and (to a lesser degree) to the rural birds (AIC-weight: 0.59, estimate: 0.96±0.48 and 

0.79±0.49 resp.; Table 5). Nor the SMI, nor the sex influenced Y. enterocolitica prevalence 

(AIC-weight: <0.5; Table 4). Presence of other Yersinia species was best explained by the 

average daily temperature (AIC-weight: 0.92, estimate: -0.31±0.12), to which it was negatively 

related, and by the home-range level (AIC-weight: 0.67, estimate: -0.21±0.12), as Yersinia 

species tended to be less prevalent in more urbanized core habitats (Table 4 and 5).  

After accounting for the effect of time of capture (AIC weight: 0.76, 0.06±0.0.3), we found 

that sparrow body condition (i.e. SMI) was correlated to landscape level urbanization (AIC 

weight: 0.64) (Table 3-5). The SMI was generally higher for suburban house sparrows 

compared to either urban (estimate: -0.43±0.18) or rural house sparrows (estimate: -0.27±0.17) 

(Table 5). Specifically, suburban sparrows were on average 3% heavier than urban birds and 

2% than rural sparrows. Presence of Y. enterocolitica, Y. pseudotuberculosis or other Yersinia 

species, average daily temperatures, sex, granivore-index or home range level urbanization did 

not affect hosts SMI (all variable AIC-weights <0.5; Table 4).  

 

Table 3. Best models using AIC-based model selection for Y. pseudotuberculosis, Y. enterocolitica, other 

Yersinia species and Scaled Mass Index as respective response variables 

 

 

 

 

 

 

 

 

 

Response variable: explanatory variables Log(L) AIC ΔAIC weight 

Y. pseudotuberculosis: Granivore-index, Urbanization 

(landscape level) 

-32.21 78.76 0.00 0.64 

Y. enterocolitica: Average temperature, Granivore-

index, Urbanization (home range level), Urbanization 

(landscape level) 

-185.47 389.50 0.00 0.42 

Other Yersinia species: Average temperature, 

Urbanization (home range level) 

-218.75 449.75 0.00 0.60 

SMI: Time of capture, Urbanization (landscape level) -465.15 946.74 0.00 0.55 
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 Y. pseudotuberculosis Y. enterocolitica Other Yersinia species SMI 

Granivore-index 0.90 0.92 0.32 0.49 

Urbanization (landscape 

level) 

0.61 0.59 0.16 0.64 

Urbanization (home 

range level) 

0.38 0.75 0.67 0.48 

Average temperature 0.39 1.00 0.92 0.27 

Scaled Mass Index 0.26 0.30 0.35 NA 

Seks 0.44 0.26 0.44 0.38 

Time of Capture NA NA NA 0.76 

Y. pseudotuberculosis NA NA NA 0.26 

Y. enterocolitica NA NA NA 0.39 

Other Yersinia species NA NA NA 0.38 

Table 4. Variable Importance after model-averaging in order to explain the presence of Y. 

pseudotuberculosis, Y. enterocolitica and other Yersinia species and the SMI of the host. NA (not applicable) 

 

Parameters for Y. pseudotuberculosis Estimate ± SE 

Granivore-index 1.18±0.59 

Urbanization landscape (Suburban)a 2.83±1.35 

Urbanization landscape (Urban)a 1.95±1.08 

Parameters for Y. enterocolitica  

Average temperature -0.68±0.17 

Granivore-index -0.39±0.15 

Urbanization home range -0.32±0.16 

Urbanization landscape (Urban)b 0.96±0.48 

Urbanization landscape (Rural)b 0.79±0.49 

Parameters for other Yersinia species   

Average temperature -0.31±0.12 

Urbanization home range -0.21±0.12 

Parameters for SMI  

Time of capture 0.06±0.0.3 

Urbanization landscape (Urban)b -0.43±0.18 

Urbanization landscape (Rural)b -0.27±0.17 

Table 5. Parameter estimates and standard deviation for response variables: Y. pseudotuberculosis, Y. 

enterocolitica, other Yersinia species and SMI (shown in Table 3)  

a Urbanization within 1600m radius is compared to the Rural habitat 

b Urbanization within 1600m radius is compared to the Suburban habitat 
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Discussion 

A high prevalence of Yersinia was demonstrated in the faeces of the examined house 

sparrows, of which most isolates belonged to Y. enterocolitica and only a small percentage to 

Y. pseudotuberculosis. These results are in agreement with previous reports using cold 

enrichment methods (Cork et al., 1995; Niskanen et al., 2003; Kisková et al., 2011). Apart from 

the ystB-gene, which was demonstrated in most of the Y. enterocolitica isolates and is associated 

with biotype 1A (Thoerner et al., 2003; Singh and Virdi, 2004), no human pathogenic Y. 

enterocolitica biotype was recovered from our house sparrows. In humans, controversy exist 

regarding the pathogenicity of  Y. enterocolitica BT1A (Tennant et al., 2003; Stephan et al., 

2013), in birds however no case reports related to disease caused by BT1A were found. This 

could either be an indication that Y. enterocolitica BT1A does not tend to be pathogenic in 

birds, or that only limited research has been conducted on the pathogenicity of Y. enterocolitica 

BT1A in birds.  

On the contrary, all recovered serotypes of Y. pseudotuberculosis, with serotype I being the 

most encountered serotype in Europe (Niskanen et al., 2003; EFSA, 2007; Niskanen et al., 

2009), have been implicated in yersiniosis cases and outbreaks in birds and mammals, including 

humans (Bradley and Skinner, 1974; Nakano et al., 1989; Fukushima et al., 1989; Cork et al., 

1995; Nuorti et al., 2004; EFSA, 2007; Niskanen et al., 2009), but have also been isolated from 

apparently healthy birds and mammals (Mackintosh and Henderson, 1984; Hamasaki et al., 

1989; Fukushima et al., 1991; Cork et al., 1995; Niskanen et al., 2003). The absence of the virF 

plasmid-borne virulence gene in serotype III and V is potentially an indication of a decrease in 

virulence (Fukushima et al., 1991; Nagano et al., 1997), however, loss of the pYV virulence 

plasmid during the isolation, or purification procedure cannot be ruled out (Thoerner et al., 

2003; Niskanen et al., 2009). Since none of the positive birds in our study were recaptured, no 

inference can be made whether these house sparrows were temporary carriers with the potential 

of eliminating the pathogen, whether the passerines were in the incubation phase of the disease 

or actually presented a wildlife reservoir of Y. pseudotuberculosis.  

The dominant feeding strategy of the local bird assemblage affected the presence of Y. 

pseudotuberculosis and Y. enterocolitica in opposite ways. As for the pathogenic Y. 

pseudotuberculosis, higher prevalence of these bacteria was detected when the local bird 

populations were dominated by granivorous species, such as the highly susceptible Fringillidae 

(Cork et al., 1999; Sandmeier and Coutteel, 2005), which, by using similar foraging strategies 

could enhance faeco-oral transmission (Brittingham and Temple, 1988; Pennycott et al., 2002; 
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Refsum et al., 2003; Perkins et al., 2007). On the other hand, Y. enterocolitica BT1A was 

negatively influenced by the degree of granivory of local bird communities, which could be an 

indication that, at least for this Yersinia species, granivourous birds are less suitable hosts, or 

carriers than birds with other feeding patterns (Novotný et al., 2007; Benskin et al., 2009). With 

respect to the other Yersinia species, no relation with granivory was demonstrated, suggesting 

that other, potentially more abiotic factors drive the distribution and prevalence of these 

Yersinia species (Reuter et al., 2014). However, since the group “Yersinia species” most likely 

comprises various species, the effect of granivores on the species-group could be neutralized 

due to counteracting effects on the separate Yersinia species. We should also keep in mind that 

for all analyses, the density of the different bird species was not taken into account, nor were 

other animals that could potentially act as a reservoir, which could likewise alter disease 

ecology (Keesing et al., 2006). 

The prevalence of Yersinia enterocolitica and other Yersinia species was highly affected by 

the average daily temperature, being more prevalent when temperature was lower. As was 

previously observed when comparing Yersinia-survival in soil and water at different 

temperatures (Tashiro et al., 1991), the increased survival at colder temperatures potentially 

increases the bacteria load in the environment and subsequently the prevalence in faeces. No 

such an effect was observed for Y. pseudotuberculosis, however the low prevalence likely 

decreased the power of the statistical analyses and potentially obscured potential relationships 

between temperature and prevalence.  

The amount of built-up area had various effects on the presence of Yersinia. At the landscape 

scale, Y. pseudotuberculosis tended to be more prevalent in suburban hosts, and to a lesser 

extent in urban ones, compared to rural individuals. Although not investigated in our study, 

previous research has demonstrated higher densities of urban exploiters in suburban and urban 

regions (Blair, 1996; Evans et al., 2009b), which could enhance the pathogen transmission in 

these habitats. On the contrary, Y. enterocolitica BT1A tends to be less prevalent in suburban 

house sparrows. The higher prevalence observed in the more urban areas could, similarly as for 

Y. pseudotuberculosis, be related to the higher density of other urban exploiters (Blair, 1996; 

McKinney, 2006). In rural areas on the other hand, other animals such as rodents, hares and 

livestock (Frandölich et al., 2003; Vanantwerpen et al., 2014; Rouffaer et al., 2017), possibly 

contribute to an increased occurrence of Y. enterocolitica BT1A in the examined house 

sparrows. Nevertheless, further investigations are warranted, including different taxa, and 

taking densities of all potential host species into account.  
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At the scale of individual home ranges, Y. enterocolitica and other Yersinia species were 

shown to be less prevalent in more urbanized habitats. This could be explained by the lower 

permeability of the surfaces in the more urbanized habitats, from which water excess is lost 

through runoff and as such dry up relatively faster compared to actual soil substance (Tashiro 

et al., 1991; Trusilova et al., 2008). Since Yersinia species are known to have a higher survival 

in wet to damp soil (Tashiro et al., 1991) the prevalence will likely be higher in less urbanized 

local habitats. The SMI did not have an influence on the presence of Y. pseudotuberculosis, Y. 

enterocolitica or other Yersinia species, neither did these Yersinia isolates affect the SMI of the 

house sparrows. With respect to Y. enterocolitica BT1A and the environmental Yersinia spp. it 

has been suggested that these Yersinia species are part of the normal avian microbiota 

(Niskanen et al., 2003; Kisková et al. 2011), which could explain the lack of effect on house 

sparrows SMI. Nevertheless, only limited research has been performed on the pathogenicity of 

Y. enterocolitica BT1A and environmental Yersinia species in birds. Yersinia 

pseudotuberculosis on the other hand is known to be pathogenic for Passerines, and as such, a 

bidirectional effect of SMI and Y. pseudotuberculosis was expected. The lack of effect in either 

direction could be due to the low prevalence of Y. pseudotuberculosis in our house sparrow 

populations. However, as Niskanen et al. (2003) previously suggested, wild birds potentially 

are able to sustain Y. pseudotuberculosis at low levels, without clinical signs, developing acute 

disease when exposed to stressful conditions. 

The SMI was observed to increase from the morning to the afternoon, probably related to 

overnight fasting (Milenkaya et al., 2013; Galbraith et al., 2017) although this observation is 

not always apparent (Meillère et al., 2015). Regarding the effect of urbanization on house 

sparrow body condition, most studies have compared strongly urbanized with rural habitats, 

disregarding the suburban areas (e.g. Bókony et al., 2012; Meillère et al., 2015; Salleh Hudin 

et al., 2016; Meillère et al., 2017). In this study, no significant differences were observed 

between populations from rural and strongly urbanized habitats, however, individuals from 

suburban populations had a higher SMI compared to urban populations (and to a lesser extent 

rural ones). Body condition has earlier been associated with stress response and overall health 

(Peig and Green, 2009; Bókony et al., 2012), though environmental factors such as habitat 

coverage (Vangestel et al., 2010), predictability of food supply and quality (Salleh Hudin et al., 

2016), presence of predators (Vangestel et al., 2010) have been hypothesized to influence the 

body condition of the birds. Suburban habitats in Flanders are typically characterized by 

strongly connected hedges and bushes, which are generally considered good habitat for house 
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sparrows, allowing for a higher foraging efficiency compared to more fragmented highly 

urbanized or rural habitats. Indeed, Vangestel et al. (2010) found that suitable foraging and 

shelter sites are highly scattered in urban areas. In rural areas, shelter sites are more connected 

than in highly urbanized areas, but the presence of intensive agricultural fields forces sparrows 

to occupy larger home ranges, increasing the energy expenditure when patrolling the entire 

home range, and thus potentially decreasing the body condition (Vangestel et al. 2010).  

In conclusion, we here show that the urbanization gradient affects body condition and 

pathogen occurrence, two determinants of pathogen infection dynamics, suggesting a 

potential impact of urbanization on avian health. When assessing the impact of urbanization on 

animal health and pathogen dynamics, information regarding the presence and absence and 

preferably also the density of other suitable hosts, the two-way interaction between pathogen 

and host, and various levels of urbanization including the suburban habitat is required in order 

to have a better understanding of how urbanization can have an impact on urban wildlife health 

and diseases. 
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Supporting Information  

Plot Landscape %BU Home-range %BU Y. pseudotuberculosis Y. enterocolitica BT1A: 

#positive/total 

Ghent (Gh)1 18.27 23.58 Serotype I 0/9 

Gh2  38.98 41.39 Serotype I 7/14 

Beervelde (Be)1 7.30 15.80 - 1/5 

Be2 4.62 10.52 - 9/13 

Kalken (Ka)1 4.62 20.88 - 3/8 

Ka2 3.74 10.67 - 8/14 
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Hillegem (Hi)1 4.62 22.17 - 1/6 

Hi2 4.65 5.97 - 7/12 

Melsen (Mel)1 3.81 13.97 - 0/8 

Mel2 2.13 7.20 - 0/6 

Oudenaarde (Ou)1 9.68 10.03 - 1/10 

Ou2 17.17 14.63 Serotype I 1/6 

Antwerp (An)1 7.51 23.51 - 1/7 

An2 24.52 55.03 - 1/11 

Pulderbos (Pu)1 2.56 5.11 - 4/10 

Pu2 3.68 7.04 - 11/16 

Herenthout (He)1 2.72 27.83 Serotype I 0/11 

He2 1.91 1.72 - 0/5 

Lint (Li)1 4.30 16.91 - 2/7 

Li2 11.79 31.61 - 3/7 

Mechelen (Me)1 22.14 27.37 - 4/11 

Me2 16.58 6.28 - 2/10 

Ruisbroek (Ru)1 3.09 5.95 - 0/9 

Ru2 6.09 19.97 - 2/4 

Leuven (Le)1 16.97 14.02 - 4/11 

Le2 27.90 33.75 - 6/9 

Wezemaal (We)1 4.69 3.28 - 0/6 

We2 5.31 30.83 Serotype V 1/9 

Houwaart (Ho)1 1.66 17.13 Serotype III 3/9 

Ho2 1.50 10.12 - 2/8 

Kerkom (Ke)1 1.99 14.32 - 2/11 

Ke2 1.82 7.16 - 6/10 

Tienen (Ti)1 10.86 7.73 Serotype II 6/12 

Ti2 17.85 27.20 - 2/15 

Overijse (Ov)1 8.99 3.71 - 2/5 

Ov2 8.23 39.41 - 1/5 

S1 Table. Sampled house sparrow populations, indicating the percentage of Built-Up-area in the local 

and landscape scale and providing information regarding presence or absence of Y. pseudotuberculosis and 

Y. enterocolitica. Abbreviations similar as in Fig 8. 
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Abstract  

Brown rats (Rattus norvegicus) have been identified as potential carriers of Yersinia 

enterocolitica and Y. pseudotuberculosis, the etiological agents of yersiniosis, the third most 

reported bacterial zoonosis in Europe. Enteropathogenic Yersinia spp. are most often isolated 

from rats during yersiniosis cases in animals and humans, and from rats inhabiting farms and 

slaughterhouses. Information is however lacking regarding the extent to which rats act as 

carriers of these Yersinia spp.. In 2013, 1088 brown rats across Flanders, Belgium, were tested 

for the presence of Yersinia species by isolation method. Identification was performed using 

MALDI-TOF MS, PCR on chromosomal- and plasmid-borne virulence genes, biotyping and 

serotyping. Yersinia spp. were isolated from 38.4% of the rats. Of these, 53.4% were designated 

Y. enterocolitica, 0.7% Y. pseudotuberculosis and 49.0% other Yersinia species. Two Y. 

enterocolitica possessing the virF-, ail- and ystA-gene were isolated. Additionally, the ystB-

gene was identified in 94.1% of the other Y. enterocolitica isolates, suggestive for biotype 1A. 

Three of these latter isolates simultaneously possessed the ail-virulence gene. Significantly 

more Y. enterocolitica were isolated during winter and spring compared to summer. Based on 

our findings we can conclude that brown rats are frequent carriers for various Yersinia spp., 

including Y. pseudotuberculosis and (human pathogenic) Y. enterocolitica which are more often 

isolated during winter and spring. 
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Introduction 

Yersiniosis was the third most commonly reported bacterial zoonotic disease in Europe in 

2013, causing illness in 1.92 out of 100 000 inhabitants (EFSA and ECDC, 2015). The etiologic 

agents are human pathogenic Yersinia enterocolitica biotype (BT) 1B and 2-5, which possess 

chromosomally encoded virulence genes and carry the pYV (plasmid for Yersinia virulence), 

and to a minor extent Y. pseudotuberculosis (Thoerner et al., 2003; EFSA and ECDC, 2015). 

Y. enterocolitica BT1A is most commonly regarded as nonpathogenic and often possesses the 

chromosomally encoded ystB-gene (Tennant et al., 2003). Wildlife has increasingly been 

recognized as reservoir, or vector for various zoonotic diseases (Artois et al., 2001). Especially 

rodents, such as the brown rat (Rattus norvegicus), have been appointed as potential carriers of 

pathogenic Yersinia spp.. Since brown rats are considered synanthropic rodents (Traweger et 

al., 2005) they can be a possible source of infection for humans and other animals (Mair, 1973; 

Cork et al., 1999; Battersby et al., 2002; Backhans et al., 2011). To evaluate food safety and 

human health risks, most of the studies on prevalence and epidemiology of Yersinia spp. in 

small mammals have therefore been conducted during yersiniosis outbreaks in animals and 

humans, in urban areas, in the surroundings of (pig) farms and in slaughterhouses (Kaneko et 

al., 1978; Mackintosh and Henderson, 1984; Battersby et al., 2002; Kangas et al., 2008; 

Backhans et al., 2011). Although epidemiologically important, information is lacking regarding 

the extent to which rats represent a potential reservoir of human pathogenic Y. enterocolitica 

and Y. pseudotuberculosis. 

In this study we assessed the prevalence of Y. enterocolitica and Y. pseudotuberculosis in 

brown rats across Flanders, Belgium, not specifically related to disease outbreaks or to cities, 

with the aim to evaluate the contribution of brown rats as carriers of these Yersinia spp.. 

Materials and methods 

Within the framework of a rodenticide resistance study conducted by the Research Institute 

for Nature and Forest (INBO), in 2013, a total of 1088 brown rats were caught across Flanders, 

Belgium, by certified pest control operators of the Flanders Environment Agency (VMM) using 

wire mesh live traps measuring 50 length x 15 width x 13 height (cm). Most brown rats were 

captured on public land and occasionally on private land when oral permission was granted by 

the respective land owners. The brown rats were humanely killed by a percussive blow on the 

head (Directive 2010/63/EU; Annex IV) in the context of the pest control as stated by the 

Belgian legislation concerning animal protection and welfare (KB 14/08/86 art.15). According 
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to the same legislation (KB 14/08/86 art.3.15) the killing of animals, only for the use of their 

organs and tissues, is not considered as an animal experiment. Therefore an approval of an 

ethical committee, as foreseen by the Belgian legislation concerning the protection of laboratory 

animals (KB 29/05/13), was not required. The brown rat is considered a major pest species 

which is legally controlled, for the trapping and killing of the rats no legal permits were 

required. Most individuals (71%) were captured in rural areas. The capture occasions were 

predominantly during the spring period (76.8%), while 18.1% of the rats were caught during 

summer, 2.7% during fall and 2.5% during winter. Capture dates were missing for 37 rats.  

All the trapped individuals were kept frozen (-20°C) until April 2014, after which 0.5g of 

colon content was collected for the isolation of Yersinia spp.. Cold (4°C) enrichment was 

performed for three weeks using a 1/10 dilution of colon content in Phosphate Buffered Saline 

supplemented with 0.5% Peptone, 1% Mannitol and 0.15% Bile Salts (PMB). Before plating 

out onto cefsulodin–irgasan-novobiocin (CIN)-agar (Bio-rad, UK), an alkali treatment was 

performed using a 1/10 dilution of PMB-sample in KOH-solution (0.25%KOH, 0.75%NaCl) 

which was vortexed for 20 seconds. The CIN plates were incubated for 24 hours at 30°C, and 

reassessed after being kept at room temperature for 24 hours. Suspicious colonies were purified 

onto MacConkey agar (Oxoid, Hampshire, UK). MALDI-TOF MS (Matrix-Assisted Laser 

Desorption Ionization- Time-of-Flight Mass Spectrometry), was performed using the Bruker 

Daltonik MALDI Biotyper, at the Department of Clinical Microbiology, Laboratory Medicine, 

AZ Sint-Lucas in Ghent. The samples were cultured for 24 hours at 30°C on Columbia agar 

with sheep blood (Oxoid, Wesel, Germany). One colony per sample was smeared upon a 

MALDI steel target plate, covered with 1 µl α-cyano-4-hydroxycinnamic acid (HCCA) matrix 

and, after air drying, loaded into the MALDI-Biotyper. Mass Spectrometry detections were 

carried out with Maldi biotyper 3.0 RTC software in standard IVD settings, using the 5627 

reference strains library. Every MALDI-TOF assigned-Y. enterocolitica and Y. 

pseudotuberculosis was tested for the presence of chromosomal- (ail, inv, ystA, ystB) and pYV-

plasmid-borne (virF) virulence genes (Thoerner et al., 2003). Positive controls, Y. 

enterocolitica BT1A (FAVV208), human pathogenic Y. enterocolitica 4/O:3 (75.55b), and Y. 

pseudotuberculosis (22.36a), were provided by the Department of Veterinary Public Health and 

Food Safety of Ghent University. When Y. enterocolitica harboured the ystB-gene in 

combination with the ail-gene, the latter was sequenced and analyzed using Basic Local 

Alignment Search Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Ail-positive Y. 

enterocolitica isolates were bioserotyped and Y. pseudotuberculosis isolates were serotyped at 
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the National Reference Center Yersinia (IREC) and at the Department of Veterinary Public 

Health and Food Safety of Ghent University. The MALDI-TOF profiles were compared against 

the biotypes with linear discriminant analysis (LDA) to try to identify discriminating peaks (Wu 

et al., 2003).  

To test whether Y. enterocolitica prevalence differed between seasons, we applied a 

Generalized Linear Model (GLM) with Y. enterocolitica presence or absence as binary 

dependent variable and season as independent predictor variable, using a binomial error 

distribution. To account for possible spatial autocorrelation in Y. enterocolitica prevalence, 

latitude and longitude of capture locations were forced into the model as fixed effects, fixed 

predictor variables (Dormann et al., 2007). To test for differences in prevalence between 

seasons, contrasts were set up using the general linear hypothesis test (glht)- function of the R 

library ‘multcomp’ (multiple comparisons), resulting in Bonferroni-corrected p-values adjusted 

for multiple testing (Hothorn et al., 2016). All analyses were conducted in R (R Development 

Core Team, version 3.2.3. “Wooden Christmas-Tree”).  

Results and Discussion 

In Flanders, Yersinia spp. were isolated from 418 out of 1088 (38.4%) brown rats tested (Fig. 

9), which, in 13 individuals, harbored more than one Yersinia spp.. Of these Yersinia spp., 

53.4% (223/418) were designated Y. enterocolitica, 0.7% (3/418) Y. pseudotuberculosis, and 

49.0% (205/418) (Table 6) other Yersinia species.  

 Spring Summer Fall Winter Total number of Yersinia 

isolates 

Y. enterocolitica 196a 12b 2 7 217* 

Y. pseudotuberculosis 3 0 0 0 3 

Yersinia species 163 25 6 5 199* 

Total number of brown rats 

examined 

807 190 28 26  

Table 6. Total number of rats testing positive for Yersinia, in the respective seasons  

a Including Y. enterocolitica BT 3/O:1,2,3 and one ail positive Y. enterocolitica BT 1A 

b Including Y. enterocolitica BT 2/O:5,27 and one ail positive Y. enterocolitica BT 1A 

*Dates of 37 brown rats were missing, six of which were identified as Y. enterocolitica (incl. one ail positive Y. 

enterocolitica BT 1A) and six environmental Yersinia spp.. 
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MALDI-TOF MS and PCR on the combination of chromosomal- and plasmid-borne 

virulence genes have previously been used for the identification of (enteropathogenic) Y. 

enterocolitica and Y. pseudotuberculosis (Thoerner et al., 2003; Singh and Virdi, 2004; 

Ayyadurai et al., 2010; Kraushaar et al., 2011; Stephan et al., 2011; Stephan et al., 2013; Van 

Damme et al., 2015). Although MALDI-TOF MS has proven to accurately perform species 

specific identification of Yersinia spp. (Ayyadurai et al., 2010; Stephan et al., 2011), the 

sensitivity and specificity of the technique highly depends on the validation of the reference 

library used to identify the different species (Seng et al., 2009; Ayyadurai et al., 2010). Since 

only Y. enterocolitica and Y. pseudotuberculosis were accurately validated in the Bruker 

Daltonik MALDI Biotyper at the Department of Clinical Microbiology, resulting in high 

specificity and sensitivity (Seng et al., 2009; Stephan et al., 2011), only these species will be 

further discussed. The results of the MALDI-TOF MS-identification of the Yersinia species 

other than Y. enterocolitica and Y. pseudotuberculosis have been provided within the supporting 

information (S2 Table), although these results have to be interpreted with caution due to the 

lack of validation of the MALDI-TOF reference database for the other Yersinia spp. (Seng et 

al., 2009; Ayyadurai et al., 2010).  

Due to the psychrotolerant nature of Yersinia spp., the observed prevalence could be 

expected to vary among seasons (Tashiro et al., 1991). Indeed, our study found a significantly 

higher prevalence of Y. enterocolitica in brown rats during winter (26.9%) and spring (24.3%) 
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months, compared to summer (6.3%) (P-values = 0.007 and <0.001 respectively) (Table 7). 

This observation is in line with previous studies in rodents and other animals (Mair, 1973; 

Servan et al., 1979; Mackintosh and Henderson, 1984; Liang et al., 2015), although a high 

prevalence of Y. enterocolitica during the summer has also been reported in rats (Kaneko et al., 

1978).  

 

 

 

 

 

 

Table 7. Seasonal comparisons of Y. enterocolitica prevalence  

Tukey’s post-hoc tests for multiple contrasts were used to establish Bonferroni-corrected significant differences 

in Y. enterocolitica prevalence between seasons. Results show that compared to the summer period, Y. 

enterocolitica prevalence was higher in the spring and in the winter. Prevalence did not significantly differ between 

other season comparisons. 

The prevalence of Y. enterocolitica (20.5% = 223/1088) in brown rats is similar to other 

studies in rodents (Oda et al., 2015). In the vast majority (93.3% = 208/223), the presence of 

the ystB-gene was demonstrated, which has been inferred to be restricted to BT1A 

(Ramamurthy et al., 1997; Thoerner et al., 2003; Singh and Virdi, 2004). Of these ystB positive 

isolates, three possessed an additional ail-virulence gene (100% identity with Accession 

number: FR847859.1). Controversy exists about the pathogenicity of Y. enterocolitica BT1A. 

Since most BT1A strains do not possess the typical virulence plasmid pYV, lack the 

chromosomal virulence genes such as the ail-gene and are often isolated from the environment 

(Tennant et al., 2003; Stephan et al., 2013), BT1A has been regarded as nonpathogenic. 

However, the increasing isolation of this biotype from clinical cases draws more attention to 

BT1A (Tennant et al., 2003; Stephan et al., 2013). Although rare, the presence of the ail-gene 

has previously been demonstrated in BT1A isolates (Kraushaar et al., 2011; Liang et al., 2015). 

The presence of the enterotoxin gene ystB in combination with the ail-virulence gene could be 

an indication that these BT1A strains possess virulent characteristics (Miller et al., 1989). 

However, potential loss of gene function, related to horizontal gene transfer cannot be ruled out 

(Kraushaar et al., 2011). The high genotypic diversity of BT1A makes the classification in 

clinical and nonclinical isolates more problematic since other, yet unknown, virulence factors 

 Estimate Std. Error z value Pr(>|z|)   

spring - fall == 0      1.4306      0.7571    1.890   0.20901 

summer - fall == 0     -0.1705     0.8005    -0.213   0.99611     

winter - fall == 0      1.6211      0.8883    1.825   0.23658     

summer - spring == 0  -1.6011      0.3164 -5.060 < 0.001 *** 

winter - spring == 0    0.1905      0.4561   0.418   0.97220     

winter - summer == 0   1.7916     0.5519   3.246   0.00535 ** 
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could be contributing to the observed virulence in some strains (Tennant et al., 2003; Stephan 

et al., 2013; Campioni and Falcão, 2014).  

Although the majority of Y. enterocolitica belonged to the supposedly nonpathogenic BT1A, 

two human pathogenic Y. enterocolitica (bioserotype 2/O:5,27 and 3/O:1,2,3) (Bottone, 1999; 

EFSA and ECDC, 2015), possessing the virF-, ail- and ystA-gene virulence gene, were isolated 

from rats living in the proximity of livestock farms. These results are in line with other studies, 

indicating that Y. enterocolitica BT1A is widespread in rodents, but human pathogenic 

bioserotypes are rather rare (Kapperud 1975; Liang et al., 2015; Oda et al., 2015). The recovery 

of human pathogenic Y. enterocolitica from rodents could be related to the presence of 

farmhouses, as was hypothesized for bioserotype 4/O:3 and 3/O:3, for which the presence in 

rodents is presumed to be related to pig farms and pig slaughterhouses (Kaneko et al., 1978; 

Backhans et al., 2011; Liang et al., 2015; Van Damme et al., 2015). Despite the isolation of the 

two human pathogenic bioserotypes in the proximity of livestock farms, no definitive 

conclusion can be made from this observation, since the animals on the respective farms were 

not tested for the presence of pathogenic Y. enterocolitica. Furthermore, bioserotype 2/O:5,27 

has been isolated from a variety of animals, such as cattle, pigs, hares and wild boars, and no 

primary reservoir has been identified yet (Frederiksson-Ahomaa et al., 2006; Weiner et al., 

2014). Bioserotype 3/O:1,2,3, alternatively called the “chinchilla-type” (Wuthe and Aleksic, 

1992), has also previously been isolated from pigs (Kwaga and Iversen, 1993). No peaks 

discriminating between the different biotypes could be identified in the MALDI-TOF spectra 

(data not shown). 

Three (0.3%) Y. pseudotuberculosis serotype I possessing the inv- and virF-virulence gene, 

the most frequently isolated Y. pseudotuberculosis in Europe, were isolated. This serotype has 

been reported to cause disease in humans and other animals, such as birds and rats (Hubbert, 

1972; Kaneko et al., 1979; EFSA, 2007; Kangas et al., 2008). The low percentage of Y. 

pseudotuberculosis observed in our study is in line with the absence or sporadic detection of Y. 

pseudotuberculosis in rodents in other studies (Battersby et al., 2002; Backhans et al., 2011; 

Liang et al., 2015; Oda et al., 2015).  

Although a large number of brown rats was screened for the presence of enteropathogenic 

Yersinia spp. in Flanders, the additional investigation of other wild living animals, as potential 

carriers or reservoirs for enteropathogenic Yersinia, could substantially improve our knowledge 

on the epidemiology and ecology of these pathogens and the potential risk these animals pose 

on farm-animals and human health.  
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In conclusion, our results demonstrate that rats are frequent carriers for Yersinia spp. such 

as non-pathogenic and human pathogenic Y. enterocolitica and Y. pseudotuberculosis. 
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S2 Table. MALDI-TOF results of Yersinia spp. other than Y. enterocolitica and Y. pseudotuberculosis 

N° x y Date 
MALDI-TOF  

Result 1 
Score 1 

MALDI-TOF  

Result 2 
Score 2 

Consistency/

Mismatch 

1 163600 229400 20/08/2013 Y. frederiksenii 2.087 Y. enterocolitica 1.949 B/SM 

2 181263 192602 4/04/2013 Y. enterocolitica  2.215 Y. kristensenii 2.176 B/SM 

3 171950 235100 31/07/2013 Y. enterocolitica  2.146 Y. intermedia 2.110 B/SM 

4 217425 172725  Y. intermedia 2.219 Y. enterocolitica 2.187 B/SM 

5 234575 176825 27/05/2013 Y. enterocolitica 2.158 Y. kristensenii 2.127 B/SM 

6 228500 179840 6/06/2013 Y. frederiksenii 2.203 Y. enterocolitica 2.163 B/SM 

7 160200 237000 23/07/2013 Y. enterocolitica 2.161 Y. frederiksenii 2.117 B/SM 

8 199253 230750 15/05/2013 Y. intermedia 2.388 Y. enterocolitica 2.166 B/SM 

9 161700 231600 26/08/2013 Y. intermedia 2.224 Y. enterocolitica 2.198 B/SM 

10 188000 202000 10/04/2013 Y. intermedia 2.527 Y. enterocolitica 2.142 B/SM 

11 189820 195180 22/05/2013 Y. enterocolitica 2.031 Y. kristensenii 1.934 B/SM 

12 185000 229150 24/05/2013 Y. rhodei 2.345 Y. rhodei 2.262 A/M 

13 150800 191100 22/04/2013 Y. kristensenii 2.474 Y. enterocolitica 2.368 B/SM 

14 152100 235200 3/07/2013 Y. intermedia  2.497 Y. enterocolitica 2.210 B/SM 

15 167300 228200 7/06/2013 Y. enterocolitica 2.007 Y. kristensenii 1.918 B/SM 

16 154000 220700 29/07/2013 Y. frederiksenii 2.411 Y. frederiksenii 2.192 B/SM 

17 184400 212900 5/07/2013 Y. intermedia  2.412 Y. enterocolitica 2.198 B/SM 

18 177000 238000 14/08/2013 Y. enterocolitica 2.012 Y. frederiksenii 1.923 B/SM 

19 159900 238100 27/06/2013 Y. intermedia  2.240 Y. enterocolitica 1.971 B/SM 

20 151600 196000 29/04/2013 Y. enterocolitica  2.038 Y. enterocolitica 1.935 A/M 

21 148200 221700 7/08/2013 Y. enterocolitica 1.935 Y. kristensenii 1.930 B/SM 

22 176800 234000 5/07/2013 Y. intermedia 2.542 Y. enterocolitica 2.134 B/SM 

23 199500 227500 8/07/2013 Y. rhodei 2.430 Y. rhodei 2.325 A/M 

24 164400 230700 21/08/2013 Y. frederiksenii 2.273 Y. enterocolitica 2.202 B/SM 

25 193600 215900 30/07/2013 Y. enterocolitica 2.167 Y. frederiksenii 2.126 B/SM 

26 118150 163100 28/06/2013 Y. enterocolitica 2.229 Y. frederiksenii 2.192 B/SM 

27 97080 159060 19/03/2013 Y. intermedia 2.202 Y. enterocolitica 2.149 B/SM 

28 93760 166300 10/07/2013 Y. enterocolitica 2.146 Y. enterocolitica 1.942 A/M 

29 110900 203600 25/07/2013 Y. intermedia 2.367 Y. enterocolitica 2.135 B/SM 
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30 165740 175300 1/07/2013 Y. enterocolitica 2.027 Y. aleksiciae 1.902 B/SM 

31 135300 176600 27/06/2013 Y. intermedia 2.351 Y. enterocolitica 2.214 B/SM 

32 218150 186350 15/05/2013 Y. frederiksenii 2.359 Y. frederiksenii 2.209 B/SM 

33 128100 155600 9/07/2013 Y. frederiksenii 2.093 Y. enterocolitica 2.001 B/SM 

34 167130 181190 7/06/2013 Y. intermedia 2.536 Y. intermedia 2.241 B/SM 

35 155610 179120 18/06/2013 Y. enterocolitica 2.081 Y. enterocolitica 2.054 B/SM 

36 97300 169720 1/08/2013 Y. enterocolitica 1.992 Y. kristensenii 1.821 B/SM 

37 124250 159350 28/06/2013 Y. intermedia 2.313 Y. intermedia 2.076 B/SM 

38 160660 179000 26/06/2013 Y. intermedia 2.199 Y. enterocolitica 2.146 B/SM 

39 101420 164840 21/06/2013 Y. intermedia 2.396 Y. enterocolitica 2.213 B/SM 

40 127800 154450 9/07/2013 Y. frederiksenii 2.227 Y. frederiksenii 2.055 B/SM 

41 121525 156400 27/06/2013 Y. enterocolitica 1.969 Y. intermedia 1.886 A/M 

42 95000 210700 9/04/2013 Y. mollaretii 2.207 Y. enterocolitica 2.167 B/SM 

43 142160 161660  Y. enterocolitica 2.033 Y. frederiksenii 1.905 B/SM 

44 62500 216900 23/04/2013 Y. intermedia 2.315 Y. intermedia 2.066 B/SM 

45 65400 203500 8/05/2013 Y. intermedia 2.106 Y. intermedia 2.093 B/SM 

46a 99700 218500 26/03/2013 Y. kristensenii 2.471 Y. enterocolitica 2.416 B/SM 

46b 99700 218500 26/03/2013 Y. intermedia  2.163 Y. enterocolitica 2.054 B/SM 

47a 81000 213000 26/04/2013 Y. kristensenii 2.213 Y. enterocolitica 2.204 B/SM 

47b 81000 213000 26/04/2013 Y. enterocolitica  2.180 Y. frederiksenii 2.163 B/SM 

48 136500 167260  Y. intermedia 2.445 Y. intermedia 2.241 B/SM 

49 100900 203500 27/03/2013 Y. kristensenii 2.386 Y. enterocolitica 2.147 B/SM 

50 97400 214900 16/05/2013 Y. mollaretii 2.114 Y. enterocolitica 2.079 B/SM 

51 99500 198900 5/04/2013 Y. enterocolitica 2.051 Y. kristensenii 2.049 B/SM 

52 73100 221600 24/04/2013 Y. kristensenii 2.179 Y. enterocolitica 2.149 B/SM 

53 131400 159600  Y. mollaretii 2.132 Y. enterocolitica 2.091 B/SM 

54 83200 209700 6/05/2013 Y. intermedia 2.216 Y. enterocolitica 2.083 B/SM 

55 238800 165300 30/08/2013 Y. frederiksenii 2.057 Y. enterocolitica 2.020 B/SM 

56 74700 220280 18/04/2013 Y. frederiksenii 2.526 Y. frederiksenii 2.285 B/SM 

57 98200 195200 19/04/2013 Y. intermedia 2.356 Y. enterocolitica 2.156 B/SM 

58 89200 203900 4/06/2013 Y. intermedia 2.414 Y. enterocolitica 2.164 B/SM 

59 96200 207400 8/04/2013 Y. intermedia 2.409 Y. enterocolitica 2.182 B/SM 

60 126123 173259 14/06/2013 Y. enterocolitica 2.088 Y. kristensenii 1.898 B/SM 

61 72100 180000 4/06/2013 Y. intermedia 2.198 Y. intermedia 1.868 A/M 

62 60300 170640 25/06/2013 Y. intermedia 2.449 Y. enterocolitica 2.140 B/SM 

63 132122 166980 20/06/2013 Y. intermedia 2.226 Y. frederiksenii 1.825 A/M 

64 112400 206900 26/06/2013 Y. enterocolitica 2.222 Y. frederiksenii 2.217 B/SM 

65 78840 180060 21/06/2013 Y. intermedia 2.322 Y. enterocolitica 2.080 B/SM 

66 129304 170965 14/06/2013 Y. intermedia 2.237 Y. enterocolitica 2.094 B/SM 

67 137948 196073 28/05/2013 Y. intermedia 2.419 Y. enterocolitica 2.213 B/SM 

68 129910 163115 20/06/2013 Y. enterocolitica 2.231 Y. frederiksenii 2.220 B/SM 

69 194000 182000 9/08/2013 Y. enterocolitica 2.279 Y. frederiksenii 2.260 B/SM 

70 173550 237250 29/04/2013 Y. enterocolitica 2.222 Y. kristensenii 2.145 B/SM 

71 209560 160800 26/06/2013 Y. intermedia 2.080 Y. kristensenii 2.073 B/SM 

72 191500 172080 13/06/2013 Y. kristensenii 2.024 Y. enterocolitica 1.979 B/SM 



CHAPTER 4: YERSINIA PREVALENCE IN BROWN RATS 

98 
 

73 214369 197746 30/04/2013 Y. intermedia 2.286 Y. enterocolitica 2.213 B/SM 

74 175150 235000 25/04/2013 Y. mollaretii 2.197 Y. kristensenii 2.019 B/SM 

75 131065 188981 18/06/2013 Y. intermedia 2.463 Y. enterocolitica 2.140 B/SM 

76 140586 197390 23/04/2013 Y. kristensenii 2.397 Y. enterocolitica 2.308 B/SM 

77 64465 168920 25/06/2013 Y. intermedia 2.356 Y. enterocolitica 2.093 B/SM 

78 78720 156660 25/06/2013 Y. intermedia 2.128 Y. enterocolitica 2.101 B/SM 

79 147814 188073 28/05/2013 Y. enterocolitica 2.105 Y. bercovieri 1.984 B/SM 

80 157300 237700 20/08/2013 Y. intermedia 2.432 Y. enterocolitica 2.181 B/SM 

81a 196000 235650 30/04/2013 Y. mollaretii 2.187 Y. kristensenii 1.987 B/SM 

81b 196000 235650 30/04/2013 Y. intermedia  2.186 Y. intermedia  1.962 B/SM 

82 131600 205600 19/06/2013 Y. intermedia  2.319 Y. enterocolitica 2.216 B/SM 

83 128300 212000 2/07/2013 Y. kristensenii 2.285 Y. enterocolitica 2.269 B/SM 

84 133070 187311 21/06/2013 Y. intermedia  2.160 Y. intermedia  2.106 B/SM 

85 61200 180500 5/03/2013 Y. enterocolitica 2.123 Y. enterocolitica 1.971 A/M 

86 177000 229180 4/06/2013 Y. intermedia  2.203 Y. enterocolitica 2.042 B/SM 

87 154000 237250 24/07/2013 Y. intermedia  2.313 Y. enterocolitica 2.142 B/SM 

88 73800 211000 14/05/2013 Y. mollaretii 2.236 Y. enterocolitica 2.117 B/SM 

89 198120 232650 2/05/2013 Y. intermedia  2.180 Y. enterocolitica 2.010 B/SM 

90 61700 202600 17/05/2013 Y. intermedia  2.297 Y. enterocolitica 2.217 B/SM 

91 195900 238135 22/04/2013 Y. rhodei 2.454 Y. rhodei 2.351 A/M 

92 87900 197500 8/05/2013 Y. frederiksenii 2.183 Y. enterocolitica 2.147 B/SM 

93 206770 187185 26/04/2013 Y. enterocolitica 2.354 Y. kristensenii 2.343 B/SM 

94 182000 175250 13/08/2013 Y. intermedia  2.251 Y. enterocolitica 1.967 B/SM 

95 177750 224650 12/06/2013 Y. intermedia  2.248 Y. enterocolitica 2.044 B/SM 

96 232800 202000 28/10/2013 Y. intermedia  2.288 Y. enterocolitica 2.025 B/SM 

97 230800 195700 22/07/2013 Y. kristensenii 2.306 Y. enterocolitica 2.242 B/SM 

98 193460 178680 11/06/2013 Y. frederiksenii 2.594 Y. frederiksenii 2.401 BSM 

99 200630 161340 21/08/2013 Y. enterocolitica 2.017 Y. frederiksenii 1.886 B/SM 

100 70100 200000 5/06/2013 Y. intermedia 2.314 Y. enterocolitica 1.978 B/SM 

101 193270 168000 24/05/2013 Y. kristensenii 2.445 Y. enterocolitica 2.344 B/SM 

102 125184 170205 13/06/2013 Y. intermedia 2.327 Y. intermedia 1.999 B/SM 

103 75800 174800 13/06/2013 Y. enterocolitica 2.076 Y. frederiksenii 2.076 B/SM 

104 75100 201800 7/05/2013 Y. rhodei 2.304 Y. rhodei 2.273 A/M 

105 109899 161090 9/04/2013 Y. enterocolitica 2.323 Y. kristensenii 2.269 B/SM 

106 53900 196500 25/04/2013 Y. intermedia 2.275 Y. enterocolitica 2.244 B/SM 

107 54200 187700 28/03/2013 Y. intermedia 2.272 Y. enterocolitica 2.003 B/SM 

108 112489 168576 2/04/2013 Y. frederiksenii 2.202 Y. enterocolitica 2.185 B/SM 

109 56000 194800 23/04/2013 Y. intermedia 2.230 Y. intermedia 1.998 B/SM 

110 26100 180000 8/04/2013 Y. kristensenii 2.343 Y. kristensenii 2.264 B/SM 

111 43600 181300 18/02/2013 Y. aleksiciae 2.099 Y. intermedia 1.993 B/SM 

112 43600 202000 17/05/2013 Y. frederiksenii 1.935 Y. rhodei 1.712 A/M 

113 116768 167346 29/03/2013 Y. mollaretii 2.184 Y. kristensenii 1.998 B/SM 

114 50600 174800 8/04/2013 Y. intermedia 2.231 Y. enterocolitica 2.154 B/SM 

115 34300 186400 27/03/2013 Y. enterocolitica 2.051 Y. kristensenii 2.019 B/SM 

116 116719 170098 12/04/2013 Y. enterocolitica 1.838 Y. kristensenii 1.831 B/M 
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117 111587 168492 8/04/2013 Y. intermedia 1.974 Y. enterocolitica 1.952 B/SM 

118 26600 188300 25/04/2013 Y. intermedia 2.310 Y. frederiksenii 1.951 B/SM 

119 206125 185375 4/07/2013 Y. intermedia 2.250 Y. intermedia 2.127 B/SM 

120 34480 184550 11/04/2013 Y. mollaretii 2.199 Y. enterocolitica 2.138 B/SM 

121 24600 197300 2/04/2013 Y. intermedia 2.362 Y. intermedia 2.185 B/SM 

122 116333 165453 28/03/2013 Y. intermedia 2.005 Y. intermedia 1.912 B/SM 

123 47900 184100 10/02/2013 Y. enterocolitica 1.946 Y. enterocolitica 1.739 A/M 

124 114260 172395 12/04/2013 Y. intermedia 2.181 Y. enterocolitica 2.049 B/SM 

125 112207 161427 28/03/2013 Y. intermedia 2.220 Y. enterocolitica 2.052 B/SM 

126 51000 178720 8/04/2013 Y. intermedia 2.073 Y. intermedia 2.019 B/SM 

127 238600 208700 29/10/2013 Y. enterocolitica 1.967 Y. enterocolitica 1.866 A/M 

128 173400 178880 26/08/2013 Y. enterocolitica 1.988 Y. enterocolitica 1.866 A/M 

129 157220 172580 26/07/2013 Y. intermedia 2.088 Y. enterocolitica 2.003 B/SM 

130 158900 175230 8/08/2013 Y. intermedia 2.362 Y. enterocolitica 2.213 B/SM 

131 234500 162500 4/11/2013 Y. enterocolitica 2.153 Y. enterocolitica 2.018 B/SM 

132 206350 182720  Y. intermedia 2.174 Y. enterocolitica 2.062 B/SM 

133 235500 205000 28/10/2013 Y. enterocolitica 2.139 Y. enterocolitica 1.951 A/M 

134 158900 196200 11/04/2013 Y. intermedia 2.155 Y. enterocolitica 2.148 B/SM 

135 231700 209500 28/10/2013 Y. intermedia 2.040 Y. intermedia 2.034 A/M 

136 177350 168300 20/08/2013 Y. intermedia 2.221 Y. enterocolitica 2.035 B/SM 

137 243900 180300 24/10/2013 Y. intermedia 2.245 Y. enterocolitica 2.147 B/SM 

138 97560 163440 20/03/2013 Y. intermedia 2.356 Y. intermedia 2.181 B/SM 

139 113060 203000 30/04/2013 Y. intermedia 2.022 Y. enterocolitica 1.992 B/SM 

140 141700 172850 26/06/2013 Y. mollaretii 2.148 Y. enterocolitica 1.949 B/SM 

141 104500 166640 28/06/2013 Y. intermedia 2.175 Y. intermedia 2.114 B/SM 

142 97100 160900 13/06/2013 Y. intermedia 2.247 Y. intermedia 2.235 B/SM 

143 137300 217150 31/05/2013 Y. intermedia 1.977 Y. enterocolitica 1.934 B/SM 

144 116800 202700 7/05/2013 Y. intermedia 2.116 Y. enterocolitica 1.933 B/SM 

145 122370 210150 22/05/2013 Y. intermedia 2.283 Y. enterocolitica 2.126 B/SM 

146a 127100 198300 29/05/2013 Y. mollaretii 2.144 Y. aleksiciae 2.073 B/SM 

146b 127100 198300 29/05/2013 Y. enterocolitica  2.144 Y. frederiksenii 2.106 B/SM 

147 124100 204500 16/04/2013 Y. intermedia 2.255 Y. enterocolitica 2.092 B/SM 

148 101980 167620 3/07/2013 Y. intermedia 2.345 Y. enterocolitica 2.071 B/SM 

149 173050 168400 8/08/2013 Y. intermedia 2.125 Y. enterocolitica 2.085 B/SM 

150 111100 196130 24/04/2013 Y. enterocolitica 1.808 Y. enterocolitica 1.698 B/M 

151 134167 169576 17/06/2013 Y. enterocolitica 2.046 Y. kristensenii 2.007 B/SM 

152 117000 192200 18/04/2013 Y. intermedia 2.324 Y. enterocolitica 2.181 B/SM 

153 102290 165680 21/06/2013 Y. intermedia 2.464 Y. enterocolitica 2.254 B/SM 

154 140180 168800  Y. enterocolitica 1.987 Y. intermedia 1.951 B/SM 

155 135700 217200 18/06/2013 Y. intermedia 2.236 Y. enterocolitica 2.192 B/SM 

156 125800 194200 25/04/2013 Y. intermedia 2.223 Y. enterocolitica 2.114 B/SM 

157 56380 163780 11/06/2013 Y. enterocolitica 2.153 Y. frederiksenii 2.141 B/SM 

158 66550 162200 3/07/2013 Y. intermedia 2.129 Y. enterocolitica 2.004 B/SM 

159 60250 177500 31/05/2013 Y. mollaretii 2.264 Y. enterocolitica 2.064 B/SM 

160 68000 177800 21/06/2013 Y. intermedia 2.136 Y. intermedia 2.011 B/SM 
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161 97000 179100 30/05/2013 Y. enterocolitica 2.208 Y. kristensenii 2.164 B/SM 

162 45400 195600 22/08/2013 Y. intermedia 2.280 Y. enterocolitica 2.174 B/SM 

163 102000 184600 29/05/2013 Y. rhodei 2.450 Y. rhodei 2.181 B/SM 

164 79950 187200 22/05/2013 Y. enterocolitica 2.133 Y. mollaretii 2.099 B/SM 

165 36000 166500 28/06/2013 Y. intermedia 2.379 Y. enterocolitica 2.163 B/SM 

166 50800 202600 28/06/2013 Y. enterocolitica 2.080 Y. intermedia 2.073 B/SM 

167 98900 188500 24/05/2013 Y. bercovieri 2.315 Y. enterocolitica 2.130 B/SM 

168 39485 206862 9/07/2013 Y. intermedia 2.451 Y. intermedia 2.173 B/SM 

169 38080 169550 3/07/2013 Y. intermedia 2.488 Y. intermedia 2.271 B/SM 

170 79600 190100 27/06/2013 Y. intermedia 2.374 Y. intermedia 2.264 B/SM 

171 90500 180400 10/04/2013 Y. enterocolitica 2.142 Y. bercovieri 2.078 B/SM 

172 68600 185800 13/06/2013 Y. intermedia 2.233 Y. intermedia 2.088 B/SM 

173 95900 177750 30/05/2013 Y. intermedia 2.223 Y. intermedia 2.202 B/SM 

174 58500 216140 20/06/2013 Y. intermedia 2.387 Y. enterocolitica 2.221 B/SM 

175 59000 167000 5/07/2013 Y. intermedia 2.245 Y. enterocolitica 2.094 B/SM 

176 55800 210500 24/06/2013 Y. mollaretii 2.357 Y. enterocolitica 2.093 B/SM 

177 80700 194600 25/06/2013 Y. intermedia 2.146 Y. enterocolitica 2.141 B/SM 

178 101500 186150 29/05/2013 Y. intermedia 2.201 Y. intermedia 2.169 B/SM 

179 90340 169500 31/05/2013 Y. intermedia 2.289 Y. enterocolitica 2.219 B/SM 

180 83280 171650 31/05/2013 Y. intermedia 2.258 Y. enterocolitica 2.151 B/SM 

181 33350 171280 22/04/2013 Y. intermedia 2.214 Y. intermedia 2.121 B/SM 

182 66400 187600 6/06/2013 Y. intermedia 2.196 Y. enterocolitica 2.187 B/SM 

183 54500 172780 4/06/2013 Y. intermedia 2.386 Y. enterocolitica 2.195 B/SM 

184 79600 191100 1/07/2013 Y. intermedia 2.354 Y. enterocolitica 2.158 B/SM 

185 81150 158850 25/06/2013 Y. intermedia 2.295 Y. enterocolitica 2.239 B/SM 

186 46020 162200 11/04/2013 Y. intermedia 2.310 Y. enterocolitica 2.209 B/SM 

187 34420 175340 7/06/2013 Y. frederiksenii 2.453 Y. frederiksenii 2.427 B/SM 

188 88000 175300 24/05/2013 Y. kristensenii 2.305 Y. enterocolitica 2.293 B/SM 

189 36275 171650 24/05/2013 Y. enterocolitica 2.196 Y. intermedia 2.167 B/SM 

190 95100 174700 31/05/2013 Y. frederiksenii 2.159 Y. enterocolitica 2.037 B/SM 

191 99100 181600 30/05/2013 Y. rhodei 2.426 Y. rhodei 2.329 B/SM 

192 81850 178800 22/05/2013 Y. rhodei 2.257 Y. rhodei 2.158 A/M 

193 61000 168800 23/05/2013 Y. mollaretii 2.171 Y. enterocolitica 2.079 B/SM 

194 61600 193500 21/06/2013 Y. intermedia 2.490 Y. enterocolitica 2.248 B/SM 

195 82800 169300 10/04/2013 Y. intermedia 2.344 Y. enterocolitica 2.212 B/SM 

196 41040 160000 23/04/2013 Y. intermedia 2.512 Y. intermedia 2.287 B/SM 

197 58100 169750 5/06/2013 Y. intermedia 2.194 Y. intermedia 2.127 B/SM 

198 74400 185600 21/06/2013 Y. intermedia 2.346 Y. enterocolitica 2.174 B/SM 

199 78400 217400 25/07/2013 Y. intermedia 2.240 Y. enterocolitica 2.008 B/SM 

200 34650 180590 17/05/2013 Y. aleksiciae 2.230 Y. kristensenii 1.964 B/SM 

201 82700 191700 26/06/2013 Y. enterocolitica 2.201 Y. kristensenii 2.134 B/SM 

202 104100 202700 21/06/2013 Y. intermedia 2.229 Y. enterocolitica 2.039 B/SM 

203 66800 175200 14/06/2013 Y. frederiksenii 2.110 Y. enterocolitica 2.054 B/SM 

204 105700 212000 15/06/2013 Y. rhodei 2.189 Y. rhodei 2.132 B/SM 

205 83120 161520 5/06/2013 Y. intermedia 2.098 Y. intermedia 1.985 A/M 
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The top match and second best match (score 1 and 2 respectively), based on the mass spectra of a single spot for 

each isolate, are provided in the table. Results were assigned a consistency category based on the manufacturer’s 

criteria.  

- Species consistency (A) was attributed to a result when all matches scoring ≥1.9 show to be of the same 

species, and all matches scoring ≥1.7 are of the same genus.  

- Genus consistency (B) is characterized by a top match score between 1.899 and 1.7, or by matches scoring 

≥1.9 but that are not of the same species, taking into account that all matches scoring ≥1.7 have to be of the 

same genus.  

- No consistency (C) in identification occurs when the top match score is <1.7, or matches scoring ≥1.7 are not 

of the same genus.  

For each individual identification, the top 10 of best matches was also carefully assessed for mismatches: 

- Mismatches (M) were defined as results on the list of the 10 best matches that differ with the top match result 

at genus level or species level.  

- Significant mismatches (SM) indicate results within the top 10 best matches that differ with the top match 

result at genus level (score ≥ 1.7) or species level (score ≥ 1.9). 
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1. Human disturbances 

Being on the edge of a human induced sixth mass extinction (Ceballos et al., 2015), it is 

essential to identify important (anthropogenic) factors involved and how the current extinction 

rate can be decelerated, or preferentially stopped. Humans have played an important role in a 

variety of processes that either directly or indirectly alter population fitness and pathogen or 

disease occurrence (Wobeser, 2007). Some of these processes are:  

1) disseminating pathogenic agents or their vectors voluntarily (e.g. myxoma virus in rabbits 

in Australia (Kerr, 2012)), or involuntary (e.g. avian malaria in Hawai (Atkinson and 

LaPointe, 2009), Batrachochytrium salamandrivorans in western Europe (Martel et al., 

2014); 

2) introducing alien species (e.g. cane toad (Bufo marinus) in Australia (Philips et al., 2006), 

ring-necked parakeets (Psittacula krameri) in Belgium (Strubbe and Matthysen, 2007));  

3) aggregating animals with subsequent disease outbreaks (e.g. supplementary feeding systems 

(Brittingham and Temple, 1988), loss of wetlands for waterfowl (Smith and Higgins, 1990));  

4) increasing the contact rate between humans, domestic animals with wildlife (e.g. Nipah virus 

in pigs and humans (Chua et al., 1999));  

5) overharvesting (of e.g. horseshoe crabs (Limulus polyphemus) with subsequent declines in 

red knots (Calidris canutus) (Baker et al., 2004));  

6) impacting (micro)climate (Kuttler, 2008);  

7) intoxicating and contaminating the environment (e.g. endocrine disruptors (Schug et al., 

2016)). 

8) anthropogenic habitat destruction and fragmentation, two characteristics of urbanization, 

which represents one of the most intense and long-lasting anthropogenic modifications of 

natural systems, affecting entire ecosystems (Grimm et al., 2000; Evans et al., 2009), 

population health and host-pathogen interactions (Bradley and Altizer, 2007).  

However, with respect to the latter point, there is a lack of research investigating the effect 

of urbanization on wildlife health, pathogen occurrence (which has mostly been focused on 

vector-borne diseases or those posing a high risk to human health), and host-pathogen 

interactions (e.g. Bichet et al., 2013; Gasparini et al., 2014; Giraudeau et al., 2014). Also the 

parameters potentially altering the infectious disease ecology are not well examined. Bearing 

this in mind, in this thesis we have attempted to assess how urbanization impacts 

enteropathogen occurrence in susceptible avian wildlife, whether or not differences in body 
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condition could be related to the level of urbanization or pathogen occurrence and assessed the 

role of other factors that might impact enteropathogen occurrence and avian health.  

2. Urbanization: how to define the spatial scale? 

How to measure the level of urbanization has been a matter of debate, since “urban” in one 

country does not necessarily mean “urban” in another country. Many different strategies have 

been used to classify different habitat patches, based on the identification and quantification of 

specific characteristics inherent to urbanized habitats (e.g. buildings, roads and vegetation), 

which can be identified using manual scoring of aerial images (Liker et al., 2008; Bókony et 

al., 2012), semi-automated scoring of satellite-images or GIS (e.g. using the European Union 

CORINE (Coordination of Information on the Environment) land cover database) (Seress et al., 

2014). Seress et al. (2014) showed that the quantification of the urbanization level using these 

methods is highly comparable, although will depend on the quality and resolution of the images 

used. In our studies we have used the Large-scale Reference Database, which has a resolution 

that is far more fine grained compared to the ‘CORINE land cover database’ (resolution of  

0.15m for LRD versus 100m for CORINE) (AGIV, 2013a and 2013b; Seress et al., 2014). Since 

the urban environment usually comprises an area covered by buildings and other built-up 

structures, the “built-up area” within a defined spatial scale has been widely used to assess the 

degree of urbanization solely or in combination with other variables (Blair, 1996; Marzluff et 

al., 2001; Bókony et al., 2012; Salleh Hudin et al., 2016). However, using the “most 

appropriate” spatial scale for the species of interest within which the calculation of the BU-

density can be performed makes it even more complex (Wiens, 1989; Litteral and Shochat, 

2017). A “body size dependent” spatial scale has previously been suggested, which assigns 

spatial scales to bird species according to their (allometrically corrected) bodyweight (e.g. 

smaller spatial scales for smaller birds, and larger scales for larger birds) (Wiens, 1989; Litteral 

and Shochat, 2017). Nevertheless, these calculations do not consider species specific traits and 

habitat use, as such the spatial scale of interest highly varies between different study species 

(Wiens, 1989). House sparrows, except for two subspecies (Summers-Smith, 1994), are 

extremely sedentary and have been shown to stay within 1-2 km of their breeding colony 

(Summers-Smith, 1963). This ‘one kilometer difference’ can be related to differences in 

environment and habitat use (e.g. house sparrows tend to have larger home ranges in rural areas 

compared to urban areas) (Wiens, 1989; Vangestel et al., 2010). Though one kilometer does not 

seem much, even small differences in radius may already cause considerable differences in the 

built-up area that can be measured within these circles (Table 8). This could lead to different 
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classifications of the urbanization levels (as shown in Table 8: radius of 50-400m: “urban”, 800 

and 3200m: “suburban”, 1600m: “rural”), altering the results and conclusions of studies.  

We must be careful comparing results of different studies and ideally the situation (landscape 

management and urban planning) of the country should be taken into account when comparing 

different studies, since even cities with similar built-up areas can differ quite a lot in their 

suitability for wildlife (Snep et al., 2016). To partly overcome this problem, the use of a 

multiscale approach has been suggested, using a core home range scale in combination with a 

landscape scale which provides information about the surrounding environment and gives a 

more complete image of the environment (Wiens, 1989; Melles et al., 2003; Litteral and 

Shochat, 2017). In our study we have relied on previous research, assessing the home range of 

house sparrows along an urban gradient, performed in Flanders (Vangestel et al., 2010; as 

explained in Chapter 1), which gives us the advantage that we have been able to estimate the 

“most appropriate spatial scale” for the house sparrows we are working on in Flanders, being a 

multi-scale approach using a local habitat (radius: 100m or 400m) in combination with a 

surrounding landscape (radius: 1600m). Although the 400m core home range was used in 

Chapter 2, for the models in Chapter 3 we have chosen to use the 100m core home range, since 

this spatial scale encompasses the most important foraging sites, and thus potential Yersinia-

transmission sites, for the house sparrows. However, even when using this “pre-set-scale” 

(100m-1600m), differences between home ranges of populations potentially still affect the 

outcome and conclusions of our research. Ideally, the home ranges should be assessed for every 

house sparrow population, e.g. through radio-telemetry follow-up. As such specific and 

essential environmental parameters can be taken into account for each population. 

Spatial Scale (in meters radius) Built-Up-% Color Code Categorized Landscape scale 

50 34,96 Red Urban 

100 22,17 Red Urban 

200 17,15 Red Urban 

400 12,62 Red Urban 

800 8,49 Yellow Suburban 

1600 4,69 Green Rural 

3200 5,41 Yellow Suburban 

Table 8. Variation of BU% according to the spatial scale used. Spatial scale is represented by the radius of the 

circle around the center of the main capture site: Hillegem in this example shows the highly variable Built-Up-% 

according to which scale is used when categorizing the different levels of urbanization (with the respective  color 

codes) 
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Information regarding these environmental parameters is mostly limited to some abiotic 

environmental characteristics (e.g. the amount of built-up area, the percentage of impermeable 

surface, weather conditions), although other important factors such as pesticides and other 

contaminants, presence of supplementary feeding systems, and biotic features of the 

environment (e.g. presence of predators and invasive species, presence and ecology of disease-

agents and reservoir hosts, cover habitat, competition for food) are often neglected. In our study 

(Chapter 3) we have tried to account for the presence of other granivorous birds (through the 

calculation of granivore-index), which gives an idea of the constitution of the avian community 

sharing the same environment as our house sparrows. Although due to logistic difficulties, no 

information regarding the density of these species was available which hampers the conclusions 

that can be made based on the correlations between pathogen presence and granivore-index. 

In order to have an idea of the impact of the urbanization on pathogen occurrence and study 

species, a combination of representative (a)biotic characteristics of the environment should be 

taken into account. 

3. Pathogen pressure and disease in relation to anthropogenic 

altered environments 

Wild ranging animals, such as birds and rodents, are increasingly being recognized as 

carriers or even potential reservoirs for various diseases (Artois et al., 2001), with some of them, 

such as the bacterial enteropathogens we investigated (Chapter 2, 3 and 4), having a zoonotic 

potential. However, only few studies have been performed to actually assess the prevalence of 

Yersinia and Salmonella in apparently healthy wild living animals (e.g. Pennycott et al., 2002; 

Niskanen et al., 2003; Refsum et al., 2003; Kisková et al., 2011). In order to evaluate human 

health risks and food safety, most research is being performed in the surrounding environment 

of farms and slaughterhouses (Battersby et al., 2002; Kirk et al., 2002; Backhans et al., 2011; 

Andrès et al., 2013), or has been conducted as a consequence of a yersiniosis, or salmonellosis 

outbreak in animals or humans (Mackintosh and Henderson, 1984; Cízek et al., 1994; Refsum 

et al., 2003; Pennycott et al., 2006; Kangas et al., 2008; Lawson et al., 2010; Giovannini et al., 

2013; Lawson et al., 2014). Nevertheless, one should be careful when appointing the primary 

source of infection, which could either be domesticated animals (such as livestock), wild 

animals (e.g. ranging on farms), humans, or the environment (e.g. spread of pathogens through 

floods). Since rodents and birds have been suggested to be a reservoir host of Y. 

pseudotuberculosis, Y. enterocolitica and Salmonella Typhimurium, these wild living animals 
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were rather easily (whether or not correctly) assigned as the most likely (primary) source of 

yersiniosis, or salmonellosis in domestic animals, livestock and humans (e.g. Mackintosh and 

Henderson 1984; Daniels et al., 2003; Kangas et al., 2008). Recent studies however are 

indicating that rodents and birds most likely acquire the infection on the farm from the primary 

source (e.g. infected livestock). Although in case of pathogens such as Salmonella and Yersinia 

wild animal populations are able to maintain the infection on a farm (within and in between 

batches of animals) for an extended period of time and can act as bridge species between farm 

and wild living animals, transmitting diseases from one area to the other (Wang et al., 2009; 

Backhans and Fellström, 2012; Liang et al., 2015). In a geographical context, the overall 

prevalence of pathogenic bacteria in wildlife decreases from areas close to e.g. pig premises to 

areas far from these agricultural fields (Henzler and Opitz, 1992; Andrés et al., 2013) following 

a concentric distribution around the primary animal reservoir (Wang et al., 2009; Liang et al., 

2015). In order to assess the role of wild animals in the pathogen dynamics of enteropathogenic 

Yersinia species and Salmonella we focused on apparently healthy animals, not specifically 

related to agricultural areas. We did not isolate either Salmonella Typhimurium or 

enteropathogenic Y. enterocolitica from the apparently healthy house sparrows and only 2% of 

the birds were positive for Y. pseudotuberculosis (Chapter 2 and 3). The recovery of two 

Salmonella Typhimurium isolates (DT99 and DT195) from brain granulomas of house 

sparrows suggests an association of Salmonella Typhimurium infection with clinical disease 

which is most likely driven by the risk of exogenous exposure to pathogenic Salmonella 

Typhimurium strains (Chapter 2). Also in the brown rats only two human pathogenic Y. 

enterocolitica (bioserotype 2/O:5,27 and 3/O:1,2,3) and three Y. pseudotuberculosis serotype I 

were isolated, indicating a low prevalence of human pathogenic Yersinia isolates in brown rats 

in Flanders in 2013-2014 (Chapter 4). We did, however, find a high prevalence of other Yersinia 

species and of Y. enterocolitica BT1A both in the house sparrows (41% and 31% resp.) and in 

the brown rats (19% and 21% resp.) (Chapter 3 and 4). This supports the hypothesis that these 

animals are probably not the primary reservoir of these human pathogenic Yersinia species 

(house sparrows and rats) and Salmonella Typhimurium (house sparrows). However, they are 

potentially able to maintain Yersinia species within a population, at least temporarily, after 

coming into contact with the bacteria (Chapter 3 and 4; Pocock et al., 2001; Wang et al., 2009; 

Backhans and Fellström, 2012).  

The potential rapid course of salmonellosis and yersininiosis in house sparrows in 

combination with the difficulty in finding diseased or dead wild living animals (Wobeser and 



GENERAL DISCUSSION 

112 
 

Wobeser, 1992) could have lead to an underestimation of the actual direct effect of Salmonella 

and Yersinia on the host populations. To enhance the chance of detecting a pathogenic agent in 

a population, measuring the incidence over a specific time-frame (preferentially covering all 

seasons over several years) in a population, in combination with the prevalence, would provide 

a more complete view of the presence of pathogens and their effect on the host population 

(Wobeser, 2006). Nevertheless, the susceptible population has to be known in advance and a 

high recapture rate would be essential, which is unlikely in the wary house sparrows.   

4. Is there an interaction between host, environment and 

pathogen?  

The effect of pathogens on host populations depends on the interaction between the pathogen 

(e.g. virulence, host restriction, capacity to survive in the environment), the host (e.g. 

susceptibility, host immune defense, population diversity and -density, stress) and the 

environment (e.g. aggregation of animals, food and water availability and -quality, suitability 

for vector replication, pathogen survival in environment, weather-conditions), also referred to 

as the epidemiological triangle (Wobeser, 2006; Vander Wal et al., 2014). Since anthropogenic 

alterations of habitats have a major impact on ecosystems, species assemblages and host 

communities (Evans et al., 2009; Ferenc et al., 2014), changes in host-pathogen interactions 

and disease outcomes are to be expected (Vander Wal et al., 2014; Pollack et al., 2017).  

In sedentary birds the focus of most studies is placed on the assessment of pathogen 

prevalence along an urbanization gradient in birds, disregarding the effect on host health (e.g. 

Cork et al., 1995; Bradley and Altizer, 2007; Delgado-V and French, 2012; Hamer et al., 2012; 

Gasparini et al., 2014). Only few studies have attempted to assess the impact of pathogens on 

bird species along an urbanization gradient and have tried to determine variables most likely 

influencing these interactions (e.g. Chapter 3; Bichet et al., 2013; Giraudeau et al., 2014; 

Galbraith et al., 2017).  

In our research we have evaluated if a correlation was present between “the environment” 

(the built-up density at two spatial scale, the environmental temperature, the dominant feeding 

strategy of the local bird assemblage, time of sampling), “the host” (sex, body condition) and 

“the pathogen” (Y. pseudotuberculosis, Y. enterocolitica, other Yersinia species) (Chapter 3). 
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4.1. The effect of environment on morphological changes 

The urban habitat is, due to its inherent ecosystem alteration (e.g. increased noise, light and 

chemical pollution, reduced greenery, altered food quality and availability, different predation 

pressures), often perceived as a stressful environment for many wild living animals (Seress and 

Liker, 2015; Pollack et al., 2017). In this perspective many studies have tried to assess to what 

extent animals, experience this stressful environment, and in what manner they have been able 

to cope with these environmental changes (Peach et al., 2008; Bichet et al., 2013; Meillère et 

al., 2017; Ouyang et al., 2017).  

Comparison of morphological changes, such as the body condition (SMI: Chapter 2 and 3), 

between birds living in urbanized and more natural or rural environments have been used in 

multiple studies (e.g. Liker et al., 2008; Bókony et al., 2012; Meillère et al., 2015b; Salleh 

Hudin et al., 2016), but the outcomes were not always straightforward. Different hypotheses for 

contrasting results have been suggested, where the use of different calculation methods for the 

assessment of the body condition index (Green, 2001) is of great importance and can in this 

perspective lead to different results. Liker et al. (2008) for example found that house sparrows 

inhabiting urban environments were smaller and in worse condition, based on a type-1 Ordinary 

Least Squares (OLS) linear regression, compared to house sparrows originating from rural 

habitats. On the other hand, Bókony et al. (2012), who studied the same house sparrows as 

mentioned in Liker et al. (2008) with the addition of 14 extra populations and using the SMI 

instead, did not find any relationship between the degree of urbanization and the body condition, 

although the house sparrows were confirmed to be smaller in the more urbanized regions. Most 

likely, and as was also suggested by Bókony et al. (2012), this contradiction is likely due to the 

different method used to calculate the body condition index, whereby the OLS-regression tends 

to inflate the residuals when the length parameter increases.  

The urbanization (landscape) level had an influence on the hosts SMI. Higher body condition 

scores were measured in suburban areas compared to both, urban and rural environments. 

However, no difference in SMI was demonstrated between the house sparrows originating from 

the urban and rural habitats (Chapter 3). These results are in line with those of Bókony et al. 

(2012) and Meillère et al. (2015b, 2017). On the contrary, Salleh Hudin et al. (2016) did find 

that in southern France urban house sparrows were both leaner (as evidenced by a lower SMI) 

and smaller compared to the rural birds.  
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Various hypotheses have been suggested to explain variations in morphology in between 

different urbanization levels which can be related to intrinsic (i.e. genetic) factors or due to 

phenotypic plasticity (Alberti et al 2016), the ability of an animal with a specific genotype to 

change the phenotype in response to environmental changes (Fusco and Minelli, 2010). Low 

body conditions have since long been associated with stress and a lower overall health status, 

potentially mediated through environmental pollution and disease (Peig and Green, 2009; 

Bókony et al., 2012; reviewed in Pollack et al., 2017). As environmental factors, a specific 

urban microclimate (i.e. the heat island effect, lower wind velocity) lowers the energetic 

demands of smaller birds during winter and nighttime (Cuthill et al., 2000; Zuckerberg et al., 

2011; Murthy et al., 2016). This could affect the body condition, by lowering the extra energy 

reserve needed in urban birds, or increase the daily weight gain when subjected to a less ideal 

climate in rural birds (Cuthill et al., 2000). In addition to the specific urban microclimate, food 

predictability, as a result of supplementary food sources in suburban and urban areas (Shochat, 

2004; Robb et al., 2008; Salleh Hudin et al., 2016; Reynolds et al., 2017), and food quality, 

which in supplementary feeding systems is thought to be of lower quality ‘junk food’ compared 

to natural resources (Shochat, 2004; Heiss et al., 2009; Meillère et al., 2015b), could alter the 

body condition of the birds and potentially the overall fitness of the hosts. Salleh hudin et al. 

(2016), have tried to assess if the lower body condition of urban birds compared to their rural 

counterparts, was due to the predictability or the quality of the food by performing a field 

experiment providing “urban” or “rural” food to house sparrows originating from urban and 

rural environments using different ‘food type'-'bird origin’ combinations. Irrespective of the 

type of food, the rural birds dropped in body weight and SMI up to the level of the urban birds. 

They concluded that most likely, this observation was due to the predictability of the food 

supplementation, which, through an adaptive mass regulation, allows birds to lower their body 

weight (Salleh Hudin et al., 2016). Leaner birds, originating from urban areas, could in this 

perspective have an advantage when subjected to a higher predation risk through their ability 

to take-off faster and have better flight performance (Witter and Cuthill, 1993; Salleh Hudin et 

al., 2016). Nevertheless, although the density of predators (sparrowhawks, cats,…) is thought 

to be higher in urban areas (Shochat, 2004; Seress and Liker, 2015) and some studies have 

demonstrated behavioral changes in urban birds with respect to ‘flight initiation distance’ 

(Seress et al., 2011; Meillère et al., 2015a), the predation risk is not always believed to increase 

from rural to urban areas (Shochat, 2004; Seress and Liker, 2015).  
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As demonstrated above, different (interacting) factors will play a role in changing the 

animal’s phenotype. The suburban areas, where the house sparrows with highest SMI were 

recovered from (Chapter 3), have been shown to support an increased species richness (Blair, 

1996; Marzluff and Rodewald, 2008; McKinney, 2008; Seress and Liker, 2015), a higher bird 

density (Blair, 1996; Marzluff and Rodewald, 2008), and demonstrated an increased survival 

of certain urban adapter species (Evans et al., 2015), due to the combination of increased  

resource availability and the proximity and connectivity of various vegetation types (Marzluff 

and Rodewald, 2008; Vangestel et al., 2010; Evans et al., 2015). These intermediate areas of 

urbanization, compared to highly urbanized or rural areas, could be advantageous for urban, or 

suburban adapter species and should be taken into account when performing studies related to 

the impact of urbanization on wild living animals. 

4.2. Is there a correlation between pathogens and morphology? 

Besides the obvious effect a pathogen can have on individual animals and populations 

(clinical disease-death), subclinical effects can play an even greater role in population dynamics 

(Wobeser, 2006). When confronted with a disease agent, hosts need to make trade-offs which 

will depend on the condition (of the host, pathogen and environment at the time of exposure) 

and which can manifest in many different ways (e.g. altered SMI, decreased fitness) (Wobeser, 

2006). This should definitely be considered when working with pathogens that have the 

potential for causing chronic disease, such as host adapted enteropathogens (Pasmans et al., 

2003; Lawson et al., 2011; Eng et al., 2015), which can through long term stimulation of the 

immune system cause a deterioration of the body condition (Lochmiller and Deerenberg, 2000; 

Wobeser, 2006). In our study, the SMI of the house sparrows was not explained by presence of 

Y. pseudotuberculosis, Y. enterocolitica or other Yersinia species (Chapter 3). Since Y. 

enterocolitica BT1A and other Yersinia spp. have been suggested to be part of the normal avian 

microbiota (Niskanen et al., 2003; Kisková et al. 2011), a lack of effect on hosts SMI could be 

expected. Nevertheless, only limited research has focused on the pathogenicity of Y. 

enterocolitica BT1A and environmental Yersinia species in birds and subclinical effects could 

have gone undetected in wild ranging populations. Due to the known pathogenicity of Y. 

pseudotuberculosis an effect on the hosts SMI was expected. The low number of isolates could 

have masked this finding and although wild birds have been hypothesized to harbor Y. 

pseudotuberculosis at low levels subclinically, developing acute disease when exposed to 

stressful conditions (Niskanen et al., 2003), also here the subclinical effects, if present, should 

be assessed. On the other hand, animals which are known to be stressed, have been shown to 
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be more susceptible to and excrete higher numbers of pathogenic agents (Verbrugghe et al., 

2012 and 2016). Since, as mentioned previously, urban environments are perceived as stressful, 

an effect on the hosts SMI could have been expected in highly urbanized areas with subsequent 

altered pathogen excretion. However, hosts SMI did not explain the presence of either Yersinia 

species (Chapter 3). 

4.3. Pathogen pressure in relation to environment 

Depending on which Yersinia species was modeled as response variable, other variables 

would have higher explanatory values (Chapter 3). Most likely this is related to the distinct 

metabolic flexibility of the Yersinia species tested (Reuter et al., 2014), influencing the life 

histories of the bacteria.  

The presence of pathogenic Y. pseudotuberculosis was best explained by the granivore-

index, for which a higher prevalence was detected when the local bird population was 

dominated by granivorous bird species. Also the landscape level of urbanization showed to have 

an influence on the presence of Y. pseudotuberculosis, which appeared to be more prevalent in 

suburban and to a lesser extent urban house sparrows, compared to rural individuals (Chapter 

3). A higher faeco-oral transmission could be present in suburban and urban areas where bird 

densities are higher (Blair, 1996; Evans et al., 2009), are dominated by granivorous species 

(Chapter 3) using similar feeding strategies and of which some species such as members of the 

Fringillidae are known to be highly susceptible (Cork et al., 1999; Sandmeier and Coutteel, 

2005), and where supplementary feeding systems are omnipresent (Brittingham and Temple, 

1988; Pennycott et al., 2002; Robb et al., 2008).  

The average environmental temperature, the granivore-index and to a lesser extent the 

urbanization-index at both the local and the landscape scale were the variables best explaining 

variation in Y. enterocolitica BT1A presence (Chapter 3). Lower environmental temperatures 

were positively correlated with the presence of these bacteria (Chapter 3), and are most likely 

related with the enhanced survival of Y. enterocolitica at lower temperatures (Tashiro et al., 

1991). Similar observations related to environmental temperature were made for the other 

Yersinia species. As opposed to the effect of the degree of granivory on Y. pseudotuberculosis, 

the prevalence of Y. enterocolitica BT1A decreased when the local bird community consisted 

of more granivorous bird species (Chapter 3) which could be an indication that birds with other 

feeding patterns (e.g. omnivorous, insectivorous) could be more suitable hosts compared to 

granivorous birds (Novotný et al., 2007; Benskin et al., 2009). At the landscape scale, Y. 
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enterocolitica BT1A tends to be more prevalent in urban and rural areas (Chapter 3). Higher 

densities of urban exploiters in urban areas (Blair, 1996), and presence of other animals such 

as rodents, hares and livestock (Chapter 4; Frandölich et al., 2003; Vanantwerpen et al., 2014) 

possibly contributes to an increased occurrence of Y. enterocolitica BT1A in the examined 

house sparrows. Both Y. enterocolitica and other Yersinia species were less prevalent in home 

range scales which were more urbanized (Chapter 3). Since Yersinia has a higher survival in 

wet to damp soil (Tashiro et al., 1991), increased water runoff and increased evaporation in 

highly urbanized areas (Trusilova et al., 2008) will most likely decrease the survival of Yersinia 

in highly urbanized environment.  

5. Main Conclusions 

Our studies provide information regarding urban disease ecology, testing the effect of 

urbanization (measured along an urbanization gradient) on the presence of enteropathogens 

(Salmonella Typhimurium and Yersinia spp.) in an avian (house sparrows) host species, and 

assessing whether the host’s body condition changes in relation to the presence of these 

enteropathogens or to the level of urbanization. In addition, we have assessed the role of a 

synantropic rodent species (the brown rat), often sharing food sources with granivorous house 

sparrows, as a potential reservoir species of pathogenic Yersinia spp.. 

No Salmonella could be isolated from the house sparrows that were sampled during the 

fieldwork and only one house sparrow was found to be positive for anti-Salmonella antibodies, 

indicating a low prevalence (<1.3%) of Salmonella Typhimurium in the wild living house 

sparrow populations. However, necropsy of 12 house sparrows obtained from bird rescue 

centers revealed salmonellosis (caused by Salmonella Typhimurium DT99 and DT195) in two 

birds. Disease related to salmonellosis was most likely linked to exogenous exposure to these 

Salmonella Typhimurium phage types. Since only a low prevalence was demonstrated in the 

host populations, no inference can be made regarding the effect of urbanization on Salmonella 

prevalence. On the contrary, by using isolation methods, the presence of enteropathogenic 

Yersinia spp. could be demonstrated in the house sparrow populations. Depending on the 

Yersinia spp. tested, Yersinia presence could be related to the degree of urbanization, average 

daily temperatures and the community of granivorous birds present at sparrow capture 

locations. No correlation between the host’s body condition and presence of Yersinia spp. was 

detected. However, the body condition of house sparrows living in intermediate levels of 

urbanization (suburban habitats) was found to be higher compared to urban and rural house 
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sparrows. We conclude that two determinants of pathogen infection dynamics, body 

condition and enteropathogen (Yersinia) occurrence, vary along an urbanization gradient, 

potentially mediating the impact of urbanization on avian health. In addition, we found that 

brown rats are frequent carriers for various Yersinia spp., although they most likely present 

spill-over hosts for Y. pseudotuberculosis and (human pathogenic) Y. enterocolitica, the latter 

of which were more often isolated during winter and spring. 

This low prevalence of enteropathogenic Yersinia and Salmonella Typhimurium in the house 

sparrows which were sampled in the context of the fieldwork might be regarded as not 

important on population level. Nevertheless, it must be stressed that since these pathogenic 

bacteria are present in the respective hosts, changes in (a)biotic environment, host 

(susceptibility, population structure) and pathogen virulence, could alter the disease dynamics 

and have devastating effects on populations. In addition, more subtle effects could be present, 

which were not detected using only the body condition as a parameter of health in the house 

sparrows. 

6. Future perspectives 

Since in most studies historical data are missing about the pathogen occurrence in host 

populations before a disease outbreak was detected and often information is lacking on the 

ecology of the host species in the context of a specific habitat (e.g. urban versus non-urban), 

only seldom explanatory variables can be appointed that could affect changes in host-pathogen 

dynamics. Also, subclinical (non-overt) disease is often neglected in studies, which hampers 

the assessment of the impact of a pathogen on a host population or an ecosystem.   

Our exploratory studies provide information regarding pathogen dynamics in house 

sparrows in an urbanization context and regarding the role of brown rats as a carrier host for 

enteropathogenic Yersinia. However, since no maintenance reservoir was appointed, 

differential environmental pathogen survival in urban-suburban-rural areas, and the importance 

of other host species, should be assessed.  

In general, to assess the effect of urbanization on wildlife populations (population 

dynamics), everything needs to be situated in a larger context and one should (in an ideal world) 

take the entire ecosystem into account. Multihost (including their immunity and microbiota)-

multipathogen interactions within an ecosystem should be followed up on the long term and 

population structures, immunity, representative (a)biotic environmental characteristics 
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potentially influencing these interactions should be assessed, using a combination of incidence 

and prevalence data.  

Translated to our studies, long term follow up of the house sparrow populations, mapping 

their home ranges, through radio-telemetry and by using citizen science data, and identifying 

hot spots for transmission (e.g. feeding sites) are one of the first important factors that should 

be determined. Subsequently, the environmental survival of the enteropathogens in these 

environmental hot spots should be assessed and compared between the different urbanization 

levels. The community (diversity and density) of domestic and wildlife species sharing the 

home ranges with the house sparrow populations should be assessed (including the inter- and 

intraspecies interactions) and checked for the presence of these (multi-host) enteropathogens. 

Furthermore at the host level, not only the house sparrow’s health should be estimated using 

the combination of various parameters (e.g. body condition index, genetic diversity of the 

population, physiological parameters and blood chemistry and blood cell count), but also the 

house sparrow’s fitness (reproduction success) should be taken into account in order to follow 

up population dynamics. The presence of other (non)infectious diseases, potentially interfering 

with host health and thus susceptibility to pathogens should be assessed. Last but not least, 

whenever mortality is detected in species inhabiting the same home range as the house 

sparrows, necropsy should be performed and pathogens present in the host species should be 

identified. 
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Urbanization represents one of the most intense and long-lasting anthropogenic 

modifications of natural environments. Many researchers, studying the effect of urbanization 

on wildlife and ecosystems, have been using bird communities as a study object, due to their 

ubiquity, ease of observation, capture and sampling. Many insights have been acquired 

regarding the effect of urbanization on bird-communities, most often leading to biotic 

homogenization of urban regions. Not much is known about the factors inducing these 

community changes and the effect of urbanization on individual and population level is often 

neglected. In addition, an underexplored aspect of urban ecology, required to better understand 

the ecological and evolutionary mechanisms driving population dynamics, is how urbanization 

impacts disease ecology, including its potential to alter wildlife-pathogen interactions and affect 

animal health. In this respect it is important to understand which animals could function as 

carrier-species or reservoirs of specific pathogens.  

In this research, we have focused on the interaction between host (house sparrows (Passer 

domesticus)) and human enteropathogenic bacteria, known to be harmful to the host species, in 

an urbanization context (Chapter 2: Salmonella Typhimurium; and Chapter 3: Yersinia 

pseudotuberculosis and Y. enterocolitica) and have assessed the role of brown rats (Rattus 

norvegicus) as a potential reservoir host species (Chapter 4: Y. pseudotuberculosis and Y. 

enterocolitica) in different regions of Flanders, Belgium.  

In Chapter 2 and 3 we have used house sparrows, originating from 36 populations varying 

in their level of urbanization (measured at two spatial scales) in Flanders, as model species to 

disentangle effects of urbanization on host-pathogen interactions. House sparrows occur along 

the different urbanization levels (urban, suburban, rural) and are highly sedentary, making them 

an ideal study species to assess the effect of urbanization on an urban-exploiter species.  

- No Salmonella Typhimurium could be isolated from the house sparrows, and only one bird 

was positive for anti-Salmonella antibodies. Necropsy performed on house sparrows, 

received from bird rescue centers (Merelbeke and Ostend), revealed the presence of brain 

granulomes in two out of 12 house sparrows. Salmonella Typhimurium DT99, a pigeon-

adapted phage type, and DT195, were the causative agents of these lesions. These results 

suggest the apparent absence (prevalence: <1.3%) of Salmonella Typhimurium in apparently 

healthy house sparrows in the winter of 2013 in Flanders. Clinical disease associated with 

Salmonella Typhimurium infection is likely driven by the risk of exogenous exposure to 

pathogenic Salmonella Typhimurium strains (Chapter 2). 
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- Yersinia pseudotuberculosis, Y. enterocolitica and other Yersinia species could be isolated 

from respectively 2%, 31% and 41% of the apparently healthy house sparrows. We evaluated 

potential correlations between “the environment” (the built-up area at two spatial scales, the 

average environmental temperature, the granivore-index, the time of sampling), “the host” 

(sex, body condition) and “the pathogen” (Y. pseudotuberculosis, Y. enterocolitica, other 

Yersinia species) using generalized linear mixed models. The SMI of the house sparrows 

could not be explained by the presence of Y. pseudotuberculosis, Y. enterocolitica or other 

Yersinia species and vice versa. On the other hand, the urbanization, measured within the 

landscape level had an influence on the house sparrows SMI, with higher body condition 

scores measured in suburban areas compared to urban and rural environments. Depending 

on the Yersinia species tested other explaining variables were important. The presence of 

pathogenic Y. pseudotuberculosis was best explained by and positively related with the 

granivore-index. Also the landscape level of urbanization influenced the presence of Y. 

pseudotuberculosis, which appeared to be more prevalent in the faeces of suburban and to a 

lesser extent urban house sparrows, compared to rural individuals. The average 

environmental temperature (negative correlation), the granivore-index (negative correlation) 

and to a lesser extent the urbanization-index at both the local- (negative correlation) and the 

landscape scale were the variables best explaining variation in Y. enterocolitica presence. 

With respect to the landscape scale, Y. enterocolitica tends to be more prevalent in urban 

and rural areas, compared to suburban landscapes. Presence of other Yersinia species was 

best explained by the average daily temperature and by the percentage of urbanization of the 

home range level (both negatively correlated) (Chapter 3). 

In conclusion, we show that the level of urbanization, taking the suburban areas into account, 

affects body condition and pathogen occurrence, two determinants of pathogen infection 

dynamics, although no direct relationship between body condition and pathogen-occurrence 

was observed. Also the avian community structure (approximated by the granivore-index) 

should be accounted for (Chapter 3).  

Since rats have been appointed as reservoirs of many zoonotic pathogens, we have assessed 

the role of brown rats as a potential reservoir host species of Y. pseudotuberculosis and Y. 

enterocolitica in Flanders, Belgium. Although Yersinia was isolated from 38.4% of 1088 rats, 

whereof 53.4% was designated Y. enterocolitica, only two rats harbored human pathogenic Y. 

enterocolitica (bioserotypes 2/O:5,27 and 3/O:1,2,3) and three were found to be positive for 

human pathogenic Y. pseudotuberculosis. In conclusion, our results demonstrate that rats are 
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frequent carriers of Yersinia spp. and although these animals are probably not the primary 

reservoir of these human pathogenic Yersinia species, they are potentially able to maintain 

(pathogenic) Yersinia species, at least temporarily, within a population after coming into contact 

with the bacteria (Chapter 4). 

In this thesis, we have demonstrated that urbanization can impact pathogen-infection 

dynamics through 1) changing the body condition of the house sparrows and 2) affecting the 

presence of enteropathogenic bacteria. Nevertheless, no direct correlation between the 

enteropathogen presence and the host body condition was demonstrated. Despite the low 

prevalence of enteropathogenic bacteria, the exogenous exposure to certain enteropathogenic 

strains could cause mortality and should be considered as a risk factor. In addition, brown rats, 

frequently appointed as reservoirs for various infectious disease agents, were more likely acting 

as spill-over hosts than maintenance hosts. 
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Van de effecten die de mens veroorzaakt op natuurlijke gebieden leidt de urbanisatie van het 

landschap tot één van de meest intense en langdurige veranderingen. Om de impact van 

urbanisatie op wilde dieren en ecosystemen na te gaan worden vogels frequent gebruikt als 

onderzoeksobject aangezien deze wijd verspreid aanwezig zijn en relatief gemakkelijk zijn om 

te observeren en te vangen. Hierdoor zijn er reeds veel inzichten verworven op 

gemeenschapsniveau, waarbij biotische homogenisatie van urbane vogelgemeenschappen een 

terugkerend fenomeen is. Onderzoek is echter nodig naar de factoren die leiden tot deze 

veranderingen alsook het effect van urbanisatie op populatie en individueel niveau. Een ander 

onderbelicht aspect van de urbane ecologie is de manier waarop urbanisatie een impact heeft 

op de ecologie van pathogenen, door onder andere te interfereren met gastheer-pathogeen 

interacties, waardoor de mate van urbanisatie een invloed kan hebben op de gezondheid van 

wilde dieren. Onderzoek naar pathogeen-ecologie in een urbane context is essentieel om een 

beter inzicht krijgen in ecologische en evolutionaire mechanismen die populatiedynamieken 

sturen in geürbaniseerde regio’s, waarbij het opsporen van potentiële dragers en reservoirs van 

pathogenen een belangrijk luik vormt. 

De focus van dit onderzoek werd gelegd op de interactie tussen huismussen (Passer 

domesticus) en enteropathogene bacteriën waarvan geweten is dat ze schadelijk kunnen zijn 

voor huismussen (Hoofdstuk 2: Salmonella Typhimurium; en Hoofdstuk 3: Yersinia 

pseudotuberculosis en Y. enterocolitica) langsheen een urbanisatie-gradiënt. Verder werd 

getracht de rol van bruine ratten (Rattus norvegicus) te bepalen als mogelijke reservoir-gastheer 

(Hoofdstuk 4: Y. pseudotuberculosis en Y. enterocolitica) in verschillende regio’s in 

Vlaanderen, België. 

Om de effecten van urbanisatie op gastheer-pathogeen interacties te bestuderen, werd er in 

Hoofdstuk 2 en 3 geopteerd om met huismussen te werken van 36 populaties, verspreid over 

Vlaanderen, die verschillen in hun graad van urbanisatie (berekend op basis van twee spatiale 

schalen: een lokale en een landschapsschaal). Huismussen zijn in dit opzicht een ideale studie-

soort, aangezien ze voorkomen langsheen een urbane gradiënt (urbaan, suburbaan, ruraal) en 

zeer sedentair zijn. 

- Salmonella Typhimurium werd niet geïsoleerd uit de faeces van de huismussen en bij slechts 

één vogel konden anti-Salmonella antistoffen konden worden aangetoond. Wel kon na 

autopsie van 12 huismussen, verkregen via Vogelopvangcentra (Merelbeke en Oostende), 

Salmonella Typhimurium DT99 (een duif-geadapteerd faagtype) en DT195 worden 

geïsoleerd uit hersengranulomen van twee gestorven huismussen. Deze resultaten wijzen in 
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de richting van een schijnbare afwezigheid (prevalentie <1.3%) van Salmonella 

Typhimurium in gezond ogende huismussen tijdens de winter van 2013 in Vlaanderen. 

Klinische letsels, geassocieerd met een infectie door Salmonella Typhimurium, zijn hoogst 

waarschijnlijk te wijten aan een exogene blootstelling aan pathogene Salmonella 

Typhimurium stammen (Hoofdstuk 2). 

- Yersinia pseudotuberculosis, Y. enterocolitica en andere Yersinia species konden uit de 

faeces van respectievelijk 2%, 31% en 41% van de gezond ogende huismussen geïsoleerd 

worden. Met behulp van “Gegeneraliseerde Lineaire Gemengde Modellen” werd nagegaan 

of er correlaties waren tussen de “omgeving” (bebouwingsgraad, de gemiddelde 

omgevingstemperatuur, de granivoren-index, de tijd waarop de mussen bemonsterd werden), 

de “gastheer” (geslacht, conditie uitgedrukt in scaled mass index (SMI)) en de aanwezigheid 

van “pathogenen” (Y. pseudotuberculosis, Y. enterocolitica, andere Yersinia species). De 

SMI van de huismussen kon niet worden verklaard door de aanwezigheid van Y. 

pseudotuberculosis, Y. enterocoliticia of andere Yersinia species en vice versa. De 

urbanisatie daarentegen, gemeten binnen de landschapsschaal, had wel een invloed op de 

SMI van de huismussen, waarbij mussen in suburbane gebieden een hogere SMI hadden 

vergeleken met mussen afkomstig uit urbane en rurale omgevingen. Afhankelijk van het 

Yersinia species dat getest werd, werden andere verklarende variabelen naar voor geschoven 

als zijnde belangrijk. De aanwezigheid van Y. pseudotuberculosis kon het best verklaard 

worden door, en was positief gecorreleerd met, de granivoren-index. Daarnaast bleek ook de 

urbanisatie (op landschapsschaal) een invloed te hebben op de Y. pseudotuberculosis-

prevalentie, die meer aanwezig was in de faeces van suburbane en in mindere mate urbane 

huismussen, vergeleken met rurale dieren. De gemiddelde omgevingstemperatuur, de 

granivoren-index en de mate van urbanisatie op lokale schaal waren negatief gecorreleerd 

met de aanwezigheid van Y. enterocolitica. Ook de urbanisatie gemeten binnen de 

landschapsschaal had een invloed op de Y. enterocolitica-prevalentie, waarbij een hogere Y. 

enterocolitica-prevalentie werd waargenomen in urbane en rurale huismussen, vergeleken 

met suburbane mussen. De aanwezigheid van andere Yersinia-species werd het best 

verklaard door de gemiddelde omgevingstemperatuur en de lokale urbanisatie-schaal, 

waarbij voor beide een negatieve correlatie werd waargenomen (Hoofstuk 3).  

Er werd aangetoond dat de graad van urbanisatie een invloed heeft op de conditie van 

huismussen en de pathogeen-prevalentie, twee determinanten van pathogeen-infectie 

dynamieken. Er kon echter geen direct verband worden gelegd tussen de huismus-conditie 
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en de pathogeen-prevalentie. Verder dient ook de structuur van de vogelgemeenschap in de 

omgeving (welke hier werd benaderd door de granivoren-index) in rekening gebracht te 

worden (Hoofstuk 3). 

Aangezien de bruine rat wordt aanzien als reservoir van een reeks zoönotische pathogenen, 

werd de rol van deze dieren als mogelijke reservoir-gastheer van Y. pseudotuberculosis en Y. 

enterocolitica in Vlaanderen nagegaan. Ondanks de isolatie van Yersinia uit 38.4% van 1088 

ratten, waarvan er 53.4% als Y. enterocolitica werden geïdentificeerd, konden enkel twee 

enteropathogene Y. enterocolitica (bioserotype 2/O:5,27 en 3/O:1,2,3) en drie Y. 

pseudotuberculosis worden geïsoleerd. Onze resultaten tonen aan dat ratten dragers kunnen zijn 

van Yersinia spp. en hoewel de ratten waarschijnlijk niet het primaire reservoir zijn van de 

humane pathogene Yersinia species, kunnen ze (tijdelijk) (pathogene) Yersinia species dragen 

nadat de populatie in contact is gekomen met het pathogeen (Hoofdstuk 4). 

In deze thesis werd aangetoond dat urbanisatie een invloed kan hebben op pathogeen-infectie 

dynamieken door het beïnvloeden van zowel 1) de gastheer conditie, als 2) de aanwezigheid 

van bepaalde enteropathogenen. Desondanks kon geen direct verband worden gelegd tussen de 

aanwezigheid van de enteropathogenen en gastheer-conditie. Daarenboven werd duidelijk dat, 

ondanks de lage prevalentie aan enteropathogenen, exogene blootstelling aan bepaalde 

enteropathogene stammen kan leiden tot sterfte en dit dus als een risico kan beschouwd worden. 

Verder bleken bruine ratten, die frequent worden aangeduid als reservoirs voor infectieuze 

ziekten, eerder te functioneren als een ‘spill-over’ gastheer dan als onderhoudsgastheer. 
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Na enkele jaren op deze faculteit rond te lopen is het zover…ze zeggen dat de laadste loodjes 

zwaar wegen, wel… toegegeven, deels waar, hoewel het laatste deel toch ook wel best leuk is. 

Om te beginnen zou ik mijn promotoren willen bedanken voor de kans om aan dit project 

mee te werken. Prof. Martel en Prof. Pasmans, ik ken jullie al veruit het langst. Eerst de studies, 

dan de masterproef en het internship en daarna meteen aansluitend een doctoraat… Heel erg 

bedankt voor al jullie steun en vertrouwen en de tijd die jullie in mij hebben gestoken… Het 

was heel tof om met jullie samen te werken, met super leuke ideeën die ontsproten zijn uit de 

vele (al dan niet werk-gerelateerde) gesprekken die we gehad hebben, waarbij de ideeën zeker 

niet allemaal uitgewerkt zijn, maar hoe dan ook heel plezant en… wie weet… kunnen we er 

nog een vervolg aan breien ( ;-) ). Ook bedankt om de resultaten steeds super interessant te 

vinden en te helpen bij het uitschrijven van de artikels. Prof Lens, Luc, heel erg bedankt voor 

al de hulp bij de meer ecologische problemen en om deze te helpen verwoorden in de 

manuscripten. Met mijn diergeneeskundige achtergrond was het niet altijd even makkelijk om 

direct mee te zijn met al uw ideeën (misschien ook omdat ze soms wat chaotisch overkwamen 

in al uw enthousiasme), maar eerlijk, de biolo(g/d)iergeneeskundige ervaring is er één die mij 

heel veel heeft bijgeleerd. Enthousiasme is ook hetgeen dat mij het meest aan u zal bijblijven, 

ik kan mij niet indenken dat er nog enthousiastere promotoren rondlopen op deze wereld… 

Professor Haesebrouck, bedankt dat ik aan uw departement kon beginnen als doctoraatsstudent. 

Ik heb altijd erg genoten van de lessen bacteriologie tijdens de studies diergeneeskunde, wat 

mij een mooie basis heeft gegeven voor de uitwerking van dit doctoraat. Ook bedankt voor de 

constructieve opmerkingen en suggesties voor de uitwerking van de artikels die uit dit doctoraat 

gevolgd zijn.  

Aan de leden van de examencommissie, hartelijk bedankt voor het nalezen van deze thesis, 

voor al de constructieve opmerkingen, vragen en suggesties om tot het uiteindelijke resultaat 

van de thesis te komen en om mij meteen op mijn gemak te stellen bij de interne verdediging: 

Prof. Dr. Richard Ducatelle, Prof. Dr. Geert Janssens, Dr. Diederik Strubbe, Dr. Katleen 

Vranckx en Prof. Dr. Carl Vangestel.  

Ook bedankt aan andere co-auteurs van de artikels die uit dit doctoraat gevloeid zijn: Anne-

Marie Van den Abeele, Ivo Cox het was heel leuk om samen met jullie de geheimen van de 

MALDI-TOF te doorgronden. Kristof Baert, heel erg bedankt voor al de ratten en de babbels 

op congressen . Aimeric Teyssier, Noraine Salleh Hudin, Roel Haesendonck thank you for 

the amusement during the sample collection en tijdens het labo-werk. Lieven De Zutter, Gerty 

Vanantwerpen, Katleen Vranckx, Michel Delmée, bedankt voor de hulp bij de verdere Yersinia 
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identificaties en Bionumerics. Diederik Strubbe, enorm bedankt om steeds klaar te staan voor 

statistische hulp of bij R-rors. 

Verder FWO (Fonds Wetenschappelijk Onderzoek), bedankt om mij vier jaar lang te willen 

financieren voor dit onderzoek.  

En dan… (op het de deuntje van “De Kollega’s maken de brug”), Collega’s (nu in correct 

Nederlands): Jullie zijn/waren GEWELDIG!!   

Eerst en vooral de veldwerkcollega’s  Where it all started… Pieter, Hans, Noraine, 

Aimeric, Lies, Hadia, doing fieldwork with you was really ‘de max’. The waiting-minutes, … 

-hours before house sparrows flew into our properly set up mist nets was really fun with you 

guys and very interesting. Not only did I learn a lot about the cleverness of house sparrows, I 

also learned a lot about other animals in our subplots (I will never forget the first ‘Parelmoer’ I 

ever saw in the fields with Pieter and all the cool insect-/butterfly-weetjes you learned us). 

Na het veldwerk kon meteen het labowerk beginnen waar er steeds iemand klaar stond mocht 

ik hulp nodig hebben. Roel, ik denk dan vooral aan u… ik denk niet dat er veel collega’s zijn 

die zo behulpzaam zijn (voor gelijk welk probleem), zoveel kennis hebben over Bacteriologie 

en dan nog eens een super tof karakter hebben ook… eerlijk, ik denk niet dat ik de eerste 

maanden van het doctoraat was doorgekomen zonder uw hulp… Emmelie en Ine, merci voor 

de, hoewel veel te weinig, super leuke en plezante barbecues, Emmelie, ondertussen Dr. 

Emmelie ;-), jouw doorzettingsvermogen zijn kenmerkend voor jou en een enorme inspiratie-

bron!! Een volgende afspraak-doodle voor een bowlingske en een tajin zit er duidelijk aan te 

komen . 

Caroline, Evelien, Eva, Nele, Lien, Maxime, Jackeline, Raül, heel erg bedankt voor de toffe 

spelletjes avondjes toneel, bowling (met of zonder effectieve bowling), Gentse feesten, etentjes, 

babbels,… Hopelijk kunnen we deze sporadische avondjes blijven verderzetten en wat 

frequenter organiseren (?). Caroline, hoewel het maar kort was en in een vrij drukke periode, 

een appartementje met jou delen was super leuk .  

Elin (de vrolijkheid zelve), Dutch Mark, Connie (die ge al van ver hoort afkomen in de gang) 

Stephano en Pascale (mijn lab-meter), bedankt voor al jullie tijd, leuke gesprekken en steun als 

het werk gestropt geraakte. Mark B, het was tof om samen naar het EWDA-congres te gaan, 

veel bijgebabbeld en bijgeleerd, maar vooral bedankt voor de lekkere brownies . Pascaleke 

vergeet de baby-sit voucher niet he, nu we eindelijk wat meer tijd gaan hebben kunt ge deze 

eens inwisselen ;-). Stephano, good luck with your baby, Michela is really a beautiful name. 
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Karen, Evy, Venessa, Lonneke (succes met je project!!), Iris, Wolf, altijd leuk om jullie 

tegen te komen in de bacteriologie-gangen! Een zwaaitje een babbelke… super  Karen, merci 

om mijn gedachten net vóór de interne verdediging af te leiden   

Wouter, Mc Mark, Keely, Alex, Zhimin, Valarie, Moira, Pudsa, Queenie, Tijn and Jesse, the 

Wildlife Health Ghent group . It was great to get to know you all . Alex and Keely, you are 

almost there, keep on going. Alex, I’m curious to the final number of arthropods you have 

identified in your samples…! Wouter, although I preferred sitting in the Bacteriology building, 

it was a pleasure to have you as a neighbor in the VRB, hopefully in the future we can 

sometimes do some field-herping (?), or you can just show us the good spots ;-). Valarie, Ms. 

Ferrero Rocher!/Ms Cake!, I really hope everything will return to normal in Dominica and Good 

luck with the “Nederlandse-lessen”  ! Moira, thanks to you I have learned a new “stylish” 

Cambridge-associated laugh ;-). Pudsa, you have almost finished, good luck with the last bits 

and pieces and good luck with your future in Thailand.  

Serge en Koen, het olijke duo, jullie weten als geen ander hoe de sfeer erin te houden in en 

rond het labo en jullie staan altijd klaar voor…een onnozele grap  Nathalie, Sarah, Arlette, 

Sofie en Julie, het was tof om jullie te leren kennen! Veel amusement nog in het labo en Arlette, 

zorg maar dat je snel terug beter wordt…  Gunter M. en Jo, bedankt voor al de administratieve 

hulp en om elke ochtend ‘goeiemorgen’ te roepen of te zwaaien (tenzij Anderlecht verloren 

had…). 

Roel, Gunther A, Marc V, An G, bedankt voor de tips en tricks bij de autopsies en voor de 

leuke babbels tussendoor. Marc, wat een kennis hebt gij en met wat een gemak leidt ge mensen 

voor het lachen om de tuin  super grappig om u soms bezig te zien  

Filip Boyen, ik heb u pas de laatste jaren beter leren kennen, en echt super wat ge allemaal 

doet om de faculteit een mooiere/groenere plaats te maken. Ik ben benieuwd hoe het er over 

enkele jaren zal uitzien! 

Marleen, ik hoop dat we elkaar nog veel zullen zien, hoewel het niet makkelijk zal zijn met 

uw drukke leven…  Ge zijt een super straffe madam, prachtig wat gij allemaal doet voor uw 

collega’s, vluchtelingen, … heel blij dat ik je heb leren kennen  Een super dikke knuffel!!! 

(zonder klopjes ). 

Anneleen, wij gaan zeker nog afspreken, om te eten (super belangrijk ;-) en/of te puzzelen 

. Ik denk niet dat ik iemand ken die zo begaan is met haar proefdieren als jij. Blijven 

volhouden, zeker niet opgeven. Ge kunt het!  
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Tom en Ilse, de vaste krachten van de kliniek. Bedankt voor de raad en hulp bij klinische 

problemen. Ilse, veel succes met de afwerking van uw doctoraat en met alles wat erna gaat 

komen! Tom, Ricard is u nog steeds dankbaar, en heeft jaja… terug bastaardkleintjes… (zeker 

dat je geen interesse hebt?).  

Chloë en Florian, of ook wel gekend als Floë ;-) jullie zijn ‘heweldeh’, altijd klaar om iets 

leuks te doen en de meest directe link tussen verschillende vriendengroepen ;-). Jullie 

fantastische reizen zijn enorm inspirerend en geven steeds weer zin om andere stukken van de 

wereld te ontdekken  en! We moeten zeker eens gaan wandelen met Ipa, … euhm, Noora, 

Stella, Milo en Ellie .  

Bruno, Elodie, Emily, Diane, Maarten, Branko, Niel, Garin, Debora, Maro, Rebecca, 

Martine, Yi, Emilie, Jenske… ik ga zeker meer tijd maken om af te spreken! Om te beginnen, 

Diane en Evert! Jullie trouw! Ik kijk er heel erg naar uit!  Super spannend!  Elodie, ik kom 

zeker eens naar het verre Nederland op bezoek, stapschoentjes aandoen aan kleine Clara en 

GAAN  (heel benieuwd naar de gekke bekken ;-) ), en Debora, ik passeer zeker ook in het 

verre Limburg voor de kleine Yarah . Emily, we gaan dan eens eindelijk eens die koffie gaan 

drinken he … gekoppeld aan een zoniënwoud-wandeling??? 

DT, DTa en DTh! Ja… daar zijn geen woorden voor…  de uitbreiding van de familie is 

begonnen :-D dus DT(a) in Argentinië… we komen ZEKER op bezoek! En kunnen er weer een 

prachtige DT-reis aan breien!!!  of nog wat reisjes in Europa met de hondjes . 

En dan de andere families… :-D Mama, papa, super erg bedankt om mij altijd te steunen en 

steeds opnieuw naar mijn mussen-verhalen te willen luisteren  Geniet van jullie reis!! we 

maken er achteraf een leuk feestje van  Brrroerr en zusie  super dat jullie er altijd zijn voor 

de kleine zus, ik zie jullie (ja pink dat traantje maar weg ;-) ) super graag!!! Peter Peter, Mieke, 

bedankt voor alles, EN voor het organiseren van de neven en nichtenfeestjes, spijtig dat het 

dees jaar niet lukte om er te geraken.  

En dan, iemand die zeker niet mag ontbreken in het lijstje… Gwij… (An en Frank (bijna 

man en vrouw), bedankt om ons samen op veldwerk te sturen ;-) …) ge zijt echt een ‘grote’ 

schat, ik zie u suuuuper graag  !! Ik ben enorm blij dat we elkaar hebben leren kennen en 

samen verder kunnen  en zalig dat er nog eens een super leuke familie aan u hangt ook .  

 

 


