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Abstract—Differentiation of interval-valued functions is an
intricate problem, since it cannot be defined as a direct
generalization of differentiation of scalar ones. Literature
on interval arithmetic contains proposals and definitions for
differentiation, but their semantic is unclear for the cases in
which intervals represent the ambiguity due to hesitancy or
lack of knowledge. In this work we analyze the needs, tools
and goals for interval-valued differentiation, focusing on the
case of interval-valued images. This leads to the formulation
of a differentiation schema inspired by bilateral filters, which
allows for the accommodation of most of the methods for scalar
image differentiation, but also takes support from interval-
valued arithmetic. This schema can produce area-, segment-
and vector-valued gradients, according to the needs of the
image processing task it is applied to. Our developments are
put to the test in the context of edge detection.

1. Introduction

Due to technical and economic reasons, digital sampling
has become the most common way to measure and store
continuous facts, e.g. visual or acoustic information. The
discretization processes faced by the original information
necessarily lead to missing (or losing) a portion of it, simply
because the range of possible measured values is limited to
a predefined set. In the case of digital imagery, the loss of
information inherent to the image model (e.g. the limitation
in the number of tones) is combined with quality losses alien
to it (e.g. lens noise or broken cells in a sensor). This fact
holds for any possible coding or compression schema used
in the representation of the digital image. Hence, automatic
processing tools must deal with some uncerainty in the
visual data.

Uncertainty in digital images is often considered in
image processing literature, although its modelling is com-
monly implicit or simply missing. In some cases, e.g. when
the uncertainty is believed to be due to noise, literature
exposes explicit models, often in the shape of statistical
distributions. There is also authors using fuzzy set theory
to understand image data throughout the prism of hesitancy,
e.g. modelling/training membership functions [1], [2], which

allow automatic procedures to adapt to the conditions of
each specific image. This can be seen as an implicit adap-
tation to the uncertainty of the initial data, even if that
uncertainty is not explicitly enunciated. Also, some authors
have simply developed robust tools and methods which
overcome the potential problems due to uncertainty (as
noise, contamination, heterogeneous or damaging lightning)
not properly modelling it [3], [4].

In this work we do not intend to produce uncertainty
models, or operators/procedures able to cope with it. Instead,
we intend to convert original (scalar) images into a represen-
tation that includes, in an explicit manner, the uncertainty. In
this way, we do not consider the uncertainty to be alien to the
image model, but intrinsic to it. More specifically, we recall
an interval-valued representation of images, aimed at captur-
ing the inherent (and unavoidable) ambiguity in the imagery
acquisition process. Then, we tackle the computation of par-
tial derivatives on such representation of the imag. We focus
on the construction of gradients (or gradient estimations),
and present a bilateral schema [5] to compute the partial
derivatives of an interval-valued image. In our proposal,
such derivatives are represented by intervals, leading to an
area-valued gradient. We analyze this representation of the
gradient, and also study how to process it to express the
gradient as the combination of an orientation and an interval-
valued magnitude. The utility of the interval-valued images
and our gradient extraction schema it tested in the context
of edge detection. Specifically, we compare the performance
of the bilateral differentiation schema in both scalar- and
interval-valued image. The performance of such filters in
both scalar and interval-valued images is studied on a well-
known dataset.

The remainder of this work is organized as follows. In
Section 2 we introduce the generation of interval-valued im-
ages by considering the measurement error in digital images,
and we also recap some considerations on the differentiation
of interval-valued image data. Then, in Section 3 we present
a method to extract gradients from interval-valued images
using a bilateral schema. Our developments are applied
in Section 4 to edge detection, one of the most recurrent
usages of gradients in image processing. A brief discussion
is included in Section 5.
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2. Uncertainty in digital imagery

2.1. Image representation

In this work we consider images to be matrices of M
rows and N columns, so that Ω = {1, . . . ,M}×{1, . . . , N}
is the set of their positions. Given an image I , the value of a
pixel at a certain position p ∈ Ω, is referred to as I(p) (e.g.
may an image I be grayscale, then I(p) ∈ {0, . . . , 255}).
Moreover, we denote as n(p) ⊂ Ω to the set of positions in
a 3×3 neighbourhood centered at p, including itself. Unless
p belongs to the margin of the image, we have |n(p)| = 9.

2.2. Interval-valued images

Digital images, as any product of a discretization pro-
cess, compel the analysis of their ambiguity and/or un-
certainty. Common operations in image processing are, at
least partially, imposed by this fact. Regularization (a.k.a.
smoothing), for example, aims at producing a version of
the image free from imperfections and artifacts not due to
the visible scene. Fuzzy set theory, both in a narrow or
wide sense [6], appears as a natural tool for the analysis
of ambiguity in images. Operators and principles of fuzzy
set theory are indeed used at almost any step of image
analysis, from image interpretation [7], [8] to feature post-
processing [2]. The techniques used for such proposals are
diverse, and include, e.g., fuzzy inference systems [2], fuzzy
morphology [9] and fuzzy peer groups [10]. The variety
of techniques has naturally lead to the representation of
images and visual features using Fuzzy Sets (FSs), but also
generalizations as Interval-Valued Fuzzy Sets (IVFSs) [11]
and Type-2 Fuzzy Sets (T2FSs) [12].

In [13] we propose an interval-valued representation of
images, in an attempt to model the inherent ambiguity in
the image acquisition process. Our idea roots on the fact
that, although relevant exceptions hold, digital images are
the result of a discretization of the real world. That is,
images are discrete, sampled versions of continuous facts,
e.g. lightning (conventional photography) or echoes to radio
signals (SAR imagery). This discretization involves several
sources of uncertainty or ambiguity. Most of them are con-
textual, in the sense that they could be present (or not) in an
image, depending on the situation the image was acquired at
(e.g. noise, distorting illumination or shading). Additionally,
there is a source of uncertainty which is inherent to the very
nature of digital images: the measurement error. The image
acquisition process imposes the discretization in two aspects,
spatial and tonal, each producing a measurement error:

• Spatial error: Surfaces and objects visible in an
image are continuous in reality, and their boundaries
can hardly coincide with those of the pixels in a pixel
grid. In fact, often even humans disagree on which
object does a pixel belong to. Due to the pixel grid
model, the digital representation of a scene might
be misplacing any object, or part of an object, by 1
position in any direction.

• Tonal error: Pixel values are taken from a finite
number of tones. There are usually 28 tones in a
grayscale image and 224 in a RGB one, but, even
using more bits per pixel, there is always a limit
in the tonal precision. Hence, the measure error
associated to the tone of the pixel is ± 1 tone.

Scalar images are not convenient to represent both errors
(indeed, not even one of them). We propose in [13] an
interval-valued representation of images, which accounts
for spatial and tonal errors in an explicit manner. The
construction is straightly driven from the above analysis of
the measurement error. Let I be a grayscale image. The
image IIV generated from I is given by

IIV(p) =

[
max(0, min

q∈n(p)
I(q)− 1),

min(Tmax, max
q∈n(p)

I(q) + 1)

]
, (1)

where Tmax represents the maximum tonal value in the
image representation. In Eq. (1) , each p ∈ Ω is assigned
an interval encompassing the brightness values in a 3 × 3
neighbourhood (assuming the spatial error), modified by
± 1 tone (because of the tonal error). The interpretation
of this interval is dual. If considering that there exists
one true value per pixel, then the interval embraces all
of the possible values. Alternatively, if understanding that
the actual value of a pixel cannot be scalar, and no single
value can represent the information in that area of the scene,
then the interval represents such range of tones. Images IIV,
generated as in Eq. (1), are referred to as Interval-Valued
images (IV images).

Figure 1 displays the classical House image, together
with the upper and lower bound of its interval-valued rep-
resentation. Note that the upper and lower bounds of the
IV image are similar to, e.g., dilated and eroded versions of
the image [14], respectively. Analogously, the IV image is
similar to that produced with upper-lower constructors, as
presented in [11]. Other practical setups, or image acquisi-
tion processes, can also lead to images in which the tonal
representation at each pixel is accommodated as an interval.
High Dynamic Range (HDR) procedures [15], [16], as well
as some multi-sensor satellital imagery (see, e.g. [17]) are
based on the fusion of multiple tonal representations at
each pixel, which could naturally lead to an interval-valued
representation. Nevertheless, the semantics of the interval-
valued information in such cases are completely different.

The construction of IV images is robust against some
types of noise (as Gaussian one), but also quite sensitive to
some other kinds of contamination (as impulsive or salt-
and-pepper). Still, dealing with external sources of con-
tamination is not the main goal of IV images, since they
only intend to capture factors inherent to the image model.
Interval-valued images provide, in our opinion, a truthful
interpretation of the original images, since they use no
information other than that in the scalar image. Hence, there
is a need to develop basic processing tools and techniques to
make them eligible for well-known image processing tasks.
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(a) Original Image (b) IV image

Figure 1. The House image and the lower and upper bounds of its interval-
valued representation, constructed as in Eq. (1).

2.3. Image differentiation

Differentiation is one of the most common operations
in signal processing, in general, and image processing, in
particular. However, images are meant to be discrete, in both
spatial and tonal range. As a consequence, from a theoretical
point of view, image differentiation is not possible or more
precisely, it is ill-posed in the sense of Hadamard [18]. How
to deal with this ill-posedness has been a recurrent area
of research in past years, often leading to regularization
schemes which minimized the effect of signal discretiza-
tion [19], [20]. Note that regularization implies a certain
loss of information, but when it comes to image processing,
discrete differences intended to approximate the derivatives
yield ”worse” results when refining the grid [21].

Differentiation schemes for image processing attempt
to compute the derivatives of the underlying signal, and
hence, in a sense, focus on solving the problems due to
discretization [22]. Several studies on the topic have been
presented and, at least from a practical point of view, widely
accepted [23], [24]. Generally, they involve both a regular-
ization schema to avoid spurious artifacts in the original
signal and a differentiation filter (kernel) to compute local
differences. Regularization is typically based on Gaussian
filters, since they are the only ones not producing new min-
ima or maxima in the first derivative of a signal [20], while
differentiation is often based on antisymmetric filters [25].

Image differences, as representatives of the underlying
signal derivatives, are used in a range of tasks and applica-
tions. For example, to characterize a range of visual features,
including image primitives (as Marr’s primal sketch [22],
[26]), low level features (as textures or boundaries) and
large scale-structures (as ridges in fingertip prints). Also,
they serve as support information for mid- or high-level
tasks as segmentation, object tracking or image inpainting.
All of such tasks are grounded on the analysis of the
local variations of the image. Very interestingly, the non-
homogeneous interpretation of local variations has subse-
quently rendered into variable representations. Even if re-
stricting to first order differentiation, we find a range of
representations in image processing literature. For example,
active contours (a.k.a. snakes [27], [28]) are evolved and
fitted using gradients, which capture the orientation and
strength of the locally-maximal image variations. Diffusion
processes were introduced with very simple differentiation
models (as the 4-point model by Perona and Malik [29]),

but quickly evolved to make use of tensors. Many diffusion-
based processes (as image reconstruction [30], [31]) require
tensorial descriptors in order to consider the anisotropy
of local variation. The extraction of semi-local features,
like texture, can be exclusively based on gradient direction
analysis [32], making it unnecessary to compute the strength
of the image variation. Interestingly, image differentiation,
as a mean to study image variation, is widely accepted but
has rendered in a variety of mathematical formulations.

There exists three main different embodiments of the
idea of first order differences in an image, according to how
they represent such differences:

• Total variation.- It is a scalar-valued measurement
of the amount of tonal change at each pixel of the
image1. The total variation does not hold informa-
tion on the direction or directions in which image
changes, what greatly eases its computation. Exam-
ples of procedures to compute total variation include
SUSAN areas [34] or mathematical morphology-
based operators [35].

• Gradient.- Gradient maps are the most common
representation of image variation, but fall short in
providing necessary information for certain tasks.
Specifically, they hold no information on the vari-
ation orthonormal to that of the gradient itself. The
popularity of the gradients is due, in a large portion,
to the fact that most of the gradient characterization
filters in the literature were designed for 1D signals,
and relied on the straight projection of such signals
in the secondary dimension [36], [37]. This simpli-
fication made it unnecessary to study the anisotropy
of the signal, i.e. the variation of the image in the
orthonormal direction.

• Tensor.- It is usually constructed from the first
order partial derivatives in two orthogonal directions.
Whichever directions are chosen, eigenvector anal-
ysis can lead to the characterization of the image
variation in two or more directions. Although tensors
are a less popular representation than gradients, they
allow for the interpretation (and measurement) of the
anisotropy of image variations, and hence have had
great relevance for diffusion-based processes.

Each of these three representations of image differences
is obtained by specialized means, but they usually involve
some kind of local contrast measurement (for total varia-
tion), or convolution of the image with antisymmetric [25],
and often steerable [38], filters (for gradients and tensors).

The differentiation problem for standard (scalar) images
is well-studied, and its solutions have been ported to other
types of images. For example, to multichannel images, in
which pixels take up vectorial information. In such cases, the
gradient at each pixel becomes a Jacobian matrix [39], [40],
hampering its geometrical interpretation [41]. Our interest,
however, lies on IV images.

1. Total variation is completely different from the notion of the Laplacian
of the image (∇2), which has also been used extensively for image
analysis [22], [33].
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3. Gradients on interval-valued images

In this section we study the characterization of gradients
on IV images. The reason for restricting to gradients, avoid-
ing total variation and tensors is twofold: first, the limited
space; second, the fact that total variation measurements can
be extracted from the gradients, e.g. from their magnitude,
while tensors are indeed constructed by combining several
oriented differences.

The gradient of a signal can be seen as the n-dimensional
extension of the concept of derivative. It is mathematically
modelled as the vector containing the first order partial
derivative in n orthogonal directions. In this sense, being
S : R

n → R any signal, its gradient at some position
i = (i1, . . . , in) ∈ R

n is given by

∇S(i) =

(
∂S(i)

∂x1
, . . . ,

∂S(i)

∂xn

)
,

with (x1, . . . , xn) representing a base of vectors in R
n.

Since image are discrete, the derivatives composing the
gradient are approximated by discrete differentiation. Al-
though several different strategies are applicable, most of
the authors use specialized convolution filters for the task.
The study of such operators is vast and detailed [23], [42].

To the best of our knowledge, no study has been per-
formed on the differentiation of discrete interval-valued sig-
nals representing uncertainty. Some works have dealt with
interval-valued differentiation (under different conditions),
significant examples being those by Moore [43], Moore et
al. [44] and Schöder [45] on interval-functions, or more
recently, Lupulescu [46]. A review on interval analysis,
which also covers differentiation, was presented by Alefeld
and Mayer [47]. However, when it comes to discrete signals,
it is also possible to extend well-known techniques on scalar-
valued images to the interval-valued setup, as recap in this
section.

A straightforward strategy for IV image differentiation
consists of applying (scalar) differentiation on the upper and
lower bounds of the intervals individually, as such bounds
can be seen themselves scalar-valued images2 (see Fig. 1). In
our opinion, this strategy stems from considering each bound
of the interval as independent information, what collides, at
least partially, with the main idea behind IV images. Hence,
we propose to evolve classical differentiation methods to
allow for the introduction of interval-valued operators.

For the sake of compactness, we denote the vertical

and horizontal partial differences Ih(x, y) = ∂I(x,y)
∂x and

Iv(x, y) = ∂I(x,y)
∂y , respectively. If opting by computing

differences with filters, then Ih = I ∗Dh and Iv = I ∗Dv ,
where Dh and Dv are convolution filters designed for differ-
entiation. Note that, in most cases, Dh and Dv are rotations
of each other.

2. Note that the gradient maps at each of the bounds do not necessarily
cast the bounds of the interval valued map.

For a given p = (x, y), p ∈ Ω, we have3

Ih(p) =

∫ ∞

i=−∞

∫ ∞

j=−∞
I(p+ (i, j)) ·Dh(i, j) , (2)

what becomes, in a discrete universe,

Ih(p) =

∞∑
i=−∞

∞∑
j=−∞

I(p+ (i, j)) ·Dh(i, j) . (3)

Let Dh be antisymmetric w.r.t to the vertical axis, i.e.
let Dh(i, j) = −Dh(−i, j) for any (i, j) ∈ R

2. Following
the rationale in [25], we can rewrite (3) as:

Ih(p) =

∞∑

i=0

∞∑

j=−∞
(I(p+(i, j))−I(p+(−i, j)))·Dh(i, j) . (4)

Interestingly, we can reformulate Ih(p) following the ideas
behind bilateral filters [5]:

Ih(p) =

k∑

i=0

k∑

j=−k

d(I(p+ (i, j)), I(p+ (−i, j))) ·w(i, j) , (5)

where d is a measure of dissimilarity between pixel tones
and w quantifies the influence of a pixel displaced (i, j).

In order to compute a gradient from any two orthogonal
derivatives, e.g. Ih and Iv , filters D∗ need to be steerable.
Otherwise, the filtering process has to consider any possible
orientation in [0, 2π[, retaining the response with greatest
magnitude [38].

The derivative of a signal I in direction θ ∈ [0, 2π[ at
p ∈ Ω, using the formulation in Eq. (5), is approximated as

Iθ(p) =
∑

q∈Rθ

d(I(p+ q), I(p+m(q, θ))) · wθ(q) , (6)

where Rθ = {v ∈ Z
2 | v · iθ > 0}, with iθ the unit vector

in the orientation θ, is the positive region of Z
2 in such

direction; m(v, ρ) is the mirroring of position of v w.r.t.
the axis perpendicular to ρ; and wθ is the rotation of the
weighing function w according to θ.

Since the notion of steerability, as well as that of con-
volution, are lost in Eq. (5), the gradient of the image I at
p is that in the direction ϕ = argmaxθ Iθ(p). The values Ih
and Iv can be thereafter obtained by trigonometry.

Bilateral filtering for first order differentiation, as in
Eq. (6) can be applied to IV images. Firstly, sums and scalar-
to-interval products are defined in interval arithmetic [44].
Secondly, the function wθ is oblivious of the value hold by
each pixel, and so can be identical for scalar- or interval-
valued images. Alternatives for wθ include the positive part
of well-known differentiation filters, but also inverted dis-
tance functions, zero-centered probability distribution func-
tions (e.g. the Gaussian function), or any other function
tending to zero4. Thirdly, regarding the function d, it can
be easily ported from a scalar-valued ((R)2 → R) to an IV
setup ((L([0, 1]))2 → L([0, 1]), options ranging from inter-
val arithmetic to comparison operators (as IV REFs [48]).

3. The computation of Iv is analogous, and hence omitted.

4. The weighing function wθ , as any convolution filter, needs to tend to
zero, otherwise the result is always infinite.
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Figure 2. Visual representation of the area gradient and its conversion to
a segment. The area is arbitrarily assumed to be in the first quadrant, but
the intepretation analogous in any other quadrant.

The formulation Eq. (6) is, hence, a convenient approach
to tackle differentiation on IV images. However, two ques-
tions related to the differentiation schema remain open. First,
how to identify the maximum gradient or, more precisely,
the direction in which the difference is maximum. Second,
once that direction is computed, how to interpret the IV
components of the gradient. Both are solved by computing
the center of gravity of each oriented difference.

Figure 2 displays a schematic representation of the in-
terpretation of Iθ(p) in IV images. Firstly, the center of
gravity c for each orientation θ, i.e. cθ, is given by the Kα

operator, specifically by K0.5(Iθ(p)). Note that the angle θ
maximizing ||cθ||, with || · || the Euclidean norm, is kept as
gradient orientation. Secondly, the gradient of an IV image
is not a vector in R

2, but an area instead. This area can be
seen as a projection of the uncertainty about the intensity of
the pixels in the image. Since the initial data is unreliable,
the uncertainty is propagated when measuring local features
(in this case, the gradient). In case the center of gravity
is the origin, the gradient has area zero. Also, if the area
takes more than one quadrant, we only consider the area
corresponding to the quadrant in which c is.

In order to ease the geometrical interpretation of the
gradient of an IV image, we convert the area gradient into a
segment gradient. That segment can be dually defined as (a)
the segment with orientation θ and whose limit points are
defined by their distance to the origin (the interval-valued
magnitude) or as (b) the intersection of the gradient area and
the line passing by the origin and intersecting the horizontal
axis with angle θ. Note that the magnitude itself can be seen
as an IVFS representation of the image total variation.

To sum up, the gradient at each position p ∈ Ω of an IV
image I is expressed as a segment determined by the angle

ϕ = argmaxθ∈[0,π[ K0.5 (Iθ(p)) ,

and the IV magnitude obtained by Iϕ(p) (as in Eq. (6))
after performing the elementary interpretation of the neg-
ative values (negative values in Iϕ(p) stand for decrease
in direction ϕ or equivalently, increase in direction ϕ+ π).
The segment-valued gradient can be turned into a vectorial
gradient by aplying the Kα operator to its magnitude.

4. Experimental results

One of the most direct applications of gradient extraction
is edge detection. The reason stems from two facts. First,
the magnitude of the gradients can be used as cue for the
discrimination of edge and non-edge pixels5. Second, the
orientation of gradients can be used to perform 2D non-
maxima suppression [50], in order to thin the edge segments.

The aim of this experiment is to check the effect of
using IV images for edge detection. This section presents
a comparison of two edge detection methods applicable to
both scalar and IV images. The difference between them
is the spatial term wθ used in Eq. (6). The first method
uses the zero-th order Gaussian kernel, while the second
one uses the zero-th order Infinite Symmetric Exponential
(ISE) kernel (it is, hence, computationally equivalent to the
first order Shen-Castan filter [37]).

4.1. Algorithmic details

The edge detection procedure used in this experiment,
according to the Bezdek Breakdown Structure [51], is as
follows: Gaussian regularization for conditioning, gradient
extraction as in Section 3, thinning using non-maxima sup-
pression on the gradient map for blending and hysteresis
for scaling. The thresholds for hysteresis are set using the
double bowstring technique [52], which in standard con-
ditions of the histogram, is the result of two consecutive
applications of the Rosin method [53].

The procedure has two different parameters: the standard
deviation used in the Gaussian filter for regularization that
used in the functions for the spatial term. We refer to the
former as σ1, while the latter is σ2 (for first order Gaussian
kernels) or p (for the exponent of ISE kernel). Note that σ2

and p are both used to control the size of the differentiation
filter. However, their interpretation is opposed: while greater
σ2 leads to (spatially) larger convolution filters, greater p
leads to smaller (equivalently, higher-frequency) filters. In
this experiment we set σ1 = 2, while the size-controlling
parameters take values σ2 ∈ {2, 3, 4} and p ∈ {0.25, 0.5, 1}.

In order to threshold and binarize the gradients of IV im-
ages, the IV gradient needs to be converted to a regular
(vectorial) gradient. This is done by keeping the orientation
of the gradient, and using the Kα operator, with variable α,
to convert the IV magnitude to a scalar magnitude.

The code for this experiment can be freely accessed as
part of the Kermit Image Toolkit (KITT) [54].

4.2. Quantification of the results

The evaluation of edge detection results is an open
debate [55]. For this work we take edge detection as a
binary classification problem, which can be evaluated in
terms of success and fallout. We compare the output by

5. Some authors have elaborated on non-linear mappings to model edge
cues from gradient magnitudes [3], [49], but gradient magnitudes are often
used, with no further processing, as single cue for edge discrimination.
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an edge detection method with the human-made ground
truth (GT) [56]. Each pixel in the candidate edge image
is classified as true positive (TP), true negative (TN), false
positive (FP) or false negative (FN).

The classification of each edge pixel, given a GT image,
needs to consider a certain tolerance in the position of the
same edge in two different images. An edge displaced from
its true position should not be penalized as much as if it was
completely missing. In order to solve this problem, we use
a one-to-one pixel validation algorithm to validate the edge
pixels in the candidate edge image w.r.t. those the GT one.
This matching allows some spatial tolerance (in our case,
up to 5 pixels, approx. 1% of the image diagonal); hence,
an edge pixel slightly displaced from its true position can
be validated, and consequently taken as a TP. The pixel-to-
pixel matching is carried out using the validation technique
by Estrada and Jepson [57]. This validation can be expressed
as a mapping ψ : Ω × Ω → Ω so that ψ(A,B) ⊆ A is the
subset of boundary pixels in A that are validated w.r.t. B.
From ψ, precision and recall are computed as

PREC =
|ψ(Ecd, Egt)|

|Ecd| and REC =
|ψ(Egt, Ecd)|

|Egt| .

where Ecd and Egt are the candidate and GT images, re-
spectively. An overall quality measurement of the a candi-
date boundary image is given by the well-known Fα=0.5

measure, i.e. the harmonic mean of PREC and REC.
In this experiment we have used the test subset of the

Berkeley Segmentation Dataset (BSDS500) [58], containing
200 images, together with several hand-labelled GT images.
For each GT image we keep the triplet for which F0.5 is
maximal. That is, we compare the candidate image with
each of its GT images. Then, the triplet (PREC,REC,F0.5)
having the greatest F0.5 is considered as the evaluation of
the detector for that candidate image.

4.3. Results

The results measured in the experiments are included in
Fig. 3. Note that each method, when applied to IV images, is
displayed as a plot, since they depend on the α value used to
convert the segment gradient into a vector in R

2. Then, the
performance of the methods, when applied to scalar-valued
images, is represented as a dot. This is done in order to avoid
an excess of visual information. In any case, the background
lines in the plots allow for easy scalar to interval-valued
comparison.

The first observation is that both methods, obtain similar
results, despite the use of rather different functions wθ.
This observation does not only hold in a general basis,
but also in detailed pairwise comparisons. For example,
similarities can be found between the performance reached
by Gaussian kernels with the smallest σ2 and those by
exponential kernels with the greatest p (both plotted in red).

Another fact to be noticed in Fig. 3 is that the perfor-
mance of the procedure is, regardless of its configuration,
rather stable. Regarding PREC and REC, the differences
are clear, with (spatially) larger filters obtaining greater

precision and lower recall. This is concordant with stud-
ies in the literature [59], and is due to the avoidance of
noise and texture, which comes coupled to missing some
high-frequency edges. A related observation stems from the
comparison of the PREC and REC values when using scalar
or IV images. Interestingly, using IV images induces an
increase of the precision, as well as a decrease of the recall.
This is surprising, since the use of IV images increase the
amount of information taken into account in the gradient
computation at each position, what seems to be conceptually
similar to enlarging the filters themselves. However, the
induced effect is the opposite.

Regarding the F0.5 measure, the tested methods have
relatively similar performances, all of them in [0.45, 0.53].
This leads to a twofold interpretation. On the one hand, the
use of IV images does not have a significant impact in the
results of the proposed edge detection methods. From this
point of view, IV differentiation can be seen as pointless, or
at least its usability can be said to be unproven. However,
on the other hand we have that our procedure is able to
handle a truthful version of the images (because of being
discrete measurements, images should be interval-valued),
with no loss of performance. This might indicate that we
are prepared to take the IV images as starting basis for
further developments. In our opinion, both interpretations
are backed up by the results in Fig. 3. Nevertheless, it
is worth noting that (a) the representativity of the present
experiment is limited to the scope of edge detection, while
gradients can be applied to many other tasks; also, that (b)
there is a number of external factors, mostly due to the other
procedures in the edge detection process, which could have
a certain impact in the results, and might distort the analysis.

5. Conclusions

We have analyzed the role of the measurement error in
digital images, proposing an interval-valued representation
of the image to overcome it. We understand that the IV
images, as constructed in this work, are a truthful represen-
tation of the actual information in a scalar image. Moreover,
with this representation, we model the measurement error
which, due to the nature of digital imagery, is embedded in
the initial data. We have also analyzed the challenges IV
images pose for differentiation, which, despite ill-posed, is
ubiquitous in image processing. In this work we propose
a bilateral schema for first order IV image differentiation.
This schema has produced two edge detection methods for
IV images, based on Gaussian and infinite symmetric expo-
nential spatial kernels, respectively. Our experimental setup
analyzes the differences in the performance of these methods
on scalar (standard) and IV images. From the results in this
experiment we can infer that the performance of the edge
detection methods do not vary significantly when using IV
images. However, we consider that our construction offers
new opportunities to design tailor-made operators for IV im-
ages, which might fully exploit its enhanced representation
of hesitancy.
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Figure 3. Results on the proposed edge detection procedure using two different families of spatial term functions, applied on both IV and scalar-valued
images. Each line corresponds to a different parameterization on IV images, while dots represent the performances on scalar-valued images. Note that the
dots corresponding to the results on scalar-valued images are duplicated to ease the visual analysis.
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