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Abstract

Introduction

Photonic reservoir computing has evolved into a viable

contender for the next generation of analog computing

platforms as industry looks beyond standard transistor-

based computing architectures. Integrated photonics reser-

voir computing, particularly on the Silicon-on-Insulator

platform, presents a CMOS-compatible, wide-bandwidth,

parallel platform for implementation of optical reser-

voirs. A number of demonstrations of the applicability

of this platform for processing optical telecommunica-
tions signals have been made in the recent past. In this

work, we take it a stage further by performing an ar-
chitectural search for designs that yield the best per-

formance while maintaining power efficiency.

Methods

We present numerical simulations for an optical circuit

model of a 16 node integrated photonic reservoir with

the input signal injected in combinations of 2, 4, and 8

nodes, or into all 16 nodes. The reservoir is composed of
a network of passive photonic integrated circuit compo-

nents with the required nonlinearity introduced at the

readout point with a photodetector.

The resulting error performance on the temporal
XOR task for these multiple input cases is compared

with that of the typical case of input to a single node.

We additionally introduce for the first time in our sim-

ulations a realistic model of a photodetector. Based on

this, we carry out a full power-level exploration for each

of the above input strategies.

Results and Conclusions

Multiple-input reservoirs achieve better performance and

power efficiency than single-input reservoirs. For the

same input power level, multiple-input reservoirs yield

lower error rates. The best multiple-input reservoir de-

signs can achieve the error rates of single-input ones

with at least 2 orders of magnitude less total input

power. These results can be generally attributed to the

increase in richness of the reservoir dynamics and the

fact that signals stay longer within the reservoir.

If we account for all loss and noise contributions,

the minimum input power for error free performance

for the optimal design is found to be in the ≈ 1mW

range.

Keywords Reservoir Computing · Integrated Pho-

tonics · Photonic Reservoir Computing · Reservoir

Architectures

1 Introduction

The persistent increase in demand for systems that can

process the massive amounts of data available today

has strained the currently employed transistor-based

von Neumann architectures. Simultaneously, the grow-

ing demand for high-throughput, high-fidelity telecom-

munications systems has generated significant imple-

mentation hurdles for the associated signal processing

systems.



.

To address the compounding challenges for these

computation and communication systems, a major de-

sign revolution is underway for the next generations

of these systems in the IT research world. The fran-

tic search for potential solutions has initiated a revisit

to analog computation platforms but with the aim of

combining them with the state-of-the-art in large-scale

integration technology. These platforms exploit the in-

herent dynamics of certain physical systems for pro-

cessing and/or computing. Of these, prominently un-

der consideration are biologically inspired techniques,
and particularly brain-inspired computing approaches

that employ artificial structures that mimic the brain’s

neural computational semantics.

Reservoir computing (RC) is a brain-inspired com-

puting approach that initially emerged as a way around

the intricacies associated with correctly training recur-

rent neural networks [1–3]. Classical software RC in-

volves setting up a large randomly initialized nonlinear

dynamical system (the reservoir) – usually an artificial

neural network – that is tuned into a specific dynam-

ical regime to allow for the following three conditions:

separability of the inputs, generation of similar out-

puts for similar inputs and some form of finite memory

of the previous inputs. Under these circumstances, the

states of the reservoir can be linearly combined, follow-

ing task-imposed optimization criteria, to extract the

desired outputs for the specified inputs.

Beyond the initial software implementations, RC

has evolved into a way to enable computing with phys-

ical nonlinear dynamical systems. Examples of the con-

cept applied to mechanical systems, memristive sys-

tems, atomic switch networks, boolean logic elements
and photonic systems can be found in [4–8]. Photonic

RC particularly presents a number of benefits compared

to e.g. electronics, as it offers a large bandwidth and is

inherently massively parallel.

To date, experimental demonstrations of photonic

reservoirs routinely achieve state of the art performance

on various information processing tasks. Implementa-

tions based on a single nonlinear node with a delayed

feedback architecture have proven that photonic RC

is competitive for analog information processing [9–

17]. Moreover, integrated photonic reservoirs can push

computation speeds even higher for digital informa-

tion processing. The performance of integrated pho-

tonic reservoirs has been studied numerically for net-

works of ring resonators [18–22], networks of SOAs [7],

and experimentally with networks of delay lines and

splitters in [23]. Integrated photonic reservoirs are par-

ticularly compelling, especially when implemented in

the CMOS platform as they can take advantage of its

associated benefits for technology reuse and mass pro-

duction.

A recent development in the design of RC systems

is the realization that for certain tasks that are not

strongly nonlinear, it is possible to achieve state-of-

the-art performance using a completely passive linear

network, i.e., one without amplification or nonlinear el-

ements. The required nonlinearity is introduced at the

readout point, typically with a photodetector [23]. The

work discussed in this paper is also based on this ar-

chitecture. Aside from the integrated implementation

introduced in [23], the passive architecture has been

adapted to the single node with delayed feedback ar-
chitecture in form of a coherently driven passive cavity

[9].

With regards to general task suitability, photonic

RC is particularly beneficial when the signals to be

processed are already in the optical domain. This is

for example true for tasks oriented towards fiber-optic

based telecommunication systems as is the case for bit-

sequence processing tasks such as logical temporal XOR,

AND, OR; header recognition; and equalization. For

these scenarios, the reservoir manipulates the light sig-

nals directly without the need for any extra electrical-

optical and/or optical-electrical conversions. This setup

could lead to processing speed-ups and overall reduction

in system complexity. Furthermore, without the extra

EO conversions, as is the case with passive reservoirs,

there is a potential power consumption advantage since
the computation itself does not require external energy.

Aside from performance characterizations, full adop-

tion of an RC scheme for a particular application re-

quires a study of the power efficiency benefits of such a

deployment. The most complete energy efficiency cal-

culation for an optical reservoir can be found in [10]

for a fully nonlinear reservoir based on a laser with

feedback. The authors reported a power consumption

of 10mJ per bit for the speech processing task. In [9],

a minimum input power of 0.57mW at the input is re-

ported for the coherently driven passive cavity reservoir

with a fiber loop. Our analysis shows that the total in-

put power requirements of the optimal multiple-input

reservoir is also the ≈ 1mW regime. However, a full de-

termination of the power requirements is strictly tied to

the implementation substrate, and there is no straight-

forward way to make a one-to-one comparison between

the different realizations.

While the majority of our recent work on passive

integrated photonic RC focused on single-input reser-

voirs, our previous paper on passive integrated pho-

tonics [23] already introduced the idea that it may be

beneficial to inject multiple copies of the input signal
into the reservoir. However, only a very specific case



of presenting the input to all nodes with different ran-

dom phases is discussed. The work presented here is

a detailed investigation of the impact of the choice of

the number and configuration of the input nodes on

the robustness of the reservoir. Equally important, we

introduce in our numerical simulations a photodetec-

tor model at each readout node that takes into account

bandwidth limitations, as well as optical and electri-

cal noise properties encountered in real-world detectors.

With this model in place, we are able to examine for

the first time the impact of the input power level on the
performance and make conclusions about the energy ef-

ficiency of various reservoir designs.

2 Methods

2.1 Passive Integrated Photonic Reservoir Computing

The integrated photonic reservoirs typically studied in

the past are limited to planar architectures in a bid

to minimize crossings that manifest as a source of sig-

nal cross-talk and extra losses. This constrains the de-

sign space from which reservoir configurations can be

chosen. The swirl reservoir architecture, as is used in

this work, was introduced in [18] as a way to satisfy

planarity constraints while allowing for a reasonable
mixing of the input signals. A 16-node photonic swirl

reservoir is shown in Figure 1. Passive integrated pho-

tonic reservoir computing is a special form of photonic

reservoir computing that consists of a linear network of

passive photonic integrated circuit (PIC) components
with the required nonlinearity typically provided by the

readout system (an optical nonlinearity is also an alter-

native). In current passive photonic RC implementa-

tions, the photodetector, required to convert the complex-

valued reservoir states to real-valued intensities, suit-

ably serves this purpose [23].

2.2 Reservoir Model

The reservoir state update equation is given as:

x [k + 1] = W resx [k] + w in(u [k + 1] + ubias) (1)

where u is the input to the reservoir and ubias is a

fixed scalar bias applied to the inputs of the reservoir.

For an N-node reservoir, Wres is an N ×N matrix rep-

resenting the interconnections between reservoir com-

ponents taking into account splitting ratios and losses,

with phases drawn from a random uniform distribution

on [−π, π], U(−π, π). w in is an N -dimensional column
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Fig. 1 16-node swirl reservoir schematic. From here on,
nodes will be referenced following the labels displayed here.
In this particular implementation, the nodes are the locations
at which states are appropriately combined and split. They
also serve as input and detection points.

vector whose elements are nonzero for each active in-

put node. The input weights are similarly chosen from

U(−π, π).

All our previous work on integrated photonic reser-

voir computing has assumed perfect reconstruction of

the states at the readout nodes. The absolute square

value of the reservoir states (electric field values) was

used as the input for the machine learning model. In

this work, we introduce a detector model that takes

into account the responsivity, as well as various noise
contributions and the response-time limitation encoun-

tered in real photodetectors. The total noise σ2
n of the

photodetector has shot noise and thermal noise contri-

butions as follows:

σ2
n = 2qB(〈I〉+ 〈Id〉) + 4kBTB/RL (2)

where B is the bandwidth of the detector, 〈I〉 is the

photocurrent, Id is the dark current, q is the elementary

particle charge charge, kB is Boltzmann’s constant, RL

is the load impedance and T is the temperature (in K).

The first part of equation 2 represents shot noise

terms due to the input signal and the dark current,

while the last part is the thermal noise contribution due

to the detector load resistor. The bandwidth limitation

of the detector is approximated by a low-pass filter with

3dB cutoff corresponding to the detector bandwidth.
The output from the reservoir is then given as:

yout = Woutxpd (3)



where W out are the linear output (readout) weights to

be determined through training with ridge regression,

and xpd are the reservoir states after the photodetector.

Introducing this model for the detector dictates that

we pay extra attention to the receiver power levels and

in general the overall power budget of our systems, to

prefer designs that not only yield acceptable perfor-

mance, but are also energy efficient.

2.3 Single-Input RC

The most obvious way to get the signal into the pla-

nar integrated photonic reservoir is to inject it at a

single node, for example with a fiber grating coupler,

and allow it to propagate throughout the network. This

reservoir design paradigm is attractive due its straight-

forward implementation and the fact that it does not

require the use of crossings. The states for the ma-

chine learning phase are obtained by reading out each

input-output node combination. The single-input pas-

sive reservoir has been shown to reach state-of-the-art

performance for speech signal processing and bit-sequence

processing tasks [23,7]. With the same strategy, we have

more recently demonstrated signal equalization for metro

links [24].

2.4 Multiple-Input RC

While the reservoir architecture in section 2.3 is amena-

ble to the bit-level tasks outlined above, it suffers from

major drawbacks due to the inherent limitations of an

integrated photonics platform. Particularly, the losses

increase with the size of the architecture. This work

therefore seeks to look at how such an architecture

could be extended to simultaneously achieve power effi-

ciency and performance benefits. To this end, we study

architectures that seek to support these ideals. We com-

pare the performance of an architecture with the same

size as in [23], with the same total input power injected

into the reservoir but distributed over different nodes.

The experimental section will show that even when the
same power is injected into the reservoir, the increased

variation between the reservoir states contributes con-

siderably to the computing power of the architecture.

3 Simulation Results and Analysis

The reservoir states are obtained as per equation 1 by

propagating the inputs through a photonic reservoir

model implemented in Caphe photonics circuit simu-

lator [25]. The photodetector used in the simulations is

modeled based on the Alphalas UPD-15-IR2-FC pho-

todector [26] that is available in our lab. The specific

parameters used are a bandwidth of 25 GHz, a respon-

sivity of 0.5 A/W (a pessimistic value as the datasheet

value is 0.75 A/W), a dark current of 0.1 nA and a

Noise Equivalent Power (NEP) of 1× 10−15 W/
√

Hz.

This NEP corresponds to an average signal power of

1.6 nW at an SNR of 10. It should be mentioned that

the ultimate minimum power at the reservoir input will

be set by the requirements of the downstream process-

ing electronics.

In this work, each considered combination of reser-

voir initialization and input configuration was tasked

to solve the delayed XOR task. The current output bit

for this task is the XOR of the current input bit with

one ndelay bits in the past. Here we express it as:

y[n] = x[n]⊕ x[n− ndelay], (4)

where x[n] is the bit-level representation of the input

data stream and y[n] is the bit-level representation of

the output. Before injection into the reservoir, the in-

puts (x[n]) are converted from logical levels to discrete

sampled data by upsampling and pulse shaping steps.

This task was considered as it is the most difficult

of all delayed binary tasks involving only two bits. This

is the case because, in machine learning terms, XOR is
not linearly separable (see for example [27]).

For all considered input cases, the 4x4 (16 node)

reservoir architecture was used to generate the states.

This number of nodes was chosen as it is a design that is

both cost-effective to produce with multi-project wafer

runs, but also has a good performance on a number of

tasks. In all cases, the length of the interconnections

between the reservoir translates to a propagation time
of 62.5 ps, matching the current generation of available

chips.

Once the states were obtained and transformed with

the detector model, the readout was trained with a com-

bination of the Oger machine learning toolbox [28] and

the scikit-learn library [29].

3.1 Simulation Methods

We feed 10000 randomly chosen bits into the reservoir

and use the resulting states for training with 5-fold cross

validation to optimise the design parameters and yet

another 10000 for testing. We use regularized ridge re-

gression to train the linear readout. Testing is done on

the best case resulting from the cross-validation. All

reported error rates are relate to the test data. With

10000 bits for testing, error rates are reported at a con-

fidence level of about 90% [30].



3.1.1 Data Rate Studies

For the cases of single-input and multiple-input reser-

voirs, we studied the error rate of the reservoir across

multiple data rates. To match the limitations of cur-

rently available measurement equipment in our lab, we

restrict the maximal data rate to 32 Gbps. The data

stream is a NRK OOK modulated signal, which for

simulation purposes is over-sampled 24 times to achieve

sufficient simulation accuracy.

For a fair comparison between the different cases,

the same aggregate input power accross all input nodes

was used: 100 mW. Where the input was fed into more

than one node, the power was equally divided between

the nodes. Results are reported as averages accross 30

different random initialisations of the input weights and

reservoir waveguide phases (each using different ran-

domly generated bit streams.

For plotting and interpreting the results, we make

use of the the reservoir interdelay parameter rid, which

is defined as:

rid =
τbit
τid

, (5)

where τbit is the bit duration for the given data rate

and τid is the interconnection delay time, correspond-

ing to the the time it takes signals to propagate be-

tween reservoir nodes. The reservoir inter-delay param-

eter can be directly interpreted as the number of times

the bit duration fits into the reservoir interconnection

delay and can be used to identify under which regime

the current computation is being carried out.

0.0 0.5 1.0 1.5 2.0

Reservoir Interdelay[bits]

10−4

10−3

10−2

10−1

100

E
rr
o
r
R
a
te
[.
]

Input Node(s)

0

1

4

5

2

Fig. 2 Error rate vs. reservoir interdelay for various nodes
for the input to single node case. The minimum acceptable
error rate is 10−3

For the single-input simulations, we chose a repre-

sentative sample of the available nodes as dictated by
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3Fig. Error rate vs. reservoir interdelay for the different
injection strategies. Minimum acceptable error rate is 10−3

the symmetry of the swirl architecture relative to the

central loop. The error rates for different reservoir inter-

delays are given in Figure 2 for input to nodes 0, 1, 2,

4 and 5. The results show the typical single sharp min-

imum that translates into the reservoir only being able

to process signals at a single data rate. We can also

conclude that proximity of the node to the central loop

(nodes 5, 6, 9 and 10) is important for realizing low er-

ror rates on the task. Nodes 0 and 1, which are furthest

away from the central loop, have the worst error per-

formance while 4, 2, and 5, which inject either directly

into the central loop or are only one hop away, yield the

best performance.

For the multiple-input reservoir case, we consider in-

put configurations involving simultaneous injection of

the input bit stream into: 2 nodes, 4 nodes, 8 nodes

or all 16 nodes of the reservoir. The input node com-

binations with best error rates in each of the group-

ings are plotted together in Figure 3. From the plot,

we observe that in general the multiple-input reservoirs

perform better than their single-input counterparts. As

more reservoir nodes are driven, we discern the emer-

gence of an increasingly wider basin in which the error

is at or below the measurable minimum (10−3 in this

case). The all-input case provides the widest basin. A

wide basin implies more flexible architectures that can

operate at multiple data rates. To change the data rate

of operation, one simply has to re-train the reservoir

readout for that data rate.

We further checked the influence of moving to multi-

ple input reservoir configurations on the computational

power of the reservoir, more specifically its memory.
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Fig. 4 Error rate vs reservoir interdelay for the input to all
nodes case. ndelay specifies the separation,in number of bits,
of the two bits used for the XOR computation.

Here we present Figure 4 which depicts the error rates

corresponding to the single-input versus the all-input

case for various values of ndelay. In the plots, a larger

ndelay corresponds to a task that requires more mem-

ory. For example for the temporal XOR task, this sim-
ply means the current output bit is the XOR of the

current input bit with a bit much further back in time.

For the single input case, no error rates below 0.1

can be obtained for ndelay > 1. Even though for multi-

ple inputs reservoirs the performance similarly deterio-

rates with increasing ndelay, it is clear that they can be

operated for longer values of ndelay. This is because the

useful signal (with a level significantly above the noise

floor) remains present in the reservoir for a longer time.

3.1.2 Power level analysis

A key design guideline for signal processing systems for

fiber-optic telecommunications systems is to keep the

energy consumption as low as possible. In all our pre-

vious works, simulations assumed idealized detection of

the reservoir states at each detection point for the read-

out nodes. In this work, on top of the search for the

lowest error rate and robust reservoir designs, we now

also look at how power efficiency maps to the different

choices.

The data rates for the power sweeps were chosen at

the minima of the error rate versus reservoir interdelay

sweep curves (like the ones in Figure 3). The simula-

tions were repeated 10 times for each reservoir design

with different initializations.

Figure 5 shows averaged error rates plotted against

total input power.

We observe that as we increase the number of the in-

put nodes, the minimum power requirements for error-

free performance also go down. The most significant

jump in power efficiency is an approximately 2 orders
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Fig. 5 Error rate vs total input power for different injection
scenarios. The minimum measurable error, given the number
of bits used for testing, is 10−3.

of magnitude decrease for the best 4-input node combi-

nation as compared to the 1 or 2 node input combina-

tions. This can be attributed to the fact that the [5, 6,

9, 10] combination is the central loop in the swirl archi-

tecture which allows for significant signal distribution

for a small number of inputs. We also observe that in-

creasing the number of input nodes beyond 4 does not

significantly impact the power efficiency. Since each in-
put that needs to be driven incurs an additional hard-

ware cost, we can conclude that driving the central four

nodes is the most cost- and power-efficient solution.

Looking in more detail at what happens inside the

reservoir, Figures 6, 7 and 8 show the average power

intensity in all reservoir nodes for the cases of single-

node input, input to the central loop and input to all

nodes respectively. For the single-node input case, the

power decreases significantly within a few hops from

the driving node. As an example, node 8, which is just

below node 4, has more than 10 dB less power than

node 4. When all nodes are driven, the power is most

evenly distributed across all the nodes. This scenario

also corresponds to the best power efficiency (3 orders

of magnitude higher than the best single input case)

obtained in our simulations. With the power injected

in the central loop nodes only, the power efficiency lies

between the two extreme cases. In this instance, there

is still a significant subset of the reservoir nodes with

similar power levels and only the furthest nodes exhibit

a power drop of more than 5dB compared to the input

nodes.
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Fig. 6 Average power distribution over the reservoir nodes
for input to node 4.
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Fig. 7 Average power distribution over the reservoir nodes
for input to the central loop .
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Fig. 8 Average power distribution over the reservoir nodes
for input to to all nodes.

3.1.3 Discussion for optimal design

Simulation results from Sections 3.1.1 and 3.1.2 above

indicate that injection of power into the central nodes of

the reservoir, [5, 6, 9, 10], provides the best combination

of performance and energy efficiency.

Figures 9 and 10 illustrate the bounds of the errors

for the results within 1 standard deviation of average

over the repetitions for error rate studies and power

level studies respectively. Unsurprisingly, the transition
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Fig. 9 Error rate vs total input power for input to the central
swirl loop (nodes [5, 6, 9, 10]). The solid line indicates the
mean value over all repetitions while the shaded areas indicate
the error bounds within 1 standard deviation of the mean.
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Fig. 10 Error rate vs reservoir interdelay for input to the
central swirl loop (nodes [5, 6, 9, 10]). The solid line indicates
the mean value over all repetitions while the shaded areas
indicate the error bounds within 1 standard deviation of the
mean.

regions between the zones of best performance and those

with the highest error rates have the highest uncer-

tainty. The width of these regions can be shrunk by,

for example, considering a larger number of bits in the

test dataset. Concerning the minimum input power for

this design, and since the voltage required for the sub-

sequent machine learning electronics is on the order of

a few mV, the equivalent power at the input of the

reservoir is on the order of a few mW.

3.1.4 Summary

The multiple-input case performs better in terms of er-

ror rate and power efficiency. For the error rate per-

formance results, it can be argued that having power

injected at multiple locations increases the number of

possible mixing combinations of the signals. This mix-

ing is important for computation as there is a richer



signal from which the machine learning algorithm can

extract useful features.

Another equally important aspect is that with the

multiple input case a much lower power budget suf-

fices to reach the same performance. This is because

the power is more evenly spread out throughout the

reservoir which is crucial to the correct recovery of the

reservoir states as it ensures that the signal is suffi-

ciently higher than the noise at for all readout nodes.

4 Conclusions

We have presented an architectural exploration for pla-

nar, passive integrated photonic reservoir computing
systems. Error rates obtained from circuit simulations

of reservoir designs with various input configurations

establish that multiple-input reservoirs perform better
than single-input reservoirs for a larger number of data

rates. The varied mixing between the multiple copies of

the input signals with different phases translates into

increased computational power of the reservoir.

Additionally, reservoirs with multiple inputs allow a

more even power distribution landscape. This creates a

larger usable richness in the reservoir since more signals

with roughly similar amplitudes are mixed. Moreover,

multiple input-designs present a better power efficiency

and so present better odds for correct extraction of all

reservoir states, since there are more nodes that have

power that is higher than the noise floor. An added

benefit is that with more input points, the signal tends

to stick around longer in the reservoir which increases
the reservoir memory.

However, driving more nodes comes at an additional

hardware cost, because the optical signals need to be

distributed to all nodes. Since most of the improvement

in robustness and power efficiency is obtained by driv-

ing the four central nodes instead of just one, we con-

sider this to be the most promising and cost effective

solution for small reservoirs. In its current state, this

optimal design requires a few mW of input power. We
are currently investigating ways of bringing this value

down, for example, by reducing the the internal losses

in the reservoir, or by using more compact architectures

in which losses do not scale directly with reservoir sizes.

In future work, we will explore how to use such a

16 node reservoir as a tile to create larger reservoirs.

This way, the lessons learned from this work’s architec-

tural exploration exercises will drive the design of the

next generation of reservoir computing chips to tackle

faster, more complex optical telecommunications signal

processing applications.
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