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Abstract 

There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs), enzymes 

which hydrolyze β-lactam antibiotics and confer resistance on Gram-negative bacteria. Here 

we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of 

subclass B1 (IMP-1, VIM-2, NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, 

slow-binding model without an isomerization step (IC50 values 0.3 – 7.2 µM; Ki 0.03 – 1.5 

µM). Minimum inhibitory concentration assays demonstrated potentiation of β-lactam 

(meropenem) activity against MBL-producing bacteria, including clinical isolates, at 

concentrations where eukaryotic cells remain viable. Crystal structures revealed unprecedented 

modes of inhibitor binding to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not 

replace the nucleophilic hydroxide and the PMPC carboxylate and pyridine nitrogen interact 

closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The 

phosphonate group makes limited interactions,but is 2.6 Å from the nucleophilic hydroxide. 

Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and 

pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to 

the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate 

displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also 

making multiple interactions with the protein main chain and Zn1. The carboxylate and 

pyridine nitrogen interact with Ser221/223, respectively (3 Å distance). The potency, low 

toxicity, cellular activity and amenability to further modification of PMPCs indicate these and 

similar phosphonate compounds can be further considered for future MBL inhibitor 

development.  
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Introduction 

Antibacterial drug resistance is an increasingly major clinical problem, particularly due to the 

reduced efficacy of β-lactam antibiotics against Gram-negative pathogens such as Escherichia 

coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia.1, 2 

β-lactams remain key agents for treatment of Gram-negative infections, with the carbapenems 

and third generation cephalosporins being the first choice chemotherapeutic agents. Among the 

major resistance determinants are zinc-dependent metallo-β-lactamases (MBLs), zinc-

dependent enzymes which hydrolyze almost all β-lactams including the carbapenems and 

cephalosporins.1-6 MBLs all have a similar overall fold with the active site lying in a groove 

formed by two beta sheets, but are subdivided into three subclasses (B1, B2 and B3) based on 

sequence, structure and the number of zinc ions in their active site.7-10 In B1 and B3 MBLs, the 

active site contains two zinc ions, Zn1 coordinated by His116, His118 and His196 (standard 

MBL numbering scheme8 used throughout) and Zn2 by Asp120, His263 and either Cys221 in 

the B1 or His121 in the B3 subclasses. A water/hydroxide bridges/coordinates the two zinc 

ions, and is thereby potentially activated to act as a nucleophile to attack the β-lactam ring.10 

By comparison, subclass B2 MBLs are active as monozinc enymes, with the single zinc ion 

coordinated by Asp120, Cys221 and His263 in a similar architecture to the Zn2 site in B1 

MBLs.11 In contrast to the serine-β-lactamases (SBLs)12 there are currently no clinically useful 

MBL inhibitors. The differences between the various MBL active sites have hindered the 

development of inhibitors active against all MBLs. 

MBL inhibitor design has focused on compounds that include metal binding moieties such as 

nitrogen, thiols and carboxylates or compounds which mimic hydrolysis intermediates, such as 

the bicyclic boronates.13 The various thiols are the best studied, with captopril, a molecule 

containing both a thiol and carboxylate group, as the most prominent example. The D- and L- 

stereoisomers of captopril are variously effective against B1 and B3 MBLs with IC50’s covering 

a wide range, from 0.072 µM to over 500 µM, depending on the captopril stereoisomer and 

MBL variant.14 X-ray crystal structures show the thiol group bridges the two active site zinc 

ions of B1 and B3 MBLs, while in B2 MBLs the carboxylate interacts with the Zn2 site,15 with 

the thiol group uninvolved. More recently we described bisthiazolidines16-18 which contain not 

only a thiol group but also nitrogen and carboxylate moieties, and can inhibit B1 enzymes such 

as NDM-1 (in vivo IC50 23-201 µM), again through a zinc-bridging thiol group. The 

carboxylate group of both captoprils and bisthiazolidines can also interact with residues on the 

protein main chain (Lys224 or Ser221 in B1 and B3 enzymes, respectively) that have 
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previously been shown to bind hydrolyzed substrate.19, 20 A number of other crystal structures 

of thiols bound to MBLs show similar binding modes, with the thiol bridging the two zincs in 

B121-24 and B315, 25, 26 MBLs, and a carboxylate15 or the thiol27 binding to the monozinc center 

of B2 MBLs.  

The binding modes of potent (IC50 values ranging between 0.003 µM and 7 µM13) 

dicarboxylate MBL inhibitors are also well understood, with crystal structures available of such 

compounds bound to all three MBL subclasses: biaryl succinic acid28 and 3-aminopthalic acid29 

to the B1 enzyme IMP-1, 2,4 pyridine dicarboxylic acid to Aeromonas hydrophila CphA 

(B2)30, and furan/pyrazole-constrained dicarboxylic acids to S. maltophilia L1 (B3)26. In all 

cases, binding is similar to that of thiols, with one carboxylate moiety bridging the two active 

site zinc ions, and the second carboxylate interacting with a Ser or Lys residue. In the case of 

dicarboxylate inhibition of the B2 MBL CphA, only one of the two carboxylates is involved in 

active site interactions, binding the zinc ion, although the nitrogen of the pyridine ring also 

ligands the zinc ion. Nitrogen-based inhibition, by tetrazole-based ligands (IC50 ~18-300 M28) 

and 4-nitrobenzene-sulfonamide (IC50 not reported), has also been structurally characterized in 

B1 (Bacteroides fragilis CcrA31) and B3 (Bradyrhizobium japonicum BJP-132) MBLs. In both 

cases, inhibition is achieved by interaction of an inhibitor-nitrogen with either the Zn2 site only 

(CcrA) or both Zn1 and Zn2 (BJP-1).  

Bicyclic boronates are proposed to mimic the tetrahedral oxyanion formed during β-lactam 

hydrolysis.33 They inhibit B1 enzymes (IC50s 0.003 – 1 µM) through interaction of the 

‘exocyclic’ boronate oxygen within the dizinc center, displacing the nucleophilic hydroxide, 

and the ‘endocylic’ boronate ester oxygen with Zn2. As with other inhibitors, the carboxylate 

interacts with both Zn2 and Lys224 (e.g. NDM-1) or Arg228 (e.g. VIM-2) on the protein main 

chain. The bicyclic boronates do not inhibit the B3 enzymes, such as S. maltophilia L1.34 

Less well understood is MBL inhibition by compounds containing phosphonate, a moiety well 

known to chelate zinc and inhibit metalloenzymes.35-37 In addition, phosphonate monoesters 

have been shown to inhibit SBLs by formation of a tetrahedral intermediate-mimic covalently 

bound to the active-site serine.38, 39 Mercaptophosphonate compounds, which contain both a 

phosphonate and thiol group, have been reported as competitive inhibitors of all MBL classes, 

with Ki values from 0.4 to over 400 µM.27 Indeed, in the crystal structure of a 

mercaptophosphonate:B2 CphA complex the phosphonate preferentially binds the zinc ion 

over the thiol group.27 There is potential of phosphonates to act as analogues of mechanistically 
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important oxyanionic species in MBL-catalyzed β-lactam hydrolysis.  A recent study on a β-

phospholactam (containing a cyclic phosphonamidate, that might undergo hydrolysis to a 

phosphonate in aqueous medium) exhibited modest time-dependent inhibition of B1 and B3 

MBLs at 100 µM.40 However, to date the utility of phosphonates as broad-spectrum inhibitors 

active against multiple MBL subclasses remains underexplored. Accordingly, here we 

investigate phosphonate-based pyridine-carboxylates (PMPCs, Figure 1) as inhibitors of 

clinically relevant B1 and B3 MBLs. Our data show that these compounds inhibit a range of 

MBL targets and, through X-ray crystallography and kinetic experiments, define their mode of 

binding to, and mechanism of inhibition of, target B1 and B3 MBLs. Importantly, we also 

demonstrate potentiation of -lactam antibacterial activity against both laboratory and clinical 

strains of MBL-producing bacteria, suggesting that these compounds may be useful against 

medically-relevant antibiotic resistant pathogens. 

 

Figure 1. Structures of pyridine-2-carboxylates used in this study. 1, PA, 2-picolinic acid; 2, 

MPA, 6-methylpicolinic acid; 3a, PMPC-1, 6-(phosphonomethyl)pyridine-2-carboxylate; 3b, PMPC-

2, 6-[hydroxy(phosphono)methyl]picolinic acid; 3c, PMPC-3, 6-[(N-benzyl-1-thiophen-2-

ylformamido)(phosphono)methyl]picolinic acid; 4, (pyridin-2-ylmethyl)phosphonic acid.  
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Materials and Methods 

Materials 

All reagent chemicals used in synthesis, including 2-picolinic acid (1) and 6-methyl-2-picolinic 

acid (2), were acquired from Sigma-Aldrich (Canada) and were employed as received.  

Nitrocefin was obtained from Oxoid or prepared synthetically as described previously.41 

Inhibitor synthesis 

The synthesis and characterization of PMPC-1 (3a) has been reported previously.42  The 

synthesis and spectroscopic characterization of PMPC-2 (3b), PMPC-3 (3c) and PMP (4) is 

described in Electronic Supplementary Information (ESI).  

Minimum Inhibitory Concentration assays 

Bacterial Strains/Plasmids: Open reading frames, together with the associated promoter 

sequences, encoding the IMP-1, VIM-1 and NDM-1 MBLs were amplified from clinical 

samples by PCR and cloned into the pSU18 broad host range vector as previously described.33, 

43 E. coli MG1655, K. pneumoniae Ecl8, Citrobacter freundii and Enterobacter aerogenes 

were transformed with the resulting plasmids by electroporation. K. pneumoniae strain 

UWB116 (N11-2218) (as recently employed in a study of the natural product 

aspergillomarasmine A44) was a generous gift from Dr. A. McGeer at Mount Sinai Hospital, 

Toronto. P. aeruginosa strain UWB41 (IS6654) and S. maltophilia strain UWB26 (IS5563) are 

meropenem-resistant strains kindly provided by Dr. Dylan Pillai from the collection of clinical 

isolates maintained at the Ontario Agency for Health Protection and Promotion (now known 

as Public Health Ontario) in Toronto, Ontario.  P. aeruginosa strain UWB78 (VIM-I-1; 03-

RL-03-2453), P. putida strain UWB24 (C10; PS679/00), E. coli strain UWB75 (MH1-NDM-

1) and E. coli strain UWB93 (Ec7-IMP) originated from the collection of clinical isolates 

maintained at Calgary Laboratory Services, Calgary, Alberta and were kindly provided by Dr. 

Johann Pitout and Dr. Dylan Pillai. S. maltophilia strains K279a, K ami32 (efflux pump 

overproducing mutant) and JKWZP (knock-out strain lacking the RND pumps SmeJ/K/W/Z/P) 

were described previously.45-47 For all strains species identification and presence of specific 

MBLs was confirmed by PCR using 16S rDNA and MBL-specific primers, respectively. 

Minimum Inhibitory Concentration (MIC) Determination: MIC values were determined by 

broth microdilution, in triplicate, in cation adjusted Mueller Hinton broth (Sigma) according to 

the Clinical Laboratory Standards Institute (CLSI) guidelines.48 Experiments were carried out 
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in microtiter plates (Corning) containing the medium plus meropenem and inhibitor (dissolved 

in DMSO) as appropriate. Plates were incubated overnight at 37 °C for 18 – 24 h and 

absorbance at 600 nm read using Polarstar Omega (BMG LabTech) or Powerwave XS2 

(Biotek) plate readers. 

 

Cell toxicity assay 

Cell culture: The mammalian cell lines were the rat liver hepatoma cell line H4IIE (ATCC 

Accession No. CRL-1600) and two human cell lines, Caco2, a colon adenocarcinoma cell line 

(ATCC Accession No. HTB-37), and HepG2, a liver hepatoma cell line (ATCC Accession No. 

CRL- 11997). Cells were routinely cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Sigma) supplemented with 10% fetal bovine serum (FBS) in 75-cm2 vented culture flasks at 

37 ºC in a humidified 5% CO2 atmosphere. 

Plating and dosing: Cells were seeded in 96 well plates (Becton and Dickinson Company, 

Franklin Lakes, NJ. USA) at a density of 4×104 cells per well in 200 µl of DMEM growing 

medium with 10% FBS supplement. Cells were allowed to settle and reattach for 24 h at room 

temperature before being exposed to any compounds. The cells were then dosed with varying 

concentrations of 3a in DMEM without 10% FBS. Application of chemicals to cell cultures 

was done by adding culture medium mixed with chemical solution to the culture well. The final 

concentration of the solvents (such as DMSO or water) in each well was the same as for the 

control wells, which were only dosed with solvent. After 24 h, cultures were evaluated for 

cytotoxicity. In no cases was the solvent used at a concentration that was cytotoxic. 

Measuring cell viability: Three fluorescent indicator dyes were used to evaluate cell viability.49, 

50 Metabolic activity was measured by Alamar Blue (Medicorp, Montreal, PQ). Cell membrane 

integrity was evaluated with 5-carboxyfluorescein diacetate (CFDA-AM) (Molecular Probes, 

Eugene, OR). Lysosome integrity was monitored with Neutral Red (Sigma-Aldrich). Alamar 

Blue, CFDA-AM and Neutral Red were prepared in Dulbecco's phosphate buffered saline 

(DPBS, Lonza, Walkersville, MD USA) to give final concentrations of 5% (v/v), 4 µM and 

1.5% (v/v) respectively. Cells were incubated with dyes for 1 h in dark, then quantified by 

fluorescence plate reader (Spectra-max Gemini XS microplate spectrofluorometer; Molecular 

Devices, Sunnyvale, CA). The excitation and emission wave-lengths used were 530 and 590 

nm for Alamar Blue, 485 and 530 nm for CFDA-AM, 530 and 640 nm for Neutral Red, 

respectively. Results were calculated as a percent of the control culture. 
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Data analysis: All graphs and statistical analyses were done using GraphPad InStat (version 

4.01 for Windows XP, GraphPad Software, San Diego, CA, www.graphpad.com). 

 

Protein purification 

NDM-1, VIM-2, IMP-1 and L1 were purified as previously described.18, 51-53  

 

Enzyme Kinetics 

All data analysis of enyme kinetics was performed using GraphPad Prism version 5.00 for 

Windows (GraphPad Software, San Diego California USA, www.graphpad.com). 

IC50 Assays: Inhibitor stocks were prepared by dissolving the PMPC compound in 100% 

DMSO to a final concentration of 100 mM.  Compound PMP stocks were prepared as 50 mM 

compound in 50 mM HEPES pH 7.2. 

Enzyme (IMP-1, 186 pM; VIM-2, 313 pM; NDM-1, 620 pM; L1, 637 pM) in standard assay 

mixture (50 mM HEPES pH 7.2, 50 µg/mL BSA, 0.01% Triton X-100) was incubated with 

inhibitor for 10 min at 30 °C then added to nitrocefin at concentrations resembling or identical 

to the KM value for this substrate (IMP-1, 3.5 µM; VIM-2, 15 µM; NDM-1 1.0 µM; L1, 5.0 

µM). Same day triplicates of assays performed in 96-well flat bottomed microplates (Corning, 

NY) were read at 482 nm for 5 min at 30 °C using a Spectramax 190 reader (Molecular Devices, 

Sunnyvale, CA). 

Measurements for each compound were performed on 3 - 4 different days unless otherwise 

indicated. IC50 values were obtained by fitting the equation below (Eq 1) to the recorded initial 

velocities using non-linear least squares regression. 

Eq. 1: 

 

Where y is the measured initial rate, [I] is the inhibitor concentration and s is the Hill slope. 

Ki Determination: Enzyme (60 pM IMP-1, 39.2 pM VIM-2, 600 pM NDM-1, 308 pM L1) was 

added to nitrocefin in excess of enzyme (25 µM for IMP-1, 100 µM for VIM-2, 15 µM for 

NDM-1, 50 µM for L1) containing various dilutions of inhibitor from the range of variable 

rates as determined from IC50 experiments. The assay was performed in 50 mM HEPES pH 7.2 

supplemented with 50 µg/mL BSA and 0.01% Triton X-100 in 96-well flat-bottomed 

𝑦 =
100

1+10(𝑙𝑜𝑔𝐼𝐶50−[𝐼])∗𝑠  
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microplates to a final volume of 200 µL. All assays were read at 482nm using a SpectraMax 

190 plate reader at 30 °C for 10 min. Progress curves were fitted by non-linear regression to 

Eq. 2:54, 55  

 

 

where [P]t is the product concentration at time t, v0 and vs are the initial and steady-state 

velocities, respectively, kobs is the apparent first-order rate constant for the development of the 

steady state and the term C is included to correct for deviations of the baseline. Values of kobs 

obtained at multiple concentrations of inhibitor [I] were then plotted against [I] and the result 

fitted to a straight line defined by Eq. 3: 

 

 

where k-0 is the dissociation rate constant for the enzyme:inhibitor complex EI and Ki
app the 

apparent inhibition constant. Finally, Ki
app was used to determine Ki using Eq. 4: 

𝐾𝑖
𝑎𝑝𝑝

= 𝐾𝑖 (1 +
[𝑆]

𝐾𝑀
) 

Crystallization and structure determination.  

IMP-1 and L1 were crystallized as previously described.18, 51 Inhibitor-bound structures were 

obtained by soaking crystals in compound (2.5 mM) plus cryoprotectant (reservoir solution 

plus 25% glycerol) for 5 min (IMP-1 with 3a) or 15 minutes (L1 with 3a and 3b). Crystals 

were subsequently flash-frozen in liquid nitrogen for data collection. Longer soaks for IMP-1 

crystals resulted in severe deterioration of the crystal, while shorter soaks for L1 resulted in 

active sites which did not contain difference density suggestive of ligand binding. Datasets 

were collected at 100 K on beamline I02 (Diamond Light Source, UK), integrated in XDS56 

and scaled and merged using Aimless.57 Phases were calculated by molecular replacement in 

Phaser58 using PDB 1SML51 and 5EV618 as search models for L1 and IMP-1, respectively. 

Structures were completed by iterative rounds of manual model building in Coot59 and 

refinement in Phenix.60 Ligand structures and geometric restraints were calculated with Phenix 

eLBOW. Structure validation was assisted by Molprobity61 and Phenix. Figures were prepared 

using PyMol (www.pymol.org). 

[𝑃]𝑡 = 𝑣𝑠𝑡 +
(𝑣0−𝑣𝑠)(1−𝑒−𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠
+ 𝐶  

𝑘𝑜𝑏𝑠 = 𝑘−0  (1 +
[𝐼]

𝐾
𝑖
𝑎𝑝𝑝)  
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Protein structure accession numbers. Coordinates and structure factors have been deposited 

in the Protein Data Bank (PDB) under the following accession codes: IMP-1:3a, 5HH4; L1:3a, 

5HH5; L1:3b, 5HH6. 
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Results and Discussion 

PMPCs are in vitro inhibitors of B1 and B3 MBLs 

Numerous classes of chelating agents, including 2-picolinic acid (1, Figure 1) and its 

derivatives, have been evaluated as potential MBL inhibitors.13 In particular, dicarboxylate 

derivatives of pyridine have been reported to exhibit significant inhibitory activity against some 

MBLs.30 These include dipicolinic acid (DPA, 2,6-pyridine dicarboxylate), which can inhibit 

the class B1 MBLs CcrA and IMP-1, and the B3 MBL L130, 62; and 2,4-pyridine dicarboxylate, 

which inhibits the B2 MBL CphA.30 However, DPA is a zinc chelator,30 and has been shown 

to remove one zinc ion slowly from the active site of IMP-1 at high concentrations.63 Further, 

a DPA derivative has been shown to be a sub-micromolar inhibitor of the B1 enzyme NDM-

1.64 Although the exact binding mode is not known, this compound did not strip NDM-1 of its 

metal ions, but bound to the active site. We have previously synthesized phosphonate-based 

derivatives of 1 (6-phosphonomethylpyridine-2-carboxylates, PMPCs) and showed them to be 

weak inhibitors (IC50 60-130 μM) of bacterial fructose-1,6-bisphosphate aldolase, an enzyme 

which uses a single zinc ion in its active site.42 Here we test a selection of these derivatives, 

alongside some newly synthesized molecules (Figure 1), as potential inhibitors of the clinically 

relevant class B1 MBLs VIM-2, NDM-1 and IMP-1 and the class B3 MBL L1 (Table 1). We 

also tested 1 and 6-methyl-2-picolinic acid (2; 1 with a methyl group at C6 of the pyridine 

ring), with both having a weak inhibitory effect towards the MBLs tested (IC50 32.2 µM to 

>100 µM), indicating that a single Zn-coordinating group on the pyridine ring cannot 

efficiently inhibit MBLs. The addition of a phosphonomethyl group on C6 of 1 (3a, PMPC-1) 

results in significant potency against all MBLs tested (IC50 0.374 – 3.88 µM) with a sub-

micromolar IC50 against the B1 MBL NDM-1. The addition of a hydroxyl group on the carbon 

of the phosphonomethyl group (3b, PMPC-2) had little effect compared to 3a as IC50 values 

were similar towards all MBLs tested. 3c (PMPC-3) was synthesized with an additional large 

hydrophobic substituent on the phosphonomethyl group, with the aim of exploiting conserved 

hydrophobic areas within the active sites of B1 MBLs, particularly the flexible loop L3 

(residues 60 – 66) previously implicated in substrate/inhibitor interactions.65 Compared to 3a, 

3c exhibits slightly improved potency of about 1.2 – 2.8-fold against NDM-1, VIM-2 and IMP-

1 (IC50 0.306 – 2.91 µM) and similar potency against L1 (~0.9-fold). The carboxylate on the 2-

position of the pyridine ring, however, is essential as removal of this group (4) essentially 

abolishes MBL inhibitory activity of the PMPCs. The PMPC phosphonate compounds 3a, 3b 

and 3c are therefore all low micromolar inhibitors of both B1 and B3 MBLs.  
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Identification of phosphonates as effective MBL inhibitors motivated more detailed kinetic 

studies aimed at probing the mode of inhibition for the PMPCs. Notably, nitrocefin hydrolysis 

progress curves, obtained without pre-mixing of enzyme and inhibitor, for both B1 (IMP-1, 

NDM-1, VIM-2) and B3 (L1) MBLs (Figure 2 and Figs. S1 - S3) showed burst kinetics. This 

is consistent with observations that reliable IC50 values could only be obtained when enzyme 

and inhibitor were subjected to a 10 min pre-incubation before addition of substrate. These data 

strongly indicate that phosphonate inhibition of MBLs does not follow a simple competitive 

model, but that activity instead involves a time-dependent component. This behavior was 

apparent in the progress curves for inhibition by compounds 3a (Figure 2 and Fig. S1), 3b 

(Fig. S2) and 3c (Fig. S3); in all cases these could be fitted using equation 2 as detailed in 

Methods. 

Time-dependent or slow-binding inhibition66 can be described by two alternative mechanisms 

(Scheme 1). In the simpler case, the inhibitory EI complex forms in a single, slow step, whereas 

in the more general case the initial inhibitory complex EI isomerizes slowly to form the steady-

state enzyme-inhibitor complex EI*. These two models are distinguishable by replots of the 

derived first order rate constant kobs against inhibitor concentration [I]; in the single step case 

kobs increases linearly with [I]; in the two-step model dependence is instead hyperbolic. In all 

cases these secondary plots show linear dependence of kobs on [I], leading us to conclude that 

formation of the inhibitory PMPC:MBL complex occurs in a single step. 

 

 

Scheme 1: Possible Mechanisms for Slow-binding Inhibition. In the simpler case (left; observed 

here), the inhibitory complex EI forms by a single, slow step. In the more general case (right) the initial 

inhibitory complex EI isomerizes slowly to form the steady-state inhibitory complex EI*. 
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Figure 2. 3a Inhibits MBLs by a Time-Dependent Mechanism. Progress curves and secondary linear 

plots (insets) for 3a inhibition of nitrocefin hydrolysis by IMP-1, L1, NDM-1 and VIM-2. Curve fitting 

procedure is described in the text. The error bars in the progress curves represent three technical 

replicates.   
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Using this treatment, we determined inhibition constants (Ki) for the phosphonates 3a, 3b and 

3c against VIM-2, NDM-1, IMP-1 and L1. As with the IC50 data, Ki values (Table 2) indicate 

the compounds to be similarly potent, showing particularly dramatic effect against NDM-1 (Ki 

34 – 74 nM). As described above, 3a, 3b and 3c all demonstrated a slow-binding competitive 

inhibition profile against all MBLs, with a slow “on” rate and even slower “off” rate (Table 

S1) but no isomerization step. Inspection of the rate constants in Table S1 shows a range of 

values for the on rate (k0) between 0.08 and 6.4 s-1, i.e. almost two orders of magnitude, whilst 

the off rate (k-0) exhibits less variation. Of the four enzymes tested, values for k0 are 

consistently highest for NDM-1, and consistently lowest for IMP-1, which also exhibits the 

lowest k-0 values. Comparison of values for the different compounds reveals that PMPC 3c, 

which incorporates relatively hydrophobic functionalities, has higher on rate constants (k0) for 

the B1 MBLs (IMP-1, NDM-1 and VIM-2) than do the other PMPCs, although no difference 

is observed for the B3 L1 enzyme.  

Previous descriptions of slow-binding inhibition of MBLs, e.g. of IMP-1 by certain thiols,67 or 

of the model MBL Bacillus cereus BcII by thiols formed on opening of the dihydrothiazine 

ring of cephalosporins,68 propose that slow-binding is likely due to involvement of an 

isomerization step in formation of the inhibitory complex EI* (Scheme 1). An alternative 

explanation is necessary to account for the single-step pathway observed here. In this context 

we note recent molecular dynamics simulations69 suggesting that slow-binding may arise, at 

least for some inhibitors, because of favorable interactions of the inhibitor with transient 

enzyme-bound water molecules present on initial association and that are removed by step-

wise dehydration to generate the final inhibitory complex. It is reasonable to suggest that such 

mechanisms may be involved in the slow-binding inhibition of MBLs by PMPCs, particularly 

given the polar character of these compounds. This could also explain why, unlike the case for 

B1 MBLs tested, the on rate (k0) for PMPC 3c inhibition of L1 does not differ substantially 

from those observed for 3a and 3b. One consequence of the structural differences between the 

B1 and B3 enzymes may be differing spatial distributions of water molecules within and near 

the active sites, requiring a different pathway to be taken from the initial, hydrated, complex to 

the stable, inhibitory complex analogous to that formed with the B1 enzymes. 

The off-rate constants (k-0) in Table S1 also provide some insight in to the residency times of 

PMPC inhibitors at the MBL binding sites, which may be calculated as dissociative half-lives 

(t1/2 = 2 / k-0) and are summarized in Table S2. Values range from 6 (complex of 3b and VIM-

2) to 25 (3c:IMP-1) minutes. Recent work70-73 highlights the importance of assessing kinetic 
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data on drug-target residence time, as well as equilibrium binding constants, in analyzing 

structure-activity relationship data during lead optimization of drug candidates. Long residency 

time can extend the duration of drug effects in vivo and enhance selectivity if the residency 

time exceeds those for related off-target enzymes. Such considerations will play an important 

role in our future efforts to advance the PMPCS towards compounds with clinical potential. 

In addition to the distinctive slow-binding behavior observed here, the kinetics observed with 

the PMPCs also differ from those observed for the natural product aspergillomarasmine A that 

attenuates NDM-1 and VIM-2 activity (but not that of IMP-7 or the B3 enzyme AIM) by 

removing both zinc ions.44 Notably, these compounds are more potent against a greater range 

of MBL targets than captopril,14 and show similar, and sometimes better, potency than other 

thiol-based compounds such as mercaptophosphonates,27 with IC50 values ranging from 0.3-

7.2 µM across all MBL/inhibitor combinations tested. 

 

PMPCs enhance meropenem antibacterial activity against MBL-producing bacteria 

We next tested the ability of the simplest of our synthesized phosphonate compounds, 3a, to 

enhance the antibacterial activity of meropenem against bacterial strains producing the most 

clinically relevant subclass B1 MBLs from introduced broad-host range plasmids or clinical 

isolates. Meropenem MIC was first measured using bacteria expressing the cloned MBLs IMP-

1 (E. coli), VIM-1 (the most prevalent VIM MBL subtype in Enterobactaeriaceae74, (90.6% 

sequence identity to VIM-2), E. coli) and NDM-1 (E. coli, K. pneumoniae, C. freundii and E. 

aerogenes) (Table 3). In all cases, other than that of VIM-1, expression in the laboratory E. 

coli strain MG1655, MBL expression conferred resistance to meropenem as adjudged by CLSI 

(resistance is defined by MIC ≥ 4 mg/L for Enterobacteriacae and ≥ 8 mg/L for P. aeruginosa) 

or EUCAST (resistance MIC >8 mg/L for Enterobacteriacae and P. aeruginosa) breakpoints.48, 

75 Co-administration with 3a reduced meropenem MICs into the susceptible range against all 

strains except E. coli MG1655 expressing NDM-1 (MIC 8 mg/L), although this required 100 

mg/L 3a to achieve. In all cases, at 100 mg/L 3a, the meropenem MIC was reduced by at least 

16-fold. Against K. pneumoniae, C. freundii and E. aerogenes expressing NDM-1, MICs were 

enhanced to 4, 2 and 1 mg/L, respectively, but not restored to meropenem MICs against non 

MBL-producing strains (≤0.2533, 0.06 and 0.06 mg/L76). For wild-type clinical isolates 

(Pseudomonas putida, P. aeruginosa, S. maltophilia, one K. pneumoniae and one E. coli) 

(Table 4), a similar trend was observed, with some reduction in meropenem MIC against all 9 
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strains tested. There was a greater than 4-fold reduction of meropenem MIC against eight out 

of the nine strains tested at 128 mg/L 3a, with five out of nine strains reverting from meropenem 

resistance to susceptibility (EUCAST definition meropenem MIC ≤ 2 mg/L) at the same 

concentration of 3a. In the case of the NDM-1-producing K. pneumoniae clinical isolate in 

Table 4, a meaningful comparison of the potency of 3a and AMA is possible since this same 

strain has been employed in a study on the effect of AMA on meropenem MIC.44  The MIC for 

meropenem was reduced to 0.25 mg/L in the presence of 16 mg/L AMA, and to <0.125 mg/L 

in the presence of 32 mg/L.  Here, the MIC for meropenem was found to be reduced to 0.25 

mg/L in the presence of 3a at 32 mg/L and to <0.125 mg/L at 64 mg/L of the inhibitor. Notably, 

3a enhanced meropenem activity against an E. coli strain (UWB75) carrying both an SBL 

(CTX-M-15, which lacks meaningful carbapenemase activity) and the NDM-1 MBL (4-fold 

reduction at 32 mg/L inhibitor; greater than 512-fold reduction, from 128 to < 0.25 mg/L, at 

128 mg/L). 

 

Compounds 3b and 3c were next tested against a subset of clinical MBL-producing strains in 

a preliminary assessment of the effects of substitutions upon biological activity (Table S3). 

Importantly, in all cases we observed reductions in meropenem MICs in the presence of 

PMPCs, although the effects were variable. The modifications in 3b and 3c exerted a similar 

effect compared to 3a upon the potency of meropenem combinations against E. coli UWB93 

and K. pneumoniae UWB116. However, against E. coli UWB75 (the isolate for which 

meropenem MIC was highest) the effectiveness of both 3b and 3c was reduced, with 3c unable 

to restore meropenem susceptibility at 128 mg/L. 3b and 3c were also less effective against the 

two Pseudomonas spp. strains for which, unlike 3a, neither compound could restore 

meropenem susceptibility, even at 128 mg/L. Despite the difference in size, 3b and 3c behaved 

identically towards the P. putida isolate UWB24, whereas for P. aeruginosa UWB78 3c 

appeared less effective than 3b, although the effects were subtle (4-fold difference in 

meropenem MIC at the highest concentration tested). These data indicate that modifications to 

the PMPC scaffold affect, but do not abolish, activity in bacterial growth assays. Indeed, the 

potency against Enterobacteriaceae (a group of pathogens in which MBL-mediated 

carbapenem resistance is particularly concerning) was in many cases tolerant of additions to 

the PMPCs. 

We also tested activity of 3a against S. maltophilia, a notoriously impermeable pathogen of 

compromised individuals and a growing problem in cystic fibrosis patients.77, 78 Compared to 
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the E. coli, K. pneumoniae and Pseudomonas spp. isolates, activity of 3a, was reduced (Table 

4). Nevertheless, 3a was able to potentiate meropenem activity (4-fold reduction in MIC 

values) against the clinical multi-drug resistant S. maltophilia bloodstream isolate K279a. To 

determine whether PMPC potency is influenced by efflux, we measured MICs in a K279a 

derivative overexpressing the resistance nodulation division (RND) efflux pump SmeYZ (S. 

maltophilia K ami32), and an additional knock-out strain lacking the RND pumps 

SmeJ/K/W/Z/P (S. maltophilia JKWZP). In the presence of 3a, meropenem MICs were reduced 

by a single 2-fold dilution against the overexpression strain K ami32, and 4-fold against the 

JKWZP efflux pump knockout strain, suggesting that PMPCs are only slightly affected by 

efflux in S. maltophilia. 

Taken together, these experiments indicate that PMPCs, in particular 3a, are able to inhibit a 

range of MBLs expressed in the periplasm and enhance β-lactam activity against a wide range 

of Gram-negative bacteria. While relatively high PMPC concentrations (32 to 128 mg/L) were 

required to restore meropenem susceptibility (which was not always achieved), activity was 

observed against a range of target species, including non-fermenters, and was relatively 

unaffected by alterations to known efflux systems. These data indicate that, while compounds 

in this initial series may not show optimal penetration of the Gram-negative outer membrane, 

some entry into the periplasm is occurring even in problematic species such as P. aeruginosa 

and S. maltophilia. This supports our contention that these initial examples of the PMPC 

scaffold can be viable lead structures for further optimization. Importantly, we consider this to 

remain valid despite the presence of multiple ionizable groups which might be expected to 

create complications with respect to pharmacokinetics or drug delivery. The literature pKa 

values of approximately 2.5 and 8 respectively, for the first and second ionizations of 

phosphonates,79 and of 1.0 for 2-picolinic acid80 lead us to expect that at physiological pH the 

PMPCs will exist largely in a di-anionic form. Given the ample precedents for dianionic β-

lactams (e.g. carbenicillin or ticarcillin81) being suitable for clinical use as antibiotics for Gram-

negative bacteria, including Pseudomonas aeruginosa, we do not expect the ionization state of 

these inhibitors to be necessarily problematic.  

Although a previous study showed 3a to be non-toxic to immortal African green monkey 

kidney cells (BL-C-1),82 due to the relatively high concentrations (up to 100 mg/L) of inhibitor 

required for significant reduction in MIC, we tested the toxicity of 3a against Caco-2 (human 

epithelial), HEPG2 (human liver) and H4IIE (rat hepatoma) cells at higher concentrations. 

These data show 3a does not affect the metabolic activity, membrane integrity or lysosome 
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integrity of these cell lines until concentrations significantly higher than those at which MIC 

reductions are observed, with EC50 values 242 mg/L and greater (Table S4). 

 

Structure determination of MBLs complexed with phosphonate compounds 

To understand the mechanism of MBL inhibition by PMPCs, we have obtained crystal 

structures of the B1 MBL IMP-1 (an enzyme found on plasmids in a range of Gram-negative 

bacterial pathogens, particularly P. aeruginosa) in complex with 3a (2.0 Å resolution) and the 

B3 L1 enzyme (encoded on the chromosome of S. maltophilia) in complex with both 3a (1.80 

Å) and 3b (1.80 Å) (Table S5). IMP-1 crystallized in the space group P212121 with four 

molecules in the asymmetric unit (ASU), as previously described (PDB 5EV618). 3a could be 

modelled into well-defined difference electron density (Figure 3A) in two out of the four 

chains in the ASU, with full occupancies and B-factors 1.3 times above the protein main chain 

(chain A validation statistics, RSCC 0.96, RSR 0.12 and LLDF 1.95). L1 crystallized in the 

space group P6422, as previously described,51 with one molecule in the ASU. Difference 

electron density consistent with 3a or 3b (Figure 3B and 3C, respectively) was observed in 

the active sites of the two crystal structures and ligands were refined at full or 0.84 occupancy 

to B-factors 1.9 and 1.7 times above protein main chain, respectively (RSCC 0.96/0.93, RSR 

0.16/0.14 and LLDF 3.94/5.64). 

 

Figure 3. Binding of PMPC Inhibitors to MBL active sites. 

Close up of the active sites of MBL:PMPC complexes. Zinc ions and the nucleophilic water/hydroxide 

(gray and red spheres, respectively) are labelled. Zinc ligands are shown as sticks. Fo-Fc density (green, 

contoured at 3σ) is calculated from the final model with the ligand (sticks) omitted. (a) B1 IMP-1 

complexed with 3a. (b) B3 L1 complexed with 3a. (c) B3 L1 complexed with 3b. 
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Mode of PMPC binding to the B1 MBL IMP-1 di-zinc center. 

3a binds to the di-zinc active site of IMP-1 but does not displace the nucleophilic hydroxide 

(Wat1, Figure 4A). 3a adopts the same conformation in chains A and B, interacting with the 

Zn2 ion, nucleophilic hydroxide and residues on the protein main chain (Figure 4A), but 

binding does not result in global changes in conformation in comparison to the uncomplexed 

enzyme structure (PDB 5EV6,18 RMSD=0.21 Å, chain A, over 218 Cα residues). The inhibitor 

carboxylate group and pyridine nitrogen atom both interact with the Zn2 site, at distances of 

2.30 Å and 2.69 Å (chain A measurements throughout, unless otherwise stated; see Fig. S4 for 

a schematic comparison of binding in chains A and B), respectively, resulting in a zinc ion with 

six ligands in a distorted octahedral geometry, in contrast to Zn2 in uncomplexed IMP-1 which 

has a distorted trigonal bipyramidal geometry. The carboxylate also interacts with Lys224 on 

the protein main chain (2.70 Å), and binding is further stabilized by the close proximity of a 

hydrophobic pocket (Val61, Val67, Trp64, Phe87, Fig. S5). A weak T-shaped interaction83 of 

the pyridine ring with the face of the indole ring of Trp64 on the flexible loop L3 (pyridine C4 

to indole C3 distance 3.72 and 3.94 Å in chains A and B respectively) is also observed. The 

pyridine nitrogen is also positioned close to the zinc-bridging hydroxide (Wat1 in Figures 3-

5; 2.9 Å), with the torsion about the phosphonate C-P bond approximately 90° relative to the 

plane of the pyridine ring. Surprisingly, the phosphonate makes limited interactions with the 

active site, and is too distant from the zinc ions for productive interactions (the closest O atom 

is 3.89 Å from Zn1 and 4.35 Å from Zn2), instead forming hydrogen bonds with the bridging 

water/hydroxide (Wat1) (2.58 Å) and the side chain of Ser119 (3.26 Å). 
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Figure 4. Binding mode of 3a to B1 MBL IMP-1 

PMPC and antibiotic are shown as sticks. Zn sites and nucleophilic waters/hydroxides (Wat1) are 

labelled. (a) 3a (blue sticks) bound to the active site of IMP-1. Ligand interactions (distances labelled) 

and zinc-protein interactions are shown as yellow and gray dotted lines, respectively. (b) Superposition 

of the IMP-1:3a complex (gray) with uncomplexed IMP-1 (green, PDB 5EV6). (c) Superposition of the 

IMP-1:3a complex (gray) with the NDM-1:hydrolysed cephalexin complex (pink, PDB 5EV6). IMP-1 

zinc ions are light grey and NDM-1 zinc ions dark grey. 

 

As well as making interactions with the bridging hydroxide, the 3a:IMP-1 complex contains 

an additional water molecule associated with the inhibitor. This water molecule (blue WatA in 

Fig. S4 and Fig. S6; B-factor 34 Å2) is located on the same face of the pyridine ring as the 

phosphonate group and is within H-bonding distance (2.63 Å) to the phosphonate oxygen atom 

that interacts with the bridging hydroxide. Furthermore, this WatA contacts the π-bond between 

N and C2 of the pyridine ring (3.03 and 3.17 Å to the pyridine N and C2 atoms, respectively). 

This attraction may arise from the somewhat electron deficient nature of this π-bond resulting 

from interaction of the pyridine nitrogen with Zn2. WatA is also within H-bonding distance of 

the bridging hydroxide (2.84 Å) and relatively close to Zn1 (3.21 Å) as well as to two of its 

ligands, His118 and His196 (see Fig. S4). The presence of, and relatively extensive interactions 

made by WatA lead us to speculate that the IMP-1-bound inhibitory species is the hydrated 

form of 3a. This may explain why PMPC inhibition does not involve displacement of the 

bridging hydroxide (see below) as the associated loss of WatA would be expected to be 

energetically unfavorable. 

Page 20 of 36

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21 
 

In chains C and D, where electron density for bound PMPC could not be resolved, the active 

site zinc ions were refined with lower occupancies (CZn1, 0.94; CZn2, 0.87; DZn1, 0.51; DZn2, 

1.0), suggesting that exposure to 3a may have depleted zinc content. This may be a reason for 

the lack of observable inhibitor electron density in these active sites. The potential for a 

carboxylate-containing pyridine to remove zinc from the IMP-1 active site has been noted 

previously, as incubation of IMP-1 with DPA resulted in Cys221 (Zn2 ligand) becoming more 

accessible to chemical modification.84 

In comparison with uncomplexed IMP-1, there is little change in either protein side chain or 

zinc positions (Figure 4B). In particular, the flexible loop L3 and the π -stacking Trp64 are in 

the same conformation, most likely due to crystal contacts in the ASU.18 Interactions of loop 

L3 residues with bound inhibitors frequently feature in inhibitor complexes of B1 MBLs.16, 21, 

65, 85 The Zn1 – Zn2 separation is similar (3.54 Å in IMP-1:3a; 3.42 Å in uncomplexed IMP-

1), although there is a slight (0.5 Å) shift in the position of Zn2 which in the inhibitor complex 

increases the distances to the Asp120 (1.98 Å uncomplexed, 2.16 Å 3a-bound) and Cys221 

(2.31 Å uncomplexed, 2.42 Å 3a-bound) ligands. There is a more significant (c. 1 Å) 

movement of the bridging nucleophilic water/hydroxide compared to uncomplexed IMP-1). 

This causes the water to be near equidistant between Zn1 and Zn2 (2.05 Å and 2.21 Å, 

respectively), whereas in the uncomplexed enzyme the nucleophilic water/hydroxide is 1.87 Å 

and 2.43 Å away from Zn1 and Zn2, respectively. Interaction of an MBL inhibitor with the 

nucleophilic hydroxide is unusual, and to our knowledge has only been observed once before, 

in the interaction of the Bacteriodes fragilis B1 MBL CfiA with a tricyclic carboxylate.86 Far 

more common are inhibitor binding modes that involve displacement of the bridging 

hydroxide.  

Interactions made by 3a also share some aspects of antibiotic binding to B1 MBLs. As to date 

there is no crystal structure available of IMP-1 bound to either intact or hydrolyzed antibiotic, 

in Figure 4C we show a superposition of IMP-1:3a with NDM-1 complexed with the 

hydrolyzed cephalosporin cephalexin (chain B of PDB 4RL220). As in inhibitor binding, the 

carboxylate of the cephalosporin dihydrothiazine ring interacts with both Zn2 and Lys224, 

while the β-lactam nitrogen also contacts Zn2 forming a distorted (though face monocapped) 

octahedral geometry. Thus 3a binding replicates some aspects of interactions of B1 MBLs with 

their -lactam substrates. However, the two complexes differ substantially in that the 

interactions involving the carboxylate group of hydrolyzed antibiotic create a trigonal 
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bypyrimidal geometry about Zn1, in contrast to the regular tetrahedral geometry of Zn1 

observed in the IMP-1:3a complex.  

 

PMPC binding to B3 L1 defines a structurally distinct mode of inhibition 

Crystal structures of complexes of the B3 MBL L1 with 3a and 3b reveal an unprecedented 

mode of inhibitor binding (Figures 5A and 5B). Surprisingly, despite our in vitro kinetic data 

(above) indicating a similar mode of inhibition of both IMP-1 and L1, the phosphonate moiety 

of both compounds replaces the zinc ion in the Zn2 site of L1, forming a monozinc enzyme in 

which only the Zn1 site is occupied. The PMPC therefore does not strip the L1 active site of 

both zinc ions, even at such high inhibitor concentrations, indicating that the PMPC binds 

specifically to the MBL active site. Removal of zinc from the Zn2 site has only previously been 

seen by incubation of L1 with relatively high concentrations (10 mM) of EDTA.26 In the present 

case, zinc displacement by 3a results in tight interaction of the phosphonate directly with 

components of the di-zinc center of the MBL. In particular, in both the 3a and 3b complexes 

there is a strong interaction (1.80 Å) of the phosphonate group with Zn1 (Fig. S7). This is 

notably tighter than the contacts with the three Zn1 His- ligands (~2.1 Å). The phosphonate 

also makes multiple interactions with the amino acid side chains that normally constitute the 

Zn2 site in L1 - His121 (2.89/2.68 Å, 3a/3b), Asp120 (2.35/2.34 Å), His263 (2.68/2.56 Å). 

Comparison of the 3a and 3b structures shows the hydroxyl group of the 3b phosphonate to be 

uninvolved in binding, although, notably, the high quality of the observed electron density 

makes it clear that a single enantiomeric form of the inhibitor (the S- rather than R- isomer) is 

selectively bound to the L1 active site, although the compound was synthesized as a racemic 

mixture. 

  

Page 22 of 36

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23 
 

 
Figure 5. Binding mode of PMPCs to B3 MBL L1. Representations are as Figure 3. L1 interactions 

with (a) 3a and (b) 3b. (c) Superposition of the L1:3a complex (gray) with uncomplexed L1 (green). 

 

In comparison to uncomplexed L1 (Figure 5C shows a superposition of L1:3a, gray, with 

uncomplexed L1, green, PDB 1SML) there is little change in overall structure (L1:3a/L1:3b  

Cα RMSD=0.233/0.234 Å over 266 residues). However, phosphonate binding to the Zn2 site 

causes not only removal of the zinc ion but also significant conformational changes within 

the active site. In particular, there are ~0.8 Å and ~0.6 Å movements of His263 and Asp120, 

respectively, away from the active site. One of the phosphonate oxygen atoms also replaces 

the nucleophilic water/hydroxide, which, in contrast, is retained on binding of the hydrolyzed 

β-lactam moxalactam.51 Ser221 on the protein main chain, which stabilizes hydrolyzed 

substrate through interactions with the C3/C4 carboxylate group,19 forms a dual conformation 

where it interacts either with the PMPC phosphonate (3.11/3.12 Å) or carboxylate 

(2.92/2.58 Å) groups. These two conformations could be refined with similar occupancies 

(0.64/0.36 on 3a binding, and 0.49/0.51 on 3b binding). Ser223, which also forms contacts 

with the carboxylate of hydrolyzed substrate, interacts here with the nitrogen of the pyridine 

ring (3.01/3.11 Å). These interactions suggest that, despite the very different mode of PMPC 

binding compared to that of hydrolyzed antibiotic,19 the two serine residues on the protein 

main chain remain key to ligand stabilization within the active site.  

Observation of different modes of PMPC binding in our crystal structures, i.e. monozinc L1 

and dizinc IMP-1 complexes, was unexpected. However, the consistency between inhibition 

kinetics across the MBL systems investigated leads us to conclude that, at least under the 

conditions of our kinetic experiments, PMPCs are able to form an inhibitory complex with di-

zinc L1 similar to that observed with IMP-1. In the crystallization experiments, where enzyme 
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and inhibitor concentrations are much greater, this may serve as a precursor to the observed 

more stable complex from which the zinc ion has been lost from the L1 Zn2 binding site. The 

fact that such a complex is not observed with IMP-1 may then reflect differences in the metal-

binding properties of the two enzymes: whereas zinc binding to L1 is proposed to be 

sequential,87 with the Zn1 site bring occupied first, zinc binding to IMP-1 is instead proposed 

to be positively cooperative.88 As such selective removal of zinc from the Zn2 site, as observed 

in L1, would be disfavored in the IMP enzyme. Furthemore, we note favorable contacts made 

by PMPC inhibitors with L1 sidechain functionalities (e.g. the imidazole ring of His121 and 

the primary hydroxyl group of Ser221) that are not present in the actives site of the B1 enzymes 

such as IMP (Fig. S7), and that may additionally promote displacement of the Zn2 ion by 

PMPCs. 

 

Conclusions 

Phosphonate-based compounds have been an underexplored and poorly characterized area of 

MBL inhibitor design. Here we show they can inhibit a wide range of MBLs, both in vitro and 

in pathogenic Gram-negative bacteria, including non-fermenting organisms that are frequently 

difficult to penetrate with small molecule agents. Despite the potential for phosphonate 

compounds to act as zinc-chelators, we show crystallographically that they can bind 

specifically to the active site of MBLs, either through a conventional (i.e. replicating 

interactions of physiological substrates) mechanism of binding to the Zn2 site in an otherwise 

largely unperturbed active site (B1 IMP-1); or by the unprecedented mechanism of replacing 

Zn2 (B3 L1). Importantly, despite this ability to remove a zinc ion from the di-zinc active site 

of L1, they are non-toxic to human cell lines at concentrations significantly above levels 

required to potentiate antibiotic activity. Therefore, unlike promising compounds such as 

aspergillomarasmine A (AMA), PMPCs inhibit MBLs by binding to the active site, and not 

simply by chelating the metal ions.  

 

The structural information presented here will also allow us to identify routes to rational 

modification of the PMPCs to enhance their affinity for the active sites of both B1 and B3 

MBLs. In particular, the mode of binding to IMP-1 reveals potential attachment sites on the 

core PMPC structure (e.g. ortho to the carboxylate group) where functionalities known to 
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enhance the uptake of β-lactam antibiotics (e.g. siderophores89) might be introduced without 

interfering with the favourable interactions of the inhibitors with the MBL active site.  

 

In summary, our data indicate that phosphonates, in particular 2-picolinic acid derivatives that 

combine submicromolar potency against multiple MBL targets with a simple scaffold 

amenable to further decoration, can be further considered and developed as lead compounds 

for novel MBL inhibitors. 
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Table 1. IC50 values for PMPCs against representative 
MBLs with nitrocefin substrate 

 IC50 (µM)    

 Inhibitor VIM-2 NDM-1 IMP-1 L1 

1 32.2 >100 >100 >100 

2 >100 >100 >100 >100 

3a 1.29 0.374 3.88 1.48 

3b 1.90 0.322 7.20 2.05 

3c 0.464 0.306 2.91 1.57 

4 171 >1000 >100 >1000 
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Table 2. Inhibition constants for PMPCs against MBLs 

 Ki (µM) 

inhibitor VIM-2 NDM-1 IMP-1 L1 

3a 0.5 ± 0.05 0.07 ± 0.01 1 ± 0.2 0.5 ± 0.1 

3b 0.6 ± 0.04  0.07 ± 0.01 2 ± 0.1 0.4 ± 0.1 

3c 0.04 ± 0.009 0.03 ± 0.003 0.4 ± 0.2 0.4 ± 0.1 
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Table 3. Potentiation of Meropenem Activity Against Recombinant B1 MBL-

Producing Bacteria by PMPCs  

Strain MBL* 

Meropenem 

MIC 

(mg L-1) in 

absence of 

inhibitor 

Meropenem MIC (mg L-1) in the 

presence of 3a at stated concentration 

10 mg L-1  50 mg L-1  100 mg L-1 

E. coli MG1655 
Vector 

only 
<0.25 <0.25 <0.25 <0.25 

E. coli MG1655 IMP-1 16 16 2 <0.25 

E. coli MG1655 VIM-1 4 4 2 <0.25 

E. coli MG1655 NDM-1 >256 >256 128 8 

Klebsiella 

pneumoniae Ecl8 
NDM-1 >256 >256 64 4 

Citrobacter 

freundii D571 
NDM-1 32 32 8 2 

Enterobacter 

aerogenes  

15-8358A 

NDM-1 64 64 16 1 

*MBL expressed from its native promoter, encoded on the pSU18 vector 
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Table 4. Potentiation of Meropenem activity against MBL-producing Clinical Strains by 3a 

Strain 

Resistance 
determinant 
(MBL/SBL) 

Meropenem  

MIC (mg L-1) 

in absence of 

inhibitor 

Meropenem MIC (mg L-1) in the  presence of 
3a at stated concentration 

4  
mg L-1 

8  
mg L-1 

16 
mg L-1 

32 
mg L-1 

64 
mg L-1 

128 
mg L-1 

P. aeruginosa 
#UWB41 VIM-2 128 64 64 64 32 4 0.5 

P. putida 
#UWB24 VIM-2 64 64 64 64 32 8 2 

E. coli #UWB75 NDM-1 / 
CTX-M-15 

128 128 128 64 16 1 <0.25 

P. aeruginosa 
#UWB78 VIM-2 64 64 64 64 32 8 4 

S. maltophilia 
K279a L1, L2 16 16 16 16 16 8 4 

S. maltophilia 
Kami32 L1, L2 16 16 16 16 16 8 8 

S. maltophilia 
JKWZP L1, L2 32 32 32 32 32 16 8 

K. pneumoniae 
#UWB116 NDM-1 32 16 8 4 0.25 <0.125 <0.125 

E. coli #UWB93 IMP-1 / 
CTX-M-15 

4 4 4 4 2 0.5 0.25 
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