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Abstract. Actuator location and design are important choices in controller design for distributed
parameter systems. Semi-linear partial di�erential equations model a wide spectrum of physical
systems with distributed parameters. It is shown that under certain conditions on the nonlinearity
and the cost function, an optimal control input together with an optimal actuator choice exist.
First order necessary optimality conditions are derived. The results are applied to optimal actuator
location and controller design in a nonlinear railway track model.
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1. Introduction. Actuator location and design are important design variables
in controller synthesis for distributed parameter systems. Finding the best actuator
location to control a distributed parameter system can signi�cantly reduce the cost
of the control and improve its e�ectiveness; see for example, [14, 30, 31]. The optimal
actuator location problem has been discussed by many researchers in various contexts;
see [17, 41] for a review of applications and [35] for optimal location of actuators to
maximize controllability in the wave equation. In [29] it was proved that an optimal
actuator location exists for linear-quadratic control. Conditions under which using
approximations in optimization yield the optimal location are also established. Simi-
lar results have been obtained for H2 and H∞ controller design objectives with linear
models [21, 32]. Results for optimal design have been obtained [33] and also charac-
terizing the derivatives for shape optimization in a di�usion equation [20]. There are
results on the related problem of optimal sensor location for linear PDE's; see [36]
for locations of maximum observability in the wave equation and [43] for concurrent
sensor choice/estimator design to minimize the error variance.

Nonlinearities can have a signi�cant e�ect on dynamics and such systems cannot
be accurately modelled by linear di�erential equations. Optimal control of systems
modelled by nonlinear partial di�erential equations (PDE's) has been studied for a
number of applications, including wastewater treatment systems [27], steel cooling
plants [40], oil extraction through a reservoir [25], solidi�cation models in metallic
alloys [7], thermistors [19], the Schlögl model [8], static elastoplasticity [12], and the
Fokker-Planck equation [16]. A review of PDE-constrained optimization theory can
be found in the books [18, 24, 39]. In [9, 37] �rst-order optimality conditions are
investigated for parabolic partial di�erential equations.

Optimal actuator location has been addressed for some applications modelled by
nonlinear distributed parameter systems using a �nite dimensional approximation of
the original partial di�erential equation model. In [3], authors investigated the optimal
actuator and sensor location problem for a transport-reaction process using a �nite-
dimensional model. Similarly, in [26], the optimal actuator and sensor location of
Kuramoto-Sivashinsky equation was studied using a �nite-dimensional approximation.
Other research concerned with optimal actuator location in problems with nonlinear

∗Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
(msedalat@uwaterloo.ca).
†Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada (kmor-

ris@uwaterloo.ca).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/153396991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:msedalat@uwaterloo.ca
mailto:kmorris@uwaterloo.ca
mailto:kmorris@uwaterloo.ca


2 M. S. EDALATZADEH, K. A. MORRIS

distributed parameter dynamics can be found in [4, 28, 38]. To our knowledge, there
are no theoretical results on optimal actuator location of nonlinear PDE's.

Theory for concurrent optimal control and actuator design of a class of controlled
semi-linear PDE's is described in this paper. The research described extends previous
work on optimal control of PDE's in that the linear part of the partial di�erential
equation is not constrained to be the generator of an analytic semigroup. The input
operator of the system is parametrized by the possible actuator designs. A general
class of PDE's with weakly continuous nonlinear part is considered. Optimality equa-
tions explicitly characterizing the optimal control and actuator are obtained.

Location of actuators on structures has been one of the motivators for research
into optimal actuator location [17]. Various models have been studied. Classical
results in the literature concern control of linear and nonlinear Euler Bernoulli and
Timoshenko beam models [22, 23, e.g.]. In recent years, non-classical models of �exible
beams such as micro-beam models have also attracted attention [13, e.g.]. In nonlinear
�exible structures, the nonlinearity typically is on the deformation, not on the rate of
deformation. The space in which deformations evolve is compactly embedded in that
of rate of deformation. As a result, the nonlinear terms are weakly continuous in the
underlying state space. One important application of the results in this paper is to the
development of an optimal control strategy for the vibration suppression of railway
tracks [11]. Vibrations in a railway track with the interaction with the foundation
included in the model lead to a nonlinear PDE with a weakly continuous nonlinearity.

The paper is organized as follows. After a short paragraph on notation, the prob-
lem de�nition as well as the main results are stated in section 2. Section 3 discusses
the existence of a solution to the semi-linear partial di�erential equation. The ex-
istence of an optimizer is established in section 4. First-order necessary condition
for the optimizer are provided in section 5. In section 6, the results of the previous
sections are applied to the railway track model. It is shown that the problem has a
optimal control and actuator location.

Notation. Throughout this paper, the letters c, t, and x denote a generic positive
constant, temporal variable, and spatial variable, respectively. The blackboard letters
as in Z denote Banach spaces, the calligraphic letters as in A denote operators on a
Banach space. If an operator is nonlinear its argument is shown in parenthesis as in
F(·). The Fraktur letters as in z refer to states evolving in a Banach space; the rest
of letters represent physical constants, generic constants, or a matrix. The adjoint
of an operator is denoted by A∗. The superscript ·o shows that a state or an input
is optimal, and the tilde overscript ·̃ is reserved for the state of a linearized system
unless otherwise stated. Norms and inner products on the underlying state space are
typed without any subscript, but on any other spaces, they are shown with a suitable
subscript to avoid confusion. Strong convergences on a Banach space are shown by→,
whereas a weak convergence is shown by ⇀. If the Banach space Z1 is continuously
embedded in Z2, we write Z1 ↪→ Z2. The Banach space C([0, T ];Z) will often be
indicated C(0, T ;Z) for simplicity of notation.

2. Main Results. Consider a semi-linear system with state z(t) on a separable
re�exive Banach space Z:

(1) ż(t) = Az(t) + F(z(t)) + B(r)u(t), z(0) = z0 ∈ D(A),

The function u(t) is the input to the system, and takes values in a re�exive Banach
space U. The control operator B(·) depends on a parameter r that takes values in
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a set Kad in a topological space K. The parameter r typically has interpretation as
possible actuator locations. The operators A, F(·), and B(·) satisfy the following
assumptions.

Assumption A.
1. The state operator A with domain D(A) generate a strongly continuous semi-

group T (t) on Z.
2. The nonlinear operator F(·) is locally Lipschitz continuous on Z; that is, for

every positive number δ, there exists LFδ > 0 such that

‖F(z2)−F(z1)‖ ≤ LFδ ‖z2 − z1‖ ,

for all ‖z2‖ ≤ δ and ‖z1‖ ≤ δ.
3. For each r ∈ Kad, the input operator B(r) is a linear bounded operator that

maps the input space U into the state space Z. This family of operators is
uniformly bounded over Kad, i.e., there exist a positive number MB such that
‖B(r)‖ ≤MB for all r ∈ Kad.

In some cases, due to lack of regularity of the input u, a classical solution to the
IVP (1) is not assured.

Definition 2.1. If z ∈ C(0, T ;Z) satis�es

(2) z(t) = T (t)z0 +
∫ t

0

T (t− s)F(z(s))ds+
∫ t

0

T (t− s)B(r)u(s)ds,

for every z0 ∈ Z, it is said to be a mild solution to the IVP (1).

In section 3, the existence of a unique mild solution to the initial value problem
(IVP) (1) is proven assuming that u ∈ Lp(0, T ;U).

Theorem 3.1: Under assumption A, for each z0 ∈ Z and positive number R, there
exists T > 0 such that the IVP (1) admits a unique local mild solution z ∈ C(0, T ;Z)
for all u ∈ Lp(0, T ;U), ‖u‖p ≤ R, and all r ∈ Kad.

For functionals φ(z) on Z and ψ(u) on U, consider the cost function

J(u, r; z0) =

∫ T

0

φ(z(t)) + ψ(u(t)) dt,

where the admissible control input u(t) belongs to the set

Uad = {u ∈ Lp(0, T ;U)| ‖u‖p ≤ R}.

The optimization problem is to minimize J(u, r; z0) over all admissible control inputs
u ∈ Uad, and also over all admissible actuator locations r ∈ Kad, subject to the IVP
(1) with a �xed initial condition z0 ∈ Z. That is,

(P)


min J(u, r; z0)
s.t. ż(t) = Az(t) + F(z(t)) + B(r)u(t), ∀t ∈ (0, T ]

z(0) = z0,
u(t) ∈ Uad,
r ∈ Kad.

To guarantee the existence of a unique optimizer, further assumptions are needed on
the operators F(·), B(·), the set Kad, and the cost function J(u, r; z0).
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Assumption B.
1. The nonlinear operator F(·) is weakly sequentially continuous, i.e., if zn ⇀ z,

then F(zn)⇀ F(z) on Z.
2. Let Kad be a compact set in the actuator location space K. The family of

input operators B(r) : Kad(⊂ K) → L(U,Z) are continuous with respect to r
in the operator norm topology:

lim
r2→r1

‖B(r2)− B(r1)‖ = 0.

3. The functionals φ(·) and ψ(·) are weakly lower semi-continuous positive func-
tionals on Z and U, respectively.

It is shown in section 4 that under these assumptions, an optimal control and actuator
location exist.

Theorem 4.1: For initial condition z0 ∈ Z let T be such that the mild solution
exists for all u ∈ Uad, and all r ∈ Kad. Under assumptions A and B, there exists
a control input uo ∈ Uad together with an actuator location ro ∈ Kad, that solve the
optimization problem P.

To characterize an optimizer to the optimization problem, further assumptions
on di�erentiability of the nonlinear operator F(·) and the cost function are needed.

Assumption C.
1. The nonlinear operator F(·) is Fréchet di�erentiable on Z. Indicate the

Fréchet derivative of F(·) at z by F ′z.
2. The mapping z 7→ F ′z is bounded, i.e., bounded sets in Z are mapped into

bounded sets in L(Z).
3. The control operator B(r) is Fréchet di�erentiable with respect to r in L(U,Z).

Indicate the Fréchet derivative of B(r) at r by B′r.
4. The actuator location space K is a Hilbert space.
5. The state space Z and U are Hilbert spaces. Also, in the cost function, set

φ(z) = 〈Qz, z〉 , ψ(u) = 〈Ru, u〉U ,

where the linear operator Q is a positive semi-de�nite, self-adjoint bounded
operator on Z, and the linear operator R is a positive de�nite, self-adjoint
bounded operator on U.

The following theorem is proved in section 5. In this theorem z = S(u; r, z0)
denotes the control-to-state map (see De�nition 5.1), and the operator (B′rou)∗ : Z→
K is de�ned as

〈(B′rou)∗p, r〉K = 〈p, (B′ror)u〉 , ∀(u, p, r) ∈ U× Z×K.

Theorem 5.7: Suppose assumptions A, B1, B2, C hold. For any initial condition
z0 ∈ Z, let the pair (uo, ro) be a local minimizer of the optimization problem P with
the optimal trajectory zo = S(uo; ro, z0). Also, let po(t), the adjoint state, indicate the
mild solution of the �nal value problem

ṗo(s) = −(A∗ + F ′∗zo(t))p
o(s)−Qzo(s), po(T ) = 0.
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Then, if (uo, ro) is an interior point of Uad ×Kad, it satis�es

uo(t) = −R−1B∗(ro)po(t),∫ T

0

(B′rouo(s))∗po(s) ds = 0.

3. Existence of a Solution to the IVP. In the existing literature, the ex-
istence of a unique local solution to (1) is guaranteed for continuesly di�erentiable
control inputs (see e.g. [34, Thm. 6.1.5]). This condition on the input to be continu-
ously di�erentiable is too restrictive. The following theorem guarantees the existence
of a unique local mild solution. In this theorem ‖·‖p refers to the norm on Lp(0, T ;U),
1 < p <∞.

Theorem 3.1. Under assumption A, for each z0 ∈ Z and positive number R,
there exists T > 0 such that the IVP (1) admits a unique local mild solution z ∈
C(0, T ;Z) for all u ∈ Lp(0, T ;U), ‖u‖p ≤ R, and all r ∈ Kad.

Proof. The idea of the proof is similar to [34, Thm. 6.1.4], with a slight modi�ca-
tion that here u is in Lp(0, T ;U). For any z0 ∈ Z choose constants δ0 > 0 and T > 0
such that for t ∈ [0, T ]

‖T (t)z0 − z0‖ ≤ δ0.

Let S be the closed bounded subset of C(0, T ;Z) de�ned as

(4) S = {z(t) ∈ C(0, T ;Z)| z(0) = z0, ‖z(t)− z0‖ ≤ 2δ0}.

De�ne the operator G on S to be

(5) G(z(t)) = T (t)z0 +
∫ t

0

T (t− s)F(z(s)) ds+
∫ t

0

T (t− s)B(r)u(s) ds.

It will be shown that for su�ciently small T , G maps S into S and is a contraction on
S.

Use the triangle inequality and write

‖G(z(t))− z0‖ ≤‖T (t)z0 − z0‖+
∥∥∥∥∫ t

0

T (t− s)F(z(s)) ds
∥∥∥∥

+

∥∥∥∥∫ t

0

T (t− s)B(r)u(s) ds
∥∥∥∥ .(6)

There exist numbers M > 0 and ω such that ‖T (t)‖ ≤ Meωt. Also, recall from
assumption A2 that there is LFδ > 0 so that ‖F(z(s))‖ ≤ LFδ‖z(s)‖ on a ball of
radius δ = ‖z0‖+ 2δ0 centered at the origin. This gives a bound for the second term
on the left hand side of the inequality (6)

(7)

∥∥∥∥∫ t

0

T (t− s)F(z(s)) ds
∥∥∥∥ ≤M max(1, eωT )LFδδT.

Using assumption A3, an upper bound for the third right hand side term is

(8)

∥∥∥∥∫ t

0

T (t− s)B(r)u(s) ds
∥∥∥∥ ≤M max(1, eωT )MB ‖u‖p T

(p−1)/p.
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Applying these bounds to inequality (6) it follows for all u with ‖u‖p ≤ R that

(9) ‖G(z(t))− z0‖ ≤ δ0 +M max(1, eωT )LFδδT +M max(1, eωT )MBRT
(p−1)/p.

Choose T small enough that the right hand side in (9) is less than 2δ0. For such T ,
G : S→ S.

Because of the local Lipschitz continuity of F(·)

‖G(z2(t))− G(z1(t))‖C(0,T ;Z) ≤
∥∥∥∥∫ t

0

T (t− s) (F(z2(s))−F(z1(s))) ds
∥∥∥∥
C(0,T ;Z)

≤M max(1, eωT )LFδT ‖z2(t)− z1(t)‖C(0,T ;Z) .(10)

Choosing T so M max(1, eωT )LFδT < 1 yields that G is a contraction on S. Thus, the
operator G has a unique �xed point in S that satis�es

(11) z(t) = T (t)z0 +
∫ t

0

T (t− s)F(z(s)) ds+
∫ t

0

T (t− s)B(r)u(s) ds .

Thus, z(t) is the unique local mild solution of IVP (1).

Corollary 3.2. Under assumption A, for each z0 ∈ Z and R > 0, there exists
a positive number cT such that the mild solution to the IVP (1) satis�es, for all
‖u‖p ≤ R,

(12) ‖z‖C(0,T ;Z) ≤ cT
(
‖z0‖+ T (p−1)/p ‖B(r)‖ ‖u‖p

)
.

Proof. Choose a su�ciently small time T such that the mild solution exists. Take
the norm of both sides of (2) and apply assumption A together with the triangle
inequality to obtain

‖z(t)‖ ≤ ‖T (t)z0‖+
∥∥∥∥∫ t

0

T (t− s)F(z(s)) ds
∥∥∥∥+ ∥∥∥∥∫ t

0

T (t− s)B(r)u(s) ds
∥∥∥∥

≤M max(1, eωT ) ‖z0‖+M max(1, eωT )LFδ

∫ t

0

‖z(t)‖ dt

+M max(1, eωT )T (p−1)/p ‖B(r)‖ ‖u‖p .(13)

De�ning the constant

cT =M max(1, eωT )eM max(1,eωT )LFδT ,

and applying Grönwall's lemma [42, Thm. 1.4.1] to the above inequality yield

(14) ‖z(t)‖ ≤ cT
(
‖z0‖+ T (p−1)/p ‖B(r)‖ ‖u‖p

)
.

4. Existence of an Optimizer. The following theorem ensures that the op-
timization problem P admits an optimal control input uo ∈ Uad together with an
optimal actuator location ro ∈ Kad.

Theorem 4.1. For initial condition z0 ∈ Z let T be such that the mild solution
exists for all u ∈ Uad, and all r ∈ Kad. Under assumptions A and B, there exists
a control input uo ∈ Uad together with an actuator location ro ∈ Kad, that solve the
optimization problem P.
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Proof. The cost function J(u, r; z0) is bounded from below, and thus it has an
in�mum, say j(z0). This in�mum is �nite by assumption. As a result, there is a
sequence of inputs un ∈ Uad and actuator location rn ∈ Kad such that

(15) lim
n→∞

J(un, rn; z0)→ j(z0).

Moreover, by Theorem 3.1, for every pair (un, rn), there exists a state zn(t) ∈
C(0, T ;Z). The sequence {zn(t)} is also uniformly bounded in C(0, T ;Z) by Corol-
lary 3.2; that is

(16) ‖zn‖C(0,T ;Z) ≤ cT
(
‖z0‖+ T (p−1)/pRMB

)
.

The set Uad is a bounded subset of the re�exive space Lp(0, T ;U), 1 < p < ∞, and
hence it is weakly sequentially compact [39, Thm. 2.10.]. Since Uad is closed and
convex, it is also weakly closed [39, Thm. 2.11.]. These statements mean that there
is a subsequence of un that converges weakly to some element uo ∈ Uad. To simplify
the notation, we denote the weakly convergent subsequence by un, and indicate the
limit by uo in Uad:

(17) un(t)⇀ uo(t) as n→∞.

The compactness of Kad implies that there is also a subsequence of rn that converges
to some ro in Kad. This subsequence is also indicated by rn; that is

(18) rn → ro as n→∞.

Using assumption B2, it follows that

(19) B(rn)un(t)⇀ B(ro)uo(t) in Lp(0, T ;Z) as n→∞

The sequence zn(t) is bounded in C(0, T ;Z), and thus, in Lp(0, T ;Z) as well. The
latter is a re�exive Banach space; this means that a subsequence of zn(t), denote it
by zn(t) for simplicity, weakly converges to an element of zo in Lp(0, T ;Z). Since
the operator F(·) is weakly sequentially continuous, the sequence F(zn(t)) weakly
converges to F(zo(t)) in Lp(0, T ;Z):

(20) F(zn(t))⇀ F(zo(t)).

Now for each (un, rn) consider the linear inhomogeneous initial value problem

(21) ẏn(t) = Ayn(t) + F(zn(t)) + B(rn)un(t), yn(0) = z0,

which has mild solution

(22) yn(t) = T (t)z0 +
∫ t

0

T (t− s) (F(zn(s)) + B(rn)un(s)) ds.

Since the inhomogeneous part F(zn(s)) + B(rn)un(s) is in Lp(0, T ;Z) for each n, the
sequence

(23) gn(t) =

∫ t

0

T (t− s) (F(zn(s)) + B(rn)un(s)) ds



8 M. S. EDALATZADEH, K. A. MORRIS

belongs to C(0, T ;Z) by Theorem 3.1. The limits (19) and (20) imply that this
inhomogeneous part is a weakly convergent sequence in Lp(0, T ;Z). The convolution
operation (23) de�nes a continuous linear operation from Lp(0, T ;Z) to C(0, T ;Z).
Since every continuous linear map is also weakly continuous [6, Proposition 1.84], the
sequence gn(t) weakly converges to some element go(t) in C(0, T ;Z) satisfying

(24) go(t) =

∫ t

0

T (t− s) (F(zo(s)) + B(ro)uo(s)) ds.

As a result, the sequence yn(t) weakly converges to y
o(t) = T (t)z0+go(t) in C(0, T ;Z).

Since the mild solution is unique, yo(t) = zo(t),

(25) zo(t) = T (t)z0 +
∫ t

0

T (t− s) (F(zo) + B(ro)uo(s)) ds.

It remains to show that (zo(t), uo(t), ro) minimizes J(u, r; z0). Recall from de�ni-
tion of the sequence un and rn that

j(z0) = lim inf
n→∞

J(un, rn; z0)

= lim inf
n→∞

∫ T

0

φ(zn(t)) dt+ lim inf
n→∞

∫ T

0

ψ(un(t)) dt.(26)

From assumption B3, the cost function is weakly lower semicontinuous in z and u.
This implies

j(z0) ≥
∫ T

0

φ(zo(t)) dt+

∫ T

0

ψ(uo(t)) dt = J(uo, ro; z0).(27)

Since j(z0) was de�ned to be the in�mum,

j(z0) = J(uo, ro; z0).

Therefore, for every initial condition z0 ∈ Z, there exists an control input uo(t)
together with an actuator location ro, with corresponding mild solution zo(t) that
achieve the minimum value of the cost function .

For a linear partial di�erential equation and quadratic cost, the optimal actuator
problem may not be convex; see for example [29, Fig. 7]. Uniqueness of the optimal
control and actuator is not guaranteed.

5. Optimality Conditions. In order to establish the �rst order optimality
condition for an optimizer (uo, ro), further regularity on the control-to-state map
is needed. In next two theorems, it is proved that under certain assumptions, the
control-to-state map is Lipschitz continuous in both u and r. For the Lipschitz con-
tinuity with respect to the actuator location, a stronger assumption on the input
operator B(r) than continuity in r is needed.

Definition 5.1. For each initial condition z0 ∈ Z, and actuator design r ∈
Kad, the control-to-state operator is the operator S(u; r, z0) : Uad ⊂ (Lp(0, T ;U)) →
Lp(0, T ;Z) that maps every input u ∈ Uad to the state z ∈ Lp(0, T ;Z). It is described
by

z(t) = T (t)z0 +
∫ t

0

T (t− s)F(z(s))ds+
∫ t

0

T (t− s)B(r)u(s)ds.
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In the next proposition, the Lipschitz continuity of this operator in r is used to
establish the Lipschitz continuity of the control-to-state map with respect to r.

Proposition 5.2. Under assumption A and B2, for any initial condition z0 ∈
Z and actuator location r ∈ Kad, the control-to-state map S(u; r, z0) is Lipschitz
continuous in u, i.e., there exists a positive constant Lu such that

(28) ‖S(u2; r, z0)− S(u1; r, z0)‖p ≤ Lu ‖u2 − u1‖p ,

for all u1 and u2 in Uad.
For a �xed control input u ∈ Uad and extra assumptions C3 and C4, the control-to-

state map S(u; r, z0) is Lipschitz continuous in r, i.e., there exists a positive constant
Lr such that

(29) ‖S(u; r2, z0)− S(u; r1, z0)‖p ≤ Lr ‖r2 − r1‖K ,

for all r1 and r2 in Kad.

The proof of this proposition is straightforward; a proof is provided in Appendix A.
Fréchet di�erentiability of the control-to-state map as well as its derivatives need

to be formulated in order to characterize an optimizer. For any zo ∈ C(0, T ;Z) de�ne
the time-varying operator operator F ′zo(t). At any t > 0 this operator is linear in z.
Consider the time-varying IVP

(30) ˙̃z(t) = (A+ F ′zo(t))z̃(t) + B(r)ũ(t), z̃(0) = 0.

The mild solution is described by a two parameter family of operators, say U(t, s),
known as an evolution operator.

The following lemma relies on the existence results: Theorem 5.5.6 and Theorem
5.5.10 in [15].

Lemma 5.3. The mild solution of IVP problem (30) is described by

(31) z̃(t) =

∫ t

0

U(t, s)B(r)u(s) ds,

in which U(t, s) is a strongly continuous evolution operator on Z for 0 ≤ s ≤ t ≤ T .
In addition, let f ∈ L1(0, T ;Z), and consider the following �nal value problem (FVP)
backward in time

(32) ˙̃p(s) = −(A∗ + F ′∗zo(t))p(s)− f(s), p̃(T ) = 0,

then the mild solution of this evolution equation satis�es

(33) p̃(s) =

∫ T

s

U∗(s, t)f(s) ds,

where U∗(s, t) is the adjoint of U(s, t) on Z for every 0 ≤ s ≤ t ≤ T .
Proof. The time-invariant part of the state operator in (30), A, is the generator

of an strongly continuous semigroup. According to [15, Thm. 5.5.6], in order for a
strongly continuous evolution operator U(t, s) to exist so that (31) is the mild solution
to the IVP (30), it is su�cient that for every z̃ ∈ Z the mapping t 7→ F ′zo(t)z̃ is strongly
measurable and that a function α(t) ∈ L1(0, T ) exists such that

(34)
∥∥∥F ′zo(t)∥∥∥ ≤ α(t), t ∈ [0, T ].
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By assumption C2, since the state zo(t) is uniformly bounded, the operator norm of
F ′zo(t) admits an upper bound for all t ∈ [0, T ]. In inequality (34), a simple choice for

α(t) can be the operator norm of F ′zo(t) itself. Consequently, a strongly continuous

evolution operator U(t, s) exists so that (31) is the mild solution to the IVP (30).
Since the state space Z is a separable re�exive Banach space, Theorem 5.5.10

in [15] implies that the mild solution of the FVP (32) is described by an evolution
operator. Moreover, for every 0 ≤ s ≤ t ≤ T , this evolution operator is the adjoint
on Z of the evolution operator U(t, s).

Proposition 5.4. Under assumption A, B2, C1, and C2, for every initial con-
dition z0 ∈ Z and actuator location r ∈ Kad, the control-to-state map S(u; r, z0) is
Fréchet di�erentiable in u in the interior of Uad. The Fréchet derivative of S(u; r, z0)
at uo is

(35) S ′uo ũ = z̃, ∀ũ ∈ Lp(0, T ;U),

where, de�ning zo(t) = S(uo; r, z0), z̃ is the mild solution to the IVP

(36) ˙̃z(t) = (A+ F ′zo(t))z̃(t) + B(r)ũ(t), z̃(0) = 0.

The mild solution to this equation is provided by the evolution operator U(t, s) in (31).

Proof. If the Fréchet derivative of the control-to-state map S(u; r, z0) with respect
to u at uo is given by (35), then it needs to satisfy

(37) lim
‖ũ‖p→0

‖S(ũ+ uo; r, z0)− S(uo; r, z0)− S ′uo ũ‖p
‖ũ‖p

= 0.

Denote by zp = S(ũ+ uo; r, z0) the mild solution to the IVP

(38) żp(t) = Azp(t) + F(zp(t)) + B(r)(ũ(t) + uo(t)), zp(0) = z0.

The state zo = S(uo; r, z0) is by de�nition the mild solution of the IVP

(39) żo(t) = Azo(t) + F(zo(t)) + B(r)uo(t), zo(0) = z0.

De�ne zr = zp − zo − z̃, notice that

(40) zr = S(ũ+ uo; r, z0)− S(uo; r, z0)− S ′uo ũ.

Subtract the equations (39) and (36) from (38) to obtain

(41) żr(t) = Azr(t) + F(zp(t))−F(zo(t))−F ′zo(t)z̃(t), zr(0) = 0,

where F ′zo(t) is the Fréchet derivative of F(·) at z
o(t) for every t ∈ [0, T ], noting that

zo(t) ∈ C(0, T ;Z). The Fréchet derivative of F(·) by de�nition satis�es

(42) F(zp(t)) = F(zo(t)) + F ′zo(t)(zp(t)− zo(t)) + rF (t).

where the remainder rF (t) is in Z satisfying

(43) lim
‖zp(t)−zo(t)‖→0

‖rF (t)‖
‖zp(t)− zo(t)‖

= 0,
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for every t ∈ [0, T ]. To further prove the proposition, the function inside the limit
in (43) needs to be bounded on [0, T ]. Note that, by Corollary 3.2, the norm of the
states zp(t) and zo(t) is uniformly bounded over [0, T ] by some number δ,

(44) δ ≤ cT
(
‖z0‖+ T (p−1)/pMBR

)
.

Use the local Lipschitz continuity of F(·) (assumption A2) to write

‖F(zp(t))−F(zo(t))‖ ≤ LFδ ‖zp(t)− zo(t)‖(45)

Also apply assumption C2 on F ′zo(t) to �nd∥∥∥F ′zo(t)(zp(t)− zo(t))
∥∥∥ ≤ sup

‖zo(t)‖≤δ

∥∥∥F ′zo(t)∥∥∥ · ‖zp(t)− zo(t)‖ ,(46)

Incorporate these inequalities into (42), and apply the triangle inequality. A uniform
upper bound on rF (t) over [0, T ] is derived as

‖rF (t)‖
‖zp(t)− zo(t)‖

≤ LFδ + sup
‖zo(t)‖≤δ

∥∥∥F ′zo(t)∥∥∥ .(47)

By substituting (42) into (41), the state zr becomes the mild solution to IVP

(48) żr(t) = (A+ F ′zo(t))zr(t) + rF (t), zr(0) = 0.

In this equation, the operator A is perturbed by the time-dependent operator F ′zo(t).
According to Lemma 5.3, the mild solution of this evolution equation is described by
an evolution operator U(t, s). Let M be an upper bound for the operator norm of
U(t, s) over 0 ≤ t ≤ s ≤ T , then the mild solution to (48) satis�es the estimate

(49) ‖zr‖p ≤MT (p−1)/p

(∫ T

0

‖rF (t)‖p
)1/p

.

Divide both sides of this inequality by ‖ũ‖p and rewrite it as

(50)
‖zr‖p
‖ũ‖p

≤MT (p−1)/p
∫ T

0

(
‖rF (t)‖p

‖ũ‖p

)1/p

dt.

The function inside the integral converges pointwise to zero for every t ∈ [0, T ] and
is uniformly bounded over [0, T ]. To see this, recall Proposition 5.2, the mapping
S(·; r, z0) is Lipschitz continuous, giving

(51) ‖zp − zo‖p ≤ Lu ‖ũ‖p .

This can be used to write

lim
‖ũ‖p→0

‖rF (t)‖
‖ũ‖p

= lim
‖ũ‖p→0

‖rF (t)‖
‖zp(t)− zo(t)‖

‖zp(t)− zo(t)‖
‖ũ‖p

= Lu lim
‖zp(t)−zo(t)‖→0

‖rF (t)‖
‖zp(t)− zo(t)‖

= 0.(52)
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and also by inequality (47),

(53)
‖rF (t)‖
‖ũ‖p

≤

(
LFδ + sup

‖zo(t)‖≤δ

∥∥∥F ′zo(t)∥∥∥
)
Lu.

Applying the bounded convergence theorem to the integral in (50) results in

(54) lim
‖ũ‖p→0

‖zr‖p
‖ũ‖p

= 0.

Recall (40), the previous limit is in fact the limit in (37) we aimed to prove.

Proposition 5.5. Under assumption A, B2, C1-C4, for every initial condition
z0 ∈ Z and control input u(t) ∈ Uad, the control-to-state map S(u; r, z0) is Fréchet
di�erentiable in r in the interior of Kad. The Fréchet derivative of S(u; r, z0) at ro is

(55) S′ro r̃ = ỹ, ∀r̃ ∈ K,

where, de�ning zo(t) = S(u; ro, z0), ỹ is the mild solution to the IVP:

(56) ˙̃y(t) = (A+ F ′zo(t))ỹ(t) + (B′ro r̃)u(t), ỹ(0) = 0.

The proof of this proposition is similar to that of Proposition 5.4; a proof is provided
in Appendix B.

Now that di�erentiability and derivatives of the control-to-state map has been
established, the �rst order necessary conditions for a pair (uo, ro) to be a local opti-
mizer can be derived. In order to place the problem in a Hilbert space, assumptions
C4 and C5 are used, assuming that the spaces are Hilbert spaces and de�ning a cost
function. It will also be assumed that p = 2, considering control inputs in L2(0, T ;U).
It is shown in the following lemma that this cost function is consistent with previous
assumptions on the cost function (assumption B3).

Lemma 5.6. The cost function in assumption C5 satis�es assumption B3; that
is, it is weakly lower semicontinuous in z and u.

Proof. The cost function J(u, r; z0) in assumption C5 is continuous and convex
function in both z and u; that is∫ T

0

〈Qzn(t), zn(t)〉 dt→
∫ T

0

〈Qz(t), z(t)〉 dt as zn → z in Lp(0, T ;Z)

〈λQz1 + (1− λ)Qz2, λz1 + (1− λ)z2〉 ≤ λ 〈Qz1, z1〉+ (1− λ) 〈Qz2, z2〉 ,

and a similar argument for u. According to Theorem 2.12 in [39], if a functional
de�ned on a Banach space is continuous and convex; then, it is also weakly lower
semicontinuous. Therefore, the cost function J(u, r; z0) is weakly lower semicontinuous
in both z and u.

The next theorem drives the �rst order necessary conditions for an optimizer of the
optimization problem P.

Theorem 5.7. Suppose assumptions A, B1, B2, C hold. For any initial condition
z0 ∈ Z, let the pair (uo, ro) be a local minimizer of the optimization problem P with
the optimal trajectory zo = S(uo; ro, z0). Also, let po(t), the adjoint state, indicate the
mild solution of the �nal value problem

(57) ṗo(s) = −(A∗ + F ′∗zo(t))p
o(s)−Qzo(s), po(T ) = 0.
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Then, if (uo, ro) is an interior point of Uad ×Kad, it satis�es

uo(t) = −R−1B∗(ro)po(t),(58a) ∫ T

0

(B′rouo(s))∗po(s) ds = 0.(58b)

Proof. Since the optimal pair (uo, ro) belongs to the interior of Uad × Kad, the
cost function satis�es

(59) J (uo + τhu, r
o + τhr; z0) ≥ J(uo, ro; z0),

for su�ciently small numbers τ along any direction (hu, hr) ∈ L2(0, T ;U) × K. This
implies that the directional derivative of J(·, ro; z0) at uo along any direction hu is non-
negative as well as the directional derivative of J(uo, · ; z0) at ro along any direction
hr. Use assumption C5, the cost function is sum of two inner products in the Hilbert
spaces L2(0, T ;Z) and L2(0, T ;U); that is

(60) J(u, r; z0) = 〈Qz, z〉L2(0,T ;Z) + 〈Ru, u〉L2(0,T ;U) .

Thus, the directional derivative at uo along hu is

J ′uohu = 2 〈QS(uo; ro, z0),S ′uohu〉L2(0,T ;Z) + 2 〈Ruo, hu〉L2(0,T ;U)

= 2 〈S ′∗uoQS(uo; ro, z0) +Ruo, hu〉L2(0,T ;U) .(61)

This inner product must be non-negative for any direction hu ∈ L2(0, T ;U), and so

(62) uo = −R−1S ′∗uoQS(uo; ro, z0).

To calculate the adjoint operator S ′∗uo , let ũ(t) ∈ L2(0, T ;U), z̃(t) ∈ L2(0, T ;Z) be
arbitrary. Using Lemma 5.3,∫ T

0

〈z̃(t),S ′uo ũ(t)〉 dt =
∫ T

0

〈
z̃(t),

∫ t

0

U(t, s)B(ro)ũ(s) ds
〉
dt

=

∫ T

0

∫ T

s

〈z̃(t),U(t, s)B(ro)ũ(s)〉 dtds

=

∫ T

0

〈
B∗(ro)

∫ T

s

U∗(t, s)z̃(t)dt, ũ(s)

〉
U

ds.(63)

Thus,

S ′∗uo z̃(t) = B∗(ro)
∫ T

s

U∗(t, s)z̃(t)dt.

De�ne p̃(t) =
∫ T
s
U∗(t, s)z̃(t)dt. From the second part of Lemma 5.3, p̃(t) is the mild

solution of the following FVP solved backward in time

(64) ˙̃p(s) = −(A∗ + F ′∗zo(s))p̃(s)− z̃(s), p̃(T ) = 0.

It follows that

(65) S ′∗uo z̃(t) = B∗(ro)p̃(t).
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This implies that (62) can be written

(66) uo(t) = −R−1B∗(ro)po(t)

where po(t) solves

(67) ṗo(s) = −(A∗ + F ′∗zo(s))
∗po(s)−Qzo(s), po(T ) = 0.

Taking the directional derivative of J(uo, · ; z0) at ro along hr yields

J ′rohr = 2 〈QS(uo; ro, z0),S ′rohr〉L2(0,T ;Z)

= 2 〈S ′∗roQS(uo; ro, z0), hr〉K .(68)

Similarly, this inner product must be non-negative for any direction hr ∈ K yielding
the optimality condition in K:

(69) S ′∗roQS(uo; ro, z0) = 0.

To calculate the adjoint operator S ′∗ro , use Lemma 5.3, and proceed as follows

〈QS(uo; ro, z0),S ′rohr〉L2(0,T ;Z) =

∫ T

0

〈
Qzo(t),

∫ t

0

U(t, s)(B′rohr)uo(s) ds
〉
dt

=

∫ T

0

〈∫ T

s

U∗(t, s)Qzo(t) dt, (B′rohr)uo(s)

〉
ds

=

∫ T

0

〈po(s), (B′rohr)uo(s)〉 ds.(70)

For each u ∈ U, (B′rohr)u is an element of Z. This de�nes a bounded linear map from
hr ∈ K to Z. There exists a bounded linear operator (B′rou)∗: Z→ K satisfying

(71) 〈(B′rou)∗p, hr〉K = 〈p, (B′rohr)u〉 .

Incorporate this into (70) to obtain

〈QS(uo; ro, z0),S ′rohr〉L2(0,T ;Z) =

∫ T

0

〈(B′rouo(s))∗po(s), hr〉K ds

=

〈∫ T

0

(B′rouo(s))∗po(s) ds, hr

〉
K

.(72)

This gives an explicit form of the adjoint operator S ′∗ro , and hence that of the optimality
condition (69):

(73) S ′∗roQS(uo; ro, z0) =
∫ T

0

(B′rouo(s))∗po(s) ds = 0,

where po solves (67). This completes the proof.

Together with the original PDE, Theorem 5.7 provides the following system of equa-
tions characterizing an optimizer (zo, po, uo, ro):

(74)



żo(t) = Azo(t) + F(zo(t)) + B(ro)uo(t), zo(0) = z0,

ṗo(t) = −(A∗ + F ′∗zo(t))p
o(t)−Qzo(t), po(T ) = 0,

uo(t) = −R−1B∗(ro)po(t),∫ T
0
(B′rouo(s))∗po(s) ds = 0.
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If the control space U and actuator location space K are separable Hilbert spaces, the
optimizing control and actuator can be characterized further. Let eKj , e

U
i , and e

Z
k be

orthonormal bases for K, U, and Z, respectively. Then there exists bi(r) ∈ Z, r ∈ K
so that for any u ∈ U,

(75) B(r)u =

∞∑
i=1

〈
u, eUi

〉
U bi(r).

Since the operator B(·)u : K→ Z is Fréchet di�erentiable with respect to r, each bi(·)
is a Fréchet di�erentiable map from K to Z. Denote the Fréchet derivative of bi(r) at
ro by b′i,ro : K→ Z, then

(76) (B′ror)u =

∞∑
i=1

∞∑
j=1

〈
u, eUi

〉
U

〈
r, eKj

〉
K b
′
i,roe

K
j .

Corollary 5.8. Assume further that the control space U and actuator location
space K are separable. Let eUi , e

K
j and eZk be orthonormal bases for K, U, and Z,

respectively. De�ne uoj(t) and pk(t) as

uoj(t) :=
〈
uo(t), eUj

〉
U ,(77a)

pok(t) :=
〈
po(t), eZk

〉
.(77b)

The optimality conditions (58) can be written

uoj(t) +

∞∑
i=1

∞∑
k=1

〈
bi(r

o), eZk
〉 〈
R−1eUi , eUj

〉
U pok(t) = 0, for each j,(78a)

∞∑
i=1

∞∑
k=1

〈
b′i,roe

K
j , e

Z
k

〉 ∫ T

0

uoi (s)p
o
k(s) ds = 0, for each j.(78b)

Proof. For every p ∈ Z, the element B∗(ro)p ∈ U can by obtained by using (75),
and doing the calculation

〈B∗(ro)p, u〉U = 〈p,B(ro)u〉

=

∞∑
i=1

〈
u, eUi

〉
U 〈p, bi(r

o)〉

=

〈 ∞∑
i=1

〈bi(ro), p〉 eUi , u

〉
U

.(79)

This yields

(80) B∗(ro)p =

∞∑
i=1

〈bi(ro), p〉 eUi .

Similarly, using (76), for every u ∈ U, the operator (B′rou)∗ maps p ∈ Z to K as follows

(B′rouo)∗p =

∞∑
j=1

∞∑
i=1

〈
uo, eUi

〉
U

〈
b′i,roe

K
j , p
〉
eKj .(81)

Substituting these elements into the optimality conditions (58) and using (77) leads
to (78).

In the next section, an application of these results to railway track models is described.
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6. Nonlinear Railway Track Model. Railway tracks are rested on ballast
which are known for exhibiting nonlinear viscoelastic behavior [2]. If a track beam
is made of a Kelvin-Voigt material, then the railway track model will be a parabolic
semi-linear partial di�erential equation on x ∈ [0, `] as follows:

ρA
∂2w

∂t2
+

∂

∂x2
(EI

∂2w

∂x2
+ Cd

∂3w

∂x2∂t
) + µ

∂w

∂t
+ kw + αw3 = b(x; r)u(t),(82)

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = v0(x),

w(0, t) = w(`, t) = 0,

EI
∂2w

∂x2
(0, t) + Cd

∂3w

∂x2∂t
(0, t) = EI

∂2w

∂x2
(`, t) + Cd

∂3w

∂x2∂t
(`, t) = 0,

where the positive constants E, I, ρ, A, and ` are the modulus of elasticity, second
moment of inertia, density of the beam, cross-sectional area, and length of the beam,
respectively. The linear and nonlinear parts of the foundation elasticity correspond
to the coe�cients k and α, respectively. The constant µ is the damping coe�cient
of the foundation, and Cd is the coe�cient of Kelvin-Voigt damping in the beam.
Denoted by u(t) is the external force exerted on the railway track; it will further be
considered as a scalar control input to manipulate the system; also b(x; r) is a piece-
wise continuous function in x parametrized by r, the actuator locations. Since the
function b(x; r) will accommodate the e�ect of actuators on the system; it needs be
su�ciently smooth function of the actuator location (see assumption B2 and C3).

Let us de�ne the closed self-adjoint positive operator A0 on L2(0, `) as:

A0w := wxxxx,

D(A0) :=
{
w ∈ H4(0, `)|w(0) = w(`) = 0, wxx(0) = wxx(`) = 0

}
,(83)

where subscripts denote the derivative with respect to spatial variable. As a result,
the state operator associated with the Kelvin-Voigt beam is

(84) AKV (w, v) :=
(
v,− 1

ρA
A0(EIw + Cdv)

)
,

which is de�ned on the state space Z = H2(0, `) ∩H1
0 (0, `) × L2(0, `) equipped with

the norm

(85) ‖(w, v)‖2 =

∫ L

0

EIw2
xx + kw2 + ρAv2 dx

Accordingly, the domain of the state operator is

(86) D(AKV ) :=
{
(w, v) ∈ Z| v ∈ H2(0, `) ∩H1

0 (0, `), EIw + Cdv ∈ D(A0)
}
,

which is dense on Z. The underlying state space Z is separable since the spaces
H2(0, `)∩H1

0 (0, `) and L
2(0, `) are separable. Furthermore, de�ne the linear operators

K, B(r), and the nonlinear operator F(·) as

K(w, v) := (0,− 1

ρA
(µv + kw)),(87)

B(r)u := (0,
1

ρA
b(x; r)u),(88)

F(w, v) := (0,
α

ρA
w3).(89)
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The operator K is a bounded linear operator on Z. For each r, operator B(r) is
also a bounded operator that maps an input u ∈ R to the state space Z. Since the
space H2(0, `) is contained in the space of continuous functions over [0, `], the the
nonlinear term w3 is in L2(0, `). Thus, the nonlinear operator F(·) is well-de�ned on
Z. Lastly, de�ne the operator A = AKV + K, with the same domain as AKV . With
these de�nition and by setting z = (w, v), the state space representation of the railway
model (6) is

(90) ż(t) = Az(t) + F(z(t)) + B(r)u(t), z(0) = z0 ∈ D(A).

It is straightforward to show that the operator A0 is closed, densely-de�ned, self-
adjoint, and positive; it also has a compact resolvent. As a result, the operator AKV
will be a special case of the operator AB in [10] with α = 1. According to Theorem 1.1
in [10], such operators are generator of an analytic semigroup (also see [5, Sec. 3] for
a di�erent approach). Furthermore, the operator AKV +K is a bounded perturbation
of the operator AKV . By Corollary 3.2.2 in [34], AKV +K also generates an analytic
semi-group.

The railway track model in [2] neglects the Kelvin-Voigt damping in the beam
(i.e. Cd = 0), and only includes Kelvin-Voigt damping in the ballast. In this case,
the semigroup generated by A is not analytic. The results of this paper hold true for
both models.

To guarantee the existence of a unique solution to the PDE (82), the nonlinear
operator F(·) needs to fall into assumption A2, B1, C1, and C2.

Lemma 6.1. The nonlinear operator F(·) is continuously Fréchet di�erentiable on
Z. This operator is also weakly sequentially continuous in Z.

Proof. A candidate for Fréchet derivative of F at z0 is the linear operator

(91) F ′z0z = (0,
3α

ρA
w2

0w), ∀z0 = (w0, v0) ∈ Z.

To be the unique Fréchet derivative, this linear operator must satisfy

(92) lim
‖z‖→0

‖F(z0 + z)−F(z0)−F ′z0z‖
‖z‖

= 0.

Recall the de�nition of the operator F and that of norm on the space Z, above limit
simpli�es to

(93) lim
‖w‖H2→0

‖w3 + 3w2w0‖L2

‖w‖H2

= 0.

Notice that functions w and w0 are in H2(0, `), and thus, continuous on [0, `]. Use
triangle inequality, and Hölder's inequality to obtain

‖w3 + 3w2w0‖L2 ≤ ‖w3‖L2 + ‖3w2w0‖L2

≤ ‖w‖3L6 + 3‖w‖2L8‖w0‖L4 .(94)

Apply the Sobolev embedding results H2(0, `) ↪→ L4(0, `) and H2(0, `) ↪→ L8(0, `)

‖w3 + 3w2w0‖L2 ≤ c1‖w‖3H2 + 3c2‖w‖2H2‖w0‖H2 ,(95)



18 M. S. EDALATZADEH, K. A. MORRIS

for some positive constants c1 and c2. As a result, the expression in (93) is bounded
above according to

(96)
‖w3 + 3w2w0‖L2

‖w‖H2

≤ c1‖w‖2H2 + 3c2‖w0‖H2‖w‖H2 .

This shows that the limit in (93) holds, and the operator F(·) is indeed Fréchet
di�erentiable.

Now, select z1 = (w1, v1), z2 = (w2, v2), and z̃ = (w̃, ṽ) as generic elements of Z.
From Lemma 6.1, the Fréchet derivative of F(·) at z2 − z1 is

F ′z2−z1 z̃ = (0,
3α

ρA
(w2 − w1)

2w̃).

Now, take the norm of F ′z2−z1 z̃, and use Hölder inequality to obtain

∥∥F ′z2−z1 z̃∥∥ =
3α√
ρA

(∫ L

0

(w2 − w1)
4w̃2 dx

) 1
2

≤ 3α√
ρA

(∫ L

0

(w2 − w1)
8dx

) 2
8
(∫ L

0

w̃4dx

) 1
4

.(97)

Apply the Sobolev embedding results H2(0, `) ↪→ L4(0, `) and H2(0, `) ↪→ L8(0, `);
for some positive number ce, this yields

∥∥F ′z2−z1 z̃∥∥ ≤ 3α√
ρA

ce

(∫ L

0

(w2,xx − w1,xx)
2 dx

)(∫ L

0

w̃2
xxdx

) 1
2

≤ 3α√
ρA

ce ‖z2 − z1‖2 ‖z̃‖ .(98)

The last inequality indicates that the operator norm of F ′z continuously depends on
z.

To show that the nonlinear operator F(·) is weakly sequentially continuous on Z,
consider a sequence zn = (wn, vn) weakly converging to some element z = (w, v) in Z.
The nonlinear operator F(·) maps this sequence to

(99) F(wn, vn) = (0,
α

ρA
w3
n).

The spaceH2(0, `)∩H1
0 (0, `) is compactly embedded in L6(0, `) by Rellich-Kondrachov

compact embedding theorem [1, Ch. 6]. The sequence wn is weakly convergent in
H2(0, `)∩H1

0 (0, `), and thus, it is strongly convergent to some element w0 in L
6(0, `).

A weak limit is unique; thus, w0 ∈ H2(0, `)∩L2(0, `), and w = w0. Also, the sequence
w3
n strongly converges to w3

0 in L2(0, `). Therefore, the sequence F(wn, vn) strongly
converges to F(w, v) in Z; which also implies weak convergence. This proves that the
nonlinear operator F(·) is weakly sequentially continuous.

The previous lemma ensures that the nonlinear operator F(·) satis�es assumption
A2. By Theorem 3.1, for control inputs u ∈ Lp(0, T ), 1 < p < ∞, the existence of a
unique local mild solution is guaranteed.

To address the optimization problem P for the railway track model, assumption
B and C need to be satis�ed. In Lemma 5.6, it was shown that assumption B3 will
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hold for the particular choice of the cost function in assumption C5. As a result, the
existence of an optimal pair (uo, ro) together with an optimal trajectory zo follows
from Theorem 4.1.

Accordingly, using Theorem 5.7, the optimal pair (uo, ro) satis�es the equation
(74). In order to characterize the optimum (74) some adjoint operators needs to be
calculated. Calculation of the operator A∗ is straightforward; it is

(100) A∗(f, g) =
(
−g, 1

ρA
A0(EIf − Cdg) +

k

ρA
f − µ

ρA
g

)
,

for all (f, g) in the domain

(101) D(A∗) =
{
(f, g) ∈ Z| g ∈ H2(0, `) ∩H1

0 (0, `), EIf − Cdg ∈ D(A0)
}
.

Let zo(t) = (wo, vo) be the optimal trajectory evaluated at time t ∈ [0, T ]. To calculate
the adjoint of the operator F ′zo(t) for every t ∈ [0, T ] on Z, take the inner product

F ′zo(t)(w, v) with (f, g) ∈ Z; that is

(102)
〈
F ′zo(t)(w, v), (f, g)

〉
=

∫ `

0

3α

ρA
(wo(x))2w(x)g(x) dx.

To calculate the adjoint, for any g ∈ L2(0, `), consider the function ζ(x) ∈ H2(0, `) ∩
H1

0 (0, `) satisfying the di�erential equation

ζxxxx(x) + ζ(x) =
3α

ρA
(wo(x))2g(x),

ζ(0) = ζ(`) = 0,

ζxx(0) = ζxx(`) = 0.(103)

An explicit solution ζ(x) to (103) can be calculated using a Green's function:

ζ(x) =
3α

ρA

∫ `

0

G(x, y)(wo(y))2g(y) dy,

G(x, y) =
1

6`

{
(2`2y − 3`y2 + y3)x+ (y − `)x3, x ≤ y
(y3 − `2y)x+ yx3, x > y .

(104)

With this calculation, for any (w, v) ∈ Z,

〈(w, v), (ζ, 0)〉 =
∫ `

0

EIw′′ζ ′′ + ρAwζ dx

= [ζxxwx]
`
0 − [ζxxxw]

`
0 +

∫ `

0

(ζxxxx(x) + ζ(x))w(x) dx

=

∫ `

0

3α

ρA
(wo(x))2w(x)g(x) dx.(105)

Comparing this equation to (102); the adjoint of F ′zo(t) is de�ned by

(106) F ′∗zo(t)(f, g) = (ζ, 0).

The adjoint of the operator B(r) for every (f, g) ∈ Z is

(107) B∗(r)(f, g) = ρA

∫ `

0

b(x; r)g dx.
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Let (q1, q2) ∈ Z, setQ(w, v) = (q1w, q2v) andR = 1 in the cost function of assumption
C5, and denote br(x; r) to be the derivative of b(x; r) with respect to r. In conclusion,
the following set of equations yields an optimizer for every initial condition z0 =
(w0, v0) ∈ Z:

(108)



ρAwott + (EIwoxx + Cdw
o
txx)xx + µwot + kwo + α(wo)3 = b(x; ro)uo(t),

wo(0, t) = wo(`, t) = 0,

EIwoxx(0, t) + Cdw
o
txx(0, t) = EIwoxx(`, t) + Cdw

o
txx(`, t) = 0,

wo(x, 0) = w0(x), w
o
t (x, 0) = v0(x),

ρAfot − ρAgo + 3α
∫ `
0
G(x, y)(wo(y))2go(y) dy = −ρAq1(x)wo,

ρAgot + (EIfoxx − Cdgoxx)xx − µgo + kfo = −ρAq2(x)wot ,

fo(0, t) = fo(`, t) = 0, go(0, t) = go(`, t) = 0,

EIfoxx(0, t)− Cdgoxx(0, t) = EIfoxx(`, t)− Cdgoxx(`, t) = 0,

fo(x, T ) = 0, go(x, T ) = 0,

uo(t) = −ρA
∫ `
0
b(x; ro)go(x, t) dx,∫ T

0

∫ `
0
uo(t)br(x; r

o)go(x, t) dxdt = 0.

7. Conclusions. A semi-linear in�nite dimensional system was considered in
this paper where the optimal controller design involves both the controlled input and
the actuator design. It was shown that the existence of an optimal control input
together with an optimal actuator design are guaranteed under some assumptions.
Moreover, �rst-order necessary optimality conditions were obtained. As a novel ap-
plication of the theory, a nonlinear railway track model was studied.

Current work is concerned with developing numerical methods for solution of the
optimality equations and also the consideration of a wider class of nonlinearities.

Appendix A. Proof of Proposition 5.2. For z0 ∈ Z and r ∈ Kad, consider
z1(t) and z2(t) as the mild solutions to the IVP (1) corresponding to the inputs u1(t)
and u2(t), respectively. The inputs are in a ball of radius R contained in Lp(0, T ;U),
1 < p < ∞; consequently, by Corollary 3.2 and assumption A3, the states z1(t) and
z2(t) are contained in a ball of radius

(109) δ = cT (‖z0‖+ T (p−1)/pMBR).

From (2), it follows that

z2(t)− z1(t) =

∫ t

0

T (t− s) (F(z2(s))−F(z1(s))) ds

+

∫ t

0

T (t− s)B(r) (u2(s)− u1(s)) ds.(110)

Recall that T (t) satis�es ‖T (t)‖ ≤M max(1, eωT ) for all t ∈ [0, T ] and some number
M > 0 and ω. Also, remember that the operator F(·) is locally Lipschitz continuous,
and B(r) is uniformly bounded in Z for all r ∈ Kad. Taking the norm in Z of both
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sides of this equation yields

‖z2(t)− z1(t)‖ ≤M max(1, eωT )LFδ

∫ t

0

‖z2(s)− z1(s)‖ ds

+M max(1, eωT )T (p−1)/pMB ‖u2 − u1‖p .(111)

De�ne the constant Lu as

(112) Lu = T 1/peM max(1,eωT )LFδTM max(1, eωT )T (p−1)/pMB.

By Grönwall's lemma [42, Thm. 1.4.1], it follows that

(113) ‖z2 − z1‖p ≤ Lu ‖u2 − u1‖p .

This is in fact the inequality (28).
Similarly, consider the mild solutions z1(t) and z2(t) corresponding to the actuator

locations r1 and r2 and the �xed initial condition z0 and control input u. Use local
Lipschitz continuity of F(·) and growth condition on semigroup T (t) and obtain

‖z2(t)− z1(t)‖ ≤M max(1, eωT )LFδ

∫ t

0

‖z2(s)− z1(s)‖ ds

+M max(1, eωT )T (p−1)/p ‖u‖p ‖B(r2)− B(r1)‖ .(114)

Assumption C3 implies that the control operator B(r) is Lipschitz continuous with
respect to r in operator norm topology, i.e., there exist a positive constant LB such
that

(115) ‖B(r2)− B(r1)‖ ≤ LB ‖r2 − r1‖K ,

for all r1 and r2 in Kad. Accordingly, the inequality (114) can be re-written as

‖z2(t)− z1(t)‖ ≤M max(1, eωT )LFδ

∫ t

0

‖z2(s)− z1(s)‖ ds

+M max(1, eωT )T (p−1)/p ‖u‖p LB ‖r2 − r1‖K .(116)

Denote the constant Lr by

(117) Lr = T 1/peM max(1,eωT )LFδTM max(1, eωT )T (p−1)/pRLB.

Use Grönwall's lemma [42, Thm. 1.4.1], and apply ‖u‖p ≤ R to derive

(118) ‖z2 − z1‖p ≤ Lr ‖r2 − r1‖K .

This is in fact the inequality (29).

Appendix B. Proof of Proposition 5.5. Assume that S′ro is the Fréchet
derivative of the control-to-state map S(u; r, z0) with respect to r at ro, then it needs
to satisfy

(119) lim
‖r̃‖K→0

‖S(u; r̃ + ro, z0)− S(u; ro, z0)− S ′ro r̃‖p
‖r̃‖K

= 0.
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Denote by yp = S(u; r̃ + ro, z0) the mild solution to the IVP

(120) ẏp(t) = Ayp(t) + F(yp(t)) + B(r̃ + ro)u(t), yp(0) = y0.

The state yo = S(u; ro, z0) is the mild solution of the IVP

(121) ẏo(t) = Ayo(t) + F(yo(t)) + B(ro)u(t), yo(0) = y0.

De�ne yr = yp − yo − ỹ, notice that

(122) yr = S(u; r̃ + ro, z0)− S(u; ro, z0)− S ′ro r̃.

Subtract the equations (121) and (56) from (120), incorporate the Fréchet derivative
of the operators F(·) and B(·) (see assumption C1 and C3), obtain

(123) ẏr(t) = (A+ F ′yo(t))yr(t) + rF (t) + rB(r̃)u(t), yr(0) = 0.

in which the remainders rF (t) ∈ Z and rB(r̃) ∈ L(U,Z) satisfy

lim
‖yp(t)−yo(t)‖→0

‖rF (t)‖
‖yp(t)− yo(t)‖

= 0, ∀t ∈ [0, T ],(124a)

lim
‖r̃‖K→0

‖rB(r̃)‖
‖r̃‖K

= 0,(124b)

In the evolution equation (19), the operator A is perturbed by the time-dependent
operator F ′yo(t). According to Lemma 5.3, the mild solution of the evolution equation

(123) is described by an evolution operator U(t, s). Let M be an upper bound for the
operator norm of U(t, s) over 0 ≤ t ≤ s ≤ T , then the mild solution to (48) satis�es
the estimate

(125) ‖yr‖p ≤MT (p−1)/p

(∫ T

0

‖rF (t) + rB(r̃)u(t)‖p dt

)1/p

.

Divide both side of this inequality by ‖r̃‖K and use the triangle inequity to rewrite it
as

(126)
‖yr‖p
‖r̃‖K

≤MT (p−1)/p

(∫ T

0

‖rF (t)‖p

‖r̃‖pK
dt

)1/p

+MT (p−1)/p ‖rB(r̃)‖
‖r̃‖K

‖u‖p .

From Proposition 5.2, the mapping S(u; ·, z0) is Lipschitz continuous in r; this can be
used to write

lim
‖r̃‖K→0

‖rF (t)‖
‖r̃‖K

= lim
‖r̃‖K→0

‖rF (t)‖
‖zp(t)− zo(t)‖

‖zp(t)− zo(t)‖
‖r̃‖K

= Lr lim
‖r̃‖K→0

‖rF (t)‖
‖zp(t)− zo(t)‖

= 0(127)

pointwise for every t ∈ [0, T ]. In addition, similar to inequality (53) in the proof of
Proposition 5.4, the following uniform upper bound holds

‖rF (t)‖
‖r̃‖K

≤

(
LFδ + sup

‖zo(t)‖≤δ

∥∥∥F ′zo(t)∥∥∥
)
Lr.(128)
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By the bounded convergence theorem, these two statements ensure that the integral
in (126) converges to zero as r̃ tends to zero. Therefore, the limits in (124) result in

(129) lim
‖r̃‖K→0

‖zr‖p
‖r̃‖K

= 0.

Recall (122), the previous limit implies (119).
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