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Abstract We deploy a recently proposed framework for mining subjectively interesting pat-
terns from data to the problem of alternative clustering, where patterns are sets of clusters
(clusterings) in the data. This framework outlines how subjective interestingness of pat-
terns (here, clusterings) can be quantified using sound information theoretic concepts. We
demonstrate how it motivates a new objective function quantifying the interestingness of a
clustering, automatically accounting for a user’s prior beliefs and for redundancies between
the discovered patterns.

Directly searching for the optimal set of clusterings defined in this way is hard. However,
the optimization problem can be solved approximately if clusterings are generated itera-
tively. In this iterative scheme, each subsequent clustering is maximally interesting given
the whole set of previously generated clusterings, automatically trading off interestingness
with non-redundancy. Although generating each clustering in an iterative fashion is compu-
tationally hard as well, we develop an approximation technique similar to spectral clustering
algorithms.

Our method can generate as many clusterings as the user requires. Subjective evalu-
ation or the value of the objective function can guide the termination of the process. In
addition our method allows varying the number of clusters in each successive cluster-
ing.

Experiments on artificial and real-world datasets show that the mined clusterings fulfill
the requirements of a good clustering solution by being both non-redundant and of high com-
pactness. Comparison with existing solutions shows that our approach compares favourably
with regard to well-known objective measures of similarity and quality of clusterings, even
though it is not designed to directly optimize them.
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1 Introduction

A main challenge in research on clustering methods and theory is that clustering is, in a
way intentionally, ill-defined as a task. As a result, numerous types of syntaxes for cluster
patterns have been suggested, e.g. clusters as hyperrectangles, hyperspheres, ellipsoids, de-
cision trees, clusterings as partitions, hierarchical partitionings, etc. Additionally, even when
the syntax is fixed, there are often various alternative choices for the objective function, e.g.
the K-means cost function, the likelihood of a mixture of Gaussians, etc. The reader can
refer to Jain et al. (1999) for a review on clustering methods.

Research in alternative clustering, i.e. the task of discovering multiple non-redundant sets
of clusters in data, is structured similarly. A large number of algorithms which manipulate
the original data spaces (Gondek and Hofmann 2003; Dang and Bailey 2010; Bae and Bailey
2006; Jain et al. 2008), transformed data spaces (Cui et al. 2007; Qi and Davidson 2009;
Davidson and Qi 2008) or subspace projections of the data (Sequeira and Zaki 2004; Müller
et al. 2009) were developed to simultaneously optimize the quality of a clustering and its
diversity from the previously generated solutions. Quality and diversity are formalized using
various techniques ranging from information theory (Gondek and Hofmann 2003; Dang
and Bailey 2010; Qi and Davidson 2009) to constraint satisfaction (Bae and Bailey 2006;
Jain et al. 2008; Davidson and Qi 2008; Qi and Davidson 2009).

Despite this variety in approaches, the goal of both traditional and alternative clustering
is almost always to provide a user with insights in the structure of the data, allowing the
user to conceptualize it as coming from a number of broad areas in the data space. The
knowledge of such a structure can be more or less elucidating to the user, also depending on
the prior beliefs the user held about the data.

Here we expand the algorithm presented in De Bie (2011) for finding alternative clus-
ters to the task of finding alternative clusterings. More in particular, we take the perspective
that a clustering is more useful if it conveys more novel information with respect to the
user’s prior knowledge about the dataset. We make a specific choice for a clustering syn-
tax, and we deploy ideas from De Bie (2011) to quantify the interestingness of a clustering
as the amount of information conveyed to the user when told about the clustering’s pres-
ence.

Our approach attempts to quantify subjective interestingness (Geng and Hamilton 2006;
McGarry 2005; Kontonasios et al. 2012) of clusterings, in that it takes prior beliefs held by
the user into account. As a result, different clusterings might be deemed interesting to dif-
ferent users. One particular example is the situation where a user has already been informed
about previously discovered clusterings in the data. In that case, clusterings that are indi-
vidually informative while non-redundant will be the most interesting ones. Our approach
naturally deals with the alternative clustering setting, by regarding already communicated
clusterings as prior information.

Unlike most of the methods in the literature, we do not deploy ad-hoc heuristic algorithms
for optimizing certain quality criteria for clusterings. Instead, we instantiate the general
information-theoretic framework proposed in De Bie (2011) and optimize a quality function
derived directly from this model.

The problem of generating more than one alternative clustering, one of the major chal-
lenges in alternative clustering methods (Müller et al. 2010), is naturally addressed by our
method. Our algorithm can generate as many clusters as the user requires, taking into ac-
count the whole set of previously discovered clusterings. Loosely speaking we can say that
our method can memorize a set of clusterings, instead of a single clustering as most of other
methods do, and provide a non-redundant alternative clustering to all of them. Most interest-
ingly, the computational cost for every new clustering remains the same for each iteration.
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In addition, generating clusterings with varying number of clusters can be easily dealt with
using our framework.

Outline The next section (Sect. 2) recapitulates the main ideas of the general data mining
framework presented in De Bie (2011). In Sect. 3 we suggest using the first and second
order cumulants of the data points as initial prior knowledge of the data miner, and we
demonstrate how this prior knowledge can be formalized by means of a Maximum Entropy
background distribution as required for the framework from Sect. 2. In this section we also
introduce a syntax of a pattern that represents a single cluster, as well as pattern syntax to
represent a set of clusters (e.g. a clustering, or more specifically a partition of the data). We
subsequently derive analytical expressions for the subjective interestingness of such pattern
types (quantified by means of their self-information in the framework from Sect. 2), given
initial prior knowledge on the first and second cumulants of the data. These results allow us
in Sect. 4 to present our iterative scheme for mining the most interesting clustering subject
to prior knowledge that may also include the knowledge of previously discovered cluster-
ing patterns—i.e. to find the most interesting alternative clustering. Although finding the
best alternative clustering in this sense is a hard problem, in Sect. 5 we present an efficient
approximation algorithm similar to spectral clustering methods. We verify our approach
experimentally in Sect. 6 and discuss related work in Sect. 7.

Notation Throughout this paper x ∈ R
d denotes a d-dimensional data point, and X =

(x′
1 x′

2 · · · x′
n)

′ denotes the data matrix containing n data points as its rows. The space the
data matrix belongs to is denoted as X = R

n×d . The pseudoinverse of a matrix A is denoted
as A†.

2 A unified framework for data mining

For completeness, we here provide a short overview of a framework for data mining that was
introduced in De Bie (2011), and readers familiar with this paper can skip this section. Ear-
lier and more limited versions of this framework, as well as its application to other machine
learning and data mining tasks, can be found in De Bie (2010, 2011), Kontonasios and De
Bie (2010), Kontonasios et al. (2011), Spyropoulou and De Bie (2011). For concreteness,
here we specialize the short overview of the framework to the case where the data is a data
set, summarized in the data matrix X.

The framework aims to formalize data mining as a process of information exchange
between the data and the data miner (the user). The goal of the data miner is to get as
good an understanding about the data as possible, i.e. to reduce his uncertainty as much as
possible. To be able to do this, the degree of uncertainty must be quantified. To this end
we use a probability distribution P (referred to as the background distribution) to model
the prior beliefs of the user about the data X, in combination with ideas from information
theory.

More specifically, the framework deals with the setting where the prior beliefs specify
that the background distribution belongs to a set P of possible distributions. The more prior
beliefs, the smaller this set will be. For example, the data miner may have a set of prior
beliefs that can be formalized in the form of constraints the background distribution P sat-
isfies: ∫

X∈Rn×d

fi(X)P (X) = ci, ∀i.
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Such constraints represent the fact that the expected value of certain statistics (the func-
tions fi ) are equal to a given number (the constants ci ). The set P is defined as the set of
distributions satisfying these constraints. (Note that the framework is not limited to such
prior beliefs, although they are convenient from a practical viewpoint.)

It was argued in De Bie (2011) that among all distributions P ∈ P , the ‘best’ choice for
P is the one of maximum entropy (Jaynes 1982) given these constraints. This background
distribution is the least biased one, thus not introducing any other undue constraints on the
background distribution. A further game-theoretic argument in favour of using the distribu-
tion of maximum entropy is given in De Bie (2011).

In the framework, a pattern is defined as any piece of knowledge about the data that
reduces the set of possible values it may take from the original data space X = R

n×d to a
subset X ′ ⊆ X . It was then argued that the subjective interestingness of such a pattern can
be adequately formalized as the self-information of the pattern, i.e. the negative logarithm
of the probability that the pattern is present in the data, i.e. by − log(P (X ∈ X ′)). Thus,
patterns are deemed more interesting if their probability is smaller under the background
model, and thus if the user is more surprised by their observation.

After observing a pattern, a user instinctively adapts his beliefs. In De Bie (2011) it was
argued that a natural and robust way to model this is by updating the background distri-
bution to a new distribution P ′ defined as P conditioned on the pattern’s presence. The
self-information of subsequent patterns can thus be evaluated by referring to the new back-
ground distribution P ′, and so on in an iterative fashion.

In De Bie (2011) it was demonstrated that mining the most informative set of patterns
formally corresponds to a weighted set coverage problem, attempting to cover as many el-
ements from the set X that have a small probability under the initial background distribu-
tion P . This problem is NP-hard, but it can be approximated well by a greedy approach. An
iterative data mining approach is equivalent to such a greedy approximation. Selecting and
encoding patterns in an iterative manner, ensures that at any time the patterns generated are
approximately the most informative set of patterns of that size.

In the next section we instantiate this general framework for discovering clusterings in
the data.

3 Subjective interestingness of (a set of) cluster(s)

3.1 Prior beliefs and the maximum entropy background distribution

Here we consider two types of initial prior beliefs, expressed as constraints on the first
and second order cumulants of the data points. It is conceptually easy to extend the results
from this paper to other types of prior beliefs, although the computational cost will vary. The
background distribution incorporating these constraints is the maximum entropy distribution
that has the prescribed first and second order cumulants. It is easy to show that for data with
unbounded domain, this distribution is the multivariate Gaussian distribution with mean and
covariance matrix equal to the prescribed cumulants:

P (X) = 1√
(2π)nd |Σ |n exp

(
−1

2
trace

[(
X − eμ′)Σ−1

(
X − eμ′)′])

, (1)

where μ is a d × 1 vector containing the means of every row in the dataset, Σ is a n × n

covariance matrix and e is a n × 1 containing ones.
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We note that the prescribed cumulants may be computed from the actual data at the
request of the data miner, such that they are indeed part of the prior knowledge. However,
they may also be beliefs, in the sense that they may be based on external information or
assumptions that may be right or wrong.

3.2 A syntax for cluster patterns

The framework from De Bie (2011) was developed for patterns generally defined as prop-
erties of the data. Thus, a pattern’s presence in the data constrains the set of possible values
the data may have, and in this sense the knowledge of the presence of a pattern reduces the
uncertainty about the data and conveys information.

In this paper we restrict our attention to one specific type of cluster pattern. The pattern
type we consider is parameterized by a set of indices to the data points and a vector in the
data space. The pattern is then the fact that the mean of the data points for these indices is
equal to the specified vector.

More formally, let eI ∈ {0,1}n be defined as an indicator vector containing zeros at posi-
tions i �∈ I and ones at positions i ∈ I , and let nI = |I | = e′

I eI denote the number of elements
in I . Then, our patterns are constraints of the form:

1

nI

∑
i∈I

xi = μI ,

⇐⇒ X′eI = nIμI .

Such a constraint restricts the possible values of the data set X, in that the mean of a subset
of the data points is required to have a prescribed value μI .

3.3 A syntax for a pattern defined as a set of clusters

The present paper is concerned with clustering data, i.e. with identifying a meaningful parti-
tion of the data. In the case of alternative clustering, we also need a way to consider different
such clusterings simultaneously.

We can formalize a clustering pattern as a set of cluster patterns, one for each cluster in
the clustering. A pattern describing the presence of a set of clusterings can also be described
by a set of cluster patterns, one for each cluster present in any of the clusterings. Conse-
quently, to describe a single clustering as well as a set of different clusterings, it suffices to
define a general pattern type to describe the presence of a set of clusters.

Based on the syntax of cluster patterns, the syntax of a set of k cluster patterns can
be defined as the union of k cluster patterns. We create the indicator matrix E ∈ {0,1}n×k ,
which contains as its columns indicator vectors eIi for each one of the k clusters in the set,
and the matrix M ∈ R

d×k , a real-valued matrix which contains the scaled means, i.e. nIi μIi
,

of each cluster as its columns. Then the set of constraints for a set of clusters can be written
concisely as X′E = M.

We reiterate that this pattern syntax can be used to describe the presence of any set of
cluster patterns. The case of a clustering (in the sense of partition) is obviously subsumed
by this formulation, by ensuring that the columns of E form a partition.

3.4 The self-information of a cluster pattern

The self-information of a pattern is the measure of subjective interestingness proposed in De
Bie (2011). It is defined as the negative logarithm of the probability of a pattern to be present
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in the data under the maximum entropy model. The following theorem shows how to assess
the self-information of a cluster.

Theorem 1 Given a background distribution of the form in Eq. (1), the probability of a
pattern of the form X′eI = nIμI is given by:

P
(
X′eI = nIμI

) = 1√
(2π)d |Σ | exp

(
− 1

2|I |e′
I · [(X − eμ′)Σ−1

(
X − eμ′)′] · eI

)
.

Thus the self-information of a cluster specified by the set I , defined as its negative log prob-
ability under the Maximum Entropy model and denoted as SelfInformationI , is equal to:

SelfInformationI = 1

2
log

(
(2π)d |Σ |) + 1

2
QI,

where QI = 1

|I |e′
I · [(X − eμ′)Σ−1

(
X − eμ′)′] · eI .

Note that the self-information depends on I only through QI , so we may choose to use
QI as a quality measure for a cluster, as we will do in this paper.

This theorem can be used to quantify the self-information of any cluster given the back-
ground model based on the initial prior beliefs of the data miner. Note however that it can-
not be used to assess the self-information of a cluster after other clusters have already been
found, as each new cluster will affect the user’s prior beliefs. How this can be accounted for
will be discussed in Sect. 3.5 (and further in Sect. 4), based on a generalization of Theo-
rem 1. As Theorem 1 directly follows from Theorem 2, we will only provide a proof for the
latter in Sect. 3.5.

3.5 The self-information of a set of clusters

The following theorem is a generalization of Theorem 1 as it demonstrates the calculation
of the self-information for a set of clusters.

Theorem 2 Let the columns of the matrix E be the indicator vectors of the sets in I =
{Ii}, and let PE = E(E′E)†E′, the projection matrix onto the column space of E. Then, the
probability of the composite pattern X′E = M is given by:

P
(
X′E = M

) = 1√
(2π)kd |Σ |k exp

(
−1

2
trace

[
PE · (X − eμ′)Σ−1

(
X − eμ′)′])

.

Thus the self-information of the set of patterns defined by the columns of E, defined as its
negative log probability and denoted as SelfInformationI , is equal to:

SelfInformationI = k

2
log

(
(2π)d |Σ |) + 1

2
QI ,

where QI = trace
[
PE · (X − eμ′)Σ−1

(
X − eμ′)′]

.

Again, since the self-information depends on I only through QI , we choose to use QI as a
quality measure for a cluster further below.

Proof A constraint X′E = M constrains the data X to an (n − k) × d dimensional affine
subspace in the following way. Let us write the singular value decomposition for E as:
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E = (
U U0

)(
Λ 0
0 0

)(
V V0

)′
.

Then, this constraint can be written in the following form:

X = UZ + U0Z0,

where Z = Λ−1V′M′ is a constant fixed by E and M, and Z0 ∈ R
(n−k)×d is a variable. In

general, writing X = UZ + U0Z0, we can write the probability density for X as:

P (X) = P (Z,Z0),

= 1√
(2π)nd |Σ |n exp

(
−1

2
trace

[(
UZ + U0Z0 − eμ′)Σ−1

(
UZ + U0Z0 − eμ′)′])

,

= 1√
(2π)nd |Σ |n exp

(
−1

2
trace

[(
U0Z0 − U0U′

0eμ′)Σ−1
(
U0Z0 − U0U′

0eμ′)′])

· exp

(
−1

2
trace

[(
UZ − UU′eμ′)Σ−1

(
UZ − UU′eμ′)′])

,

= 1√
(2π)nd |Σ |n exp

(
−1

2
trace

[(
Z0 − U′

0eμ′)Σ−1
(
Z0 − U′

0eμ′)′])

· exp

(
−1

2
trace

[(
Z − U′eμ′)Σ−1

(
Z − U′eμ′)′])

,

= 1√
(2π)(n−k)d |Σ |n−k

exp

(
−1

2
trace

[(
Z0 − U′

0eμ′)Σ−1
(
Z0 − U′

0eμ′)′])

· 1√
(2π)(k)d |Σ |k exp

(
−1

2
trace

[(
Z − U′eμ′)Σ−1

(
Z − U′eμ′)′])

We can now compute the marginal probability density for Z by integrating over Z0, yielding:

P (Z) = 1√
(2π)kd |Σ |k exp

(
−1

2
trace

[(
Z − U′eμ′)Σ−1

(
Z − U′eμ′)′])

.

The probability density value for the pattern’s presence, i.e. for X′E = M or equivalently
Z = Λ−1V′M′, is thus:

P
(
Z = Λ−1V′M′)

= 1√
(2π)kd |Σ |k exp

(
−1

2
trace

[(
Λ−1V′M′ − U′eμ′)Σ−1

(
Λ−1V′M′ − U′eμ′)′])

,

= 1√
(2π)kd |Σ |k exp

(
−1

2
trace

[
PE · (X − eμ′)Σ−1

(
X − eμ′)′])

,

where PE = E(E′E)†E′ = UU′ is a projection matrix projecting onto the k-dimensional col-
umn space of E.

The required expression is obtained immediately by taking the negative logarithm of the
last equation. �

Note that Theorem 1 is indeed a special case of Theorem 2 as can be seen by substituting

E = eI and PE = eI e′
I

|I | .
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Remark 1 (Description Length of a set of clusters) The framework from De Bie (2011)
suggests to take into account not only the self-information of a pattern, but also the cost to
communicate a pattern, i.e. its description length. This depends on the coding scheme used,
which should reflect the perceived complexity of a pattern as perceived by the data miner.
Choosing this coding scheme can also be done so as to bias the results toward specific
patterns.

In the current context, describing a pattern amounts to describing the subset I and the
mean vector μI for every cluster in the clustering. For simplicity, we assume the description
length is constant for all patterns, independent of I and μI . However, note that different
costs could be used, which can bias the interestingness of the clusterings towards specific
goals.

4 Subjective interestingness of an alternative clustering

Since a single clustering as well as a set of clusterings can be described by means of a set of
cluster patterns, we can rely on Theorem 2 for verifying the optimality of a clustering or of
a set of clusterings according to the self-information measure.

Unfortunately, though by no means unusually for clustering formulations, optimizing
QI over the set of all possible clusterings is a difficult combinatorial problem. A fortiori,
searching for the globally optimal set of clusterings is infeasible in practice. In fact in De
Bie (2011), it was shown that in general this amounts to an NP-hard set coverage problem,
where each possible pattern (the clustering patterns, in the present paper) corresponds to a
set in the set coverage problem.

Fortunately, a set coverage optimization problem can be approximated provably well by
a greedy iterative approach. Applied to our problem setting, this strategy would iteratively
select the clustering that maximizes the increase of the quality measure QI . In this section
we quantify this increase as ΔQk . We show that ΔQk is the self-information of a clustering
on data in the k’th iteration that is projected onto the space orthogonal to the clustering
assignments already discovered by the algorithm in previous k − 1 iterations. Although also
maximizing this increase is hard as well, we present an approximate solution to this problem
in Sect. 5, relying on a spectral relaxation of the problem inspired by the spectral clustering
literature.

Before we proceed, however, we want to point out another beneficial aspect of the itera-
tive approach.

Usually it is not a priori clear how many clusterings are required for the data miner to be
sufficiently satisfied with his new understanding of the data. The idea of alternative cluster-
ing, as we view it, is to provide the user the opportunity to request new clusterings as long
as more are desired. Optimizing the quality measure over a growing set of clusterings by it-
eratively optimizing over newly added columns of E is thus a type of alternative clustering.
Hence, the iterative approach can be regarded as an approximation, but one with usability
benefits over a global optimizing approach.

Let us say that we have already found k − 1 ≥ 1 clusterings, and the matrices E and M
respectively contain the indicator vectors and scaled cluster means as their columns. We are
interested in finding the k’th clustering so as to optimize the quality measure from Theorem 2
but keeping the first k − 1 clustering patterns as they are.

To do this, it is convenient to write the quality measure as a function of the k’th clustering
with indicator matrix Ek (which we can safely assume to be of full column rank). Let us
denote the augmented indicator matrix for the k-th iteration as E∗ = (E Ek). The projection
matrix of E∗ can be expressed as
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PE∗ = E∗(E∗′E∗)†
E∗′ = (

E Ek

) [(
E Ek

)′ (
E Ek

)]† (
E Ek

)′
,

= PE + QEEk

(
E′

kQEEk

)−1
E′

kQE,

where QE = I − PE, the projection matrix on the null column space of E.
Using the definition quality measure Q from Theorem 2 and the expression for the pro-

jection matrix derived above we obtain:

Q⋃k
i=1 Ii

= trace
[
PE∗ · (X − eμ′)Σ−1

(
X − eμ′)′]

,

= trace
[
PE · (X − eμ′)Σ−1

(
X − eμ′)′]

+ trace
[
QEEk

(
E′

kQEEk

)−1
E′

kQE
(
X − eμ′)Σ−1

(
X − eμ′)′]

,

= Q⋃k−1
i=1 Ii

+ trace
{(

E′
kQEEk

)−1
E′

k

[
QE

(
X − eμ′)Σ−1

(
X − eμ′)′

QE
]
Ek

}
,

where Ii is the partition corresponding to the i-th clustering, Ek is the indicator matrix
corresponding to the partition Ik and E contains the indicator vectors for all clusters in⋃k−1

i=1 Ii .
Each of the iterative steps thus reduces to the maximization of the following increase of

the quality measure:

ΔQk = trace
{(

E′
kQEEk

)−1
E′

k

[
QE

(
X − eμ′)Σ−1

(
X − eμ′)′

QE
]
Ek

}
.

The initial iteration, where no clustering is present in the prior knowledge, is a spe-
cial case of the quality measure increment ΔQk due to an alternative clustering with set-
tings Q∅ = 0 and QE = I. Using these settings the expression of Theorem 2 for the self-
information of a clustering is derived.

We can interpret the above reformulation of the quality measure for the k’th clustering
conditioned on the first k−1 clusterings as being the quality measure for a first clustering on
data that is projected onto the space orthogonal to the k−1 sets of columns of E, i.e. the k−1
previously selected sets of indicator vectors. It is as if the data was deflated to take account
of the knowledge of the previously found clustering patterns, thus automatically accounting
for redundancy. In other words, the value ΔQk can be seen as the self-information of a
clustering pattern after considering a set of other clustering patterns.

Remark 2 (Kernel variant) Note that for Σ = I and μ = 0, the quality measures depend on
X only through the inner product matrix XX′. This means that a kernel-variant is readily
derived, by substituting this inner product matrix with any suitable kernel matrix. In this
way non-linearly shaped clusters can be obtained, similar to spectral clustering methods and
kernel K-Means.

5 A spectral algorithm for optimizing subjective interestingness

Computing the binary matrix Ek which maximizes ΔQk is a combinatorial problem. How-
ever, if we relax the vector Ek to be real-valued instead of containing only 0’s and 1’s
we obtain the quotient trace optimization problem. The quotient trace problem is a well-
known problem encountered often in fields such as classification and dimensionality reduc-
tion (Wang et al. 2007).
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This trace is maximized by the matrix Ek with columns the k dominant eigenvectors
of the generalized eigenvalue problem AEk = ΛBEk, where A = QE(X − eμ′)Σ−1(X −
eμ′)′QE and B = QE (Hersch 1961).

In order to obtain a crisp 0/1 matrix Ek , a binary approximation to the real solution must
be employed. This is a hard task and various methods have been suggested in the literature
to derive a crisp solution from a relaxed one. Here we use the method proposed in Ng et al.
(2001), Shi and Malik (2000). The method consists of the following steps:

• Create the matrix En
k by normalizing the rows of the real solution matrix Ek .

• Apply K-means algorithm for clustering the rows of En
k in k clusters.

• Create each row in the binary Ek by assigning the value 1 to the column indicating the
cluster in which the row was contained and 0 everywhere else.

According to Ng et al. (2001), Shi and Malik (2000), this procedure produces a binary
matrix Ek with quotient trace close to the one of the optimal real-valued solution obtained
using the generalized eigenvalue problem. Thus we can use the obtained Ek as the kth clus-
tering returned by our alternative clustering scheme, representing an alternative to the k − 1
previously considered clusterings.

Note that this spectral relaxation approach is highly efficient, requiring little more than
the solution of a generalized eigenvalue problem (with dimensionality equal to n), and a sub-
sequent low-dimensional K-means problem. This makes our approach highly scalable and
easy to implement using widely available numerical matrix analysis packages.1 Remarkably,
the complexity also does not increase in consecutive iterations of alternative clustering.

The computation of the iterative step concludes the presentation of our algorithm. In the
next section (Sect. 6) we demonstrate the use of our algorithm and compare with existing
solutions in artificial and real-world experiments.

6 Experimental evaluation

6.1 Evaluation scheme

Assessing alternative clustering results is an inherently difficult task and many different
approaches have been proposed in the literature. A general scheme, common in most of
them, is that a good alternative clustering has to contain clusters of high quality and to be
as dissimilar to the previous clusterings as possible. The use of various quality/dissimilarity
measures for the instantiations of this general scheme leads to different overall evaluations.

In this paper we employ several different techniques for evaluating the discovered clus-
terings. In order to provide means for subjective evaluation, we visualize the discovered
patterns. Although visualization is easy for low dimensional artificial datasets, it is increas-
ingly difficult for high dimensional real-world datasets. In order to deal with this issue, we
opted to use real datasets consisting of images for our experiments.

In addition, we compare our results with an intuitive ground truth initial clustering. For
this reason we used labelled datasets for our more complex real-world experiments. La-
belled datasets directly motivate an external evaluation strategy using confusions matrices
and measures such as the adjusted Rand index.

1Though this is beyond the scope of the current paper, note that one can also rely on the considerable body of
literature on approximation techniques for generalized eigenvalue problems should the data set be particularly
large.
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External evaluation A first type of evaluation we will consider in this paper relies on
the availability of an external ground truth clustering of the data. We refer to this type of
evaluation as the external evaluation, and it relies on the adjusted Rand index.

The adjusted Rand index (ARI) (Rand 1971) measures the similarity between two cluster-
ings in a conveniently calibrated manner: its value lies between −1 (absolute dissimilarity)
and 1 (absolute similarity), and it is 0 in expectation for statistically independent clusterings
making its values easy to interpret.

The ARI is used in this paper to measure both the quality of the clustering at hand and
its redundancy with the previous clusterings. We assess the quality of the given clustering
as the similarity, measured by ARI, with the given ground truth clustering. We denote this
quantity with ARIg . Higher ARIg values indicate higher quality clusterings. For measuring
the redundancy, we calculate ARIs between the current clustering and all the clusterings
previously discovered (denoted ARIb). Lower values in this setting are better as they indicate
more dissimilar clusterings.

A more detailed view of the information carried by the discovered patterns is given by
confusion matrices between ground truth labels and labels assigned by our clustering method
for each iteration of the algorithm.

Internal evaluation Internal evaluation approaches for clustering attempt to quantify the
quality of a clustering without referring to any external ground truth labeling of the data.
Following common practice in the alternative clustering literature, we do this here by means
of the Dunn and Jaccard indices for measuring the quality and redundancy of clusterings
respectively.

More in detail, according to the Dunn index (DI) (Dunn 1971), a high quality clustering
consists of both individual clusters which present low variance between the points they
contain (compact clusters) and large distances between the cluster centers. Higher values
for the DI are better.

The Jaccard index (JI) (Tan et al. 2005) is a similarity measure between two different
sets and can be generalized to measure the similarity of two partitions in order to be used
for measuring the similarity between clusterings. Its value lies between 0 (totally dissimi-
lar sets) and 1 (identical sets). We calculate Jaccard indices between the current clustering
and all previously discovered ones in the same fashion as the calculation of ARIb . Thus,
lower values for the JI are better as they indicate lower redundancy between the alternative
clustering and the previously discovered clusterings.

The F-measure: aggregating cluster quality and non-redundancy In order to summarize
the quality of an alternative clustering using a single score, one commonly relies on the
so-called F-measure to trade-off cluster quality with redundancy. The overall score of a
clustering C is then defined as:

F(C) = 2 · Quality · (1 − Similarity)

1 + Quality − Similarity
,

where Quality can be instantiated by the ARIg measure (in the external evaluation) or the
Dunn index (in the internal evaluation) and Similarity with the ARIb (in the external evalua-
tion) or the Jaccard index (in the internal evaluation) respectively.

At this point, we should note that our method is not designed to optimize any of these
‘objective’ clustering measures. However, it is nonetheless interesting to observe that our
approach manages to perform well on these independently proposed notions of quality and
dissimilarity of clustering results (as will be shown below), arguably extending the credibil-
ity of our approach.
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Algorithms used for comparison We compare the performance of our methods with three
well-known alternative clustering algorithms, namely the COALA (Bae and Bailey 2006),
ADFT (Qi and Davidson 2009) and minCEntropy+ (Vinh and Epps 2010) algorithms.

The COALA algorithm is based on an agglomerative hierarchical clustering algorithm.
A set of ‘cannot-link’ constraints encode the prior knowledge provided by the initial clus-
tering. Merging of pairs that satisfy these constraints are performed according to quality
and dissimilarity criteria calculated using as a similarity function, the ‘average linkage’ dis-
tance, i.e. the Euclidean distance of all pairwise objects between clusters. A manually tuned
parameter ω is used to establish the trade-off between quality and dissimilarity.

On the other hand, the ADFT algorithm transforms the original data using suitable dis-
tance metrics in a way that points clustered together initially are less likely to be clustered
together in the alternative clustering. Then clustering on the transformed data using any
traditional clustering algorithm is performed.

The minCEntropy+ algorithm is an information-theoretic approach. It searches for an
alternative clustering that minimizes the conditional entropy of the data (quality objective)
while maximizing its entropy conditioned on previous discovered clusterings (dissimilarity
objective). A manually tuned parameter λ is used to control the trade-off between these two
objectives.

Unlike our methods, the COALA and ADFT algorithms take account of only one clus-
tering as prior information and they require an existing clustering as an initial seed. This
restricts our experimental setting to a single iteration. The required initial clustering was
computed by the MaxEntLinear method and it was common for all methods.

Parameter settings For all experiments we consider Σ = I and μ = 0. The K-Means al-
gorithm was restarted 100 times. When using the RBF kernel version of our algorithm, the
kernel parameter σ was set as the median value of the Euclidean distances between all pairs
of data points. When using the COALA algorithm we set the parameter ω to its default value.
The default values for the trade-off parameter λ and the kernel parameter σ were used for
the minCEntropy+ algorithm. For convenience we refer to the linear variant of our method
as MaxEntLinear and the RBF-kernel variant as MaxEntRBF.

6.1.1 Datasets

We used two well known real-world UCI datasets (Blake and Merz 1998), namely the
CMUFace and the Digits datasets, for our experiments. The CMUFace dataset contains 640
grayscale images of 20 individuals, i.e. 32 images for each individual. The resolution of
each image is 32 × 30, which provides 960 features of integer values between 1 and 256.
This dataset is well suited for alternative clustering methods since it contains 4 different la-
bellings with varying number of labels in each of them. More in detail, each image presents
an individual in different poses (straight, up, right, left), different expressions (angry, happy,
sad, neutral) and wearing sunglasses or not.

The Digits dataset consists of 5620 images of handwritten digits. Each image contains
one digit between 0 and 9. The value of each pixel in the image varies between 1 and 16 and
the image resolution is 8 × 8, providing 64 features.

We note that the same datasets were used for the experimental evaluation of Cui et al.
(2007). The CMUFace dataset was also used in Niu et al. (2010) and Vinh and Epps (2010).
Here we follow closely and expand the settings of their experiments. In the next subsections
we refer to the results presented in these papers and compare them with the ones obtained
by our methods.



Mach Learn (2015) 98:31–56 43

We also created two artificial datasets. The first one consists of four clusters of 25 two-
dimensional points each. The second one contains a central cluster of 20 two-dimensional
points and two half-moon shaped clusters around this central cluster containing 40 points
each.

6.2 Experiments with artificial data

6.2.1 Visualization

As our first experiment we generate three clusterings for the datasets at hand using both ver-
sions of our algorithm. Figures 1 and 2 depict the results for the first and the second dataset
respectively. In both cases the results show that the algorithm produces non-redundant re-
sults not only between consecutive iterations but also between all pre-discovered cluster-
ings. Moreover the clusters in each clustering make intuitive sense as they consist mostly of
mergings of the initial clusters in the dataset. A small number of erratic points appear most
probably due to the fact that we are only approximating the ideal solution by solving the
relaxed eigenvalue problem.

The ΔQ value for each cluster is displayed on the top of every plot in Figs. 1(a, b)
and 2(a, b). We observe that for all cases this value is relatively high for the first iteration
and drops rapidly in the next ones. This is natural as the algorithm is totally unaware of the
presence of any clusters in the first iteration. From iteration two onwards successively more
information is encoded typically resulting in smaller values for ΔQ.

6.2.2 Comparison with existing methods

Next we compare our methods with the ADFT, COALA and minCEntropy+ algorithms. The
discovered clusterings are presented in the bottom plots of Figs. 1 and 2 for the two datasets.

The first plot in the top row for each set of plots is the initial clustering for all meth-
ods (computed by MaxEntLinear). For the first dataset we observe that our methods, ADFT
and minCEntropy+ produce nearly identical results. Essentially they all perform a linear
separation of the data orthogonal to the one performed in the initial clustering. On the
other hand, COALA produces a different clustering. One can argue that this solution is
more redundant with the initial clustering than the solution computed by the other meth-
ods.

Regarding the second dataset (bottom plot in Fig. 2) again MaxEntLinear, ADFT and
minCEntropy+ produce almost the same results. It again consists of a linear separation of the
data almost orthogonal to the separation performed in the first clustering. The MaxEntRBF
separates the central cluster from the rest which is the solution with the highest quality and
dissimilarity. It is made prominent that the MaxEntRBF method can easily identify non-
linearly shaped clusters. COALA generates a clustering which overlaps largely with the
initial one.

6.3 Digits dataset

6.3.1 Visualization and external evaluation

The Digits dataset provides a single ground truth labelling for ten clusters. However, we do
not require a number of clusters in each clustering to be equal to the number of clusters
in the ground truth labelling since we want to avoid overfitting the model already in the
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(a) Three clusterings for the first artificial dataset using the MaxEnt method with a linear kernel. The value
on the top of each plot is the ΔQ measure

(b) Three clusterings for the first artificial dataset using the MaxEnt method with a RBF kernel. The value
on the top of each plot is the ΔQ measure

(c) Comparison with existing methods for one iteration of each algorithm for the first artificial dataset. The
first plot on the first row is the initial clustering, the second in the top row is an alternative clustering generated
by the MaxEntRBF method, the third in the top row by the MaxEntLinear method, the first in the bottom row
by the ADFT algorithm, the second in the bottom row by the COALA algorithm and the third in the bottom
row by the minCEntropy+ algorithm

Fig. 1 Clusterings created in three consecutive iterations by the MaxEnt method using a linear kernel (top
image) and a RBF kernel (middle image) for the first artificial dataset. A comparison with existing measures
is presented in the bottom image
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(a) Three clusterings for the second artificial dataset using the MaxEnt method with a linear kernel. The
value on the top of each plot is the ΔQ measure

(b) Three clusterings for the second artificial dataset using the MaxEnt method with a RBF kernel. The value
on the top of each plot is the ΔQ measure

(c) Comparison with existing methods for one iteration of each algorithm for the second artificial dataset.
The first plot on the first row is the initial clustering, the second in the top row is an alternative clustering
generated by the MaxEntRBF method, the third in the top row by the MaxEntLinear method, the first in the
bottom row by the ADFT algorithm, the second in the bottom row by the COALA algorithm and the third in
the bottom row by the minCEntropy+ algorithm

Fig. 2 Clusterings created in three consecutive iterations by the MaxEnt method using a linear kernel (top
image) and a RBF kernel (middle image) for the second artificial dataset. A comparison with existing mea-
sures is presented in the bottom image
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Fig. 3 Mean images for 3 clusterings of 3 clusters for the Digits dataset using a RBF kernel. The values on
the top of the images present the recognized digits in each cluster. Adigit is recognized if more than 70 % of
its images are contained in one cluster

first iteration. Instead, we generate five clusterings each one containing three clusters. The
same experiment was performed in Cui et al. (2007). We compare the performance of our
algorithm with the algorithm in Cui et al. (2007) without presenting the results from this
paper here. The reader can refer to Cui et al. (2007) for the complete results.

Figure 3 depicts the mean image for each cluster for three iterations performed by our
algorithm using the RBF kernel variant. Following the settings of Cui et al. (2007), we
consider a digit recognized if more than 70 % of its instances are clustered in the same
cluster. The Digits labels above each plot contains the digits recognized by the correspond-
ing cluster. Table 1 presents the confusion matrix for the whole set of five iterations per-
formed.

Regarding the discovered clusterings, we observe that all digits, except ‘8’, are recog-
nized and clustered in the course of 5 iterations. In the first iteration we recognize 7 out
of 10 digits. The number of recognized digits remains high for the next two iterations (six
in both of them) and drops in the final two. This is something we expect as an increasing
amount of information is encoded into our model with each iteration. However, in iteration
5 digit ‘8’, the only unrecognised digit, gets its higher value over all iterations and almost
reaches the recognition threshold with 69 % of their instances clustered in the same clus-
ter.

With respect to the redundancy, we note that no pair of recognized digits are recognized
together in more than one cluster for all iterations which suggests that intuitively a highly
non-redundant set of clusterings is generated.

Table 2 presents the ARIg values for the five clusterings. We observe a decrease in the
ARIg value with the number of iterations. However, this decrease is not rapid, indicating
that the method is able to produce high quality clusterings for a relatively high number of
iterations.
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Table 1 Confusion Matrix for the Digits dataset using the RBF kernel for the inner product calculation. Bold
faced numbers correspond to recognized digits

Digit Iteration 1 Iteration 2

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Zero 1 505 48 200 353 1

One 470 73 28 157 37 377

Two 20 22 515 117 7 433

Three 48 4 520 458 25 89

Four 282 286 0 181 310 77

Five 199 69 290 6 519 33

Six 1 557 0 12 38 508

Seven 562 0 4 520 25 21

Eight 280 60 214 95 182 277

Nine 156 2 404 127 426 9

Digit Iteration 3 Iteration 4

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Zero 50 21 483 528 20 6

One 502 1 68 290 140 141

Two 66 1 490 38 233 286

Three 299 193 80 185 59 328

Four 433 90 45 14 501 53

Five 175 105 278 61 51 446

Six 107 405 46 56 159 343

Seven 5 92 469 10 299 257

Eight 110 197 247 287 235 32

Nine 239 267 56 425 51 86

Digit Iteration 5

Cluster 1 Cluster 2 Cluster 3

Zero 74 142 338

One 281 240 50

Two 153 60 344

Three 195 318 59

Four 152 71 345

Five 287 259 12

Six 244 214 100

Seven 5 328 233

Eight 381 140 33

Nine 77 251 234

Figure 4 and Tables 2 and 3 present corresponding results using the linear kernel for
the computation of inner products. The results obtained are qualitatively similar with these
obtained using the RBF variant. Again all symbols, except ‘8’, are recognized, the first
iteration produces identical results and the ARIg values are of the same scale.
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Table 2 ARIg values between different clusterings and the ground truth labels for the Digits dataset

ARIg Clustering 1 Clustering 2 Clustering 3 Clustering 4 Clustering 5

MaxEntRBF 0.2029 0.1638 0.1241 0.1236 0.0638

MaxEntLinear 0.2031 0.1400 0.1212 0.0927 0.0804

Fig. 4 Mean images for 3 clusterings of 3 clusters for the Digits dataset using a linear kernel. The values on
the top of the images present the recognized digits in each cluster. A digit is recognized if more than 70 % of
its images are contained in one cluster

6.3.2 Comparison with existing methods

Table 4 presents a comparison between our methods and the ADFT, COALA and
minCEntropy+ algorithms for the Digits dataset. We perform two iterations for the RBF
variant of the MaxEnt methods (the first iteration provides the initial clustering for the other
algorithms and we assess our method in the second clustering) and a single iteration for the
rest of them. Each clustering in this setting has five clusters.

The RBF variant of the MaxEnt method and the minCEntropy+ algorithm produce the
clusterings of the highest quality measured using the ARIg and the Dunn Index respec-
tively. The most diverse solution was generated by the minCEntropy+ algorithm and the
Linear MaxEnt variant for the ARIb and Jaccard index respectively. Measuring simultane-
ously quality and diversity, however, the MaxEnt RBF method provides the highest rated
solution for both F-measures used in this paper (i.e. using both the external and the internal
evaluation measures). Values for the COALA algorithm are missing because the provided
implementation failed to execute due to memory overflow issues.
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Table 3 Confusion matrix for 5 iterations for the Digits dataset using the standard inner product for the
computation of inner products. Bold faced numbers correspond to recognized digits

Digit Iteration 1 Iteration 2

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Zero 1 505 48 11 1 542

One 470 74 27 285 284 2

Two 20 22 515 22 498 37

Three 48 4 520 231 90 251

Four 282 286 0 462 50 56

Five 198 69 291 125 200 233

Six 1 557 0 79 470 9

Seven 563 0 3 7 136 423

Eight 281 60 213 119 346 89

Nine 157 2 403 187 9 366

Digit Iteration 3 Iteration 4

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Zero 62 449 43 254 15 285

One 158 176 237 168 356 47

Two 5 141 411 403 42 112

Three 180 44 348 78 386 108

Four 143 230 195 457 92 19

Five 115 436 7 468 72 18

Six 478 37 43 186 224 148

Seven 28 21 517 180 81 305

Eight 292 197 65 84 97 373

Nine 326 214 22 314 111 137

Digit Iteration 5

Cluster 1 Cluster 2 Cluster 3

Zero 31 177 346

One 2 276 293

Two 49 357 151

Three 62 228 282

Four 394 70 104

Five 388 137 33

Six 248 228 82

Seven 413 120 33

Eight 98 82 374

Nine 101 208 253

6.4 CMUFace dataset

Our algorithm deals naturally with different number of clusters for each iteration. Since we
are already aware of different underlying structures in the CMUFace dataset, we develop
an iterative scheme different from the one used in the Digits dataset. We develop a four-
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Table 4 Comparison of different methods using two sets of measures for the Digits dataset. ARIg computes
the overlap of the discovered clustering with the ground truth labels. ARIg and DI are measures of quality
and higher values are better. ARIb computes the overlap between the discovered clusterings. ARIb and J are
measures of dissimilarity between clusterings. Lower values are better. The F-measure indicates a trade-off
between quality and dissimilarity measures

Methods Set 1 Set 2

ARIg ARIb F DI J F

MaxEntRBF 0.2134 0.0467 0.3480 0.7335 0.0918 0.8116

MaxEntLinear 0.2031 0.0382 0.3354 0.6904 0.0873 0.7861

ADFT 0.0692 0.0251 0.1292 0.6071 0.1037 0.7239

COALA NA NA NA NA NA NA

minCEntropy+ 0.2092 0.0188 0.3449 0.7535 0.1545 0.7968

Fig. 5 Average images for 20 clusters generated by the first iteration of the algorithm using the standard
inner product version (linear kernel) for the CMUFace dataset. Each image correspond to a different individ-
ual. Values above each image indicate the percentage of the individual’s images inside the cluster (L value)
and the percentage of the individual’s images inside the specified cluster

iterations setting with 20, 4, 4, and 2 clusters respectively in each clustering. We hope that
each iteration will reveal a clustering that correlates mostly with the corresponding ground
truth label.

6.4.1 Visualization and external evaluation

Figure 5 shows the average image for the 20 clusters generated in the first iteration using
the standard inner product version of our algorithm. The L value above each image is the
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Fig. 6 Average images for 4 and 2 clusters generated by the second and fourth iteration of the algorithm
using the standard inner product version (linear kernel) for the CMUFace dataset. The leftmost set of images
corresponds to the pose labelling of the dataset and the rightmost set the sunglasses labelling

ratio of the number of individual’s images inside the corresponding cluster over the total
number of the individual’s images in the dataset. The C value is the ratio of the number of
individual’s images over the total number of images in the cluster.

From visual inspection it is prominent that the vast majority of the images correspond
to different individuals. Furthermore, L and C values indicate that seven of the individuals
were clustered in clusters that contain all their images and none else. In total 10 clusters
present values above 0.85 for both L and C. Comparing with the results in Cui et al. (2007),
we obtain a perfect clustering of a person, i.e. L = 1, for 10 clusters, significantly larger
than 7 and 8 which were obtained by the algorithms in Cui et al. (2007) and minCEntropy+

algorithm respectively (C values are not reported in either Cui et al. 2007 and Vinh and Epps
2010).

Figure 6 presents average images for iterations 2 and 4 respectively. In this case we
observe that the second clustering correlates with the labelling of the images according to
the pose of the individual and the fourth clustering with the ‘sunglasses’ label. Similar results
are obtained in Cui et al. (2007) for iterations two and four.

For the second clustering we get the lowest value of L for clusters 2 (second on top
in Fig. 6). This image depicts a person mostly in two very similar posses, front and up,
clearly wearing sunglasses. It can be argued that the algorithm discriminates based on a
combination of the different labellings rather than based on single ones. In particular for
the second clustering the logical expression ‘(up OR front) AND sunglasses’ is depicted.
Consequently since we are computing L and C values in single labellings their values are
small. The third cluster, which depicts the expression ‘(up OR front) AND NOT sunglasses’
is also affected. The labelling according to facial expressions was not retrieved by either
our method or the algorithms in Cui et al. (2007) and Vinh and Epps (2010) due to the
same effect. Nevertheless the resulting clusterings are of high quality and make intuitive
sense.

The correlation of each clustering with the labellings mentioned above is backed up by
the ARIg values presented in the first row of Table 5. The table presents maximum ARIg

values between the discovered solution and all ground truth labellings for iterations 1 to 4.
These values were indeed observed for labellings 1 (individuals), 2 (poses), 2 (poses) and
4 (sunglasses) respectively.

Figures 7 and 8 present the clusterings discovered using our algorithm with a RBF kernel
for the computation of inner products.

Qualitatively, the discovered clusterings are similar with the ones obtained by the linear
methods. Table 5 contains the ARIg values for each iteration. They are higher than the ones
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Table 5 ARIg values between different clusterings and the ground truth labels generated for the CMUFace
dataset. Results displayed refer to the labelling with the maximum ARIg . These labellings are 1,2,2,4 for
clusterings 1,2,3,4 respectively for both the standard inner product and the RBF kernel

ARIg Clustering 1 Clustering 2 Clustering 3 Clustering 4

MaxEntLinear 0.7179 0.2127 0.0863 0.0434

MaxEntRBF 0.7534 0.2772 0.1152 0.0162

Fig. 7 Average images for 20 clusters generated by the first iteration of the algorithm using an RBF kernel
for the CMUFace dataset. Each image correspond to a different individual. Values above each image indicate
the percentage of the individual’s images inside the cluster (L value) and the percentage of the individual’s
images inside the specified cluster

Fig. 8 Average images for 4 and 2 clusters generated by the second and fourth iteration of the algorithm
using an RBF kernel for the CMUFace dataset. The leftmost set of images corresponds to the pose labelling
of the dataset and the rightmost set the sunglasses labelling
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Table 6 Comparison of different methods using two sets of measures for the CMUFaces dataset. ARIg
computes the overlap of the discovered clustering with the ground truth labels. ARIg and DI are measures
of quality and higher values are better. ARIb computes the overlap between the discovered clusterings. ARIb
and J are measures of dissimilarity between clusterings. Lower values are better. The F-measure indicates a
trade-off between quality and dissimilarity measures

Methods Set 1 Set 2

ARIg ARIb F DI J F

MaxEntRBF 0.1341 0.0254 0.2358 0.6580 0.0546 0.7759

MaxEntLinear 0.0712 0.0171 0.1328 0.6226 0.0633 0.7480

ADFT 0.0013 0.0026 0.0026 0.6413 0.0333 0.7711

COALA 0.0630 0.0675 0.1180 0.5895 0.0521 0.7269

minCEntropy+ 0.1143 0.0212 0.2046 0.6540 0.1252 0.7485

obtained by the linear method, which indicates clusters more correlated with the ground
truth labels.

6.4.2 Comparison with existing methods

Next we compare our methods with the ADFT, COALA and minCEntropy+ algorithms us-
ing two different sets of quality measures. As before, the initial solution is a clustering with
five clusters, it was provided by the MaxEntRBF method and it was common for all meth-
ods. For the ARIg and ARIb calculation we use the labelling according to individual/person
and the other labellings are dropped. The results are displayed in Table 6.

The MaxEntRBF method produces the highest quality results using both the ARIg and
the Dunn index. In addition it presents the highest score for the F-measures indicating that
the best trade-of between quality and diversity is achieved by this method (using both the
external and the internal evaluation measures). The most diverse solutions were obtained by
the ADFT algorithm but with significantly lower quality values as measured by the ARIg

measure.

7 Related work

A number of information-theoretic approaches for finding alternative clusterings have been
proposed. In Gondek and Hofmann (2003) (and later refined in Gondek and Hofmann 2004)
the Conditional Information Bottleneck (CIB) method was adjusted in the alternative clus-
tering setting. More in particular, the authors associate the quality of a clustering with com-
pression and define constrained optimization problems which compute a clustering that si-
multaneously presents a good compression and preserves the knowledge of the given clus-
tering.

The NACI algorithm (Dang and Bailey 2010) searches for non-linearly shaped alternative
clusterings. It quantifies the quality of a clustering using the quadratic mutual information
between the data and the clustering labels. The minimization of mutual information is also
employed to measure the dissimilarity between the clustering at hand and a given one. The
quality and dissimilarity objectives are combined in a constrained optimization problem.

A similar rationale was implemented in the minCEntropy+ method in Vinh and Epps
(2010). The mutual information—or equivalently the conditional entropy—is used again to
quantify quality and distinctiveness of clusterings. A hill climbing strategy is employed to
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iteratively optimize the conditional entropy objective. One of the most promising features
of the method is that it can handle more than one previously discovered clusterings as prior
knowledge.

In Dasgupta and Ng (2010) alternative clusterings, ‘suboptimal’ with respect to a
reference—‘optimal’—clustering, are discovered using distinct dimensions of the optimal
clustering. The ‘optimal’ clustering is computed as the solution of a relaxed eigenvalue
problem motivated by the standard spectral clustering objective of finding the optimal nor-
malized cut in a directed graph. For learning ‘suboptimal’ clusterings, the same constraint
optimization problem is employed but with an increasing number of constraints in every
iteration.

The CIB and NACI methods detect only a single alternative clustering. In contrast, our
setting naturally deals with the multiple alternative clustering setting.

While being very attractive in the way they handle non-linearity in data, information
theoretic approaches proposed so far present some technical difficulties. For example, mod-
elling joint distributions between features and cluster labels in the CIB can be computa-
tionally difficult. In order to bypass this obstacle without making any assumptions on the
distribution the NACI and minCEntropy+ methods employ complex techniques, such as
KL-divergence variants, Havrda-Charvat structural α entropy and Parzen-window density
estimation. Our method however, does not require a probabilistic model for the data at all. It
rather computes a very simple model for the data miner’s prior knowledge, expressed using
only simple statistics (mean, variance) on the dataset.

The NACI and minCEntropy+ algorithms involve a manually-tuned parameter to control
the trade-off between quality and distinctiveness of clustering results. Although one can
argue that this is a desired feature, tuning the parameter would require some user expertise.
Our method is essentially parameter-free, with the only parameter involved being the σ

value on the kernel setting which is easier to tune.
Furthermore, all methods proposed so far use information theory to quantify how similar

cluster indexes are. On the contrary, our method considers the data points directly in the data
space for defining both the probabilistic model and the quality measure to be optimized.

Finally, we consider it a strength that the objective function to be optimized in our method
is readily derived by instantiating a general data mining framework for the specific case of
alternative clustering. This framework has been proven useful in the past for other machine
learning and data mining applications, such as principal component analysis (De Bie 2011),
frequent itemset mining (De Bie 2010; Kontonasios and De Bie 2010, 2012), multi-relational
pattern mining (Spyropoulou and De Bie 2011) and statistical assessment of data mining
patterns (Kontonasios et al. 2011).

8 Conclusions

In De Bie (2011) a framework for data mining was introduced, aiming to quantify the subjec-
tive interestingness of patterns. There it was shown that Principal Component Analysis can
be seen as implementing this framework for a particular pattern type and prior beliefs, thus
providing an alternative justification for this method. More importantly, also the potential
of the framework in quantifying subjective interestingness for other machine learning and
data mining applications was introduced (De Bie 2010, 2011; Kontonasios and De Bie 2010;
Spyropoulou and De Bie 2011; Kontonasios et al. 2011).

In the present paper, we showed in detail how the framework can also be applied suc-
cessfully to the case of clustering, leading to a new approach for alternative clustering that
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presents subjectively interesting clusterings in data in an iterative data mining scheme. We
showed that our method deals naturally with some of the major challenges in mining multi-
ple clustering solutions and compares favourably with already proposed algorithms.

The core of our alternative clustering approach is based on a generalized eigenvalue
problem, such that it can be implemented easily and efficiently using widely-available and
highly optimized numerical matrix analysis packages. A further feature of our approach is
that it is able to identify nonlinearly shaped clusters, similar to spectral clustering methods.

In further work, we will investigate the quality of the spectral relaxation, and consider
the development of tighter relaxations (e.g. to semi-definite programs). We will also further
develop links with spectral clustering and other existing clustering approaches, to provide
alternative justifications and insights or to improve on these approaches. In addition a more
refined approach for the Description Length of a clustering will be examined.

Acknowledgements This work is supported by the EPSRC grant EP/G056447/1 and a Centenary Scholar-
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