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Shadow-band radiometer measurement of diffuse solar irradiance: calculation of
geometrical and total correction factors

Miguel de Simón-Martı́n1, Montserrat Dı́ez-Mediavilla, Cristina Alonso-Tristán

Solar and Wind Feasibility Technologies (SWIFT) Research Group, University of Burgos.
Escuela Politécnica Superior (E.P.S.), Campus de Rı́o Vena s/n, 09006, Burgos (Spain).

Abstract

Among the various methods of measuring diffuse solar irradiance, shadowing devices are ones of the most commonly
used in solar research all over the world. These instruments work with a basic pyranometer, properly calibrated
for the measurement of solar irradiance, with a shadowing element, which can be a disk or a band (Drummond’s
shadow-band), that prevents the direct incidence of solar beam irradiance on the sensor. This method is capable of
precise measurements, but sensor outputs have to be corrected, so as to quantify the amount of diffuse irradiance that
the band blocks from reaching the sensor. Several authors have advanced different expressions for this correction
factor, most of which only apply to horizontal and equator-oriented tilting pyranometers. In this work, we present
a general approach to calculate the geometrical correction factor for a tilted sensor, oriented towards all possible
azimuth and zenith angles, which permits the measurement of solar diffuse irradiance on any tilted and oriented
surfaces. Furthermore, five total correction models are adapted for measurement in any given direction and evaluated
on vertical walls pointing the four cardinal directions. Our results show that geometrical correction improves the
Mean Bias Difference (MBD), the Root Mean Squared Difference (RMSD) and the µ0.99 statistics by 60%, 62% and
56%, respectively, in contrast with the raw data. The LeBaron et al. model gives the most accurate figure for total
correction according to MBD, RMSD and µ0.99 statistics, with promising average performances of 97%, 91%, and
96%, respectively.

Keywords: Solar diffuse irradiance, shadow-band, instrumentation, correction factor.

1. Introduction1

Diffuse solar irradiance is the component of total so-2

lar irradiance that is reflected and scattered through the3

atmosphere. The scattering effects are generated by air4

molecules and aerosols and are partially dependent on5

particle density. One portion of total primary and multi-6

ple scattered radiation is reflected back to space, another7

is absorbed, and a third portion reaches the ground (see8

Fig. 1). The accurate assessment of diffuse irradiance9

is essential for estimating the incidence of irradiance10

on different objects such as solar energy collectors and11

photovoltaic panels. Diffuse irradiance measurements12
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are usually taken from horizontal or tilted planes ori-13

ented towards the equator. However, reliable irradiance14

measurements on planes other than on the horizontal,15

where it is commonly measured, are necessary to ver-16

ify solar distribution models, such as those reviewed in17

(Yang, 2016), applied to buildings equipped with solar18

collectors (including BIPVs) and sun-tracking devices.19

There are several instruments nowadays that allow20

us to measure solar diffuse irradiance. Drummond’s21

shadow-band, the rotating shadow-band pyranometer,22

the tracking solar disk and the sky-scanner stand out23

among others.24

Drummond’s shadow-band consists of a metal band25

that blocks the Sun’s path in the sky dome (see Fig. 2).26

The band needs adjustment every few days, depending27

on the latitude at the mounting place and the day of the28

year. Due to its simplicity, reduced costs, and ease of29

operation, it is probably the most extensively used de-30

vice for the measurement of solar diffuse irradiance.31
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Nomenclature and abbreviations

As Anisotropic coefficient [-] sc Circumsolar irradiance fraction [-]
B Beam direct irradiance [W·m−2] V Transversal observed angle [rad]
Bsc Solar constant [W·m−2] Wsh Shadow-band’s width [m]
D Diffuse irradiance [W·m−2] Greek symbols
Dc Corrected diffuse measure [W·m−2] α Significance level [-]
Duc Uncorrected diffuse measure [W·m−2] γi Azimuth angle [rad]
esh Shadow-band thickness [m] γp Pyranometer’s azimuth angle [rad]
fgc Geometrical correction factor [-] ∆ Perez et al.’s brightness index [rad]
ftc Total correction factor [-] δs Sun’s declination angle [rad]
G Global irradiance [W·m−2] ε Perez et al.’s clearness index [-]
hs Solar elevation [deg] ε0 Earth’s orbit excentricity [-]
Isky Sky radiance [W·m−2·sr−1] θsp Sun-pyranometer angle [rad]
Ig Albedo’s radiance [W·m−2·sr−1] θzp Pyranometer’s zenith angle [rad]
kd Diffuse fraction [-] θzsh Shadow-bands’s zenith angle [rad]
m Relative optical air mass [-] θγ Zenith angle up to the sensor [rad]
N Day of the year [day] µ1−α New statistical estimator [W·m−2]
R2 Pearson’s correlation coefficient [-] ξc Circumnsolar angle [rad]
Rgr Blocked albedo’s reflectance [W·m−2] ξp Angle with a patch in the sky [rad]
Rsh Shadow-band’s radius [m] ξshp Angle with the shadow-band [rad]
MBD Mean Bias Difference [W·m−2] ρ Ground reflectance [-]
RMSD Root Mean Squared Difference [W·m−2] φg Geographical latitude [deg. N]
S Sky dome fraction [-] ωi Hour angle [rad]
s Side length of a U profile [m] ωsd Semi day-light duration [rad]

Based on this principle, but simultaneously extended32

to multiple azimuth and tilting angles, our research33

group has developed a new device in previous works,34

called MK6. As it can be seen in Fig. 3, the pro-35

posed device (Spanish Patent ES-2562720-B2) is able36

to measure diffuse solar irradiance directly on four tilted37

surfaces oriented towards the main cardinal directions:38

North, South, East and West. A complete description39

and explanation of its characteristics and operating pro-40

cedure is presented in (de Simón-Martı́n et al., 2015).41

Fig. 1. Solar irradiance components on a tilted surface.

Although this measurement method is accurate and42

simple, its functional principle relies on blocking so-43

lar rays by means of a shadow-band, which means a44

correction factor is necessary. This correction factor45

should estimate the correct measurement from the raw46

data given by the pyranometer analyzing the sky radi-47

ance blocked by the shadow-band. Taking into account48

that a pyranometer measures the solar diffuse irradiance49

that reaches the Earth’s surface on a plane at a solid50

angle of 2π sr, with the exception of the solid angle51

blocked by the shadow-band, the geometrical correction52

factor fgc can be defined as:53

fgc =
Dc

Duc
=

2π
2π − x

=
1

1 −
s

2π

=
1

1 − S
(1)

where, Dc is the estimation or corrected value of the54

true diffuse irradiance on the plane, x is the solid an-55

gle measured in [sr] blocked by the shadow-band and56

Duc is the diffuse value registered by the sensor. S is57

the fraction of the diffuse irradiance intercepted by the58

shadow-band.59

The estimation of diffuse irradiance blocked by the60

shadow-band may be approached in two main ways:61

• Under the hypothesis that the sky radiance is62
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Fig. 2. Commercial Drummond’s shadow-band device. Adapted from
(Kipp and Zonen, 2014).

Fig. 3. Multi-directional diffuse solar irradiance measurement device
aka MK6. Adapted from (de Simón-Martı́n et al., 2015).

isotropic and, therefore, homogeneous throughout63

the sky vault, then all that is needed is a geometri-64

cal study of sky radiance projected onto the mea-65

suring plane.66

• Under the hypothesis that the sky radiance67

is anisotropic, then (empirical or theoretical)68

anisotropic models must be applied.69

Depending on overcast-sky or clear-sky conditions,70

either the isotropic or the anisotropic approach will be71

the most accurate. In general terms, anisotropic mod-72

els cover a wider range of situations and offer a better73

performance (Sánchez et al., 2012).74

A geometrical (or isotropic) correction was de-75

veloped by Drummond in 1956 (Drummond, 1956,76

1964), while several authors have determined different77

anisotropic corrections (Sánchez et al., 2013). However,78

we have noted that these corrections have only been ap-79

plied to the horizontal and tilted cases oriented towards80

the Equator (the Equator-oriented case is equivalent to81

the horizontal case with a corrected geographical lati-82

tude: φ′ = φ − θzp). In the absence of any indication83

in methods from international literature that apply ei-84

ther the geometrical correction or the anisotropic mod-85

els to other surfaces, a generalized geometrical correc-86

tion model valid for any oriented and tilted surface is87

presented in this study. Moreover, five acceptably mod-88

ified anisotropic models (also known as total correction89

factor models) were evaluated. The most representative90

correction models in the literature were selected: Batlles91

et al. (versions A and B) (Batlles et al., 1995; Muneer,92

2004; Sánchez et al., 2013), LeBaron (LeBaron et al.,93

1990), Muneer-Zhang (Muneer and Zhang, 2002) and94

Steven (Steven and Unsworth, 1980; Steven, 1984).95

The paper is organized into six sections. The first96

describes the methodology and data used in this re-97

search work. The characteristics of the validation data98

and the quality filters are described, including a brief99

description of the measurement station. In section 3,100

we extend the generalized geometrical correction fac-101

tor, introduced in our previous work (de Simón-Martı́n102

et al., 2015), including different shadow-band profiles103

and a parametrical analysis based on the geographical104

latitude, the azimuth angle and the width-radius ratio.105

We then describe the total (anisotropic) correction mod-106

els and their proposed modifications. In section 5, we107

present the results and discuss the performance of each108

model according to four statistical estimators. Finally,109

we present the conclusions in the last section.110
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2. Materials and methods111

A data set of 18 053 measurements, taken every ten112

minutes on vertical planes oriented toward the four main113

cardinal points (North, South, East and West), was com-114

pared with information from the proposed models, for115

the purpose of evaluating the correction models under116

analysis. These data were acquired at a radiometric sta-117

tion installed on the rooftop of the Escuela Politécnica118

Superior (E.P.S.) of the University of Burgos (42.2122119

deg. N, 3.3753 deg. W, 860 m.a.s.l.). The station is op-120

erated and maintained by the Solar and Wind Feasibility121

Technologies Research Group. Obstacles on the horizon122

are negligible (elevation angles are less than 5 deg.) and123

top quality standards according to the World Meteoro-124

logical Organization (WMO) (WMO, 2010) and the Na-125

tional Renewable Energy Laboratory from United States126

(NREL) (Sengupta et al., 2015) are guaranteed.127

The data set included diffuse irradiance measure-128

ments on the four previously described planes taken by129

the MK6 device, which has four sensors (First class130

pyranometers) and one single multi-lobular shadow-131

band (see Fig. 3). Reference measurements were ob-132

tained by the composition model:133

Dre f (θzp, γp) = G(θzp, γp)− B(θzp, γp)−R(θzp, γp), (2)

where global irradiance measurements [G(θzp, γp)] were134

measured by Ph. Schenk 8101 pyranometers (see Fig.135

4.a ), beam irradiance measurements [B(θzp, γp)] with136

a Hukseflux DR01 pyrheliometer and ground reflected137

measurements [R(θzp, γp)] were obtained by a SIR SKS-138

1110 pyranometer installed in an inverted position.139

Global and diffuse horizontal irradiances were also140

measured with Hukseflux SR11 pyranometers mounted141

on a Geonica SunTracker-3000 (see Fig. 4.b ). The142

sun tracker has a ball that prevents the beam irradi-143

ance from reaching the diffuse sensor without obstruct-144

ing any other sky portion. Thus, the correction factor145

for these measurements is almost negligible (Ineichen146

et al., 1983).147

The study period encompassed eight months, from148

September 2014 to April 2015, so as to ensure that a149

variety of seasonal processes and meteorological condi-150

tions were sampled.151

All pyranometers were calibrated against a reference152

pyranometer (Hukseflux SR21) which had in turn been153

previously calibrated at the World Radiation Center154

(WRC) in Davos, Switzerland, by using the multiple155

points calibration method, in order to guarantee mea-156

surement quality and comparability. The uncertainties157

(a)

(b)

Fig. 4. Main devices from the radiometric station. a) Vertical global
irradiance sensors. b) Horizontal global and diffuse sensors and a
pyrheliometer mounted on a two-axis sun-tracker.

Table 1. Sensor calculated uncertainties.

Meas. Sensor Max. Relative
Uncert. [%]

Glo. North Ph. Schenk 8101 5.2
Glo. South Ph. Schenk 8101 5.2
Glo. East Ph. Schenk 8101 5.2
Glo. West Ph. Schenk 8101 5.2
Diff. North Hukseflux SR11 5.6
Diff. South Hukseflux SR11 5.6
Diff. East Hukseflux SR11 5.6
Diff. West Hukseflux SR11 5.6
Glo. Hor. Hukseflux SR11 4.2
Diff. Hor. Hukseflux SR11 4.6
Beam Hukseflux DR01 5.5
Albedo’s SIR SKS-1110 7.8
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of all the sensors were calculated by the B method pro-158

posed in the (Joint Committee for Guides in Metrology,159

2008) and the results are shown in Table 1.160

Moreover, the data set under evaluation was subjected161

to a quality-control procedure, in order to eliminate pos-162

sible erroneous measurements. The following quality163

filters proposed in (de Miguel et al., 2001; Muneer,164

2004; López et al., 2004; WMO, 2010) were applied to165

guarantee reliable data:166

1. Solar elevation hs ≥ 5 deg.167

2. G(0) ≥ 0.19 W·m−2.168

3. G(0) ≤ 1.12Bsc.169

4. B(n) ≤ Bsc.170

5. B(n) ≥ 0.19 W·m−2.171

6. B(n)/Bsc ≤ G(0)/(Bsc cos θzs) − 0.5.172

7. D(0) ≤ 1.15G(0).173

8. D(0) ≤ 0.8Bsc.174

9. D(0) ≥ 0.19 W·m−2.175

10. R(180) ≥ 0.19 W·m−2.176

11. R(180) ≤ G(0).177

Bsc is the solar constant equal to 1 367 W·m−2 accord-178

ing to the WMO.179

The models were classified into two groups for the180

evaluation of their performance:181

• Theoretical models: containing certain assump-182

tions regarding the sky-radiance distribution with-183

out depending on any empirically-obtained, local184

parameters.185

• Empirical models: containing local coefficients186

which have to be empirically obtained for the case187

study, normally through the application of regres-188

sion techniques to recorded data.189

The proposed Generalized Geometrical Correction190

Model (GGCM) and the Muneer-Zhang Correction191

Model (MZCM) belong to the group of theoretical mod-192

els. In contrast, both the Batlles A and B models193

(BACM and BBCM), the LeBaron model (LBCM) and194

the Steven model (STCM) are empirical models that195

need to be adjusted to local coefficients.196

A k cross-validation method was implemented to197

study the performance of the models. So, the whole data198

set was randomly divided into k = 10 subsets of approx-199

imately equal size (this implies ≈ 1 300 measurement200

data per set after quality-control filtering). Throughout201

the k = 10 iterations, one subset was the test data set202

and the combination of the other nine subsets was the203

training subset. The training subsets were used to adjust204

the coefficients of the empirical models and the test sub-205

set was used to evaluate the performance of the model.206

The training subset was not used in the case of the the-207

oretical models. The whole procedure was repeated in208

such a way that every subset was used once for test-209

ing. Note that the testing data for each subset was not210

used in the training of the model and all models were211

tested with the same subsets, for comparison of the re-212

sults. The model performance was finally established as213

the average value over the k = 10 iterations obtained by214

the statistical estimators that were adopted.215

Four parameters were considered for the statistical216

analysis: the Pearson’s correlation coefficient (R2), the217

Root Mean Squared Difference (RMSD), the Mean Bias218

Difference (MBD) and the µ1−α-statistic (µ0.99). Their219

expressions are defined by equations (3), (4), (5) and220

(6), respectively.221

R2 =
σ2

XY

σ2
Xσ

2
Y

, (3)

RMSD =

√√√
1
N

N∑
i=1

(
Dc,i − Dre f ,i

)
, (4)

MBD =
1
N

N∑
i=1

(
Dc,i − Dre f ,i

)
, (5)

µ1−α = sign(MBD)

|MBD| − tα/2

√
RMSD2 −MBD2

N − 1

 ,
(6)

where, σXY is the covariance between X (reference mea-222

surements) and Y (corrected values by the model) vari-223

ables, σX is the standard deviation of variable X, σY224

is the standard deviation of variable Y , Dc,i is the ith225

diffuse corrected value, Dre f ,i is the ith diffuse refer-226

ence value, α is the statistical significance (usually taken227

0.01) and N is the total number of measurements.228

The RMSD value points to the short-term behavior of229

the model, while the MBD value describes its long-term230

performance. We should highlight that a few differences231

of a high magnitude with regard to the reference values232

will significantly increase the RMSD. Conversely, over-233

estimations can be canceled out by underestimations in234

the MBD. Moreover, neither the RMSD nor the MBD235

can provide a confidence interval to give significance to236

the model’s predictions. Thus, in (Stone, 1993), the t-237

statistic is recommended. It combines both statistical238

estimators and offers a confidence interval with a statis-239

tical significance of α. However, this estimator is based240

on a very restrictive hypothesis contrast where the mean241

difference between the estimated and the reference val-242

ues is assumed to be zero (µ = 0). This estimator was243
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redefined in terms of the value of such a difference, in244

order to avoid such a limiting restriction, and is now245

called µ1−α. In this case, we took α = 0.01. This es-246

timator includes the sign of the MBD value, in order247

to analyze whether the proposed model tended either to248

overestimate (positive sign) or underestimate (negative249

sign).250

For the final decision, 5 rankings (one for each partic-251

ular direction and one for the overall behavior) includ-252

ing the six models under study were taken into account.253

The ’all-conditions’ ranking was calculated by a non-254

parametric aggregation procedure, adapted from (Stone,255

1994). In this case, the locations were substituted by256

measured directions.257

In all cases, studentized residuals (Moore and Mc-258

Cabe, 2000) were evaluated and absolute values greater259

than 2 were discarded. Thus, normality, homocedastic-260

ity and the independence of the data were found to be261

acceptable.262

Finally, scatter plots for each model and at the four263

cardinal directions are presented as part of a graphic264

analysis. Absolute residual diagrams against the hor-265

izontal diffuse fraction (kd) and the angle formed be-266

tween the sensor and the Sun’s position (cos θsp) are in-267

cluded. These diagrams were introduced by Ineichen in268

the mid-1980s (Ineichen et al., 1983) to illustrate an in-269

formative representation of a model’s performance. Fi-270

nally, the behavior of each correction model under con-271

sideration for all four directions is shown.272

3. Generalized geometrical correction (GGCM)273

If we consider that the internal reflection in a shadow-274

band is negligible, the irradiance fraction that it blocks275

with respect to the total amount of diffuse and albedo276

irradiance on the sensor can be expressed as:277

S =
Dr(θzp, γp) + Rgr(θzp, γp)

D(θzp, γp) + R(θzp, γp)
, (7)

where the index r refers to the shadow-band.278

The differential equation of the irradiance incident on279

the sensor is written as:280

dDr

dω
+

dRgr

dω
=

(
Isky + Ig

)
cos θspV cos δs, (8)

where V is the transversal angle seen by the sensor, δs281

the Sun’s declination angle, and ω the hourly angle. Isky282

is the sky radiance [W· m−2·sr−1], and Ig is the ground283

reflected radiance [W· m−2·sr−1]. If both radiances are284

supposed to be isotropic, then equations (9) and (10)285

are verified and we can relate Isky and Ig with the global286

irradiance on horizontal plane, the diffuse fraction kd287

and the ground reflectance ρ.288

G(0) =

∫ 2π

0

∫ π/2

0
Isky cos θ sin θdθdγ = πIsky. (9)

Ig =
ρG(0)
π

=
ρ(D(0)/kd)

π
=
ρ

kd
Isky. (10)

By integrating equation (8), taking into account the289

results of both (9) and (10), the numerator of expression290

(7) is obtained:291

Dr(θzp, γp) + Rgr(θzp, γp)

= VIsky cos δs

(∫ ω3

ω2

cos θspdω +

∫ ω5

ω4

cos θspdω
)

+
ρ

kd
VIsky cos δs

(∫ ω2

ω1

cos θspdω +

∫ ω6

ω5

cos θspdω
)
,

(11)

where ωi and i ∈ {1, 2, 3, 4, 5, 6} are the integral limits292

according to the zenith and azimuth angles of the incli-293

nation and orientation of the pyranometer respectively.294

Their determination, which constitutes the key to this295

approach, is explained in depth in subsection 5.296

The denominator in expression (7) is obtained by ap-297

plying the hypothesis of an isotropic distribution of the298

radiance:299

D(θzp, γp) + R(θzp, γp)

= Iskyπ

(
1 + cos θzp

2
+
ρ

kd

1 − cos θzp

2

)
. (12)

The true value of sky radiance Isky is unnecessary for300

the calculation of S by the quotient of (11) over (12).301

Thus, the geometrical correction factor strictly depends302

on the zenith and azimuth angles of the pyranometer,303

the transversal observed angle, the spectral reflectance304

(albedo), and the diffuse fraction.305

3.1. Integration limits306

The integration limits in equation (11) are the hourly307

angles measured in the shadow-band’s plane, with ref-308

erence point Qi and generated by the most restrictive309

intersection between the shadow-band’s plane, the sen-310

sor’s plane and the horizon plane. An example of these311

intersections for a sensor characterized by direction p is312

shown in Fig. 5.313

6



  

Fig. 5. Plane intersections in the case study.

The intersection between the sensor and the horizon314

plane can be defined by two hour angles:315

ω1a = arcsin
(
−

cos γp

cos δs

)
, (13)

ω2a = π − arcsin
(
−

cos γp

cos δs

)
. (14)

In the particular case of both the sensor and the hori-316

zon are in the same plane, γp, the azimuth angle of the317

pyranometer, can take any value.318

The intersection of the shadow-band’s plane with the319

horizon are the sunrise and sunset hour angles, defined320

by equations (15) and (16).321

ω1b = −ωsd = −| − tan φg tan δs|, (15)

where ωsd is the hour angle of the semi-daylight dura-
tion in [rad] or, in other words, the absolute value of the
hour angle between the sunrise and the solar noon.

ω2b = ωsd = | − tan φg tan δs|. (16)

At certain geographical latitudes, where322

| − tan φg tan δs| > 1, the shadow-band’s plane323

may not intersect with the horizon in certain time324

periods throughout the year, e.g., in the summer solstice325

at any region upper the Artic circle. In such cases, if326

tan φg tan δs < −1 then ωsd = 0 or if tan φg tan δs > 1327

then it must be assumed that ωsd = π.328

Finally, the intersection of the planes of both the329

shadow-band and the sensor can be expressed as:330

sin θzp cos γpRsh

[
sign(φg) sin φg cosω − cosφg tan δs

]
+sin θzp sin γpRsh sinω+sign(φg) cos φg cosω cos θzpRsh

+ sin φg tan δs cos θzpRsh = 0. (17)

If the shadow-band’s radius is not null (Rsh , 0) and331

cos φg , 0, then equation (17) can be written as:332

A cosω + B sinω = C, (18)

where, A, B, and C are defined in equations (19), (20),333

and (21), respectively.334

A = tan φg sin θzp cos γp + cos θzp. (19)

B =
sin θzp sin γp

cos φg
. (20)

7



  

C = tan φg tan δs cos φzp + tan δs sin θzp cos φ. (21)

Equation (18) can be solved by applying λ = cosω.335

Thus, the hour angle limits for the last intersection can336

be obtained:337

|ω1c| = arccos

AC + B
√

A2 + B2 −C2

A2 + B2

 . (22)

|ω2c| = arccos

AC − B
√

A2 + B2 −C2

A2 + B2

 . (23)

If A > 0 and B > 0 or A ≥ B, then the value of ωic,338

with i ∈ {1, 2}, will be −|ωic| ; otherwise ωic = +|ωic|.339

In the case of the sensor plane being parallel to the340

plane of the shadow-band (θzp = θzr = π/2 − φg and341

γp = −π), both planes do not intersect. So there is no342

real solution to A2 + B2−C2 < 0 and λ. If tan φg tan δs <343

0, then ω1c = ω2c = 0, otherwise ω1c = −π and ω2c = π.344

The integration limits for equation (11) are shown in345

Table 2 according to the most restrictive hour angles. It346

should be noted that ω1a ≤ ω1c and ω2c ≥ ω2c, ∀ωi ∈347

[−π, π].348

Table 2. Integration limits for equation (11).

ωi ω1c ≤ ω2c ω1c > ω2c
ω1 ω1c −π
ω2 max(ω1b, ω1c) min(ω2b, ω2c)
ω3 0 ω2c

ω4 0 ω1c

ω5 min(ω2b, ω2c) max(ω1b, ω1c)
ω6 ω2c π

3.2. Transversal angle and shadow-band geometry349

The transversal angle V seen by the pyranometer de-350

pends strongly on the shape of the shadow-band’s sec-351

tion. We can distinguish two main cases:352

I profile: the stretch plate is the most common profile.353

It consists of a rectangle of negligible thickness354

(Wsh >> esh). The transversal angle VI observed355

by the sensor is:356

VI = 2
VI

2
≈ 2 tan

(VI

2

)
≈ 2

Wsh

2
cos δs

Rsh

cos δs
+

Wsh

2
sin δs

,

(24)

where Wsh is the band width and Rsh is the average357

radius of the shadow-band. We can consider that358

Wsh sin δs/2 is negligible in comparison with the359

other denominator component; then:360

VI ≈ 2

Wsh

2
cos δs

Rsh

cos δs

=
Wsh

Rsh
cos2 δs. (25)

U profile: a blended profile with its aperture on the361

outside of the band is used by some manufactur-362

ers, because it means that the observed transver-363

sal angle is independent of the declination angle, if364

tan δs ≤ s/Wsh, where s is the side length of the U365

profile. In this case, the observed transversal angle366

VU is:367

VU = 2
VU

2
≈ 2 sin

(VU

2

)
=

cos δs

√
W2

sh + s2

Rsh +
s
2

.

(26)

Assuming that s/2 is negligible in comparison with368

the shadow-band width, we can simplify the previ-369

ous equation as follows:370

VU ≈

Wsh

cos δs
cos δs

Rsh +
Wsh tan δs

2

≈
Wsh

Rsh
. (27)

3.3. Parametrical analysis371

As demonstrated in the previous section, the geomet-372

rical correction factor depends on the geographical lati-373

tude, day of the year (declination angle), position of the374

diffuse sensor (inclination and azimuth angles), the ge-375

ometrical properties of the shadow-band (width/radius376

ratio) and the measurement conditions (diffuse fraction377

and albedo reflectance). Fig. 6 presents the variation of378

this correction according to some inputs. Subfigures (a),379

(b) and (c) plot the response surface for the day of the380

year and the geographical latitude for sensors installed381

in a vertical position oriented towards the four cardinal382

points. The last subfigure represents the behavior of this383

parameter depending on the width/radius ratio for a sen-384

sor on an horizontal plane.385

It can be observed in this figure that the geometri-386

cal correction factor as function of the day of the year387

is anti-simetrical with respect to the equator (latitude388

0 deg.). Furthermore, while the East correction fac-389

tor matches with the West correction factor, North and390
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South corrections behave the opposite (when North cor-391

rection achieves its maximum, South correction gets its392

minimum, and viceversa). Nevertheless, in all cases it393

can be observed that the geometrical correction is al-394

ways greater or equal than zero. Zero correction is ob-395

tained when the shadow-band does not intercept the ob-396

served sky-dome by the sensor, e.g., a North-facing sen-397

sor at the equator in winter. Subfigures (a) and (c) show398

a disruption at 0 deg. latitude because a North-facing399

sensor at the North-hemisphere is pointing the pole,400

while in the South-hemisphere is pointing the equator.401

In all subfigures, it can be observed that the fgc be-402

haves in an ondulatory way as a function of the day of403

the year for a fixed latitude. Because of the evolution of404

the solar declination angle, it achieves its extreme val-405

ues at the solstices and the equinoxes, as expected.406

Finally, subfigure (d) shows that the greater the407

Wsh/Rsh ratio, the greater the disturbance on the ob-408

served dome by the sensor is produced and, then, a409

greater value for the geometrical correction factor is410

needed.411

4. Total correction models412

The geometrical correction factor developed in the413

previous section is based on the hypothesis of evenly414

distributed radiance throughout the sky dome. This as-415

sumption differs from real atmospheric conditions in416

many cases, specially when clear skies occur. Thus, the417

proposed correction factor must be modified to include418

the anisotropic effects in the atmosphere. In this work,419

the most relevant total correction models in the related420

literature were analyzed (Muneer, 2004; Sánchez et al.,421

2012). However, we cannot apply those models directly,422

but certain modifications are proposed to diffuse mea-423

surements on non-horizontal planes.424

4.1. Batlles et al. A (BACM)425

The first correction model proposed in (Batlles et al.,426

1995) is based on a multiple linear regression of the ge-427

ometrical correction factor and on the brightness ∆ and428

the clearness ε indexes proposed in (Perez et al., 1987):429

ftc = a fgc + b log ∆ + c log ε + d exp
(
−1

cos θzs

)
, (28)

where a, b, and c are empirical coefficients obtained430

from a regression process in a training dataset.431

Note that, according to those authors, the expression432

for ε is:433

ε =
D(0) + B(n)

D(0)
, (29)

and is represented in eight intervals, according to434

the original Perez et al.’s formulation: (1, 1.056],435

(1.056, 1.253], (1.253, 1.586], (1.586, 2.134],436

(2.134, 3.230], (3.230, 5.980], (5.980, 10.080] and437

(10.080,∞). This formulation differs from (Perez et al.,438

1990), while expression for ∆ remains to be:439

∆ =
mD(0)
Bscε0

, (30)

where m is the relative optical air mass and ε0 the440

Earth’s orbit excentricity.441

4.2. Batlles et al. B (BBCM)442

The second proposed total correction model is similar443

to the first one, but it distinguishes only four intervals444

of ε: (1, 3.5], (3.5, 8.9], (8.9, 11.0] and (11.0,∞). The445

generalized expression for this model is:446

ftc = ai fgc + bi log ∆ + ci exp
(
−1

cos θzs

)
. (31)

For the last two intervals, the ci coefficient is set to 0.447

Moreover, although those authors propose general coef-448

ficients for each case, these are calculated for horizontal449

sensor positions. Thus, a particular regression analysis450

is suggested for greater accuracy. In this case, coeffi-451

cients have been obtained for vertical sensors oriented452

towards the cardinal points and the results are shown in453

Table 3. Coefficient subindexes refer to the clearness454

index interval.455

Table 3. BBCM coefficients for vertical sensors in the four cardinal
orientations.

Coeff. North South East West
a1 1.1097 0.9141 1.1065 1.0670
b1 0.0145 0.0762 −0.0084 0.0072
c1 0.0623 1.0372 −0.3023 0.0144
a2 1.1470 0.8605 1.0608 1.1136
b2 0.0070 −0.0466 0.0155 −0.0166
c2 −0.2464 0.2997 −0.0947 −0.5877
a3 1.1399 0.7753 1.0441 1.1377
b3 0.0154 −0.1408 0.0047 0.0708
a4 1.1463 0.9496 1.1008 1.1579
b4 0.0400 −0.0299 0.0442 0.0853

4.3. LeBaron (LBCM)456

The model described in (LeBaron et al., 1990) cor-457

relates corrected values with uncorrected ones, dividing458

9



  

(a) (b)

(c) (d)

Fig. 6. Parametrical analysis of the geometrical correction factor for sensors tilted 90 degrees, with a U shadow-band (Wsh/Rsh = 0.15957)
and pointing a) North, b) East or West and c) South. d) Geometrical factor dependance with the Wsh/Rsh ratio for a horizontal sensor. Ground
reflectance diffuse fraction have been considered ρ = 0.2 and kd = 0.5, respectively.
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the conditions into four intervals of four estimators ac-459

cording to Table 4. The parameters considered in the460

model are the Sun’s zenith angle, the geometrical cor-461

rection factor and Perez et al.’s ε and ∆. Thus, in each462

case study, 256 sub-datasets are generated and a linear463

regression analysis is performed to obtain the total cor-464

rection factor. The data sets are not always of a signif-465

icant size in the training dataset for regression analysis,466

in which case, the average geometrical correction factor467

is used.468

4.4. Muneer-Zhang (MZCM)469

The Muneer-Zhang correction, proposed in (Muneer470

and Zhang, 2002), is a semi-empirical model based471

on the radiance distribution index b and the horizontal472

clearness index kt. The proposed model follows the ex-473

pression:474

ftc =
1

1 − S ′
, (32)

where S ′ is similarly defined to S (see equation (7)),475

but the irradiance is considered anisotropic rather than476

isotropic.477

The authors divide the sky dome into two quarters:478

the quarter where the Sun is located (subindex 1) and479

the opposite one (subindex 2). The radiance distribu-480

tion index bi for each quarter depends on kt according481

to expressions (33) and (34):482

b1 =


3.600 − 10.46kt

6.97kt − 0.400
if kt > 0.2,

1.68 if kt ≤ 0.2.
(33)

b2 =


1.565 − 0.989kt

0.66kt + 0.957
if kt > 0.2,

1.68 if kt ≤ 0.2.
(34)

Thus, the radiance expression for each part of the sky483

dome can be calculated as:484

Isky,i = Iz
1 + bi cos θ

1 + bi
, (35)

where Iz is the zenith radiance which can be calculated485

from the horizontal diffuse irradiance through equation486

(36).487

D(0)
Iz

=

∫ π/2

−π/2

∫ π/2

0

1 + b1 cos θ
1 + b1

cos θ sin θdθdγ

+

∫ 3π/2

π/2

∫ π/2

0

1 + b2 cos θ
1 + b2

cos θ sin θdθdγ. (36)

The original model proposed in (Muneer and Zhang,488

2002) has been modified for tilted and oriented sensors.489

The denominator’s components of S ′ can be determined490

by equations (37) and (38).491

D(θzp, γp) =

∫ γ2

γ1

∫ π/2

0
Isky,2 cos ξp sin θdθdγ

+

∫ γ3

γ2

∫ π/2

0
Isky,1 cos ξp sin θdθdγ

+

∫ γ4

γ3

∫ π/2

0
Isky,2 cos ξp sin θdθdγ

+

∫ γ2

γ1

∫ θγ

0
Isky,2 cos ξp sin θdθdγ

+

∫ γ3

γ2

∫ θγ

0
Isky,1 cos ξp sin θdθdγ

+

∫ γ4

γ3

∫ θγ

0
Isky,2 cos ξp sin θdθdγ. (37)

R(θzp, γp) =
ρ

kd

∫ γ2

γ1

∫ π−θγ

π/2
Isky,2 cos ξp sin θdθdγ

+
ρ

kd

∫ γ3

γ2

∫ π−θγ

π/2
Isky,1 cos ξp sin θdθdγ

+
ρ

kd

∫ γ4

γ3

∫ π−θγ

π/2
Isky,2 cos ξp sin θdθdγ. (38)

In equations (37) and (38), θγ is the zenith angle up to492

the sensor’s plane for each azimuth angle γ calculated493

through equation (39), ξp is the angle between a point494

in the sky dome and the pyranometer’s direction and the495

integration limits γi are defined in Table 5.496

tan θγ =
− cos θzp

sin θzp cos γp cos γ + sin θzp sin γp sin γ
. (39)

In contrast, the numerator of S ′ is the sum of diffuse497

and reflected irradiances intercepted by the shadow-498

band, which can be calculated as a function of the hour499

angle by expressions (40) and (41).500
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Table 4. LBCM intervals for input parameters.

Parameter Interval 1 Interval 2 Interval 3 Interval 4
θzs [deg.] [0, 35) [35, 50) [50, 60) [60, 90]

fc [-] [1.000, 1.068) [1.068, 1.100) [1.100, 1.132) [1.132,∞)
ε [-] [0.000, 1.253) [1.253, 2.134) [2.134, 5.980) [5.980,∞)
∆ [-] [0.000, 0.120) [0.120, 0.200) [0.200, 0.300) [0.300,∞)

Table 5. Integration limits γi for MZCM.

γi |γp| ≤ π/2 |γp| > π/2 θzp = 0
γ1 γp −

π
2 |γp| −

π
2 −π

γ2 max(γp −
π
2 ,−

π
2 ) max(|γp| −

π
2 ,

π
2 ) − π2

γ3 min(γp + π
2 ,

π
2 ) min(|γp| +

π
2 ,

3π
2 ) + π

2
γ4 γp + π

2 |γp| +
π
2 +π

Dsh(θzp, γp) = VIz cos δs

∫ ω5

ω4

1 + b1 cos θzsh

1 + b1
cos ξshpdω

+ VIz cos δs

∫ ω7

ω6

1 + b1 cos θzsh

1 + b1
cos ξshpdω

+ VIz cos δs

∫ ω4

ω3

1 + b2 cos θzsh

1 + b2
cos ξshpdω

+ VIz cos δs

∫ ω8

ω7

1 + b2 cos θzsh

1 + b2
cos ξshpdω. (40)

Rr(θzp, γp) = VIz
ρ

kd
cos δs

∫ ω3

ω2

1 + b1 cos θzsh

1 + b1
cos ξshpdω

+ VIz
ρ

kd
cos δs

∫ ω9

ω8

1 + b1 cos θzsh

1 + b1
cos ξshpdω

+ VIz
ρ

kd
cos δs

∫ ω2

ω1

1 + b2 cos θzsh

1 + b2
cos ξshpdω

+ VIz
ρ

kd
cos δs

∫ ω10

ω9

1 + b2 cos θzsh

1 + b2
cos ξshpdω. (41)

θzsh is the zenith angle of the shadow-band (in [rad])501

and ξshp is the angle between one point of the shadow-502

band and the pyranometer. The integration limits ωi are503

shown in Table 6. The same nomenclature in the defini-504

tion of the integration limits as in the geometrical cor-505

rection was used here. Therefore, ω1b and ω2b are the506

intersections (hour angles) of the shadow-band’s plane507

and the horizon, and ω1c and ω2c are the intersections508

between the shadow-band and the pyranometer planes.509

Integrals from equations (37), (38), (40) and (41) are510

solved in an analytical way (see Appendix A) through511

self-programmed MatLab routines, but they can be also512

solved by applying an adequate numerical integration513

method implemented in a computation package.514

4.5. Steven (STCM)515

In (Steven, 1984), a correction model for clear skies is516

proposed. This model is based on the superimposition517

of the background isotropic diffuse irradiance and the518

anisotropic diffuse irradiance from the circumsolar re-519

gion. So, the fraction S is multiplied by the anisotropic520

coefficient As, completely independent of the geometric521

correction.522

ftc =
1

1 − S As
. (42)

The anisotropic coefficient can be calculated as:523

As = 1 − scξc +
sc

f
, (43)

where sc is the weighted part of the circumsolar irradi-524

ance and ξc its observed angle. Both parameters can be525

estimated by a linear regression from reference values526

and uncorrected measurements:527

Dre f − Duc

S Dre f
=

sc

f
+ (1 − scξc) . (44)

The parameter f is defined by the author for horizon-528

tal pyranometers as one half of the shadow-band length529

above the horizon, in order to apply the model to any530

given sensor. The definition of the sensor is modified as531

follows, in order to apply the model to any given sensor:532

f =
1
2

∫ ω3

ω2

cos θspdω +
1
2

∫ ω5

ω4

cos θspdω, (45)

where the integration limits ωi are obtained from Table533

2 and the angle between the Sun and the pyranometer,534

θsp, can be calculated by equation (46).535

θsp = sin
(
φg − θzp

)
sin δs − cos

(
φg − θzp

)
sin δs. (46)
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Table 6. Integration limits ωi for MZCM.

ωi ω1c ≤ ω2c ω1c > ω2c
ω1 ω1c −π
ω2 min[max(ω1c,−π/2),max(ω1b, ω1c)] min[min(ω2b,−π/2).ω2c]
ω3 max(ω1b, ω1c) min(ω2b, ω2c)
ω4 max[max(ω1b,−π/2), ω1c] max[min(ω2c,−π/2),min(ω2b, ω2c)]
ω5 0 ω2c

ω6 0 ω1c

ω7 min[min(ω2b, π/2), ω2c] min[max(ω1c, π/2),max(ω1b, ω1c)]
ω8 min(ω2b, ω2c) max(ω1b, ω1c)
ω9 max[min(ω2c, π/2),min(ω2b, ω2c)] max[max(ω1b, π/2), ω1c]
ω10 ω2c π

5. Results and discussion536

In Table 7, the results of the correction models de-537

scribed above are shown. A ranking was prepared for all538

statistical parameters in such a way they are expressed539

as the value in W·m−2, as pencentage of the mean value540

and rank position. The global ranking was obtained541

by applying a non-parametric aggregation procedure to542

the MBD, RMSD, R2 and µ0.99 results. The value in543

brackets in the non-parametric aggregation results refers544

to the significance (α) of the global ranking position.545

In some cases and for a certain statistical estimator, it546

could mean that the aggregation of ranking positions of547

two different models might be the same. In those cases,548

the performance of both models can not be distinguish-549

able and both models can occupy the same ranking po-550

sition.551

All the correction models improve the results of raw552

data for all directions except for STCM in relation to the553

South sensors. The explanation for this result is that the554

calculation of circumsolar irradiance in STCM is criti-555

cal for the performance of the model and its uncertainty556

is magnified, especially for clear-sky conditions. Differ-557

ences can not be justified by the proposed definition of558

the f coefficient, because its results in the South direc-559

tion were the same as those proposed by the author of560

the model.561

Moreover, the results show that the more empirical562

the model, the better its observed performance. Model-563

ing anisotropy in the sky distribution of solar irradiance564

is not an easy task, as it involves many factors. The565

complexity of pure theoretical models for fine correc-566

tions may not be worthwhile in the long run.567

The results showed that BBCM had the best perfor-568

mance for the North measures, LBCM performed best569

for the South and West directions and BACM obtained570

the best results for the East measures.571

According to the non-parametric aggregation, LBCM572

achieved the best ranking position for MSD, RMSD and573

µ0.99 at a significance level of α ≥ 0.001. The R2 results574

for all the models were very similar and offered no clear575

classification criteria.576

It can also be observed that LBCM underestimates577

the South direction and tends to overestimate the rest.578

Nevertheless, according to the µ0.99 estimator, differ-579

ences are less than 1 W·m−2 in all cases.580

It must be noticed that the absolute value of MBD and581

RMSD for the top 3 so ranked correction models can be582

smaller than the measurement uncertainties. Although583

the maximum relative uncertainty is obtained for low584

values of measured irradiance, and it decreases as the585

measured value increases, models’ performances may586

be undistinguisable under these circumstances. Thus,587

differences between LBCM, BACM and BBCM can not588

be done according to those estatistical estimators. µ0.99589

results helpful in these cases.590

Figure 7 shows the scatter plots for each cardinal di-591

rection of all the correction models under consideration.592

Only the results with studentized residuals lower than593

2 have been considered. Most models behave accept-594

ably for diffuse irradiance values lower than 100 W·m−2.595

Only LBCM, BACM and BBCM showed good perfor-596

mance for higher diffuse irradiance values. The errors597

increased significantly for South-facing sensors in all598

cases. This result can be explained by a higher ratio599

of sky-radiance anisotropy in the sky dome observed by600

South-facing sensors and, therefore, a greater influence601

of circumsolar diffuse irradiance.602

Figures 8 and 9 show the distribution of the abso-603

lute residuals (differences between the corrected value604

and the reference) for each model with bins of 0.1 wide605

for kd and cos θsp, respectively. Our graphs are quite606

similar to those proposed by Ineichen for the compari-607
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Table 7. Results for the correction models applied to several cases.

Model MBD RMSD R2 µ0.99

[W·m−2] [%] Rank [W·m−2] [%] Rank [-] Rank [W·m−2] [%] Rank
North sensor

Raw data −11.07 14.15 7 13.71 17.53 7 0.99 7 −11.36 14.52 7
GGCM −6.54 11.44 6 8.16 14.28 6 1.00 3 −6.82 11.93 6
BACM 0.10 0.18 2 0.70 1.25 3 1.00 5 +0.24 0.43 3
BBCM 0.01 0.02 1 0.65 1.12 2 1.00 4 +0.11 0.19 1
LBCM 0.88 1.13 3 0.56 0.72 1 1.00 1 +0.18 0.23 2
MZCM −3.45 6.20 4 4.50 8.09 4 1.00 2 −3.88 6.97 4
STCM −4.81 8.12 5 6.21 10.48 5 0.99 6 −5.38 9.08 5

South sensor
Raw data −6.89 20.96 6 12.78 38.88 6 0.98 7 −7.32 22.27 6
GGCM 1.59 8.08 4 2.81 14.28 2 1.00 2 +2.02 10.26 4
BACM 3.16 15.54 5 7.76 38.17 5 0.99 6 +4.37 21.50 5
BBCM 0.69 3.32 2 3.72 17.89 3 0.99 4 +1.46 7.02 3
LBCM +0.28 0.86 1 2.24 6.93 1 1.00 3 −0.69 2.13 1
MZCM −0.91 4.32 3 4.04 19.20 4 1.00 1 −1.39 6.61 2
STCM −10.37 35.52 7 13.94 47.74 7 1.00 5 −12.21 41.82 7

East sensor
Raw data −10.89 42.74 7 13.99 54.91 7 0.98 7 −11.23 44.07 7
GGCM −4.24 24.11 5 4.85 27.57 5 1.00 1 −4.70 26.72 5
BACM +0.03 0.15 1 0.74 3.74 1 1.00 2 +0.16 0.81 1
BBCM +0.08 0.37 2 0.74 3.39 2 1.00 3 +0.21 0.96 2
LBCM +0.15 0.61 3 0.90 3.69 3 1.00 4 +0.29 1.19 3
MZCM −6.31 29.21 6 7.74 35.83 6 1.00 5 −6.68 30.92 6
STCM +1.13 5.75 4 2.38 12.12 4 1.00 6 +1.50 7.64 4

West sensor
Raw data −9.66 60.25 7 13.59 84.76 7 0.97 7 −10.04 62.62 7
GGCM −3.70 34.72 5 4.86 45.60 5 1.00 2 −4.37 41.00 3
BACM +0.23 2.22 2 1.10 10.61 1 1.00 4 +0.43 4.15 2
BBCM +0.27 2.57 3 1.20 11.42 3 1.00 5 +0.45 4.28 4
LBCM +0.12 0.77 1 1.17 7.55 2 1.00 6 +0.30 1.94 1
MZCM −4.02 37.39 6 5.28 49.11 6 1.00 1 −4.46 41.48 6
STCM −0.38 3.69 4 1.17 11.36 4 1.00 3 −0.60 5.83 5

Non-parametric aggregation
Raw data 7 (0.001) 7 (0.001) 7 (0.001) 7 (0.001)
GGCM 6, 5 (0.001) 4 (0.001) 1 (0.001) 4 (0.001)
BACM 3 (0.001) 2, 3 (0.001) 5 (0.001) 3 (0.001)
BBCM 2, 1 (0.001) 3, 2 (0.001) 4 (0.001) 2 (0.001)
LBCM 1, 2 (0.001) 1 (0.001) 3 (0.001) 1 (0.001)
MZCM 4 (0.001) 5, 6 (0.001) 2 (0.001) 5 (0.001)
STCM 5, 6 (0.001) 6, 5 (0.001) 6 (0.001) 6 (0.001)
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Fig. 7. Scatter plots of true diffuse values and corrected values for all models and directions considered.
15



  

Fig. 8. Residuals of the evaluated models as a function of the horizon-
tal diffuse fraction for each cardinal direction.

Fig. 9. As in Fig. 8, but as a function of the incident angle on the
sensor.16



  

Fig. 10. Linear regression for the correlation between true diffuse values and corrected diffuse values for each cardinal direction.

son of several models against a third independent vari-608

able, preferably kd. In this case, rather than boxplots in609

the interest of greater clarity, the graphs show the mean610

value of the absolute differences and, as error bars, the611

standard deviation of the residuals distribution for each612

bin of the horizontal kd [defined as kd = D(0)/G(0)] and613

cos θsp of 0.1 width.614

In both cases, results for the East- and the West-615

facing directions appear similar; higher values corre-616

spond to the South-facing direction. Two groups of617

models can be distinguished according to these crite-618

ria, specially for the North-facing direction. On the one619

hand, LBCM, BACM and BBCM show low mean and620

standard deviation values in all kd bins. On the other621

hand, GGCM, MZCM and STCM show higher values622

for the differences. These differences have a negative623

sign; thus, these models tend to underestimate the verti-624

cal diffuse irradiance values. The residual distributions625

are quite similar in all kd bins according to the results.626

The worst behavior and the highest sensitivities were627

observed for STCM and the South-facing direction.628

No significant influence of the incident angle of beam629

direct irradiance (cos θsp) was observed in any case.630

Major variances can be observed in LBCM in this case.631

Finally, in relation to Figure 10, the performance of632

all correction models for each cardinal direction can be633

seen. Both LBCM and BACM are seen to have the best634

performance as they have the closest results to the 1:1635
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line. Nevertheless, there are no great discrepancies be-636

tween all models under analysis. Differences between637

the corrected values and the true diffuse values increase638

with the absolute value of true diffuse irradiance in all639

scenarios of the analysis. The South direction shows640

major discrepancies. As expected, the raw data tend to641

underestimate the diffuse irradiance in all cases. More-642

over, GGCM, MZCM, and STCM also tend to be un-643

derestimated. There again, GACM and BBCM tend644

to overestimate the diffuse irradiance, specially for the645

South-facing direction. LBCM tends to slightly under-646

estimate the diffuse irradiance in all cases. It was also647

significant that, for the East- and the West-facing direc-648

tions, all models behaved in a similar way for both the649

East and West. In the North, GGCM and STCM tend650

to underestimate the diffuse irradiance values by quite a651

high margin.652

Although other studies with vertical measurements653

have not been found in the relevant literature, we654

agree with the conclusions presented in (Batlles et al.,655

1995), in the sense that the simpler isotropic correc-656

tion leads to high underestimation levels. The use of657

anisotropic models improved the diffuse irradiance cor-658

rections significantly. We also observed systematic ten-659

dencies in the distribution of differences. We found660

that the BACM, the BBCM, and the LBCM models661

stood out against the other correction models, agreeing662

with (Kudish and Evseev, 2008). However, we found a663

slightly worse performance for MZCM, maybe due to664

the proposed corrections for any surface given in this665

paper and because the authors work with hourly values666

while we have used ten-minute values. Finally, most of667

the results obtained in this paper agree with those ob-668

tained in (Sánchez et al., 2012), where correlation of all669

correction models for the four cardinal directions were670

greater than 0.9 and there were only slight variations671

in the residual distributions against kd. We also found672

that the locally-fitted versions of the original empiri-673

cal models significantly improved the estimations and674

our results with the models that account for irradiance675

anisotropy also showed remarkable improvements, in676

comparison with the models that only incorporated ge-677

ometrical corrections (GGCM).678

6. Conclusions679

It can be concluded that, for the case study, any cor-680

rection model improves the measures with respect to the681

raw data. In general terms, R2 was always very close to682

1 and MBD and RMSD values were low. The correc-683

tion models greatly improved northerly-oriented mea-684

sures. Furthermore, the µ0.99 statistical estimator ap-685

peared to be clearly representative of the model’s per-686

formance and yielded really useful results to solve dis-687

crepancies between MBD and RMSD values.688

According to the non-parametric aggregation proce-689

dure, LBCM obtained the best overall result and im-690

proved the accuracy of measures for MBD, RMSD and691

µ0.99 by 97%, 91%, and 96%, respectively. More-692

over, GGCM improved the same statistical estimators693

by 60%, 62%, and 56% on average in contrast with raw694

data.695

This study has made a positive contribution to the696

accurate measurement of diffuse solar irradiance in the697

sense that it has extended the formulae to non-horizontal698

surfaces and has evaluated results on vertical walls. It699

has, therefore, arrived at conclusions that will help im-700

prove future studies, e.g., in solar energy applications in701

buildings.702
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Appendix A. Notes on MZCM and STCM708

Integrals from equations (37), (38), (40) and (41) in709

MZCM have complex resolution. In this work, and710

for the case study (vertical measurement), these expres-711

sions have been solved in an analytical way and imple-712

mented in a self-programmed MatLab routine. For the713

interested reader, analytical resolutions of the core inte-714

grals are presented here:715

∫ ω2

ω1

1 + b cos θzr

1 + b
cos ξshpdω =

1
1 + b

A′ (ω2 − ω1)

+
1

1 + b
[
B′ (sinω2 − sinω1) −C′ (cosω2 − cosω1)

]
+

b
1 + b

[
A′D′ (ω2 − ω1) +

(
B′D′ + A′E′

)
(sinω2 − sinω1)

]
+

b
1 + b

[
C′E′

2

(
cos2 ω2 − cos2 ω1

)
−C′D′ (cosω2 − cosω1)

]
+

b
1 + b

B′E′

2

[
sin (2ω2)

2
+ ω2 −

sin (2ω1)
2

− ω1

]
,

(A.1)
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where constants A′, B′, C′, D′ and E′ are defined in the716

following expressions:717

A′ = sin δs sin φg cos θzp − sin δs cos φg sin θzp cos γp.
(A.2)

B′ = cos δs cos φg cos θzp + cos δs sin φg sin θzp cos γp.
(A.3)

C′ = cos δs sin θzp sin γp. (A.4)

D′ = sin δs sin φg. (A.5)

E′ = cos δs cos φg. (A.6)

In above expressions, δs and φg are the Sun’s declina-718

tion and the geographical latitude, respectively.719

∫ γ2

γ1

∫ π/2

0

1 + b cos θ
1 + b

cos ξp sin θdθdγ

=
1

1 + b

(
π

4
+

b
3

) [
sin

(
γ2 − γp

)
− sin

(
γ1 − γp

)]
.

(A.7)

Similiarly, the analytical resolution of the core inte-720

gral in equation (45) from STCM is showed here:721

∫ ω2

ω1

cos θspdω = A′ (ω2 − ω1) + B′ (sinω2 − sinω1)

−C′ (cosω2 − cosω1) . (A.8)
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Mediavilla, M., Sep. 2015. New device for the simultaneous mea-730

surement of diffuse solar irradiance on several azimuth and tilting731

angles. Solar Energy 119, 370–382.732

Drummond, A. J., Sep. 1956. On the measurement of sky radiation.733

Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B734

7 (3-4), 413–436.735

Drummond, A. J., 1964. Comments on “sky radiation measurement736

and corrections”. Journal of Applied Meteorology 3 (6), 810–811.737

Ineichen, P., Gremaud, J. M., Guisan, O., Mermoud, A., 1983. Study738

of the corrective factor involved when measuring the diffuse solar739

radiation by use of the ring method. Solar Energy 31 (1), 113–117.740

Joint Committee for Guides in Metrology, 2008. Evaluation of mea-741

surement data: Guide to the expression of uncertainty in measure-742

ment. GUM 1995 with minor revisions. Bureau International des743

Poids et Mesures.744

Kipp and Zonen, 2014. CM 121 shadow ring instruction manual.745

Kudish, A. I., Evseev, E. G., Feb. 2008. The assessment of four dif-746

ferent correction models applied to the diffuse radiation measured747

with a shadow ring using global and normal beam radiation mea-748

surements for Beer Sheva, Israel. Solar Energy 82 (2), 144–156.749

LeBaron, B. A., Michalsky, J. J., Perez, R., 1990. A simple proce-750

dure for correcting shadowband data for all sky conditions. Solar751

Energy 44 (5), 249–256.752
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Highlights for “Shadow-band radiometer measurement of

diffuse solar irradiance: calculation of geometrical and total

correction factors”

• A generalized expression for the geometrical correction for shadow-

bands is proposed.

• Total correction models have been reformulated to be used on any

measurement plane.

• A new statistical estimator for models’ performance analysis is pro-

posed: µ1−α.

• 10-min measurements and models’ estimations on 4 vertical planes

have been compared.

• Models have been studied against the diffuse fraction and the Sun’s

incidence angle.

• Results can be extended to any shadow-band radiometer system.

1

miguel
Resaltado


