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Abstract
This paper presents a 3D delineation method for airborne laser scanning point cloud. The 
method is based on an unsupervised clustering technique applied on horizontal slices 
followed by vertical merging based on overlapping among clusters. On an Alpine forest 
dataset, we analysed the effects of different forest structures and point cloud densities on 
tree crown delineation. Forest structure affects mainly the omission error, which eases with 
homogeneous tree spacing and sizes, while on the commission error forest structure has 
only slight effect. Delineation accuracy increases with higher point densities where Mann-
Whitney-Wilcoxon test shows that accuracy differences between thinned data and original 
data are statistically significant.
Keywords: 3D delineation, ITC, ALS, point density, forest structure, alpine forest.

Introduction
Airborne laser scanning (ALS) data allows us to analyze large areas and to provide accurate 
up-to-date information about the composition, distribution and condition of forests. ALS 
data has become a common data source used for the estimation of forest biophysical 
attributes at stand level such as mean tree height, basal area (BA) and volume per hectare 
[Næsset, 2002], and also at tree level such as tree height, diameter at breast height (DBH) 
and stem volume [Hyyppä et al., 2001]. Individual trees are the basic and smallest unit on 
which forest management is carried out. The first processing step for tree-level inventories 
using ALS data is typically the delineation of individual tree crowns (ITCs). Then, for each 
ITC, attributes such as tree position, tree height, stem DBH and stem volume are estimated 
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[Hyyppä et al., 2001]. In inventory practice, many attributes have to be estimated at the 
tree level in order to be useful. Individual tree coordinates, for instance, are needed for 
harvesting operations and growth predictions [Pedersen et al., 2012]. ITC approaches are 
used also in operational urban tree mapping, and monitoring [Holopainen et al., 2013]. 
When combined with multispectral or hyperspectral images, ITC approaches could provide 
species information for each tree [Ørka et al., 2013]. Other recent works have shown that 
ITC delineation could provide supplementary information for area-based prediction of 
forest variables [Hyyppä et al., 2012] with reduce edge-effects [Packalen et al., 2015].
Numerous ITC detection methods for ALS data have been proposed in the last two decades 
[Hyyppä and Inkinen, 1999; Brandtberg et al., 2003; Solberg et al., 2006; Tang et al., 2007; 
Ferraz et al., 2012; Duncanson et al., 2014]. The first ITC delineation methods proposed 
in the literature used a 2D canopy height model (CHM) which is interpolated from the 
normalized ALS heights. Individual trees were delineated by defining a crown around local 
maximum. The most common 2D delineation methods are region growing [Hyyppä and 
Inkinen, 1999; Hyyppä et al., 2001; Solberg et al., 2006], multi-scale techniques [Persson 
et al., 2002; Brandtberg et al., 2003] or watershed segmentation [Tang et al., 2007; Ene 
et al., 2012]. However, the majority of these delineation methods can detect only trees 
that are well visible in the uppermost canopy layer, whereas intermediate and suppressed 
trees are rarely detected. Furthermore, while these 2D methods provided at times good 
results, the accuracy of delineated ITCs is strongly dependent on the quality of the CHM 
[Ene et al., 2012]. Indeed, generating a CHM from an ALS point cloud resulted in loss 
of information. Alternatively, if higher point density data are available, advanced 3D 
methods can refine the initial CHM-based delineation. 3D point clouds are often used to 
characterize a vertical structure of heterogeneous canopies. However, effective processing 
of high point density data is still a challenging task. Many methods delineated tree crowns 
by various 3D clustering analysis, namely: K-means [Morsdorf et al., 2004; Gupta et al., 
2010], adaptive and agglomerative clustering [Lee et al., 2010; Gupta et al., 2010], mean 
shift clustering [Ferraz et al., 2012] and ellipsoidal clustering [Lindberg et al., 2014]. Some 
of these clustering methods were also combined with surface models or CHM. Other 3D 
delineation methods first generated a preliminary watershed segmentation of the CHM to 
define tree segments and afterwards separated trees within each segment by normalized cut 
segmentation [Shi and Malik, 2000] on the ALS point cloud [Reitberger et al., 2009], or by 
a trough-finding algorithm on the ALS height histogram [Duncanson et al., 2014]. Some 
delineation methods first delineated tree crowns on the 2D horizontal projection images at 
different height levels, and then the ‘tree’ segments delineated from various layers were 
combined to form 3D tree crowns [Wang et al., 2008; Tang et al., 2013]. Some 3D methods 
are very particular in their approach [Li et al., 2012; Lähivaara et al., 2014; Lu et al., 2014]. 
Li et al. [2012] delineated ITCs based on object-oriented classification rules such as tree 
proximity and shape criteria. Using a prior information on tree shapes Lähivaara et al. 
[2014] applied Bayesian estimation for 3D delineation. For identifying tree trunk points, 
Lu et al. [2014] used the ALS intensities and then points belonging to the same tree were 
defined by topology relationship.
While there are many 3D delineation methods proposed in the literature, they are not all 
adequately validated as important accuracy measures such as omission and commission 
errors, or errors are not reported [e.g. Gupta et al., 2010; Tang et al., 2013]. When an ITC 
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delineation method fail to detect individual trees present, it leads to omission errors. When 
one tree is split in multiple ITCs, it leads to a commission error. Many 3D methods seem 
to have a high commission error [Kaartinen et al., 2012; Eysn et al., 2015]. The absence 
of a well-established or benchmark method is making the comparison of performance 
among various methods difficult. Furthermore, few methods were tested in different forest 
conditions in terms of complexity. As forest structure usually affects the performance of 
delineation, its influence should be described and assessed using measures such as spatial 
arrangement, size variation of trees and structural diversity [Neumann and Starlinger, 2001; 
McElhinny et al., 2005; Lexerød and Eid, 2006; O’Hara et al., 2007].
New ALS technologies gather data at very high point density, which allows for development 
of 3D delineation methods. To our knowledge, no reported studies have analyzed the 
influence of point density higher than 30 pulses m-2 on ITC delineation. In this work, we 
tested a 3D delineation method for a very high-density ALS point cloud data (approx. 60 
pulses m-2). The forests are characterized by different structures: from mixed to pure stands, 
and from unevenly to evenly aged stands. Using field measurements, we evaluated the 
performances of the proposed 3D method in terms of  delineation accuracy as well as tree 
attributes estimation. Finally, we qualitatively assessed the proposed method and compared 
it with a selected popular method (Reference delineation method). It would be important 
to evaluate the ITC delineation method with respect to various forest structures and point 
cloud densities. To this end, our objectives are two folds:

i.  to understand the effect of forest structure on the delineation performance;
ii. to understand the effect of point density on the delineation performance.

Given the high point density made available to this study, we have the opportunity to 
assess the saturation of information intrinsic in ALS point cloud density with respect to tree 
delineation applications. Testing high-density ALS data may shed some light on whether it 
is worthwhile to acquire expensive high-density data for ITC studies.

Data set description
Study area
The 32 km2 study area is located in the municipality of Pellizzano (46°17’22’’N, 
10°46’05’’E) in the Italian Alps (Fig. 1). The forest structure is complex, with patches of 
mixed and pure tree species composition [Dalponte and Coomes, 2016]. Norway spruce 
(Picea abies (L.) H. Karst.) represents around 65% of the total stem volume, European 
larch (Larix decidua Mill.) around 25%, and the remaining 10% consists of other conifers 
(i.e. Silver fir (Abies alba Mill.), Swiss stone pine (Pinus cembra L.) and broadleaves 
(i.e. Silver birch (Betula pendula Roth), Common alder (Alnus glutinosa (L.) Gaertn.), 
Sycamore maple (Acer pseudoplatanus L.), Rowan (Sorbus aucuparia (L.) Crantz)). The 
topography varies considerably, with altitude ranging between 850 m and 2700 m and some 
areas characterized by very steep slopes. Vegetation varies from meadows in the higher 
parts of the study area to very dense forest in the lower parts. The area has been managed 
since 1950 with silvicultural plans carried out every 10 years. Selective logging is done with 
the help of cableway focusing on productive wood (e.g. Norway spruce). The harvesting 
methods are different depending on the forest structure and species present.
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Figure 1 - Location of study area in Pellizzano, province of Trento in Italy.

Airborne Laser Scanner data
The data acquisition was carried out between 7th and 9th of September 2012 using a Riegl 
LMS-Q680i laser scanner. The system mounted on a Multi Mission Aircraft was optimized 
to measure canopy structure with a flying speed of about 51 m/s at an altitude of 660 m 
above ground level. The scan frequency was 400 kHz with a 60° field of view and the 
overlap for each stripe was at least 30%. Up to five returns were recorded for each emitted 
pulse and the mean point density was approximately 60 pulses m-2. A Digital Terrain Model 
(DTM) was generated with TerraScan software with a grid size of 0.5 m. ALS point cloud 
was normalized to obtain a canopy height by subtracting the DTM from the z values of the 
ALS pulses. Figure 2a shows a common example of field plot and Figure 2b is an example 
of Norway spruces.

Field data
Field data were collected in the summers of 2013 and 2014. 14 plots were surveyed in forest 
stands with various structure and topography (mean slope is 20.4° with standard deviation 
at ± 6.7°). The plot radius was 15 m for six plots and 20 m for the remaining ones. The 
center location of each plot was measured with a GPS/GLONASS system resulting in a 
position error of less than 1 m. Furthermore, all trees on the plots were measured and the 
location was recorded as a reference to the center of the plot (azimuth and range). In total, 
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735 trees were measured across the plots. For each tree, the DBH along two orthogonal 
directions, the tree species, and the crown area were measured. Crown area was calculated 
from the field-measured distances north, south, east and west directions from the trunk 
center to the crown boundary assuming an ellipsoidal shape. Tree heights were measured 
on 66% of the trees using a Vertex III hypsometer. Tree heights for the remaining 34% 
trees were estimated with allometric equations [Scrinzi et al., 2010]. The allometric derived 
heights are overestimated compared to the field measured ones for 1.2 m with a RMSE 
of 2.35 m. The horizontal and vertical accuracies for an individual tree measurement are 
within ± 1 m error range. In each plot, only trees with a DBH greater than or equal to 5 cm 
were considered in the analyses. Dead or damaged trees without crown were excluded from 
further process. The total number of trees across all plots was 685. Table 1 summarizes the 
field data.

Figure 2 - a) Common plot structure. b) Group of four Norway spruces with five treetops. The 
last tree in the row has two tops growing from the same stem. On the left side of both figures there 
is a top view of the ALS point cloud. The light blue rectangles show the area of interest and the 
arrows show the view direction of the side view on the right side. The top view is overlaid with 
the field-measured stem positions marked with blue circles, and the field-measured tree crowns 
marked with red polygons. Polygons without stem position are bushes.

Table 1 - Summary of the field measurements at both tree and plot levels. 
DBH = Diameter at Breast Height (1.30 m), BA = basal area.

Minimum Maximum Mean

Tree level

DBH [cm] 5.0 89.0 32.3
Tree height [m] 2.5 39.8 21.5
Crown area [m2] 0.03 123.70 17.06

Number of stems/plot 11 132 49

Plot level

Mean DBH [cm] 21.7 58.1 36.7

Number of stems/ha 127 1050 502

Gini coefficient of BA 0.19 0.65 0.46
BA [m2/ha] 35.7 77.8 55.0
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Methods
3D delineation method
Figure 3 summarizes the four steps of the proposed 3D delineation method. In the 
preprocessing, the ALS point cloud with X, Y, Z coordinates is normalized and the ALS 
points with normalized Z coordinates (height) lower than 1.5 m are not used to avoid 
negative effects due to terrain objects and herbaceous vegetation. The point cloud is 
horizontally sliced. Within each slice, points are spatially clustered through several steps. 
The processes and parameters are described in detail in the following subsections.

Figure 3 - Overview of the 3D individual tree crown delineation method. Z represents normalized 
heights of an ALS point cloud.

Step 1 - Subdivision of the ALS point cloud into horizontal slices
The initial point cloud is subdivided into three horizontal slices by Otsu thresholding [Otsu, 
1979]. Otsu determines global thresholds which minimize the within-class variance. It is a 
popular method used by some ITC delineation studies for selecting threshold values [Ene 
et al., 2012; Dalponte et al., 2015].

Step 2 - K-means clustering in each horizontal slice
In each horizontal slice a CHM with 0.5 m resolution is created and a local maxima (LM) 
filtering is applied using a moving window with different sizes. The size of the moving 
window is user-defined and can vary for different horizontal slices. Using the position of 
the LM in each slice as centers, a K-means clustering algorithm is applied to generate 
clusters in each slice. We used the implementation of the R-package stats version 2.15.3. 
For each resulting clusters the X and Y cluster center coordinates are defined as arithmetic 
mean of X and Y coordinates of the points in each cluster.
As moving window is set empirically, a sensitivity analysis is carried out on three moving 
windows (ws) with the same sizes at each horizontal slice (Tab. 2). Based on the results of 
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the previous sensitivity analysis, we further inspected windows (w) (with different sizes 
among the three horizontal slices (Tab. 3).

Step 3 - Clusters merging
The K-means clusters are merged across all slices. The merging starts with the highest 
clusters (defined by the highest point of each cluster) as the tallest trees are well visible in 
the uppermost canopy layer. The lower clusters are assigned to the highest cluster if the 
2D Euclidean distances between the lower cluster centers and the highest cluster center are 
within a predefined radius calculated as w*CHM. This radius value is defined differently 
depending on to which horizontal slice the highest cluster belongs to. Each iteration will 
start with a new highest cluster, which has not been already assigned to the previous highest 
clusters. At the end of all iterations, all initial K-means clusters with the same assignment 
are merged into the same cluster.

Table 2 - Combinations of four cubic moving window sizes.

ws1 ws2 ws3 ws4

Top slice 11 9 7 5

Middle slice 11 9 7 5

Bottom slice 11 9 7 5

Table 3 - Combinations of four moving window sizes, alte-
ring the window size in different slices.

w1 w2 w3 w4

Top slice 9 9 9 7

Middle slice 9 9 7 7

Bottom slice 9 7 7 7

Step 4 - Clusters refinement
Clusters resulted from Step 3 are sorted by height in the same way as in the previous step. 
Starting with the highest clusters, neighboring clusters are merged based on an overlapping 
area criterion. The overlapping area is defined as the percentage of the overlapping points 
with respect to the total number of points within the cluster. Overlapping percentage for both 
considered clusters are calculated and if any of the two overlapping percentages is higher 
than the threshold OA[%], they are merged. Otherwise, the next neighboring cluster with 
an overlapping is considered. The described procedure is repeated for all lower clusters and 
then the same process is replicated for the next highest cluster. All merging is completed at 
the end of this step. The resulting clusters are projected onto the horizontal plane. For each 
plot, an expected minimum crown area (MinA) is defined (e.g. 2 m²). If the projected crown 
area is smaller than MinA, the cluster is removed.
To better define the overlapping criterion for merging, we have carried out another sensitivity 
analysis to test OA thresholds from 40% up to 70%. The MinA used in this study is obtained 
from the field measurements (Tab. 1). The constraint was used to avoid clusters that are 
too small, which could be a result of noise. In the situation where the field reference data 
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are missing MinA can be approximated using a semivariogram analysis [Woodcock et al., 
1988], a preliminary watershed segmentation, or by measurements recorded in a previous 
forest inventory.

Step 5 - Delineation of Individual Tree Crowns
The tree clusters represent ITCs, which are delineated as convex hulls. Tree attributes 
including tree position, tree height and crown area are generated. The ITC position (X, Y) 
and the tree height (Z) are extracted using the highest ALS point within a tree cluster. The 
crown area is computed as the convex hull of the X and Y coordinates of the tree cluster.

Reference delineation method
To generate a reference individual tree crown data set, we used a delineation method that 
exploits both CHM and ALS point cloud with normalized Z coordinates, implemented in the 
R-package itcSegment. First, a CHM is generated with a spatial resolution of 0.5 m using a 
nearest neighbor interpolation and then smoothed by a Gaussian low-pass filter (LPF) with 
a 3x3 moving window. A set of seed points S={s1,…,sN} is defined using a filter based on 
local maxima. For pixels higher than 2.5 m, a LPF with a 5x5 moving window was used. 
A region map L is defined as Li,j = k if (I, j) is a seed point with index k, otherwise Li,j = 0. 
Starting from L, regions grow according to the following procedure: considering a region 
map point Li,j ≠ 0 and taking its neighbor pixels in the CHM. A neighbor pixel is added to 
the region n if all three conditions are fulfilled: i) the distance between the neighbor pixel 
and the seed point sn is smaller than 10 m; ii) the height of the considered neighbor pixel 
is greater than the height of the seed point sn multiplied by a user-defined parameter called 
PercTresh varying between 0 and 1. The value was set to 0.7. This procedure is repeated until 
no more pixels are added to any regions. From each region the first returns are extracted 
and Otsu thresholding [Otsu, 1979] is applied to the normalized heights. Using first returns 
that are higher than the Otsu threshold, 2D convex hulls are generated from the X and Y 
coordinates to create the final ITCs.

Design of experiment
Accuracy assessment
For accuracy assessment, we followed the tree matching process introduced by Eysn et al. 
[2015]. If several field-measured trees matched with the same ITC derived from ALS data, 
only the one with shortest 2D distance and shortest height difference was compared. The 
performances of the delineation methods were evaluated using three delineation accuracy 
measures: omission error (OE), commission error (CE), and accuracy index (AI). The ratio 
between the number of field trees that were not delineated (CF) and the actual number of 
field-measured trees (NF) defined the OE [Eq.1]). The ratio between the number of ITCs 
that were not matched (CITC) with a field measurement and the number of field-measured 
trees (NF) defined the CE [Eq. 2]:

OE C
N
F

F
= [ ]100 1%
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CE C
N
ITC

F
= [ ]100 2%

The AI [Pouliot et al., 2005] incorporates both error types into a single metric:

AI OE CE= − +( ) [ ]100 3%

The same accuracy measures were used in the sensitivity analysis. The setting of w and OA, 
which achieved the highest AI were selected for the remaining experiments.
The accuracy of tree attributes was assessed for the n correctly detected trees by mean 
differences (MD) and Root-mean-square errors (RMSE) as:

MD
e

n
ii

n

= [ ]=∑ 1 4

RMSE
e

n
ii

n

= [ ]=∑ 2
1 5

where ei for the tree height and crown area was calculated as the difference between the 
field-derived and the ALS-derived estimates. For the tree position, ei was computed by 
Euclidean distance between the field measurement and the ALS estimated position. The 
relationship between ITC attributes estimated from the ALS data and the field measurements 
was assessed by coefficient of determination (r2) (or square of the Pearson correlation 
coefficient). We also qualitatively evaluated our results against the Reference delineation 
method that was proved to work successfully in a comparative study in Alpine forests as 
Method 2 described in Eysn et al. [2015].

Forest structure
Forest structure refers to attributes that quantify the forest such as spatial arrangement 
and size of trees. We selected four measures to characterize forest structure: mean DBH, 
number of stems per hectare, mean nearest neighbor distance and Gini coefficient of basal 
area. DBH is a measure of tree size and the number of stems per hectare is a measure of 
density. Furthermore, mean nearest neighbor distance is used to describe the variation of 
tree spacing. Structural diversity which is related to dimeter distribution can be assessed 
with different indices (e.g. Shannon index, Simpson index, Gini coefficient). On the basis 
of previous studies the Gini coefficient was found to be the most suitable [Lexerød and 
Eid, 2006; O’Hara et al., 2007]. We used the Gini coefficient [Gini, 1912] to describe the 
level of homogeneity or heterogeneity of the forest [Bollandsås et al., 2008]. The Gini 
coefficient values are bound between zero (indicating homogeneous) and one (indicating 
heterogeneous). Hence, uneven aged stands would have higher Gini coefficient values than 
even aged stands.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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Data thinning
In order to test the robustness of the 3D delineation method with low point densities, the 
original ALS data (with mean pulse density of 60 pulses m-2) were thinned. In particular, 
the following mean point densities were considered: 50, 30, 20, 10, 6 and 4 pulses m-2 
(Fig. 4). The data thinning of ALS data was executed on pulse level using the module 
lasthin of the LAStools software, a popular tool to test effects of point density on forest 
attributes [Jakubowski et al., 2013]. To maintain the fairly regular spatial distribution of the 
ALS pulses, the thinning was performed on randomly selected points from different grid 
sizes to obtain lower point densities. A similar approach was used by Hansen et al. [2015]. 
The thinning of each point density was repeated ten times and our delineation method 
was applied to each of the ten thinnings. At the end, the average delineation accuracy of 
ten thinnings in terms of AI was calculated. To test if the differences among accuracies 
obtained with thinned and original data were significant, we carried out a two-sided Mann-
Whitney-Wilcoxon test.

Figure 4 - The area of a plot with different pulse densities: a) 60 pulses m-2; b) 30 pulses m-2; c) 
20 pulses m-2; d) 10 pulses m-2; e) 6 pulses m-2; f) 4 pulses m-2.

Results
Sensitivity analysis
To understand the relationship between accuracy and window size for initial clustering, 
we started with cubic windows or a box where window size was the same in all three 
slices (Tab. 2). According to Popescu et al. [2002] if the window size is too large, the 
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delineation method tends to have higher OE. On the opposite if the window size is too 
small, the delineation method tends to have higher CE. Our results in Table 4 confirmed 
the findings of abovementioned report and showed that the best compromise between OE 
and CE was obtained by moving windows ws2 (9, 9, 9) and ws3 (7, 7, 7), which reached 
substantially higher AI (around 34%) than ws1 (11, 11, 11) and ws4 (5, 5, 5). Assuming 
that the uppermost canopy layer has a high pulse density and larger crowns, the clusters 
of pulses on the top slice should be larger.  The pulse density drops below the canopy 
and so the crown size, thus the clusters of pulses should be smaller in the lower slices. 
Thus, we decided to investigate several configurations of w where window size format 
for lower slices are smaller resembling a vertical pulse density distribution scenario that 
could be more appropriate and corresponding to the geometry of a tree. Table 3 lists the 
experimented configurations w (bottom, middle, top): w1 (9, 9, 9), w2 (7 ,9, 9), w3 (7, 7, 
9) and w4 (7, 7, 7). Table 5 presents the sensitivity analysis results for the original point 
density at 60 pulses per m-2 for window sizes from w1 to w4 and for overlapping area 
from 40% to 70%. From Table 5 it is evident that an increase of the overlapping area from 
40% to 70% increases the CE and decreases the OE. In terms of overlapping, both 50% 
and 60% provided the best results. If we would exclude w4 where the range of accuracy 
for different overlappings are significantly higher, the AI differences for other window 
sizes for different overlappings are only marginal at around 1% or less. The CE and OE 
of different window configurations showed expected tendency as above-mentioned. 
However, altering window size at lower slices did not lead to higher delineation accuracy 
and there were no other patterns observed. As the combination of window size w1(9, 9, 9) 
and overlapping area at 50% had the highest accuracy, it was chosen as the setting for the 
remaining analysis.
The sensitivity analysis for the thinned data was also performed. The highest accuracies 
are highlighted in Tables 6 to 11. For each of the thinned point densities we produced ten 
random thinnings. For each parameter combination, the mean AI is showed. It emerged that 
window sizes w1, w2, and w3 reached quite similar results with overlapping areas at 40% 
and 50%, and their differences were within the range of around 1%.

Table 4 - Omission error (OE [%]), commission error (CE [%]), accuracy index (AI [%]) and 
number of detected ITCs (N) on the original point cloud carried out with different window sizes 
(w(slicelow, slicemiddle, slicetop)) and overlapping areas (OA).

ws1 (11, 11, 11) ws2 (9, 9, 9) ws3 (7, 7, 7) ws4 (5, 5, 5)

OA OE CE AI N OE CE AI N OE CE AI N OE CE AI N

40% 74.3 1.8 23.9 156 64.0 3.2 32.9 222 53.5 14.5 32.3 353 37.6 59.5 2.9 720

50% 70.5 2.4 27.2 179 60.3 5.5 34.3 256 51.4 18.3 30.4 392 34.6 71.8 -6.3 812

60% 69.2 2.8 27.9 189 58.5 7.5 34.0 275 50.1 23.8 26.1 428 33.2 78.5 -11.7 862

70% 68.9 3.7 27.4 195 57.8 9.3 32.9 290 48.5 27.3 24.2 458 32.3 85.5 -17.8 907
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Table 5 - Omission error (OE [%]), commission error (CE [%]) and accuracy index (AI [%]) 
on the original point cloud carried out with different window sizes (w(slicelow, slicemiddle, slicetop)) 
and overlapping areas (OA).

w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

OA OE CE AI OE CE AI OE CE AI OE CE AI 

40% 64.0 3.2 32.9 63.2 3.7 33.1 61.9 5.6 32.4 53.5 14.5 32.3

50% 60.3 5.5 34.3 60.7 5.8 33.5 58.4 8.3 33.3 51.4 18.3 30.4

60% 58.5 7.5 34.0 59.6 7.1 33.3 56.4 9.8 33.8 50.1 23.8 26.1

70% 57.8 9.3 32.9 58.7 8.8 32.6 55.3 12.2 32.6 48.5 27.3 24.2

Table 6 - Accuracy index (AI [%]) obtained by sensitivity analysis for 
point density of 4 pulses m-2 carried out with different parameter set-
tings (w(slicelow, slicemiddle, slicetop) = window size, OA = overlapping area).

OA w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

40% 28.2 28.0 27.6 24.8 

50% 27.5 27.5 27.7 23.1 

60% 27.4 27.0 27.0 22.1 

70% 27.0 26.7 26.6 21.4

ITC delineation
The results of OE, CE and AI of the proposed and the Reference delineation method were 
presented as the average over all plots. The delineation accuracy in terms of OE, CE and 
AI for the proposed method were 60.3%, 5.5%, 34.3%, respectively; for the Reference 
delineation method, they were 57.4%, 8.6%, 34.0%, respectively. In summary, there 
was only a marginal difference in terms of AI between the proposed 3D method and the 
Reference delineation method, with the 3D method achieving lower CE with slightly higher 
OE.

Table 7 - Accuracy index obtained by sensitivity analysis 
for point density of 6 pulses m-2 carried out with different 
parameter settings (w(slicelow, slicemiddle, slicetop) = window size, 
OA = overlapping area).

OA w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

40% 28.8 28.9 28.8 25.7 

50% 29.0 28.5 28.8 23.2 

60% 28.7 28.2 27.9 21.9 

70% 27.8 27.8 27.4 21.4
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Table 8 - Accuracy index obtained by sensitivity analysis 
for point density of 10 pulses m-2 carried out with different 
parameter settings (w(slicelow, slicemiddle, slicetop) = window size, 
OA = overlapping area).

OA w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

40% 28.9 28.8 30.0 26.4 

50% 29.2 28. 9 29.2 23.8 

60% 28.6 27.9 28.4 21.9 

70% 28.2 27.5 27.6 20.0

Table 9 - Accuracy index obtained by sensitivity analysis 
for point density of 20 pulses m-2 carried out with different 
parameter settings (w(slicelow, slicemiddle, slicetop) = window size, 
OA = overlapping area).

OA w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

40% 29.3 30.2 29.7 25.9 

50% 29.4 29.7 29.6 23.3 

60% 28.7 28.2 28.4 21.5 

70% 27.1 26.8 27.3 19.7

Table 10 - Accuracy index obtained by sensitivity analysis 
for point density of 30 pulses m-2 carried out with different 
parameter settings (w(slicelow, slicemiddle, slicetop) = window size, 
OA = overlapping area).

OA w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

40% 30.1 29.9 29.5 27.5

50% 30.6 30.1 29.6 25.2

60% 29.9 29.1 29.2 23.0

70% 28.8 28.3 28.2 21.0

Table 11 - Accuracy index obtained by sensitivity analysis 
for point density of 50 pulses m-2 carried out with different 
parameter settings (w(slicelow, slicemiddle, slicetop) = window size, 
OA = overlapping area).

OA w1 (9, 9, 9) w2 (7, 9, 9) w3 (7, 7, 9) w4 (7, 7, 7)

40% 29. 9 30.8 30.7 29.4 

50% 30.2 30.8 31.0 27.8 

60% 29.5 30.0 30.3 25.4 

70% 29.0 29.3 29.4 22.5
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ITC attributes estimation
For the correctly delineated ITCs the accuracies of tree position, crown area and tree height 
are showed in Table 12. The accuracies of the tree positions estimated by the proposed 
3D delineation method and the Reference delineation method were 2.13 m and 2.33 m, 
respectively. Regarding the crown area the 3D method overestimated its value (MD = 9.77 
m2) while the Reference delineation method achieved better results (MD = 5.86 m2) with 
a small underestimation. The correlation between the two ALS-derived crown areas and 
field measurements were low, with r2 at 0.17 for the 3D methods and 0.20 for the Reference 
method. For the estimation of tree heights, both methods reached the same r2 at 0.96. The 
proposed 3D method overestimated the tree heights by 0.79 m and the Reference delineation 
method underestimated them by 0.48 m.

Table 12 - Accuracy of tree position, crown area and tree height for the 3D and Reference 
delineation method. Only ITCs matching a field measured tree are considered. MD = Mean 
Difference, RMSE = Root Mean Square Error, r2 = coefficient of determination.* Mean 
distance of the field tree position and the ITC position.

Method 3D delineation method Reference delineation method

MD RMSE r2 MD RMSE r2

Tree position* [m] 1.54 2.13 - 1.89 2.33 -

Crown area [m2] -9.77 47.77 0.17 5.86 15.69 0.20

Tree height [m] -0.79 1.54 0.96 0.48 1.43 0.96

Effect of forest structure
The forest structure was described by four measures: Gini coefficient of BA, mean DBH, 
number of stems per hectare, and mean nearest neighbour distance. Figure 5 displays their 
effects on the delineation accuracy in terms of OE and CE. For the Gini coefficient of BA 
and mean DBH, it is evident that two major groups of plots are formed. The first group 
represented by the symbols ● and ■ has the heterogeneous Gini coefficient of BA above 
0.5 and greater mean DBH above 42 cm. It represents mixed tree species within a plot 
containing uneven aged coniferous (Norway spruce, Larch and Silver fir) and broadleaves 
(Common alder, Sycamore maple, Silver Birch, European Birch, Rowan and Aspen). A 
second group represented by ○ and □ belongs to homogeneous tree species plots with even 
aged coniferous trees. The OE was higher for the mixed trees species plots than for the 
homogeneous tree species plots, wherein the CE was similar for both. From the number 
of stems per hectare and their mean nearest neighbour distance, we can see how the 
horizontal distribution of trees and the tree spacing affect the delineation accuracy. For the 
heterogeneous group of plots, a high number of stems per hectare and a low mean nearest 
neighbor distance resulted in higher OE. The second group of plots with less trees per 
hectare and a larger tree spacing resulted in lower OE. Unlike the OE, CE is very similar 
for most plots in both groups. Lastly, for each forest structure measure we fitted a linear 
regression model to OEs and CEs (Fig. 5). All forest structure measures have a significant 
relationship at significance level of 0.05 with OE but their relationship is not significant 
with CE. Thus, the forest structure measures affected the accuracy of ITC delineation and 
had more influence on OE than CE.
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Figure 5 - Effect of forest structure in terms of (A) Gini coefficient of basal area (BA), 
(B) mean DBH, (C) number of stems per hectare and (D) mean nearest neighbor dis-
tance, on the omission errors (OE) and commission errors (CE). The blue circles and 
red squares represent the results of OE and CE, respectively. Each symbol represents 
the value of each plot and the solid lines are fitted with ordinary linear regression. 
The filled signs represent homogeneous plots in contrast to the empty signs represen-
ting heterogeneous plots.

Effect of point density
Figure 6 shows the performance of the proposed 3D delineation method in terms of AI, 
OE and CE at seven different point densities. For each point density, the best performing 
parameters were chosen based on sensitivity analysis. The mean values and standard deviation 
bars for each of the thinnings were calculated over ten random repetitions. Overall, from a 
point density of 4 pulses m-2 until a point density of 60 pulses m-2 the AI increased by 6.1% 
(Fig. 6). The results suggest that with a higher point density a higher delineation accuracy 
is reached. To test if the differences of delineation accuracies (AI) between different point 
density data sets were statistically significant, we performed a Mann-Whitney-Wilcoxon 
test at α = 0.05 level (Fig. 7). The outcome showed the differences between the accuracies 
of the original point density (60 points m-2) and the thinned data sets are all significant. The 
difference in accuracy is also significant in most cases between 4 points m-2 and the other 
thinned data sets (except for 6 points m-2). Moreover, it is also significant between thinned 
data set at 6 points m-2 and data sets at 30 and 50 points m-2.
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Figure 6 - Performance of the 3D delineation method at different 
point densities. The blue, red and green circles represent the 
results of the omission error (OE), commission error (CE) and 
accuracy index (AI), respectively. For each point density ten 
repetitions of thinning were carried out and their mean values 
and the standard deviation bars are presented.

Figure 7 - Mann-Whitney-Wilcoxon test for the pairwise 
accuracy indexes at different point densities with □ 
represents significant and ■ represents not significant.
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Discussion 
The presented 3D delineation method has two important parameters: the size of moving 
window and the overlapping area (OA). The moving window can be adapted in each 
horizontal slice and the a priori knowledge of the expected crown size of a plot can be used 
as constraint. Local knowledge of the crown size can be obtained from field measurements 
or by prediction based on tree height if an allometric equation exists [Popescu et al., 2002]. 
The sensitivity analysis for the window sizes was done on two stages. Firstly, we tested 
cubic windows (ws) where window size was kept constant for each slice and then we 
refined the analysis only using the sizes that were providing the best results. The output 
of the first stage was that windows ws1 (11, 11, 11) and ws4 (5, 5, 5) were not suitable, as 
they provided quite low accuracies. Thus, in the second stage we considered only 9 and 7 as 
possible window dimensions and we defined a new configuration (w) with smaller window 
sizes for the slices at the lower heights: w1 (9, 9, 9), w2 (7, 9, 9), w3 (7, 7, 9), w4 (7, 7, 7). 
The new configuration of window size was based on the assumption that less points are 
gathered at lower level and that crowns are usually smaller under the canopy cover. From 
the results of the sensitivity analysis on the original point density, we concluded that the 
window size (w) had greater impact on the 3D delineation accuracy than the overlapping 
area (OA). Moreover, the range of AIs obtained at different window sizes is quite large, while 
the variations of AIs obtained at different overlapping areas (%) are actually quite small. 
In general, the best results were obtained by w1 (9, 9, 9) and OA 50%, though the accuracy 
of w1, w2, w3, at OA 50% and 60% were very similar. For thinned data the sensitivity 
analysis revealed that the window sizes w1, w2 and w3, with overlapping at 40% and 50% 
reached similar and the highest accuracies. It is worth noting that, the best window sizes for 
point densities 10, 20 and 50 pulses per m-2 were not w1 (9, 9, 9), even if the differences in 
accuracy were very marginal (from Tab. 6 to Tab. 11). 
For the original point density data the proposed 3D delineation method and the Reference 
delineation method provided very similar results. The accuracies of both delineation 
methods are in line to those reported in other studies in coniferous and broadleaved forests 
[Vauhkonen et al., 2011], Alpine spruce and mixed forests [Reitberger et al., 2009], and 
different Alpine forests [Eysn et al., 2015].
Regarding the ITC attributes estimation, the 3D delineation and the Reference delineation 
methods achieved similar accuracies. Even with high point density data, the obtained tree 
position accuracy was not high. The relatively high tree position error can be explained 
either by the complex structure of our study area which is challenging (e.g. tilted trees, 
crown shape, high stem density) (Fig. 2), or by errors occurred in the field measurements 
of the plot position with GNSS, or by the complex topography (e.g. steep slope) [Monnet 
and Mermin, 2014]. Particularly on a steep slope higher than 20°, where the treetops 
are likely to be tilted to the valley side, a horizontal positional difference between the 
treetop and its stem could be possible. Steep slopes can also lead to an overestimation of 
ALS derived tree height, because the tree height is calculated as the distance between the 
tree top (highest normalized point inside the cluster) and the ground surface below the 
tree top point [Hollaus et al., 2006; Kaartinen et al., 2012]. Thus, the ALS data and the 
error inherited in the generation of DTM from the ALS point clouds are less precise in 
steep terrain [Hollaus et al., 2006]. Another error in height estimation can be related to 
the field-derived measurements, either caused by the error of allometric equation used, or 



Kandare et al.		 Effects of forest structure and ALS point density on ITC delineation

354

by subjectivity in the field measurements with Vertex hypsometer [Kitahara et al., 2010; 
Vasilescu, 2013]. Kitahara et al. [2010] found that the mean percentage difference of tree 
height measurements repeated three times by different surveyors are 3.6% for coniferous 
trees and 8.7% for broadleaves.
Tree heights obtained by the 3D delineation method were overestimated by 0.79 m and 
those obtained by the Reference delineation method were underestimated by 0.48 m. Such 
difference is caused by different ways of extraction of tree crown pulses. The 3D method 
extracted tree height as the highest pulse within an ITC cluster. The Reference method 
extracted tree height at 95th percentile of all heights within an ITC segment. The crown 
area was overestimated by the 3D delineation method and underestimated by the Reference 
method. The Reference delineation method defined a height threshold above which all first 
return pulses were accounted for crown area computation. While the proposed method 
simply took all pulses in a cluster for crown area calculation. In summary, the accuracy of 
tree attributes estimated by both methods are at good level as compared to previous studies 
[e.g. Kaartinen et al., 2012; Eysn et al., 2015].
Analyzing the effect of four forest structure measures on delineation accuracy, we find 
that pure tree species and even aged plots achieved lower OE as compared to mixed tree 
species and uneven aged plots. Comparing with pure tree species and even aged plots, the 
plots with mixed tree species and uneven ages in general had a higher Gini coefficient of 
BA, a higher number of stems per hectare, a smaller mean DBH and a smaller mean nearest 
neighbour distance between trees, which clearly led to higher OE. The CE, however, did 
not vary so much among different forest structures. In a related study, Eysn et al. [2014] 
reported that delineation accuracies with the Pellizzano test site were also comparatively 
low possibly caused by the high forest structure diversity.
The point density analysis revealed that the delineation accuracy of the 3D delineation 
method is higher with the original density at 60 pulses m-2 (Fig. 6). Previous studies 
concluded that point densities higher than 20 pulses m-2 did not have an important effect 
on the delineation results [Reitberger et al., 2009; Kaartinen et al., 2012; Yao et al., 2014]. 
Kaartinen et al. [2012] reported that increasing point density from 2 and 4 pulses m-2 

to 8 pulses m-2 had only marginal improvement on delineation accuracy. The studies of 
Reitberger et al. [2009] and Yao et al. [2014] concluded that a point density higher than 10 
pulses m-2 did not improve the performances of ITC delineation. However, Kaartinen et al.’s 
[2012] study focused mainly on 2D methods based on CHM, where the vertical structure 
was not explored. In our tests, the delineation accuracy increased with higher point density 
and it achieved marginal improvements when we increased the point density from 10 to 50 
pulses m-2. The Mann-Whitney-Wilcoxon test showed that differences in accuracy among 
the thinned datasets are not statistically significant at α = 0.05 between point densities 6, 
10, 20, 30 and 50 pulses m-2, except between point densities 6 m-2 and 30 pulses m-2, and 6 
m-2 and 50 pulses m-2. This indicates the increase of point density from 6 to 50 pulses m-2 
does not lead to interesting improvement in accuracy. The highest accuracy is achieved 
with the original point density (60 points m-2) and the improvement in accuracy is tested 
significantly different when compared to all other thinned data sets. Simulation of thinned 
data by reducing a high-density ALS datasets are frequently used to give insight into the 
effect of point density [Magnussen et al., 2010; Jakubowski et al., 2013; Hansen et al., 
2015]. However, we have to acknowledge thinning is only a simulation of the expected real 
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ALS flight at lower densities. An ideal option would be to obtain different point densities 
with the same scanner.

Conclusions
In this paper, a 3D ITC delineation method based on ALS data was presented and evaluated. 
The results were compared with a well-established Reference delineation method. Both 
methods reached similar delineation accuracies and both were effective in tree attributes 
estimation. We found that forest structure attributes such as stem density, distribution of 
trees, number of stems per hectare, and the evenness expressed by Gini coefficient of 
basal area, had significant influence on the delineation accuracy. We also observed that the 
omission error was lower in stands with a homogeneous forest structure and that the forest 
structure only had a slight effect on the commission error. In addition, due to the complex 
forest structure of our study site, the results have demonstrated that the proposed 3D 
delineation method was flexible and suitable to be applied in different forest conditions. Our 
method was robust and effective even with low point densities. Our thinning experiments 
have shown that the delineation accuracy was similar for point densities varying from 10 
to 50 points m-2. Overall, the delineation accuracy improved when the point density was 
increased and the top accuracy was achieved with the highest density at 60 points m-2.
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