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Phylogenomic Structure of Oenococcus oeni and its Adaptation to Different Products 

Unveiled by Comparative Genomics and Metabolomics. 
 

Oenococcus oeni is the main lactic acid bacteria found in spontaneous malolactic fermentation (MLF) of wine. During 

MLF, malic acid is converted into lactic acid, modulating wine’s acidity and improving its taste. The metabolic 

activity of O. oeni also produces changes in the composition of wine, modifying its aromatic profile. Previous studies 

have suggested that the species is divided in two major phylogenetic groups, namely A and B. We have examined O. 

oeni under comparative genomics approaches by the aid of bioinformatics tools developed in-place, unveiling the 

existence of more phylogenetic groups of O. oeni than previously thought. Moreover, our results suggest that certain 

groups are domesticated to specific products such as red wine, white wine, champagne and cider. This phenomenon is 

visible at different levels of the strains’ genomes: sequence identity, genomic signatures, and group-specific features 

such as presence/absence of genes and unique mutations. With the aim of understanding the impact of group-specific 

genomic features on the species adaptation to different products, we have selected a set of strains isolated from the 

same region, but belonging to two different genetic groups and adapted either to red wine, either to white wine. An 

integrated analysis of genomic and metabolomic data reveals that the genomic features of each genetic group have an 

impact on the strains adaptation to their respective niches, affecting the composition of the volatile fraction of wine.  

 

Key words: Oenococcus oeni, lactic acid bacteria, wine, malolactic fermentation, genomics, metabolomics, 

phylogenomics, bioinformatics. 

 

 

Structure Phylogénomique d’Oenococcus oeni et son Adaptation à Différents Produits 

Dévoilés par Génomique Comparative et Métabolomique 
 

Oenococcus oeni est la principale bactérie lactique retrouvée dans les fermentations malolactiques (FML) spontanées 

du vin. Pendant la FML, l’acide malique est converti en acide lactique, modulant l’acidité du vin et améliorant son 

goût. L’activité métabolique d’O. oeni produit aussi des changements dans la composition du vin, modifiant son profil 

aromatique. Des études précédentes ont suggéré que l’espèce est divisée en deux principaux groupes génétiques, 

désignés A et B. Nous avons examiné les souches d’O. oeni sous des approches de génomique comparative à l’aide 

d’outils bioinformatiques développés sur place, dévoilant l’existence de nouveaux de groupes et sous-groupes de 

souches. En outre, nos résultats suggèrent que certains groupes contiennent des souches qui sont adaptées à des 

produits spécifiques tels que le vin rouge, vin blanc, champagne et cidre. Ce phénomène est visible à différents 

niveaux des génomes des souches : l’identité de séquence, les signatures génomiques, et les caractéristiques 

génomiques spécifiques de groupes telles que la présence/absence de gènes et les mutations uniques. Afin de 

comprendre l’impact des caractéristiques génomiques dans l’adaptation de l’espèce à différents produits, nous avons 

sélectionné une collection de souches isolées de la même région, mais appartenant à deux groupes génétiques 

différents et adaptées  soit au vin rouge, soit au vin blanc. Une analyse de données génomiques et métabolomiques 

intégrées révèle que les caractéristiques génomiques des souches de chaque groupe ont un impact sur l’adaptation des 

bactéries à leurs niches respectives et sur la composition de la fraction volatile du vin. 

 

Mots Clés: Oenococcus oeni, bactéries lactiques, vin, fermentation malolactique, génomique, métabolomique, 

phylogénomique, bioinformatique. 
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Introduction 

 

Oenococcus oeni is the main bacteria responsible for the malolactic fermentation (MLF) of 

wine. During MLF, malic acid is transformed into lactic acid, modulating wine’s acidity and 

improving its taste. As a consequence of O. oeni’s metabolism, numerous metabolites are 

consumed, transformed or synthesised, changing the aromatic profile of wine. Previous 

studies regarding the genetic diversity of O. oeni, have concluded that the species is divided 

in at least two major genetic groups, namely A and B. Several subgroups have also been 

identified, some of them belonging to specific geographical regions, or products such as wine 

or cider. Despite this knowledge about the genetic diversity of O. oeni, the genomic features 

that define the abovementioned groups of strains remain barely understood. 

 

This study has two complementary scopes: on the one hand, the necessity to 

understand the nature of the species under genomics and metabolomics approaches; on the 

other hand, our need to develop a bioinformatics pipeline that would let us achieve this goal. 

 

 First, we implemented a set of programs –some of them of public domain, others 

created specifically by us– to cover the requirements of our genomics and metabolomics 

analyses. 

 

Second, we collected a set of 50 O. oeni genomes of different genetic groups and 

sources in order to study the phylogenomic structure of the species, its genomic diversity, and 

the traces of its domestication through comparative genomics approaches. 

 

Third, we developed a method for the rapid characterisation of wines in function of 

their volatile profile, which is sensible enough for discriminating wines fermented with 

different malolactic starters. 

 

Finally, we selected two groups of O. oeni strains adapted to different products –red 

wine and white wine, respectively. We used both groups of strains to ferment a Chardonnay 

wine, in order to establish correlations between their genomic characteristics and their 

volatolomes. An integrated analysis of this genomics and metabolomics dataset unveils the 

impact of the genetic features of each group of strains on their technological potential. 
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Figure 1. Phylogenetic tree of Lactobacillales. 
The tree has been reconstructed by the alignment of the concatenated sequences of four subunits of the DNA-
dependent RNA polymerase (α, β, β’ and δ). Colors indicate the taxonomy of the groups: Lactobacillaceae, blue; 
Leuconostocaceae, magenta; Streptococcaceae, red (from Makarova and Koonin 2007). 
 
 
 
 
 
 

 
 
Figure 2. Cladogram of 452 genera from 26 phyla, including Lactobacilli.  
The tree was reconstructed based on the amino acid sequences of 16 marker genes. The colours of the outer 
circle indicate the phyla, with Firmicutes indicated in pink; the colour of the branches indicate the genera, 
Lactobacilli are highlighted in black (from Sun et al., 2015).  

sequences encoded by genes that are unlikely to be transferred
horizontally. This approach has been shown to improve the
resolution and increase the robustness of phylogenetic analyses
(59). A tree of Lactobacillales constructed by this approach
from concatenated sequences of ribosomal proteins and RNA
polymerase subunits had the same topology and was supported
by high bootstrap values but disagreed in some important re-
spects with the above classification (28). Specifically, the new
tree suggests that the Streptococcus-Lactococcus branch is
basal in the Lactobacillales tree and the Pediococcus group is a
sister to the Leuconostoc group within the Lactobacillus clade.
Thus, the genus Lactobacillus appears to be paraphyletic with
respect to the Pediococcus-Leuconostoc group. Lactobacillus
casei is confidently placed at the base of the L. delbrueckii
group. Figure 5 shows the phylogenetic tree of concatenated
RNA polymerase subunits for all species of Lactobacillales
whose genomes are currently available; this tree, made for an
expanded species set, was fully compatible with the previous
one (28).

A molecular-clock test performed for the phylogenetic tree
based on multiple alignment of concatenated ribosomal pro-
teins (51) revealed a high heterogeneity of evolutionary rates
among Lactobacillales, including confirmation of the previ-
ously reported (62) accelerated evolution of the Leuconostoc
group by a factor of 1.7 to 1.9 relative to the sister Pediococcus
group (28). Similarly, O. oeni was found to evolve substantially
faster (by a factor of 1.6) than Leuconostoc. This finding is in
accord with the experimental observation of an increased mu-
tation rate in O. oeni (D. A. Mills, unpublished observation)
and the absence in the species of the key enzymes of mismatch

repair, MutL and MutS, which is unique among the Lactoba-
cillales (Table 2).

PHYLETIC PATTERNS AS A TOOL FOR ANALYSIS OF
GENERAL TRENDS OF EVOLUTION FOR

DIFFERENT SETS OF SPECIES

Analysis of phyletic (phylogenetic) patterns, i.e., patterns of
gene presence/absence in a particular set of genomes, is a
valuable approach both for the detection of evolutionary
trends and for functional prediction (36, 44). A straightforward
examination of frequent phyletic patterns in LaCOGs imme-
diately reveals several trends in the evolution of Lactobacillales
that mostly reflect gene losses, especially of genes that encode
biosynthetic enzymes (Table 2). However, genes shared by
distinct sets of bacteria are also of interest. Some of these
shared genes apparently reflect recent gene exchanges between
distantly related species within the order Lactobacillales. Sev-
eral cases are obvious, e.g., 11 genes that are shared by L.
johnsonii and L. lactis subsp. cremoris and are located adjacent
to a prophage and therefore in all likelihood have been trans-
ferred by the phage vehicle. Another set of genes disseminated
via horizontal transfer is the CRISPR-related system (CASS)
implicated in the defense against integrative phages and plas-
mids (6, 33) in L. delbrueckii and L. casei. In these LAB, the
CASS includes a unique gene that encodes a protein with a
Cas1 domain fused to a 3!-5! exonuclease domain (29). Other
phyletic patterns reflect specific sets of genes shared by related
species, often poorly understood in functional terms. Not sur-
prisingly, the second largest gene set (246 genes), after the
conserved core, is shared by two most closely related genomes,
those of Lactococcus lactis subsp. lactis and Lactococcus lactis
subsp. cremoris. Many genes in this list ("50) apparently be-
long to prophages that are shared by these two species and
have probably integrated into the genome of their common
ancestor. Among the 88 genes that are specifically shared by L.
johnsonii and L. gasseri, 48 are uncharacterized; many of them
encode secreted and membrane proteins that are likely to be
involved in the interaction with mucosal surfaces of the gas-
trointestinal tract, which these bacteria colonize. Similar trends
have been observed for three related species, L. johnsonii, L.
gasseri, and L. delbruecki, that specifically share 39 genes, 27 of
which are uncharacterized.

GENE LOSS AND GAIN IN THE EVOLUTION
OF LACTOBACILLALES

Phyletic patterns of LaCOGs, together with the phylogenetic
tree of Lactobacillales, can be used for explicit reconstruction
of the events that occurred during the evolution of this group
after its divergence from the common ancestor with the rest of
the Bacilli. For the purpose of this reconstruction, we em-
ployed a modification of a previously developed method based
on the weighted-parsimony approach (32). The results of the
reconstruction (28) suggest that the common ancestor of Lac-
tobacillales had at least #2,100 to 2,200 genes, having lost 600
to 1,200 genes (#25 to 30%) and gained $100 genes after the
divergence from the Bacilli ancestor, for which the genome size
of #2,700 to 3,700 genes was estimated (Fig. 6). Many of the
changes mapped to this stage of evolution seem to be related

FIG. 5. A phylogenetic tree of Lactobacillales constructed on the
basis of concatenated alignments of four subunits (%, &, &!, and ') of
the DNA-dependent RNA polymerase. The maximum-likelihood un-
rooted tree was built using the MOLPHY program (1). All branches
are supported with "75% bootstrap values. The species are colored
according to the current taxonomy: Lactobacillaceae, blue; Leuconos-
tocaceae, magenta; Streptococcaceae, red.
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recognized as phylogroups within the genus Lactobacillus based
on both 16S rRNA gene sequence typing and extensive
phylogenomic analysis1,18. Our results provide unequivocal
evidence that the genera Fructobacillus and Weissella are
members of the Lactobacillus clade, with Fructobacillus located
between Leuconostoc and Oenococcus and the genus Weissella
located as a sister branch (Fig. 2). As the Lactobacillus clade
includes species from six different genera (Lactobacillus,
Pediococcus, Weissella, Leuconostoc, Oenococcus and Fructobacillus),
we propose to name these six genera as constituting the
Lactobacillus Genus Complex. Interestingly, the Carnobacteria
are external to the Streptococcus/Lactococcus branch in the
16-core phylogeny of 26 phyla (Fig. 1), but they are internal to
this branch in the 73-core tree of the Lactobacillus Genus
Complex and associated genera (Fig. 2). The lower bootstrap
value of 51% (L. lactis) for the 16-core tree, which was built from
an alignment of 3,863 bp, suggests that there was not enough
phylogenetic signal to resolve this branch to a high degree of
confidence. In contrast, the 73-core tree, which was built from an
alignment of 30,780 bp, has a bootstrap value of 100% for this
branch. This places greater confidence in the latter tree topology
and hence it was used in all downstream analyses.

As a complement to the maximum likelihood tree of the
Lactobacillus Genus Complex and associated genera based on 73
core proteins (Fig. 2), we built another tree (Supplementary
Fig. 6) omitting Atopobium, Olsenella, Kandleria and
Carnobacterium genomes and retaining the position of the most
recent common ancestor (MRCA) according to the tree of
bacteria (Fig. 1). In agreement with previous observations based
on 28 LAB genomes17, this tree shows that the Lactobacillus
Genus Complex splits into two main branches after diverging
from the MRCA. Branch 1 contains the type species of the genus
Lactobacillus, L. delbrueckii, and a large number of type strains

that were isolated from dairy products. Branch 2 contains more
species (n¼ 127) than branch 1 (n¼ 77), and all five of the other
genera in the Lactobacillus Genus Complex.

A broad repertoire of carbohydrate-active enzymes (CAZymes).
With interest in their applications in fermentations, some of the
earliest classifications of lactobacilli were based on their carbo-
hydrate utilization patterns13. Glycolysis occurs in obligately
homofermentative (group A) and facultatively heterofermentative
(group B) lactobacilli, and has been traditionally linked to the
presence of 1,6-biphosphate aldolase24. A full set of glycolysis
genes were predicted in 49% of the species analysed
(Supplementary Fig. 7) and gene duplication is common,
although not particularly associated with a group or niche. All
Lactobacillus, Leuconostoc, Weissella, Fructobacillus and
Oenococcus species lacking phosphofructokinase (Pfk) formed a
distinct monophyletic group. This group included the historically
defined L. reuteri, L. brevis, L. buchneri, L. collinoides,
L. vaccinostercus and L. fructivorans groups. Most species (75%)
within this Pfk-negative clade also lacked 1,6-biphosphate
aldolase, although this gene was consistently present in the
Weissella clade as well as in some leuconostocs and species from
the L. reuteri and L. fructivorans groups. Importantly, most
species (87%) within the Pfk-lacking group were classified as
obligatively heterofermentative1, with the rest being facultatively
heterofermentative. The reason for the link between pfk gene loss
and heterofermentative metabolism needs functional genomic
investigation. The average phylogenetic distance (number of
nodes to root) of facultatively heterofermentative lactobacilli (as
defined in Supplementary Fig. 7) to the MRCA (Supplementary
Fig. 6) is considerably lower than that of obligately
heterofermentative or obligately homofermentative species
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I. Lactic acid bacteria of fermented foods 

 

1. General properties 

Lactic acid bacteria (LAB) are a paraphyletic group of microaerophilic gram-

positive bacteria. Most of them belong to the order Lactobacillalles, although a few of 

them belong to the Actinobacteria. The phyletic diversity of LAB spans six families 

(Aerococcaceae, Carnobacteriaceae, Enterococcaceae, Lactobacillaceae, 

Leuconostoccaceae and Streptococcaceae), 36 genera and more than 200 species 

(Holzapfel and Wood, 2014). They are commonly associated with plants, animals and 

their food derivatives. Genera that are generally associated with foods are Enterococcus, 

Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Weissella, Carnobacterium, 

Tetragenococcus, Pediococcus and Streptococcus. LAB owe their name to the fact that 

their principal energy source is the metabolism of hexose sugars into lactic acid in two 

possible pathways: homofermentative or heterofermentative. The former drives to the 

formation of lactic acid, whilst the latter drives to the formation of lactic acid plus CO2, 

ethanol and/or acetic acid. They have been domesticated to food and beverages produced 

by humans through long term interactions (Farnworth, 2008; Holzapfel and Wood, 2014). 

It is thanks to LAB that we can obtain hundreds of traditional fermented foods such as 

cheese, yogurt, kimchi, wine, beer, cider, kombucha, coffee, cocoa, sausages, sauerkraut 

and kefir. 

 

2. Genomic features 

The first genome of a LAB species to be publicly available was Lactococcus lactis 

subsp. lactis IL1403 (Bolotin et al., 2001). An analysis revealed a chromosome of 

2.4Mbp, partial components of aerobic metabolism, late competence genes, complete 

prophages and biosynthetic pathways for the 20 amino acids, although some of them were 

non functional (Klaenhammer et al., 2002). Since then, more and more genomes 

corresponding to LAB species have been sequenced (Klaenhammer et al., 2002.; 

Makarova et al., 2006, Makarova and Koonin, 2007; Pfeiler et al., 2007, Liu et al., 2010; 

Zhang et al., 2011), improving the robustness of phylogenetic analyses. A comparative 

study of some available LAB genomes reconstructed a phylogenetic tree for a number of 

representative Lactobacillales by aligning the concatenated sequences of four ribosomal 

proteins and RNA subunits (Figure 1) (Makarova and Koonin, 2007). A more recent 

study, comparing 213 newly sequenced genomes, has permitted to obtain a detailed 



 
 
Figure 3. Gain and loss of genes of some lactic acid bacteria. 
Black values indicate the number of genes of each phylum, gene gains are shown in red and gene losses are 
shown in blue (from Makarova and Koonin, 2007). 
  

to the transition made by the LAB to existence in nutritionally
rich medium. Thus, a number of genes for biosynthesis of
cofactors, such as heme, molybdenum coenzyme, and pan-
thothenate, were lost, and conversely, some cofactor transport-
ers were acquired, e.g., nicotinamide mononucleotide trans-
porter. Another notable acquisition is a group of diverse
peptidases which are obviously an important commodity in the
protein-rich environments inhabited by the LAB. The loss of
heme/copper-type cytochrome/quinol oxidase-related genes
(CyoABCDE) and catalase (KatE), characteristic enzymes of
aerobic bacteria, suggest that the ancestor of Lactobacillales
was a microaerophile or an anaerobe.

Lineage-specific gene loss was extensive in the evolution of
all lineages of Lactobacillales, but several species stand out as
especially notable “losers.” In particular, S. thermophilus not
only lost numerous genes but also has many fresh pseudogenes,

suggesting an active and ongoing process of genome decay,
which has been reported for two different strains of the same
species (5). Moreover, substantial gene loss (368 genes, accord-
ing to the present reconstruction) also occurred at the base of
the Streptococcus-Lactococcus branch, including several genes
involved in cell division that are conserved in most bacteria,
such as CrcB, MreB, MreC, and MinD. This is reminiscent of
the trends of gene loss that are observed in other symbiotic and
pathogenic bacteria (21, 35). The lineages of Lactobacillales
that are particularly prone to gene loss are P. pentosaceus; the
Leuconostoc and Oenococcus branch, with considerable addi-
tional loss in each species; and the L. delbrueckii group (L.
debrueckii, L. gasseri, and L. johnsonii), with further genome
reduction in L. gasseri and L. johnsonii (Fig. 6). In the species
with larger genomes, such as L. plantarum and L. casei, the loss
of ancestral genes was counterbalanced by the emergence of

FIG. 6. Reconstruction of gene content evolution in Lactobacillales. The tree is a subset of that shown in Fig. 5, rooted by using Bacillus subtilis as
the outgroup. For each species and each internal node of the tree, the inferred number of LaCOGs present and the numbers of LaCOGs lost (blue) and
gained (red) along the branch leading to the given node (species) are indicated. Modified from reference 28 with permission of the publisher.

TABLE 2. Selected phyletic patterns reflecting the evolutionary trends of different groups of Lactobacillales

Patterna: No. of LaCOGs Comments and examples
a b c d e f g h i j k l

!!!!!!!"!!!! 35 Specific gene loss in O. oeni; several informational genes lost: MutL, MutS, RadC, Sun
!!!!!!!!!!"! 21 Specific gene loss in L. delbrueckii: several sugar metabolism genes lost: Eno, GalKMT
!!!!!!""!!!! 17 Specific gene loss in O. oeni and L. mesenteroides; several RNA modification genes lost: TrmU,

TrmE, RsuA, GidA
!!!!!!!!""!! 12 Specific gene loss in L. johnsonii and L. gasseri; 8 genes of fatty acid biosynthesis lost
"!!!!!!!!!!! 29 Specific loss in S. thermophilus; 4 genes of 6-phosphogluconate pathway
"""!!!!!!!!! 21 Specific loss Streptococcus-Lactococcus branch; several genes of central metabolism: FumC,

GpmA, Gmk
!""!!!!!!!!! 16 Specific loss in Lactococcus branch; 5 genes for amino acid transport
!!!"!!!!""!! 11 A set of bacteria that lost purine biosynthesis genes (9 of 11)
""""""""!!"" 88 Specific signature of gastrointestinal tract-inhabiting bacteria L. johnsonii and L. gasseri; 48 of

these genes are uncharacterized
""""""""!!!" 38 Signature of related bacteria (Fig. 4); 28 of these genes are uncharacterized
!!!"!"!""""! 18 A set of bacteria that encode genes for aromatic acid biosynthesis and histidine biosynthesis (14

of 18)
""""""""""!! 16 Genes shared between L. delbrueckii and L .casei: 8 belong to a distinct version of the CASS
!!!"!"!""""" 8 All these genes are involved in amino acid biosynthesis, mostly proline and tryptophan

a !, gene is present in the species; ", gene is absent. Species are denoted by letters as follows: a, S. thermophilus; b, L. lactis subsp. lactis; c, L. lactis subsp. cremoris;
d, L. brevis; e, L. plantarum; f, P. pentosaceus; g, L. mesenteroides; h, O. oeni; i, L. johnsonii; j, L. gasseri; k, L. delbrueckii subsp. bulgaricus; l, L. casei.
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picture of the position of Lactobacilli in relation to other phyla (Figure 2) (Sun et al., 

2015). 

LAB have relatively small genomes of low GC content, within a range of ~1.8 to 

~3.3Mbp and ~1,700 to 2,800 genes (Klaenhammer et al., 2005; Makarova and Koonin, 

2007). By analysing 12 genomes of Lactobacillales, a conserved set of 567 LaCOGs 

(18%) was inferred. Most of these genes code for central metabolism and components of 

information-processing systems, however a fraction of 50 genes escape this classification, 

from which 41 have unknown or poorly understood functions and 2 seem to be unique to 

Lactobacillales (Makarova and Koonin, 2007). LAB also harbour pseudogenes in a range 

of one order of magnitude (from ~20 in L. mesenteroides and P. pentosaceus to ~200 in S. 

thermophilus and Lb. delbrueckii), rRNA operons in a range from 2 (in O. oeni) to 9 (in 

Lb. delbrueckii) and prophages. Plasmids are also present in many LAB, some of them 

being essential for growth in certain environments: they carry genes for metabolic 

pathways, membrane transport and the production of bacteriocins (McKay and Baldwin, 

1990). A reconstruction suggests that LAB might have evolved from a common 

Lactobacillales ancestor that contained around 2,100-2,200 genes, by losing 600-1,200 

genes and gaining no more than 100 (Figure 3) (Makarova and Koonin, 2007). This lose 

and gain of genes has resulted in highly environmentally shaped genomes, modelled by 

the transition of LAB to nutrient-rich environments created by humans. For example, a 

transcriptional analysis of L. acidophilus shows that the genes of the glycolytic pathway 

are among the most expressed in this genome, and a set of genes involved in sugar 

metabolism were identified, such as transporters of phosphoenolpyruvate:sugar 

transferase system for uptake of glucose, fructose, sucrose, and threhalose, and ATP-

binding cassette transporters for uptake of raffinose and fructooligosaccharides 

(Barrangou et al., 2006). This is not surprising since LAB obtain their energy primarily 

via glycolysis. An analysis of the genome of L. plantarum revealed many transporters, 

especially from the phosophotransferase system (PTS), which is clearly linked to the fact 

that this species can obtain its energy from diverse carbohydrates (Klaenhammer et al., 

2005), although it has been reported that genes involved in sugar transport and catabolism 

are highly variable among strains (Molenaar et al., 2005). The role of genes in the 

adaptation of L. plantarum to specific environments (intestine surface) through adhesion 

to mannose residues has also been demonstrated (Pretzer et al., 2005). Another analysis of 

a L. bulgaricus genome shows a lack of genes related to amino acid biosynthesis 

pathways, but the presence of an extracellular protease that facilitates the intake of 

nutrients from the protein-rich milk environment (Pfeiler and Klaenhammer, 2007). An 

analysis of a L. sakei genome, a meat starter culture, shows several putative 



	
	



	 4	

osmoprotectant and psychroprotectant proteins, as well as proteins that are putatively 

involved in heme usage and resistance to oxidative stress (Pfeiler and Klaenhammer., 

2007). 

Some of the gene losses that are characteristic of LAB are those responsible of the 

biosynthesis of cofactors such as heme, molybdenum coenzyme and panthothenate, as 

well as heme/copper-type cytochrome/quinol oxidase-related genes (CyoABCDE) and 

catalase (KatE), suggesting that the Lactobacillales ancestor was most probably a 

microaerophile or an anaerobe (Makarova and Koonin, 2007). Among the acquired genes 

are some cofactor transporters and peptidases. It is not surprising that many LAB have 

lost the capacity to synthetize all of the 20 amino acids, and in exchange they have 

acquired peptidases and transporters for human-food environments are usually rich in 

nutrients such as proteins and peptides (Makarova and Koonin, 2007). The loss of gene 

functions along with the high number of fresh pseudogenes suggest an active process of 

genome decay in LAB. However, this process is counterbalanced by the acquisition of 

new functions by different processes, such as gene duplication and horizontal gene 

transfer (HGT). Of the 86 genes that were inferred to have been acquired by the ancestral 

Lactobacillales, 84 have orthologs outside this order, which suggest a strong probability 

of acquisition by HGT (Makarova and Koonin, 2007). Moreover, most of the unique 

genes that are present in individual LAB species come probably from recent HGT events. 

The species S. thermophilus has obtained, through this way, a 17kb region of considerable 

identity with genes in L. lactis and L bulgaricus that are associated with the capacity to 

grow in milk  by synthetizing methionine, a rare nutrient in this environment (Bolotin et 

al., 2004; Pfeiler and Klaenhammer, 2007). In other cases, duplicated genes can give rise 

to paralogs, and HGT can generate pseudoparalogs. One known example of the latter 

process is the presence of two pseudoparalogous enolases –a nearly ubiquitous glycolytic 

enzyme– in Lactobacillales, that is present in only one copy in other bacteria; one of the 

copies of these enolases is the ancestral version of the one that is present in gram-positive 

bacteria, while the other was acquired by the Lactobacillales ancestor most probably from 

an Actinobacteria through HGT (Makarova and Koonin, 2007). 
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II. Lactic acid bacteria of wine malolactic fermentation 

 

1. MLF: from undesirable process to quality enhancer 

Wine is a beverage obtained from the alcoholic fermentation (AF) of grape must 

by yeasts. The main species involved in this process is Saccharomyces cerevisiae, 

although some other species contribute more or less (Ribéreau-Gayon et al., 2012). 

During AF, the sugars present in the must are metabolized into ethanol and CO2. Also, 

secondary metabolites such as tertiary alcohols, esters, aldehydes, terpenes, amino acids, 

amines and sulphur compounds, among many others, are released during the process, 

giving wine its characteristic complexity of flavours. After AF has been completed, all red 

wines and some white wines –such as Chardonnay– follow a second fermentation called 

malolactic fermentation (MLF), in which malic acid is transformed into lactic acid and 

CO2 according to the reaction L-malate ! L-lactate + CO2. The reaction is catalysed by 

the malolactic enzyme (MleA) that is present in most LAB species. Historically, MLF has 

not always been regarded as a process that was useful to improve wines’ quality. It was 

not until the discoveries made by Pasteur in 1858 that it came to be known that 

microorganisms –specifically lactic yeasts, as they were called that time– were present in 

wine and were responsible of the formation of lactic acid, and Balard in 1861 observed 

that the organisms responsible for this process were not yeasts but bacteria (Pasteur, 

1866). Later on, Pasteur also identified bacteria as the responsible for numerous wine 

alterations (Pasteur, 1866). The link between LAB and wine’s deacidification was 

demonstrated when Ordonneau noted the reduction of malic acid concentration during 

wine aging and proposed that it was being transformed into another acid, and when 

Müller-Thurgau determined that it was bacteria that induced this process (Müller-

Thurgau, 1891; Ordonneau, 1891). Some years later the bacteria could be isolated and the 

consumption of malic acid in an inoculated wine was demonstrated (Koch, 1900). Thanks 

to these discoveries, the equation of the reaction malic acid ! lactic acid + CO2 was 

solved independently by two scientists (Möslinger, 1901; Seifert, 1901). Even though 

these discoveries were made, MLF and wine bacteria continued to be considered more a 

defect than an advantage for wine’s quality. It was not until some decades later that Ferré, 

in Burgundy, and Ribéreau-Gayon, in Bordeaux, reported the importance of this 

fermentation in the production of the best Burgundy and Bordeaux wines (Ferré, 1922, 

Ribéreau-Gayon, 1936). These observations and the development of a simple method for 

the determination of malic acid in wine (Ribéreau-Gayon, 1954), have made it possible to 

promote the realization of MLF in almost all red wines and certain white wines near the 



 

 
 
Figure 4. Bacterial population dynamics during vinification of red wine. 
Population dynamics of bacteria during AF, MLF and conservation of red wine. The solid line represents the 
population of O. oeni; other species that may develop under AF are represented by the line-and-dots; species that 
can develop after MLF are represented by broken lines (from Wibowo et al., 1985). 
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1970s (Ribéreau-Gayon et al., 2012). It is, without any doubt, the contributions made by 

these individual discoveries that made way for using MLF in wine as we do it today. 

 

2. Growth and diversity of LAB in wine 

Several species of LAB have been reported to be present in alcoholic beverages, 

especially –but not exclusively– in wine, among them Lactobacilli, Leuconostoc, 

Oenococci and Pediococci. Of all, Oenococcus oeni has definitively caught attention 

because of its almost ubiquitous presence in spontaneous MLF of wine (Lonvaud-Funel et 

al., 1991). The species was first isolated almost a century ago, but it was initially thought 

to be a member of the Leuconostoc genus (Garvie, 1967) until, thanks to molecular 

biology techniques, it was reclassified as Oenococcus oeni, the sole member of the 

Oenococcus genus (Dicks et al., 1995).  

Before harvest, LAB species such as Lactobacillus plantarum, L. casei, L. brevis, 

L. hilgardii, Pediococcus pentosaceus, P. damnosus, Leuconostoc mesenteroides and O. 

oeni are present on the surface of grape skin, on the surface of leaves, and cellars at low 

levels, but during winemaking they are transferred to the must on a concentration to about 

102 cells/mL, that varies with the vintage and the quality of grapes (Lonvaud-Funel et al., 

1991). A first selection of LAB species occurs in the must with the disappearance of 

bacteria that are the most sensitive to acidity. The remaining population starts multiplying 

thanks to the nutrient availability, but the rapid development of yeasts reduce the access to 

amino acids and vitamins that are required for LAB development. This drives a decline of 

LAB population after the beginning of AF. In addition, the cumulative effects of the low 

pH and the increasing concentration of ethanol further select the species and strains that 

survive in wine. O. oeni is generally the only species detected in wine of pH below 3.5, 

whereas more species may be encountered at higher pH levels. At some moment, usually 

–but not necessarily– when AF is finished, the LAB population increases until they 

become the predominant population in wine, reaching a density of around 106-108 cell/mL 

(Figure 4) (Wibowo et al., 1985; Lonvaud-Funel, 1999). This development becomes 

possible with the release of nutrients from yeast autolysis. When this happens in ideal 

conditions, MLF follows alcoholic fermentation within a few days; otherwise, it can take 

weeks, months or even remain unfinished (Lafon-Lafourcade et al., 1983). 

 

3. Indigenous and industrial O. oeni strains 

In order to develop in wine, O. oeni has to compete with the predating population 

of yeasts and with other bacteria; they also have to survive and be able to grow in a harsh 

environment, with ethanol concentrations ranging from 12% to 15% v/v, a pH of around 
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3.5±0.5 units, temperatures lower than the optimal for growth, and the presence of free 

and bound SO2 that is added on grapes after the harvest and often released by yeasts 

during AF as a by-product of their metabolism and as a defence mechanism against other 

microorganisms. It is usually not only one strain that develops in wine, but rather a 

consortium, with some of them being predominant at different stages of the fermentation 

(Reguant and Bordons, 2003). Diverse molecular methods were developed to investigate 

the diversity of O. oeni indigenous strains in wine. This includes pulse field gel 

electrophoresis of genomic DNA fragments obtained by restriction-enzyme digestion 

(REA-PFGE). It was first applied in 1993 and remained the reference method for typing 

strains of O. oeni until very recently, although it is difficult and time consuming (Kelly et 

al., 1993; Gindreau et al., 1997; Larisika et al., 2008). Simpler and faster methods based 

on PCR were also developed by using RAPD –rapid amplification of polymorphic DNA– 

(Reguant and Bordons, 2003; Solieri and Giudici., 2010), AFLP –amplified fragment 

length polymorphism– (Cappello et al., 2008) and ribotyping analyses (Zavaleta et al., 

1997; de las Rivas et al., 2004). The application of these methods has allowed to 

discriminate O. oeni strains that have been isolated from different wines, and to follow O. 

oeni population dynamics during fermentation (Zavaleta et al. 1997; Zapparoli et al. 

2000). 

The possibility to control MLF by inoculating a high population of selected 

bacteria in wine was proposed for the first time in 1959 by Peynaud (Peynaud amd 

Domercq, 1959) and in 1960 by Webb (Webb and Ingraham, 1960), but the first industrial 

preparations of selected O. oeni strains were not proposed before 1983 (Lafon-Lafourcade 

et al., 1983). Besides the possibility to differentiate the strains using molecular methods, 

the selection of industrial strains was based on phenotypic tests, e.g. stress resistance to 

pH, ethanol, freeze and freeze-drying, fermentation rate, sugar fermentation pattern, 

safety, etc. (Torriani et al., 2010). Nowadays, a number of industrial strains of malolactic 

starters are available for winemakers to chose, however, only a few percent of the MLF in 

wine are induced with these commercial strains. Even if MLF is carried out systematically 

for red wines, most often it is produced spontaneously. On the one hand, the phenotypic 

diversity of the strains may impact on the organoleptic quality of the final product (Bloem 

et al., 2008; Gagné et al., 2011; Malherbe et al., 2013), but on the other hand the impact of 

the genetic diversity of these strains has been barely explored and has not yet been 

exploited for industrial purposes (Renouf et al. 2008; Torriani et al. 2010; Borneman et al. 

2012). There is also a rising tendency to use indigenous strains in order to achieve 

fermentation of diverse foods (Capozzi and Spano, 2011; Wouters et al., 2013; Feng et al., 

2015; Speranza et al., 2015), incluiding MLF of wine (Ruiz et al., 2010; Garofalo et al. 



 
 
Figure 5. The three main consequences of MLF. 
The conversion of malic acid into lactic acid drives to an improved microbiological stability of wine, and to 
organoleptic changes (from Bartowsky, 2005). 
  

Bartowsky Oenococcus oeni and malolactic fermentation 175

one of the principal organic acids in wine, to the softer
monocarboxylic, L-lactic acid, resulting in an increase in
pH of 0.1–0.2 units and a decrease in titratable acidity. 
L-malic acid concentration in grape juice varies depending
upon the climatic regions from which the grapes are
sourced; cool climate regions are often in the range 2–5
g/L, whereas in warm regions, grape juice often contains
less than 2 g/L (Sponholz 1989, Zoecklein et al. 1990).

Two consequences of deacidification during MLF are

an increase in pH and a decrease in titratable acidity,
which have important but separate consequences for the
winemaker (see Figure 2). An elevated wine pH can
increase the susceptibility of wine to microbial spoilage,
especially by other species of lactic acid bacteria, which are
less acid tolerant than O. oeni (Davis et al. 1988). A
decrease in titratable acidity can influence the sensory
properties of wine by decreasing sourness (Amerine and
Roessler 1983).
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2015). Genetic typing methods have been developed to identify strains of O. oeni, and 

some punctual genes that might have a technological impact have been identified (Mills et 

al,. 2005; Bartowsky, 2005; Borneman et al., 2012). Despite the numerous studies on the 

genetic diversity of O. oeni strains, a systematic comparison of large collections of O. 

oeni genomes in order to look for potential genetic markers of industrial interest has not 

been done yet. In recent works, we were able to develop genetic markers that could, to 

some extent, predict the industrial properties of a collection of strains, although they were 

tested only in a small collection of strains (Favier, 2012). 

 

III. LAB-induced changes in wine  

 

1. Deacidification of wine through the conversion of malate into lactate 

The chemical changes that happen due to MLF make it an important step during 

winemaking. Usually, by the end of AF malic acid is present from 1 to 5g/L; in an ideal 

situation, virtually all is consumed by the end of MLF. The conversion of the dicarboxylic 

malic acid –which has a strong acidic taste also referred as the “green” taste– into the 

softer lactic acid increases the pH of wine by 0.1 to 0.3 units and reduces its sourness 

(Amerine and Roessler, 1983). From a microbiological point of view, MLF can be a 

double-edged weapon. On the one hand, the consumption of malic acid by LAB drives to 

the depletion of the available resources for other bacteria and yeasts to grow, thus 

protecting wine from spoilage (Bartowsky, 2005). On the other hand, the rise of the pH is 

enough for giving an opportunity to spoiling microorganisms to develop, especially those 

that are less resistant to acidity than O. oeni (Davis et al., 1986). These changes are 

accompanied by modifications to the aroma of wine (Figure 5) (Bartowsky, 2005). 

 

2. Modification of wine flavours 

Besides the main process of decarboxylation of malic acid, bacteria performing 

MLF produce major changes in wine’s flavour, mainly through the production or 

degradation of organic acids (e.g. citrate), amino acids (e.g. arginine, methionine and 

cysteine), aroma precursors and other compounds such as esters, alcohols, thioesters and 

thiols, giving wines a more or less buttery, fruity or vegetal character (Lonvaud-Funel, 

1999; Bartowsky and Henschke, 2004).  

One of the most characteristic and significant descriptors of wines that have been 

subjected to MLF is the buttery aroma; this odour is originated by diacetyl (Davis et al., 

1985; Lonvaud-Funel, 1999; Bartowsky and Henschke, 2004). Acetoin can also 

contribute to this aroma, but its threshold is higher. Both diacetyl and acetoin, as well as 
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2,3-butanediol, belong to the acetoinic group of compounds (Lonvaud-Funel, 1999). 

Acetoinic compounds are produced by the degradation of the citric acid that is consumed 

during MLF, though its consumption occurs at a lower rate than that of malic acid; from 

an initial concentration of about 300mg/L, it can drop to a range from 0 to 100mg/L. 

Besides acetoinic compounds, the degradation of citric acid also drives to the formation of 

acetic acid, which significantly and unfavourably increases the volatile acidity of wine. 

It has been shown that O. oeni strains have the capability to alter the concentration 

of esters that are present in wine after AF, either by producing (Pilone et al., 1966; 

Meunier et Bott, 1979) or by consuming them (Davis et al.,1988).  This suggests that the 

esterases that are present in O. oeni have the capability either to synthetize or to hydrolyse 

esters during FML (de Revel et al., 1999; Delaquis et al., 2000; Antalick et al., 2012, 

Sumby et al., 2013). Esters are important in wine because they confer a range of fruity 

odours to wine. The production of these compounds by O. oeni occurs mainly through 

esterification, i.e. the reaction between a fatty acid and an alcohol –usually ethanol due to 

its abundance in wine (Holland et al., 2005). Hence, most of the esters found in wine 

correspond to ethyl C3-C12 fatty acids esters or to C2-C8 alcohol acetates. Other 

molecule families whose concentrations are altered during MLF include γ-lactones, ethyl 

branched acid esters, cinnamates, methyl fatty acid esters, isoamyl esters of fatty acids, 

minor and major polar esters, branched acids and superior alcohols (Antalick et al., 2012). 

Even if some tendencies can be drawn, the clear effect of MLF on the aromatic profile of 

wine is controversial, probably because of the fact that sometimes molecules are 

synthesised  and sometimes they are consumed; in all the cases organoleptic changes that 

occur during MLF are complex. On the one hand, MLF can be sometimes associated with 

a decrease on the intensity of fruity aromas because of a masking effect produced by the 

buttery and lactic notes coming from acetoinic compounds and ethyl lactate, which is 

formed by the reaction of ethanol with the lactic acid and can confer a buttery aroma to 

wine (Nykänen and Suomalainen, 1983); on the other hand, some studies have found an 

increase of fruity notes after MLF (Antalick et al., 2012).  

Volatile sulphur compounds, that can have a range of odours from unpleasant to 

pleasant ones (Mestres et al., 2000; Segurel et al., 2004), are also produced by O. oeni 

from methionine as the main precursor (Vallet et al., 2008). These compounds include 

methanethiol, dimethyl disulphide (DMDS), methionol and 3-(methylthio)propionic acid 

(MTPA). DMDS can produce an unpleasant garlic-like odour, methionol can give potato 

and garlic odours, while MTPA can smell like chocolate and roasted aromas. 

Also, when MLF is carried out in oak wood barrels, O. oeni can interact with the 

wooden matrix through their glycosidases and convert oak-derived precursor molecules, 
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increasing the concentration of some volatile compounds such as vanillin, which gives a 

characteristic aroma to wine (De Revel et al. 2005; Bloem et al., 2006; Bloem et al., 

2008). To a minor extent, some vanillin might also be produced from the conversion of 

simple phenolic compounds such as ferulic acid, vanillic acid, eugenol and isoeugenol 

(Priefert et al., 2001). Other studies have also shown that the extent of hydrolysis of 

glycosides during MLF is dependant on both bacterial strain and the chemical structure of 

the substrate, and a set of strains tested showed an increase of linalool, farnesol, and β-

damascenone  in wine after MLF, with some strains producing significant amouts of 

vinylphenol (Ugliano and Moio, 2006). 

 

3. Other modifications  

The modification of phenolic compounds during MLF can also affect the colour 

and texture of wine. By enhancing the reactions between anthocyans and tannins, the free 

anthocyans content drops and so does the astringency sensation. Also some phenolic 

compounds suffer structural changes or precipitate, conferring a better stabilization of 

colour (Vivas et al. 1995). Not all the changes produced during MLF are always 

beneficial, though. If LAB develop in wine by the end of AF, and not after as normal, 

they consume hexoses through their hetero-fermentative pathway. When this happens, the 

products are mainly acetic acid and D-lactate, which cause a rise in wine’s volatile acidity 

and the defect known as “piqûre lactique”, making it even unmarketable when the volatile 

acidity expressed in acetic acid exceeds the threshold of about 1g/L (Lonvaud-Funel, 

1999).  

Another defect of wine can appear when wine is colonized by some Pediococcus 

damnosus strains; when this bacteria –which is usually present in grape must– is able to 

survive until the end of AF, it can contribute to MLF. Although not all the strains cause 

spoilage, some of them are capable of synthetizing an exocellular polysaccharide (EPS, 

i.e. b-glucan) that confers a ropy character to the wine. Since EPS are slowly synthetized, 

the defect usually becomes evident only after several weeks of wine bottling and aging; 

moreover, EPS can confer cells an extra resistance to heat, ethanol and SO2 stress, making 

it hard to get rid of the contaminating strains (Lonvaud-Funel, 1999).  

Some bacterial strains are also capable of producing biogenic amines such as 

tyramine, histamine, cadaverine and putrescine, negatively impacting the hygienic and 

organoleptic quality of wine. The former three molecules are produced via 

decarboxylation of tyrosine, histidine and lysine, respectively, while the latter can be 

produced either by decarboxylation of ornithine, either by desamination of  agmatine 

(Coton et al., 1998; Lonvaud-Funel, 2001; Guerrini et al., 2002; Marcobal et al., 2006; 



 
Figure 6.  Overview of changes produced in wine due to MLF. 
Changes in wine are classified according to their sources and products, their cause and effect, or their impact on 
quality or gustative properties (from Bartowsky 2005). 
 
 

 
Figure 7. Genome atlas of Oenococcus oeni PSU-1’s chromosome. 
The predicted origin of replication is aligned to the top. The 7 circles, from the outermost to the innermost, 
indicate 1) ORF’s BLAST similarities against a nonredundant database; 2) GC% deviation; 3) transposons 
represented as red dots; 4) tRNA and rRNA genes as green and blue dots, respectively; 5) ORF orientations on 
the respective DNA strands, with blue for the plus strand and red for the minus; 6) COG classification of the 
ORF’s predicted products with 1yellow for information storage and processing, 2red for cellular processes and 
signalling, 3green for metabolism, 4blue for poorly characterized and 5grey for uncharacterised or unassigned 
COGs; and 7) DNA position coordinates (from Mills et al., 2005). 
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2001, Prévost et al. 1995, Zúñiga et al. 1996a), but until
someone develops a method for DNA-uptake that works
for this bacterium, the plasmids will continue to spend
most of their time in the laboratory fridge.

Recent research has made inroads into establishing a
conjugation system in O. oeni with the successful transfer
of a conjugative plasmid between Lactococcus lactis and O.
oeni (Zúñiga et al. 2003). A vector specifically constructed
for conjugative transfer into O. oeni (Beltramo et al. 2004
c) could pave the way to establishing a conjugation system
for this species, enabling the transfer of targeted genes into
O. oeni host cells. The transfer of transposons from
Enterococcus faecalis to O. oeni has also been demonstrated
(Zúñiga et al. 1996b), however there has been no further
progress since this development.

Transduction is at least theoretically possible for O.
oeni. Bacteriophage (viruses) that infect O. oeni have been
described, often in association with failed MLF (Davis et al.
1985), and numerous O. oeni bacteriophages have had
their genomes sequenced (Gindreau et al. 1997, Huang et
al. 1996, Poblet-Icart et al. 1998, Santos et al. 1998, Santos
et al. 1996, Sao-Jose et al. 2000). Further research into
their mechanisms of infection, genome organisation, and
recombination systems might lead to the development of
a transduction system for O. oeni.

Interestingly, O. oeni appears to undergo genetic recom-
bination, given the observation of small differences
between two O. oeni strains which are apparently due to

insertion or deletion of insertion sequences (Ze-Ze et al.
2000). This implies that either conjugation and/or trans-
duction have occurred in nature. Even though there is no
direct evidence of horizontal gene transfer in vivo, such
transfer might occur in fermentation tanks where sever-
al O. oeni strains exist in a single fermentation; perhaps in
such a setting the environment would be favourable for
horizontal gene transfer (de las Rivas et al. 2004).

Oenococcus oeni genes that have been cloned and
characterised
While O. oeni remains largely recalcitrant with respect to
targeted genetic recombination, the genome and molecu-
lar biology of this bacterium is amenable to study using
recombinant DNA technology; we might not be able to
put genes into it but we can certainly extract DNA (and
other molecules) out of it. Numerous genes and gene
clusters from O. oeni have been cloned and characterised.
These genes and their general features are summarised in
Table 2 and are described below. The physical and genet-
ic map of the O. oeni genome was constructed in the late
1990s. It was found to be circular and approximately 1900
kb in length (Ze-Ze et al. 1998, Ze-Ze et al. 2000). Twenty-
three genes were mapped to locations on the O. oeni strain
PSU-1 chromosome. At the beginning of the second mil-
lennium, the DOE Joint Genome Institute (JGI) under-
took to sequence the entire genome of O. oeni PSU-1
(http://genome.jgi-psf.org/microbial), a strain that was
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Figure 3. Overall summary of the characterised biochemical changes which occur during malolactic fermentation and Oenococcus oeni
metabolism.

Genomic sequencing was undertaken as part of a
larger effort to generate publicly accessible genome
sequence for a number of fermentation-associated bacte-
ria. This effort was coordinated by a working unit
termed the ‘‘Lactic Acid Bacteria Genome Consortium’’
(LABGC), the mission of which is to advance functional
genomic studies on the food grade LAB [16,17]. In 2002,
the LABGC partnered with the Joint Genome Institute
(JGI), a high throughput sequencing facility run by the
United States Department of Energy to generate draft
sequence of the eleven bacterial genomes, five of which
(Lactobacillus casei, Lactobacillus brevis, Leuconostoc
mesenteroides, Pediococcus pentosaceus and Oenococcus
oeni) can be readily isolated from wines or musts. A high
quality draft of O. oeni PSU-1 sequences was generated
by shotgun sequencing of a small-insert library (2–3 kb)
to achieve !8X genome coverage based on the estimated
genome size and assembled using the JGI assembler

Jazz. Gap filling was carried out in collaboration with
a private company, Fidelity Systems, Inc. (Gaithers-
burg, MD), using a direct whole genome sequencing ap-
proach as previous described [18]. Annotation was
performed at NCBI using the GeneMark program fol-
lowed by manual curation.

2.2. General genome description

At the time of this writing, manual curation of the
O. oeni PSU-1 genome, and comparison to other LAB
genomes, are ongoing. As such, what is presented is a
preliminary report on the PSU-1 genome sequence with
a focus on specific wine-related fermentation properties.
The genome of O. oeni PSU-1 is a single circular chro-
mosome of 1,780,517 nt (Fig. 1), which is remarkably
similar to the reported genome size of 1,753,879 nt indi-
cated for another O. oeni strain, IOEB8413, sequenced

Fig. 1. Genome atlas view of Oenococcus oeni PSU-1 with the predicted origin of replication at the top. The circle was created with GENEWIZ [88]
with additional software developed by Eric Alterman. Innermost circle shows COG classification. Predicted ORFs were classified into five major
categories: (1) information storage and processing; (2) cellular processes and signaling; (3) metabolism; (4) poorly characterized; and (5) ORFS with
uncharacterized COGs or no COG assignment. Circle 2 shows ORF orientation. ORFs in the sense orientation (ORF+) are listed in blue while ORFs
in the antisense orientation (ORF") are in red. Circle 3 shows tRNA (green dots) and rRNA genes (blue dots) respectively. Circle 4 shows
transposase genes or gene fragments (red dots). Circle 5 shows G + C content deviation. Deviations from the average GC-content are shown in either
green (low GC spike) or orange (high GC spike). A box filter was applied to visualize contiguous regions of low or high deviations. Circle 6 shows
BLAST similarities. ORFs were compared against the nonredundant (nr) database by using a gapped BLAST [89]. Regions in blue represent unique
proteins in PSU-1 while highly conserved features are shown in red. The degree of color intensity indicates the level of similarity.
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Lucas et al., 2008; Nannelli et al., 2008, Romano et al., 2012; Romano et al., 2013). 

Histamine is of particular concern in wine because its absorption can cause health troubles 

to some consumers (Smit et al., 2008; Hald, 2011; ). Putrescine and cadaverine can mask 

the perception of the fruity aromas of the wine, and other amines can cause bitterness, off-

flavours (mousiness, ester taint, phenolic, vinegary, buttery, geranium tone), turbidity, 

viscosity, sediment and film formation (Du Toit and Pretorius, 2000).  

Seen as a whole, MLF can be a very beneficial process for overall wine quality, 

but it can also turn out detrimental. Taken together, the global changes produced during 

MLF can have a great impact on the final product (Figure 6), this is why it is important 

for winemakers to master MLF. The most important changes occur at three levels: 

microbiological stability, chemical stability, and organoleptic changes. 

 

IV. Molecular adaptation of O. oeni to MLF  

 

1. Genomic characteristics 

The first genome of an O. oeni strain, PSU-1, was sequenced in the year 2005 

(Mills et al., 2005). Its analysis revealed a relatively small genome of only 1,780,517bp, a 

size that is in the lower range of that of other LAB genomes, and a GC content of nearly 

38% (Figure 7). An in silico analysis showed the presence of two rRNA operons in 

opposite orientation at positions ~600 and ~1,270kb. Also, 43 tRNA genes representing 

20 amino acids were identified all around the genome on both strands, with one specific 

cluster of 15 tRNA genes at ~1136kb. With the exception of aspartate, cysteine, histidine, 

isoleucine, phenylalanine, tryptophan, tyrosine and valine, redundant tRNA were 

identified for the rest of the amino acids. The replication origin was found adjacent to the 

canonical dnaA gene and the terminus region was localized around position ~1Mbp, 

confirmed by GC-skew and ORF directionality. 14 different transposase genes were also 

identified, as well as additional transposase gene fragments. 

During the following years more genomes of Oenococcus oeni strains were 

sequenced (Lamontanara et al., 2014; Capozzi et al., 2014, Mendoza et al., 2015, Jara and 

Romero, 2015), but they remained poorly described. More attention has be drawn to the 

strains ATCC BAA-1163 (Guzzo, unpublished data) and AWRIB429 (Borneman et al., 

2010). Their analysis permitted to predict 1,691, 1,395 and 2,161 ORFs, respectively, and 

similar characteristics in terms of genome size in comparison to the rest of the sequenced 

strains. Also, at least small six cryptic plasmids –pLo13 (Fremaux et al., 1993), p4028 

(Zúñiga et al., 1996), pOg32 (Brito et al., 1996), pRS1 (Alegre et al., 1999), pRS2 and 

pRS3 (Mesas et al., 2001)– and some large plasmids (Lucas et al., 2008; Brito and Paveia, 



 
 

 
 
Figure 8.  The malolactic fermentation in detail. 
L-malate is imported by the mleP transporter, then transformed into L-lactate and CO2 by the malolactic enzyme, 
encoded by the gene mleA.  The products leave the cell passively (from Betteridge et al., 2015). 
 
 
 
 
 

 
 
Figure 9. Coordinated work between malolactic fermentation, energy production and stress resistance. 
The MleR regulatory gene commands the expression of mleP and mleA. The consumption of a proton in the 
decarboxylation of malic acid increases the intracellular pH, facilitating the energy production by ATPases. 
Stress proteins are activated (from Bartowsky 2005). 
  

plasmids, as is used widely in other microbes. Transfor-
mation requires either the chemical generation of compe-
tent cells or the forced transfer of DNA via, for example,
electroporation. Unlike in other LABs, transformation is
difficult in O. oeni. Although electroporation was used
successfully to transform the plasmid pGK13 into O. oeni
strains PSU-1, ML-34, and 19CI [6], this transformation
has not been confirmed in other laboratories. A later
electroporation protocol using ethanol as a membrane-
fluidizing agent succeeded in the introduction of a foreign
vector encoding a truncated form of the ClpL2 protein
into O. oeni ATCC BAA-1163 [7]. However, this result has
not yet led to an increase in published accounts of molec-
ular transformations of this bacterium, possibly due to
the low copy numbers of this plasmid (pGID052) [8]. Plas-
mid copy number is important in gene replication as an
increased number increases gene dosage and therefore
product yield [9].

As a way forward, O. oeni contains several native plas-
mids [10], some of which may have higher copy numbers
and are able to more successfully replicate themselves
within O. oeni. Using the origin of replication from such
native plasmids, modification and the inclusion of genes of
interest and markers may generate a plasmid more effec-
tive for future overexpression work [11].

Another method of expression of foreign genes in O. oeni
is transduction, the process by which bacteriophages carry
bacterial genes between cells. Certainly bacteriophages
can infect O. oeni, where they can be the cause of failed
MLF [12], but the mechanisms of infection have not yet
been fully elucidated. Further research is needed to fully
assess the potential of this method and see it developed to a
stage where it can be routinely used for this bacterium.

The final method of genetic manipulation, conjugation,
is the direct horizontal transfer of genetic material be-
tween two cells, usually on a plasmid or other mobile

Box 1. LAB and MLF

LAB are Gram positive, microaerophilic, and characterized by the
formation of lactic acid as a primary metabolite of sugar (glucose)
[48]. The most common isolates from wine are in the genera
Lactobacillus, Pediococcus, Leuconostoc, and Oenococcus. The lat-
ter is named from the Greek oinos, meaning wine. Of the three
Oenococcus species, O. oeni is associated with wine, is non-motile
and asporogenous with ellipsoidal-to-spherical cells usually ar-
ranged in pairs or short chains, and has an optimal growth range
between 208C and 308C and pH 4.8 and pH 5.5 [49]. While lactobacilli
predominate on grape skins, the O. oeni population increases
throughout alcoholic (yeast) fermentation to typically become the
only species found in wine at the completion of MLF. For this reason
and because of its desirable flavor effects, O. oeni is the preferred

species for this process, which is applied to most red, aged white,
and sparkling wine styles [50,51].

MLF is technically not a fermentation but the enzymatic decarboxyla-
tion of the dicarboxylic L-malic acid to the monocarboxylic L-lactic acid
by LAB (Figure I) in a reaction requiring NAD+ and Mn2+ as cofactors and
devoid of free intermediates [52]. Although MLF increases the pH of the
wine, this increase does not stimulate the growth of O. oeni. The three
genes responsible for this fermentation are present in a single cluster,
with mleA (encoding malolactic enzyme) and mleP (encoding malate
permease) on the same operon and mleR encoding the regulatory
protein transcribed in the opposite direction. Maximal activity of MleA
is seen at pH 5.0 and 37 8C and is noncompetitively inhibited by ethanol,
underscoring the less-than-ideal nature of the wine environment.
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Figure I. Malolactic fermentation (MLF) involves the active transport of L-malic acid into the cell by malate permease (MleP; red). Decarboxylation of L-malic acid is
facilitated by the malolactic enzyme (MleA) and requires NAD+ and Mn2+ as cofactors before lactate is finally transported out of the cell (green). This process is regulated
by a regulatory protein, MleR. The increase in the intracellular pH by MLF confers an energy advantage to the cell. The resulting increase in the proton motive force
across the cell membrane combined with specific ATPases (yellow) facilitates the production of ATP. Adapted from [53].
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Thioredoxin is a stress protein that is synthesised by
many organisms in response to a range of stresses includ-
ing heat, salt, ethanol, and oxidative stress; it plays a cen-
tral role in protecting cells against the latter (Navarro and
Florencio 1996, Pasternak et al. 1997, Scharf et al. 1998).
A thioredoxin gene, trxA, has been identified in O. oeni
(Jobin et al. 1999a), and it is expressed at high levels in
response to oxidative stress and heat shock. However trxA
mRNA is also found constitutively in O. oeni suggesting
that its expression is not specifically stress related (Guzzo
et al. 2000); the mode of regulation of this gene remains
unknown. 

Regulation of expression of HSPs is still not well
defined for O. oeni. While hsp18 appears to be expressed
specifically in response to stress, with no detectable con-
stitutive expression (Jobin et al. 1997), there is constitu-
tive expression of trxA and clpX, and their expression is
greatly enhanced with a heat shock (Guzzo et al. 2000).
One factor that appears to be important in stress respons-
es in O. oeni is a repressor protein CtsR, which recognises
a directly repeated heptanucleotide operator in the
upstream regions of hsp18 and clpP (Beltramo et al.

2004b). With the genome of O. oeni now fully sequenced
it should not be long before we know a great deal more
about the distribution of this operator sequence and the
identity and distribution of other promoter sequences
associated with stress-response genes.

Another family of proteins that is often associated with
stress tolerance is the ATP-binding cassette (ABC) proteins.
This super family of transporters is involved, for example,
in drug export in prokaryotes, and a small number of
multiple drug resistance (MDR) transporters have been
identified in LAB; LmrA of Lactococcus lactis and HorA of
Lactobacillus brevis, and a similar protein, OmrA, has
recently been identified in O. oeni (Bourdineaud et al. 2004).
This latter protein has features in common with ABC trans-
porters, is associated with tolerance to a similar range of
stresses, as are other MDR proteins, and it confers resistance
to various toxic chemicals (such as sodium laurate, a com-
pound produced by yeast during alcoholic fermentation).

A homologue of the ftsH gene, which is involved in
filament formation in other bacteria, has been cloned
from O. oeni, which, of course, does not form filaments.
However ftsH is involved in a range of cellular activities
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Figure 4. Three mechanisms that are important in conferring, in Oenococcus oeni, the ability to survive in wine: (1) the proton motive force
generated by malic acid metabolism, (2) the activation of proton-extruding ATPase, and (3) the stress protein induction and synthesis in
response to shock. MLF is involved in proton motive force generation and the maintenance of internal pH by proton consumption during the
L-malate decarboxylation step. The ATPase systems that function as proton extruding pumps are suggested to provide the means for acid
tolerance by regulating the intracellular pH. Stress protein synthesis occurs typically in response to an environmental shock triggered by the
wine medium. Many of these stress proteins function as molecular chaperones or proteases that may participate in the refolding or degradation
processes of denatured proteins in the cell.
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1999; Priévost et al., 1995; Sgorbati et al., 1985; Sgorbati et al., 1987) have been 

documented in O. oeni. The function of most of these plasmids remains barely understood 

(Favier et al., 2012), although the plasmid pBL34 seems to confer to O. oeni resistance to 

pesticides (Sgorbati et al., 1987). More recently, two plasmids named pOENI-1 and 

pOENI-1v2, of 18.3kb and 21.9kb, respectively, were described (Favier et al., 2012). 

They carry two genes that seem to be involved in adaptation to wine: a putative sulphite 

exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family 

(oye). Interestingly –but not surprisingly– they were detected in four strains, of which 3 

are industrial starters. Moreover, PCR screenings revealed that tauE is present in 6 out of 

11 starters, probably being inserted in the chromosome of some strains. Although no 

significant differences were detected in the survival rate in wine or fermentation kinetics 

between the strains carrying the plasmids and those without them, an analysis of 95 wines 

at different phases of winemaking showed that the strains carrying the plasmids or the 

genes tauE and oye were predominant during spontaneous MLF (Favier et al., 2012). 

 

2. Main molecular pathways 

 

a. Malolactic fermentation, energy production and stress resistance 

To succeed in an aggressive milieu such as wine, bacteria need to produce energy. 

In O. oeni, MLF and energy production are two processes that are coupled: the MleP 

transporter imports malic acid, while the MleA enzyme consumes a proton in order to 

decarboxylate malic acid into lactic acid using Mn2+ and NAD+ as cofactors (Lonvaud-

Funel and De Saad, 1982; Spettoli et al., 1984; Naouri et al. 1990; Lonvaud-Funel, 1999); 

both genes are controlled by the mleR regulatory protein, whose gene lies upriver of the 

other two. The consumed H+ contributes to maintain the internal pH of the cell to ~5.0 

units, in comparison to the ~3.5 units of the extracellular milieu, helping to provide the 

pH gradient necessary for the generation of ATP by a membrane associated ATPase. The 

resulting lactic acid and CO2 leave the cell by diffusion through the membrane (Figure 8) 

(Betteridge et al., 2015). O. oeni is also capable of resisting the stress of wine by the 

synthesis of 6 stress proteins, from which one of 18 kDa protein named LO18 has been 

purified and studied: it acts as a chaperone protein by associating to the membrane via 

weak binding, and also preventing protein aggregation (Guzzo et al., 1997; Guzzo et al., 

2000; Delmas et al., 2001; Coucheney et al., 2005; Weidman et al., 2010; Maitre et al., 

2012; Maitre et al., 2014). Moreover, some strains are not only tolerant to ethanol, but 

also need it for growing (Couto and Hogg, 1994). This coordinated work between MLF, 



 
 
Figure 10. Citric acid metabolism in O. oeni. 
The citric acid metabolism in O. oeni drives to the production of acetic acid, aspartic acid, lactic acid, diacetyl, 
acetoin and 2,3-butanediol. Enzymes or reactions are 1, citrate lyase; 2, oxaloacetate decarboxylase; 3, pyruvate 
decarboxylase; 4, α-acetolactate syntase; 5, α-acetolactate decarboxylase; 6 , diacetyl reductase; 7, acetoin 
reductase; 8, lactate dehydrogenase; 9, pyruvate dehydrogenase complex; 10, acetate kinase; 11, nonenzymatic 
decarboxylative oxidation of α-acetolactate; 12, aspartate aminotransferase (from Ramos et al., 1995). 
 
  

growth phase. For the NMR experiments, the MnSO4 concentration in the
growth medium was decreased to 1 mg z liter21.

Sample preparation. (i) NMR experiments. Cells were harvested by centrifu-
gation (2,000 3 g, 10 min at 48C), washed twice with 5 mM potassium phosphate
(pH 5), and resuspended in 50 mM potassium phosphate with an adequate pH
to approximately 15 g (dry weight) of cells z liter21. The cell suspension (3.5 ml)
was immediately transferred to a 10-mm NMR tube, 5% (vol/vol) 2H2O was
added to provide a lock signal, and the 13C-labeled substrate (citrate or pyruvate)
was provided. Once the substrate had been exhausted, the acquisition was
stopped, cells were centrifuged (30,000 3 g, 30 min at 48C), and the supernatant
was saved. The cell pellet was washed once with buffer and centrifuged again, and
the two fractions were pooled. Supernatant solutions were kept at 2208C until
analyzed.

(ii) Experiments with dilute cell suspensions. Cells were harvested and resus-
pended in 50 mM potassium phosphate with an adequate pH to approximately
3 g (dry weight) of cells z liter21. The cell suspension (30 ml) was incubated in a
water bath at 308C and stirred gently under a continuous flow of nitrogen. The
substrates were added, and samples were taken at time intervals following the
addition and immediately centrifuged (2,000 3 g, 10 min at 48C). The superna-
tant solutions were kept at 2208C until further analysis.

NMR spectroscopy. One-dimensional 13C and 1H NMR spectra were recorded
with Bruker AMX-500 or AMX-300 spectrometers, as previously described (25).
The inverse-detected heteronuclear multiple quantum coherence spectrum (2)
was acquired after cell disruption in order to identify the resonances due to
intracellular components. The spectrum was acquired on an AMX-500 spectrom-

eter, with presaturation of the water signal and a spectral width of 10 kHz for F1
and 10 kHz for F2, collecting 4,096 by 256 datum points. A delay of 3.5 ms was
used for evolution of 1JCH. All the spectra were run at a probe head temperature
of 308C.

Measurement of end products. Unless stated otherwise, end products were
determined in the supernatant solutions obtained as described above. Citrate,
acetate, lactate, malate, acetoin, 2,3-butanediol, and diacetyl were measured by
1H NMR spectroscopy that allowed a ready evaluation of the 13C isotopic
enrichment of the end products (25). For these measurements, cell supernatants
were diluted fivefold in 2H2O, and formate was used as an internal concentration
standard. The concentration of the products in the liquid supernatants was
determined by comparing the intensities of their resonances to that of formate in
a fully relaxed spectrum. It was checked that formate was not produced as a
fermentation end product. 13C-labeled aspartate was determined in fully relaxed
13C NMR spectra by using the intensity of the resonance of acetate for compar-
ison; acetate concentration was measured in the same sample by using the
appropriate Boehringer Mannheim kit.

Extraction and identification of internal 13C-labeled metabolites. Following
the NMR experiments with addition of labeled citrate, the cell supernatants were
obtained as described above and the cell pellet was subsequently resuspended up
to a volume of 3.5 ml in the same buffer used for the experiments; cells were then
passed three times through a French pressure cell at 20,000 lb/in2 and centri-
fuged at 30,000 3 g for 30 min at 48C. The cell debris was washed once and
centrifuged again, and the supernatant fractions were pooled. The cell extract
obtained was kept at 2208C until analyses by 13C and 1H NMR.

FIG. 1. Metabolic pathway of citrate breakdown by L. oenos. 1, citrate lyase; 2, oxaloacetate decarboxylase; 3, pyruvate decarboxylase; 4, a-acetolactate synthase;
5, a-acetolactate decarboxylase; 6, diacetyl reductase; 7, acetoin reductase; 8, lactate dehydrogenase; 9, pyruvate dehydrogenase complex; 10, acetate kinase; 11,
nonenzymatic decarboxylative oxidation of a-acetolactate; 12, aspartate aminotransferase. TPP, thiamine PPi.
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energy production and ethanol resistance is probably the key for the successful 

development of O. oeni in wine (Figure 9) (Bartowsky, 2005). 

 

b. Citrate metabolism 

Many other processes, though, play important roles during the development of O. 

oeni in wine. An important metabolite that can be consumed during MLF is citrate, due to 

the impact of its breakdown products at the organoleptic level (Ramos et al., 1995; 

Lonvaud-Funel, 1999). This molecule is first cleaved to oxaloacetate and acetate by the 

action of an enzyme called citrate lyase. Oxaloacetate is then converted to pyruvate by 

oxaloacetate decarboxylase. The fate of pyruvate can depend on the environmental 

conditions, such as carbohydrate availability, external pH, and oxygen concentration 

(Ramos et al., 1995). Depending on these factors, it can be converted into lactic acid by 

the lactate dehydrogenase, into acetic acid by the acetate kinase, or into C4 compounds 

(diacetyl or butanediol) by more complex processes if the conditions are met; limited 

carbohydrate availability, low external pH and aerobiosis favour the formation of these 

C4 compounds. To achieve these transformations, pyruvic acid is first converted in α-

acetolactic acid either direcly by the α-acetolactate synthase (coded by the gene alsS 

(Garmyn et al., 1996)), either via acetaldehyde-TPP by the pyruvate decarboxylase and 

then by the α-acetolactate synthase. α-Acetolactic acid can then be transformed either into 

diacetyl by a nonenzymatic decarboxylative oxidation, either into acetoine by the α-

acetolactate decarboxylase (coded by the gene alsD (Garmyn et al., 1996)) and then into 

2,3-butanediol by the acetoin reductase. In a parallel process, diacetyl can also be 

converted into acetoin by the diacetyl reductase (Figure 10) (Ramos et al., 1995). 

 

c. Metabolism of amino acids 

Another important process during MLF is the metabolism of amino acids. Some 

strains of O. oeni are able to catabolise arginine through the arginine deiminase (ADI) 

pathway, which is encoded by four genes coding for three enzymes that form a cluster 

plus a transporter (Liu et al., 1995). The three enzymes are arginine deiminase (ADI) 

encoded by the gene arcA, ornithine transcarbamoyase (OTC) encoded by arcB, and 

carbamate kinase (CK) encoded by arcC. In addition, a catabolite regulatory protein 

(CRP) encoded by the gene arcR precedes the cluster arcABC (Tonon et al., 2001). The 

catalysis of arginine can drive to the production of ethyl carbamate, a molecule that is 

known for being an animal carcirogen (Ough et al., 1988) and putrescine, which can 

negatively impact wine odour (Guerrini et al., 2002).  The latter is formed by the 

decarboxylation of ornithine by the enzyme coded by the gene odc. Other than the 



 
 
Figure 11. Single omission test for amino acids in 5 strains of O. oeni. 
Strains are cultivated in a medium lacking one amino acid, and growth yields are measured. The train ATCC 
BAA-1163 is indifferent only to four amino acids: alanine, glycine, proline and threonine (from Remize et al., 
2006). 
 
 
 

 
 
Figure 12. Sensory profile of wines with or without MLF. 
The sensory profiles were tested in five Merlot wines with and without MLF. Significant differences are marked 
with * (from Antalick et al., 2012). 
 

Effect of the addition of complex nitrogen sources
on growth yield

It has been shown that the addition of yeast extract to
ATCC BAA-1163 cultures stimulated both the growth
rate and the final population (Remize et al. 2005). The
growth stimulation effect of the E yeast extract was
assayed on the FT80 carbon basis, for which the total
nitrogen level had been adjusted to 100 mg l–1, by
measuring the OD of commercial strain cultures after
48 h. For all strains, this medium led to an approxi-
mately 4.5-fold increase in growth yield, with OD
ranging between 0.95 and 1.08, compared to the control
amino acid medium in which it gave a maximal OD of
0.23. Two hypotheses might explain this population
increase: either peptides or micronutrients, such as
vitamins and trace elements, could have stimulated the
growth. The addition of vitamins and trace elements
did not result in a significant increase in growth yield
(data not shown). Thus, peptide fractions were isolated
from the E yeast extract, which contained 35.3% of
nitrogen as bound amino acids (Remize et al. 2005).
Two fractions, U (0.5–10 kDa) and R (> 10 kDa), were
recovered as described above. Free and bound amino
acid content and composition from the three solutions,
i.e. R, U and control, were analyzed. The results from
five independent analyses are presented in Table 2. As
seen in the table, the R fraction was roughly purged of
free amino acids since free amino acid nitrogen levels
accounted for less than 7% of total nitrogen. In the U
fraction 15% of nitrogen from free amino acids
remained. Both for fractions and for the minimum
control medium, arginine and lysine were highly rep-
resented since their content represented more than

10% of total nitrogen concentration. That effect is
partially due to the presence of several nitrogen atoms
in the molecules. Free leucine was abundant in the R
fraction containing medium while free glutamic acid/
glutamine was abundant in the medium containing the
U fraction.

Growth yield of the five strains was evaluated during
culture either on the MCD medium or on the FT80
basis containing approximately 50 mg l–1 of nitrogen
from the U or R fraction. That nitrogen level was
chosen so as to minimize the effect of free amino acids
remaining in fractions. For all strains, the culture OD
variation obtained between inoculation and the sta-
tionary phase was increased when nitrogen originated
from fractions rather than from free amino acids
(Fig. 2). Population levels reached in the presence of a
fraction always remained lower, with OD values of 0.33
at the very most, than those with the complete yeast
extract. The U fraction, corresponding to 0.5–10 kDa
peptides, was more of growth stimulating than the R
one. The presence of residual free amino acids in the U
fraction can only partially explain this effect. More
probably, the smaller size of the peptides in the U
fraction render them more susceptible to hydrolysis
and transport and thus make the amino acids more
easily available. This observation has been made else-
where in bifidobacteria (Gomes et al. 1998). A strain
effect related to its own ability regarding the transport
and hydrolysis of complex nitrogen molecules is obvi-
ous. Indeed, the stimulating effect of the U fraction
was greater for S2, S3 and S6 compared to the other
two strains, leading to a 2.5–2.7 fold increase in OD in
S2, S3 and S6 versus 1.4–1.6 in ATCC BAA-1163 and
S5 (Fig. 2).

Fig. 1 Growth yields on
MCD medium lacking the
indicated amino acid. Data
are expressed as the
percentage of OD 600 nm
value measured during the
stationary phase for each
strain on the control MCD
medium containing 18 amino
acids

462 Arch Microbiol (2006) 185:459–469

123
after MLF. At the same time, the concentration of some
markers of fruity notes, such as esters, increased, which
indicates a likely olfactory mask of smoked notes over the fruity
aroma (Table 3). These smoked/toasted notes were difficult to
evaluate according to the judge effect (Figure 3). The reduction
off-flavor notes are often associated with the production of
H2S.

23 In M1a and M1b wines, the MLF led to the production

of H2S at levels close to the perception threshold (1.7−10 μg/
L)24,25 (Table 3). Toasted flavors can also be imparted by some
volatile phenols known to be produced by certain strains of
LAB.8,33 However, volatile phenols were not measured in our
studies, and additional studies will have to prove the link
between smoked aroma enhancement after MLF and bacterial
production of volatile phenols.

Figure 3. Mean sensory descriptor values for five Merlot wines with MLF (solid line) and without MLF (dotted line). Significant differences are
indicated with asterisks (wine/judge).

Journal of Agricultural and Food Chemistry Article
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metabolism of biogenic amines, little is known about peptide utilisation in O. oeni. It is 

known, however, that different strains show different growth yields and nitrogen 

consumption, as well as different auxotrophies for some amino acids. For example, the 

strain ATCC BAA-1163 shows decreased growth yields in single omission tests for all 

the amino acids except alanine, glycine, proline and threonine (Figure 11) (Remize et al., 

2006). Moreover, bacterial growth yield is higher in the presence of nitrogen from 

peptides, rather than from free amino acids (Remize et al., 2006), and amino acids are 

released into the medium as a product of bacterial growth (Ritt et al., 2008). Further 

analyses aiming to understand the proteases of O. oeni have characterised at least one 

cell-wall hydrolase, EprA, capable of hydrolysing several proteins (Folio et al., 2008). 

Peptides that are specific for proline-containing peptides are also important for nitrogen 

metabolism in O. oeni (Ritt et al., 2009). 

 

d. Metabolism of esters 

It has been shown that wines that are subject of MLF can show significant 

differences in esters content, which is correlated with the intensity of fruity, 

smoked/toasted and vegetal descriptors (Figure 12) (Antalick et al., 2012). Although the 

concentration of different esters and other odorant molecules has been shown to increase 

or decrease during MLF (De Revel et al., 1999; Delaquis et al., 2000; Antalick et al., 

2012; Sumby et al., 2013), very little is known about the genes involved in these 

processes. Some recent studies, though, have shown evidences of enzymes that are 

involved in the production of esters, such as acyl coenzyme A: alcohol acyltransferase 

(AcoAAAT) and, to a lesser extent, reverse esterase, although the enzymatic activity of 

the latter seems to be drastically affected by the physicochemical parameters of 

fermentation (Costello et al., 2012). Almost at the same time, some other enzymes 

involved in these processes were also characterized: β-galactosidase activities lead to the 

release of terpenols, and cystathionine β-lyase can cleave 3-sulfanylhexanol. Esterases 

present in LAB can also play a role in the modulation of ethyl branched acid esters, fatty 

acid esters and higher alcohol acetates. However, these changes seem to be affected not 

only by the strain-specific esterases activities, but also by the abundance of substrates in 

wine after AF (Antalick et al., 2012). More recently, two new esterases present in O. oeni, 

namely EstA2 and EstB28, have been identified, purified and characterized, and their dual 

activity has been confirmed: they can both synthesise ethyl butanoate and ethyl hexanoate 

at varying degrees, and they can also hydrolyse ethyl butanoate, ethyl hexanoate and ethyl 

octanoate. There is no consensus, though, whether these chemical changes are significant 

at the oenological level or not. Moreover, the activities of other enzymes such as tannase, 
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lipase, cellullase, lichenase and β-glucanase have been barely discussed, even if the 

presence of such enzymes has been reported in LAB and at least in some strains of O. 

oeni (Matthews et al., 2006).  

 

3. Domestication to wine 

Wine has been since ancient times produced and consumed by human societies 

around the world. The oldest traces of wine production have been found in human 

settlements in Iran and date around the 6th millennium B.C. (McGovern et al. 1986), 

although fermented beverages made of other products can be tracked back on human 

history to as early as the 7th millenium B.C. (McGovern, 2004). There is evidence of the 

presence of S. cerevisiae in wine-related environments that can be dated to at least the 4th 

millennium B.C. (Cavalieri, 2002), and the domestication of S. cerevisiae is believed to 

have a Mediterranean origin (Almeida et al., 2015). Despite this antiquity, the molecular 

and microbiological basis of fermentation remained unknown for a long time, until the 

development of modern chemistry and microbiology in the last centuries. Domestication 

is the process by which the characteristics of an organism are shaped by its adaptation to a 

human-generated environment (Legras et al., 2007; Douglas and Klaenhammer, 2010; 

Sicard and Legras, 2011). For domestication to occur, there must be generally a long-term 

exposure of the organism to the given environment so selective pressure can act and the 

phenotype can get stabilised, which is the case of wine and wine-related microorganisms 

(yeasts and LAB, incluiding O. oeni) (Douglas and Klaenhammer, 2010). There are also 

reports about organisms that have acquired signatures of domestication through directed 

or experimental evolution, i.e. a short-term exposure but with a high environmental 

pressure (Bachmann et al., 2012; Burke et al., 2014, Long et al., 2015). In all the cases, 

the adaptation due to domestication is visible at the genomic level: domestication often 

drives to the acquisition of genes by HGT, or to the modification of gene functions related 

to niche adaptation. These modifications can be either loss of function (sometimes 

accompanied by the pseudogene vestige), gain of function, modification of the original 

function, rearrangements, changes in regulation, apparition of paralog genes, horizontal 

gene transfer (HGT), genome reduction, genome reduplication, etc.; hence why it can be 

referred to as “genome decay and evolution” (Douglas and Klaenhammer, 2010). There 

are many possible scenarios in which modification of the gene functions can occur. For 

example, some LAB –incluiding O. oeni– have been documented as having lost –to 

different degrees– their ability to synthesise some amino acids, since they are available in 

the environment; in exchange, they have acquired additional transporters in order to 

import the peptides or amino acids (Douglas and Klaenhammer, 2010). Three peptidases 
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of O. oeni –PepN, PepI and PepX– that have been characterised differ from the well-

described proteolytic system of LAB involved in the fermentation of dairy products, 

reflecting a specific adaptation of O. oeni to wine environment (Ritt et al., 2009). Some 

other modifications are related to genes of the exopolysaccharides (EPS) metabolism: 

diverse strains of O. oeni have been shown to possess several loci coding for EPS 

metabolism genes (Borneman et al., 2012; Dimopoulou et al., 2014) and sugar transport 

and utilisation (Borneman et al., 2012). In O. oeni, EPS can play several roles in the 

adaptation to wine: they can act as a physical barrier for protection by forming a capsule 

around the cell, confer resistance to desiccation, osmotic, acid or cold stress, protect 

against alcohol or sulphur dioxide, contribute to biofilm formation, and they can also alter 

the physicochemical qualities of wine; strains displaying the gtf loci and producing ß-

glucans seem to induce medium ropiness. Sugar transport and utilisation systems, as well 

as amino acid biosynthesis pathways of O. oeni, are also a reflect of this domestication 

(Borneman et al., 2012). Although some punctual features of O. oeni’s genome have been 

observed to be related to domestication in wine, less has been said about the evolutionary 

history of this domestication. 

 

V. Genetic Diversity of the Oenococci 

 

1. Genetic diversity of O. oeni 

Phylogenetics is the field that establishes genetic relationships between different 

organisms or subsystems, based on the score of the alignment of equivalent DNA, RNA 

or protein sequences; it is widely used to study the genetic diversity of groups of 

organisms and their evolutionary history (Baldouf, 2003), as it records the branching 

pattern of evolving lineages through time (Edwards, 2009). Phylogenetics have found 

numerous applications in a wide range of biological sciences such as ecology, 

conservation biology, epidemiology, predictive evolution, forensics, disease 

transmissions, gene function prediction, drug design and development, protein structure 

prediction and gene and protein function prediction (Stamatakis, 2005). Phylogenetics 

have also been used to study speciation processes at local and broad scales (Barraclough 

and Nee, 2001). Early phylogenetists usually emphasized the use of 16S (or 18S) rRNA 

sequences because of their advantages: they are ubiquitous across organisms, highly 

conserved, slowly changing, and putatively resistant to HGT events (Brocchieri, 2001). 

Reverse-transcriptase based sequences of 16S rRNA have been used as a common 

standard for classical phylogenetic studies, and have been used in a wide range of 

organisms such as Listeria (Collins et al., 1991), Streptococcus (Kawamura et al., 1995) 



 
 
Figure 13. Phylogenetic tree of 258 O. oeni strains obtained by MLST. 
The sequences were obtained from the concatenation of 7 loci and the tree was reconstructed by neighbour-
joining method (from Bridier et al., 2010).  due to a low sequence diversity of the locus. Concerning the

recP locus, which was the most variable, the separation be-
tween the alleles of group A and B was less visible (data not
shown).

Sequences of the seven loci were analyzed with Splitstree, in
order to determine the role of intragenic recombination for
allele creation (Fig. 4). The association of allele sequences was
transcribed into a tree. A representative network configuration
showed the implication of recombination between alleles, for
four out of seven loci, namely, g6pd, dnaE, purK, and recP. On
the other hand, gyrB, pgm, and rpoB showed a relative linear
evolution. The g6pd tree was composed of two major groups
representative of phylogenetic groups A and B and alleles from
cider in a third part of the tree. The whole formed a network

configuration that disappeared when strains from cider were
removed from the analysis (data not shown). A network con-
figuration was also obtained for the dnaE tree. This suggests
that the appearance of the cider alleles could originate from
recombination events between alleles of groups A and B in
several genes.

Finally, only recP and purK showed network conformation
trees, suggesting the role of recombination in the formation of
these alleles. Interestingly, when the purK loci of strains from
groups A and B were analyzed separately, the network config-
uration disappeared for the alleles of group B (data not
shown). Therefore, only alleles from group A seemed to re-
combine to form new alleles. For recP, the network configura-
tion corresponded to intragenic recombination but differed

FIG. 2. Neighbor-joining phylogenetic tree constructed from the concatenated sequence (seven loci) of 127 sequence types. Different subgroups
have been highlighted and named. Some ST in group A1 could not be integrated in the subgroups because of too-low bootstrap values.
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and much more. However, as a drawback, rRNA genes contain only limited information, 

as their native structure implies dependence among sites. Proteins are encoded in a 20-

letter alphabet, meaning that they embody more information per site than DNA and RNA; 

this is the reason why it is often preferred to reconstruct phylogenies based on protein 

sequences rather than nucleotidic ones (Brocchieri, 2001). Protein sequences have been 

already used to study the genetic relationships among LAB (Makarova and Koonin, 

2007). 

The genetic diversity of O. oeni was, at the beginning, controversial. The first 

studies about the genetic diversity of O. oeni, based on the diversity of 16S, 23S and 16-

23S spacer sequences, had suggested that the species was genetically homogeneous 

(Martínez-Murcia and Collins, 1990; Le Jeune and Lonvaud-Funel, 1997). Later on, this 

was confirmed by DNA-DNA homology and similarities between genetic maps (Dicks et 

al., 1990; Zé-Zé et al., 2000). This model found problems often, because it did not agree 

with other models that analysed the species’ diversity at different levels (Tenreiro et al., 

1994). Further studies, which were based on a multi locus sequence typing (MLST) 

analysis of four housekeeping genes plus the MleA gene, indicated that the species was 

indeed heterogenic and composed of a panmitic population, with a structure shaped by 

recombination (De las Rivas et al., 2004). However, having analysed only 18 strains, this 

study failed to be extensive enough to give an accurate picture of the species diversity and 

the structure of its population. Some years passed until other studies brought evidence of 

the existence of at least two genetic groups of strains, namely A and B (Bilhère et al., 

2009). This study, also based on MLST, analysed a larger collection of strains and added 

four new housekeeping genes, improving the former method. This was the first time that 

the separation of the species in at least two genetic groups, namely A and B, was 

observed. Although the prediction of these two genetic groups was correct, their existence 

did not explain any major fact about the species’ genetic diversity and its importance to 

MLF, besides the fact that most of the industrial strains belonged to genetic group A. The 

separation of the species in two genetic groups remained during some time, at least for 

technological considerations, anecdotal. It was not necessary to wait for a long time to see 

further studies about the genetic diversity of this O. oeni. Continuing with the MLST 

analysis, but this time on a collection of 258 strains coming from different geographical 

locations (Champagne, Burgundy, Aquitaine, France, Chile, South Africa, Italy) and 

products (red wine, white wine, champagne, cider), and using 7 housekeeping genes, the 

evidence of the two genetic groups A and B of the species was confirmed (Figure 13) 

(Bridier et al., 2010). Moreover, these two genetic groups were shown to be evolving 

independently, each of them being divided into smaller subgroups containing specific 



 
 
Figure 14. Phylogenetic tree including the 3 known species of Oenococcus genus. 
Neighbour-joining tree based on 16S rRNA gene sequences (from Badotti et al. 2014). 
 
 
 
 
 
 
 
 

 
 
Figure 15. Phylogenetic tree of some representative Lactobacillales. 
The phylogenetic tree was obtained by the alignment of 16S rRNA gene sequences. The species possessing or 
lacking the genes mutSL are highlighted (from Marcobal et al., 2008). 
 

analyses were conducted in MEGA5 (Tamura et al.
2011). Partial 16S rRNA gene and pheS sequences

identities were calculated by pairwise comparison

using Jalview V.2 (Waterhouse et al. 2009). The type
strains’ 16S rRNA gene sequences used were those

recommended by the Strainfo (http://www.straininfo.
net/) SeqRank, for which the accession numbers are

AB681195 and AB221475 (for O. oeni NBRC

100497T and O. kitaharae NRIC 0645T, respectively).
Genomic fingerprinting of the four isolates was

performed using repetitive sequence-based PCR with

the (GTG)5 oligonucleotide (Versalovic et al. 1994).
Each 25 lL PCR reaction contained 2.5 lL 10X reaction

buffer, 1.5 lL 1.5 M MgCl, 1.0 lL 10 mM dNTP
(2.5 mM each), 2.0 lL 10 pmol (GTG)5, 1.0 lL

200 ng lL-1 DNA, 0.2 lL 1.25 U Taq DNA polymer-

ase. PCR amplifications were performed in an automated
thermal cycler (BioCycler MG48G) with an initial

denaturation (94 !C, 2 min) followed by 40 cycles of
denaturation (93 !C, 45 s), annealing (50 !C, 1 min) and

extension (72 !C, 1 min) with a single final extension

(72 !C, 6 min). The products were electrophoresed in
1 % agarose gel, stained with gel red and visualized

under UV light.

The draft genome sequence of the type strain UFRJ-
M7.2.18 T (CBAS474T) was obtained by

Fig. 1 Neighbour-joining
phylogenetic tree showing
the position of the
Oenococcus
alcoholitolerans sp. nov.
strains based on 16S rRNA
gene sequences (1,587 bp).
Bootstrap values ([70 %)
based on 1,000 repetitions
are shown. The sequence of
Lactococcus taiwanensis
0905C15T was used as
outgroup. Bar 2 %
estimated sequence
divergence

Fig. 2 Neighbour-joining phylogenetic tree showing the
position of the Oenococcus alcoholitolerans sp. nov strains
based on pheS gene sequences (456 bp). The analysis involved
19 nucleotide sequences. Codon positions included were

1st ? 2nd ? 3rd ? Noncoding. The sequence of Carnobacte-
rium maltaromaticum LMG 6903T was used as outgroup. Bar
5 % estimated sequence divergence
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Helicobacter pylori, where the lack of mutH and mutL in the
species is believed to contribute to high strain diversity, result-
ing in a panmictic population structure (48).

The absence of MMR in O. oeni may have also contributed
to species diversity by creating a more favorable environment
for recombination between different alleles among various
strains. One role of MMR is to prevent recombination between
similar, though not identical, alleles (46). As a result, the dis-
ruption of the genes involved in MMR in S. pneumoniae (3), P.
aeruginosa (39), Acinetobacter sp. (58), E. coli (21), and S.
aureus (41) has been shown to increase the recombination
frequency up to 1,000-fold. The suppression of the MMR sys-
tem in E. coli and Salmonella enterica serovar Typhimurium
enabled recombination among these bacteria, two species
which have !20% sequence divergence (43). An increased
recombination rate in Oenococcus may also help to abate the
increased mutational load generated due to the MMR-defi-
cient status, since functional alleles could be more readily
acquired via horizontal transfer.

Recently, Endo and Okada (12) identified a second species
of Oenococcus, O. kitaharae, obtained from composting shochu
residue in Japan. Shochu is a distilled alcoholic beverage pro-
duced predominately from fermented rice, potatoes, or barley.
Like with O. oeni, the mutation rate of O. kitaharae was sig-
nificantly higher than those of L. mesenteroides and P. pentosa-
ceus, and analysis of rpoB substitutions in rifampin-resistant
mutants indicated a preference for transition substitutions.
Attempts in our lab to amplify mutS and mutL alleles by PCR
using degenerate primers failed to reveal the presence of these
genes (data not shown). While the genome sequence of O.
kitaharae is yet unknown, the aggregate evidence suggests that
a lack of MMR in O. kitaharae is due to a loss of mutS and
mutL. Given the phylogenetic position of O. kitaharae, it is

likely that this loss occurred just after, or coincident with, the
divergence of an oenococcal ancestor away from the neighbor-
ing MMR system-containing Leuconostoc branch (Fig. 1). In-
terestingly, of the 50 strains of Lactobacillales for which public
genome sequences are available, only the genus Oenococcus
lacks mutSL (Fig. 1).

An increased ability to generate beneficial mutations, either
through spontaneous errors in DNA replication or via a low-
ered stringency in recombination, has been proposed as a
mechanism by which mutator strains out-compete nonmuta-
tors, particularly during adaptation to novel environments (17,
39). Therefore, one possible explanation for the loss of MMR
in an ancestor of Oenococcus was that a high mutation rate
generated beneficial mutations during adaptation to a restric-
tive environment. Both O. oeni and O. kitaharae are found
solely in rather unique environments, wine and composting
shochu distillate residue, respectively. By contrast, neighboring
MMR system-containing LAB genera, such as pediococci, lac-
tobacilli, and leuconostocs, are found in a variety of habitats,
ranging from fermented vegetables, fruits, and meats to nu-
merous niches on and/or within animals (55). Ironically, the
lack of MMR within oenococci may also be one reason for
the limited number of environments in which members of the
genus are found. Giraud et al. (15) showed that a mutator
status in E. coli enabled the rapid adaptation and colonization
of the mouse gut at a rate greater than those of WT clones.
However, these same isolates exhibited a decreased fitness
when transferred into a second environment, due to the
accumulation of mutations deleterious to growth in the new
habitat.

Clearly, it is hard to reconcile the increased burden brought
about by hypermutation with the eventual success of Oenococ-
cus as a genus. Gong et al. (16) showed that cycling between a

FIG. 1. Presence or absence of mutSL genes in members of the Lactobacillales for which complete genome sequences are available. The
dendrogram showing the genetic relatedness based on 16S rRNA gene sequences was constructed using Ribosomal Database Project tools (4).
While more than one strain of some species have been sequenced (Streptococcus agalactiae, S. pneumoniae, S. mutans, S. thermophilus, S. pyogenes,
and Lactobacillus delbrueckii subsp. bulgaricus), only a single representative is shown in the figure.
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clusters. For example, strains from Chile and from South Africa formed specific clusters 

inside the group A, as well as strains from Champagne and Burgundy. This study also 

showed evidence the presence of a strain isolated from cider that did not belong to either 

group A nor B, though the other strains isolated from cider belonged exclusively to group 

B. Taken together, these studies marked the beginning of the knowledge about the genetic 

diversity of the O. oeni species. These results were further confirmed and refined by more 

accurate methods, with some minimal adjustments, but globally agreeing with the 

diversity and the population structure of the species (Claisse and Lonvaud-Funel, 2012). 

However, even if these studies were published barely before the ones about the 

comparative genomics analysis of the species, they seem to have not been taken into 

consideration to explain some characteristics of the analysed strains. Because of this, the 

knowledge about genetic groups and the genomic features of the strains remained 

unlinked. 

 

2. O. oeni and the other members of the Oenococcus genus  

O. oeni remained the only known member of its genus until the discovery of 

Oenococcus kitaharae, a sister species that was found in shochu residues (Endo and 

Okada, 2006). With the recent discovery of a third member of the genus, Oenococcus 

alcoholitolerans, in cachaça and alcohol fermentation vats (Badotti et al., 2014), more of 

the characteristics that tie them together in this genus are starting to be understood. A 

phylogenetic tree reconstructed from the 16S rRNA gene sequences shows their place in 

relation to other close species (Figure 14) (Badotti et al., 2014). All of the Oenococcus 

species have been isolated from alcoholic beverages; O. oeni in wine and cider, O. 

kitaharae in shochu residues and O. alcoholitolerans in cachaça residues and bioethanol 

plants (Garvie, 1967; Endo and Okada, 2006; Badotti et al., 2014). It is not yet understood 

why the three species are associated with different ethanol-containing environments, but 

they have different adaptive capacities and metabolic capacities. After knowing about the 

molecular basis of MLF, it is not illogical to try to understand why O. oeni’s sister 

species, O. kitaharae, is not able to perform MLF and neither to survive in wine.  O. 

kitaharae is more sensitive to ethanol than O. oeni (Endo and Okada, 2006) and has an 

optimal growth pH between 6 and 6.8, which is three orders of magnitudes less acid than 

the conditions found normally in wine. It is also worth to mention that O. kitaharae 

carries a nonsense mutation in the gene of the malolactic enzyme, which prevents it from 

converting malic acid into lactic acid (Borneman et al., 2012). O. kitaharae also lacks the 

citrate pathway genes so that it is unable to perform the two main transformations carried 

out by O. oeni during the MLF of wine (i.e. the transformation of malate and citrate). In 



 
 
Figure 16. General working pipeline for whole genome or transcriptome sequencing.  
This pipeline is common to all the NGS technologies (from Anandhakumar et al., 2015). 
  

1. Introduction

Strategies for deciphering DNA sequences storing huge
amounts of genetic instruction create paradigm-shifting oppor-
tunities in a wide range of scientific disciplines. The Human
Genome Project was completed in 2003, using a first-genera-
tion sequencing technique based almost entirely on Sanger’s
method. In 1977, Sanger et al.[1] described dideoxynucleotide
sequencing of DNA. In the same year, Maxam and Gilbert de-
veloped a sequencing technique based on chemical modifica-
tion of DNA and subsequent cleavage.[2] These two methods
represent the first generation of sequencing.

Sequencing has undergone steady progress from a cottage
industry to a large-scale production enterprise that requires
a specialized and devoted infrastructure of robotics, a modern
chemical approach, bioinformatics, computer databases, and
instrumentation. The introduction of high-throughput se-
quencing methods in 2007 took DNA sequencing to the next
level. Millions of autonomous chemical reactions could take
place simultaneously, and thereby allow a particular molecule
to be decoded quantifiably with comprehensive coverage of
sequencing reads. This strategy was called deep sequencing,
next-generation sequencing (NGS), high-throughput sequenc-
ing, or massively parallel sequencing. Shortly afterward, in
2008, NGS was effectively utilized for sequencing the first indi-
vidual human genome.[3] The database of the Human Genome
Project has led to deeper knowledge of several disease pro-
cesses at the genetic level.[4, 5] During this development, the
cost per reaction of DNA sequencing has reduced, mainly be-
cause of the efforts to sequence the human genome. Hui[6] has
extensively reviewed the evolution and chemistry of various
sequencing technologies.

High-throughput sequencing might need only one or two
machine runs to complete the experiment, so NGS technolo-
gies are now competitive with the microarray platform for
genome analysis. Routine use of microarray-based approaches
is limited by the requirement for customized arrays, and these
notable technical obstacles led to the transition of core ge-

nomic studies to high-throughput sequencing-based plat-
forms.[7, 8] Next-generation sequences are also generated from
fragmented and adapter-ligated DNA/RNA/amplicon “libraries”
that have never been subjected to conventional vector-based
cloning. As such, some of the sequencing bias of cloned DNA
sequences that affect genome identification in sequencing
projects can be avoided.

Sequencing technologies have a standard workflow regard-
less of the sequencing platforms: in brief, 1) preparation of a
sequencing library from the nucleic acid, 2) sequencing and
data collection, and 3) data analysis (Figure 1).

2. Next-Generation Sequencing

The particular reagents exclusively used in specific protocols
differentiate one technology from another and define the type
of data generated from each platform. All of these protocols
come under three major categories based on the sequencing
chemistry: 1) sequencing by synthesis, 2) single-molecule se-
quencing, and 3) sequencing by ligation.[9]

Sequencing by synthesis (SBS)

SBS technology is similar to the Sanger sequencing method: it
uses various signal-detection methods to define the nucleotide

Next-generation-sequencing (NGS) technologies enable us to
obtain extensive information by deciphering millions of indi-
vidual DNA sequencing reactions simultaneously. The new
DNA-sequencing strategies exceed their precursors in output
by many orders of magnitude, resulting in a quantitative in-
crease in valuable sequence information that could be har-
nessed for qualitative analysis. Sequencing on this scale has
facilitated significant advances in diverse disciplines, ranging
from the discovery, design, and evaluation of many small mole-

cules and relevant biological mechanisms to maturation of per-
sonalized therapies. NGS technologies that have recently
become affordable allow us to gain in-depth insight into small-
molecule-triggered biological phenomena and empower re-
searchers to develop advanced versions of small molecules. In
this review we focus on the overlooked implications of NGS
technologies in chemical biology, with a special emphasis on
small-molecule development and screening.

Figure 1. Schematic representation of general working pipeline for next-gen-
eration sequencing. This working protocol is typically used in all kinds of se-
quencing approaches.
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exchange, O. kitaharae possesses more genes of cell defence mechanisms (bacteriocines 

production, restriction-modification systems, and a CRISPR locus), and also genes that 

code for amino acid biosynthesis pathways that are absent in O. oeni (Borneman et al., 

2012). In contrast it seems that all three Oenococcus species share the rare genetic 

characteristic of having lost the DNA mismatch repair system coded by the genes mutSL. 

These genes are absent from the O. oeni and O. kitaharae genomes, which correlates with 

their hypermutability and probably contribute to the adaptation of the species to acidic 

and alcohol-rich environments (Figure 15) (Marcobal et al., 2008; Borneman et al., 2012). 

This is probably the same situation for O. alcoholitolerans, since the implied genes are 

not detectable in its recently published genome (personal data). O. alcoholitolerans, 

despite its name, is less resistant to ethanol than O. oeni. The gene coding for malolactic 

enzyme is intact in O. alcoholitolerans, so it is likely that this species is able to perform 

MLF, although there are no public reports of it. It cannot metabolise D-trehalose as O. 

kitaharae does, but in exchange it can metabolise sucrose, which the other two members 

of the genus cannot (Badotti et al., 2014). 

 

VI. O. oeni under the light of comparative genomics 

 

1. Starting from raw data: genomes 

 

a. Next Generation Sequencing 

 Since their first development by Sanger et al. (1955, 1977), DNA-sequencing 

techniques have undergone great technological advances. The development of Whole 

Genome Shotgun (WGS) approaches, in which a great number of random reads are 

sampled from the target molecule –DNA– (Sanger et al., 1980), lead to the apparition of 

Next Generation Sequencing (NGS) technologies (Mardis, 2008; Pettersson et al., 2008; 

Ansorge, 2009; Grada and WeinBrecht, 2013; Anandhakumar et al., 2015). The process 

starts by randomly shearing the target genome into a collection of fragments (Pop, 2009). 

Although different in methodology, nearly all the NGS techniques work under the same 

schema: a sequence library is prepared, sequence data is collected, and the collected data 

is analysed (Figure 16) (Anandhakumar et al., 2015). The applications of these high-

throughput sequencing techniques in biological sciences seem endless, covering a spectra 

from biomedicine (Ansorge, 2009; Grada and Weinbrecht, 2013), to genetics (Mardis, 

2007), functional genomics (Morozova and Marra, 2008), comparative genomics (Tettelin 

et al., 2008) and transcriptomics (Kwok et al., 2015). Up to date, the most used 

sequencing methods are Sequencing by Synthesis (SBS – proposed by Illumina, Roche 



 
A) Overlapping reads are assembled into contigs, represented by the consensus sequence (from Taylor, 

2012). 
 
 
 

 
 

B) Consensus sequences are obtained from the most representative nucleotide at each position for 
overlapping sequences (from Taylor, 2012) 
 
 
 

 
 

C) Contigs can be assembled into scaffolds when their orientation and sizes of the gaps between them are 
known (from Szauter, 2013). 

 
Figure 17. Assembly of genomes from reads to contigs and scaffolds.  
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(Chevreux,!2010).!Additionally,!labs!sequencing!multiple!genomes!use!DNA!tags,!called!

Multiplex!Identifier!(MID)!tags,!to!track!each!individual!genome!by!identifying!a!specific!

genome!in!the!454!workflow!(Chevreux,!2010).!Each!project!uses!a!unique!MID!tag!and!

these!sequence!tags!are!part!of!the!raw!read!output.!In!both!cases,!these!DNA!tag!sequences!

complicate!the!assembly!because!they!produce!false!overlapping!segments!of!DNA!that!can!

lead!to!erroneous!contig!formation.!

Fragment!assembly!involves!the!actual!assembly!of!the!raw!shotgun!fragment!data!

into!contigs.!Contigs!are!contiguous!sequences!of!DNA!based!on!overlapping!sections!of!

DNA!(Figure!8A).!In!the!book!analogy,!a!contig!would!be!a!page!stitched!together!based!on!

areas!where!the!random!paper!strips!overlapped!(Figure!8B).,Longer!reads!make!it!easier!

to!assemble!the!consensus!contig.!Growth!of!the!contig!continues!as!long!as!quality!

overlaps!exist!between!raw!reads.!

Figure!8.!Contig!formation.!8A:!Creating!a!contig!(orange)!from!line!fragments!(black).!8B:!
Creating!a!contig!(orange)!from!genome!reads!(black).!Bars!represent!DNA!sequences.!
!

Before!proceeding!to!the!scaffolding!process,!contigs!should!be!verified.!Contigs!may!

be!incorrect!due!to!the!repeat!structure!of!the!target!genome.!Repeats!may!occur!many!

times!within!a!genome,!possibly!as!a!result!of!transposable!elements,!genetic!duplications,!

! ! !

! 15!

No!sequencing!technology!is!perfect!and!each!sequencing!technology!has!different!

error!rates.!Technologies!can!misread!a!nucleotide!or!skip!a!nucleotide!altogether.!

However,!with!high!coverage,!a!computer!or!person!can!more!accurately!deduce!the!

correct!genome!sequence!based!on!the!consensus!of!the!majority!of!the!smaller!reads!

(Figure!6).!Because!each!nucleotide!of!each!read!in!an!overlap!effectively!casts!a!single!vote!

for!the!final!sequence,!the!final,!assembled!genome!is!often!referred!to!as!the!“consensus!

sequence.”!

Figure! 6:! The! consensus! sequence! is! determined! by! the!majority! of! reads.! The! green! C!
appears!in!the!majority!of!reads,!suggesting!the!red!T!is!an!error.!Therefore,!the!consensus!
sequence!contains!a!C!instead!of!a!T.!
!

Greater!genome!coverage!produces!a!better!genome!assembly!(Figure!7)!just!as!

having!more!books!torn!into!strips!would!make!it!easier!to!assemble!the!original!novel.!

High!coverage!gives!the!assembly!algorithm!the!ability!to!identify!raw!reads!that!overlap!

with!each!other.!Using!the!book!analogy!again,!25bfold!coverage!would!be!like!having!25!

novels!cut!into!strips!instead!of!only!3!novels.!With!more!novels,!the!likelihood!of!

identifying!strips!of!paper!that!overlap,!fill!in!gaps,!correct!for!typos,!and!cover!the!entire!
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454 and Ion Torrent,) Single-Molecule Sequencing (SMS – proposed by Helicos and 

Pacific Bioscience), Sequencing by Ligation (SBL), Polonator and Support 

Oligonucleotide Ligation and Detection (SOLiD) (Anandhakumar et al., 2015). 

Nowadays, the major commercial platforms that dominate the market remain Illumina 

Genome Analyzer/HiSeq2500, Roche 454 Genome Sequencer, Life Technologies Ion 

Torrent Personal Genome Machine (PGM)/Ion proton, and PacBio-SMRT (Annex 1) 

(Anandhakumar et al., 2015). Illumina offers the advantage of generating a large number 

of reads, but sequences are relatively short (~100bp) and nucleotide substitutions is a 

likely type of error. Roche 454 offers a longer read length (~400bp), but homopolymeric 

sequences can lead to erroneous sequencing. Ion torrent, in exchange, offers a slightly 

shorter read length (~300bp) at a more convenient price, but suffers the same kind of 

problem at resolving homopolymeric sequences. PacBio offers, by far, the longest read 

length (~4,200-8,500bp), but coverage is low and the error rate is high (Anandhakumar et 

al., 2015).  

 

b. Genome assembly 

 In many cases, just sequencing a genome is not enough to be able to exploit the 

data; after sequencing, it is often necessary to assemble the genome. Genome assembly 

can be compared to solving a jigsaw puzzle (Wajid and Serpedin, 2012). This process is 

accomplished by joining the overlapping short reads into longer sequences called contigs, 

which can be defined as the consensus sequence of a set of overlapping reads (Figure 17 

A and B) (Lapidus, 2009; Miller et al., 2010; Taylor, 2012). Contigs can, in some cases, 

be further assembled into scaffolds (a.k.a. metacontigs or supercontigs) that include also 

information about the contig order, their orientation and the size of the gaps between them 

(Figure 17 C) (Miller et al., 2010; Szauter, 2013). The process of genome assembly can be 

carried out by two approaches: by mapping (a.k.a. comparative assembly), i.e. matching 

the reads against a known reference sequence, or de novo, i.e. reconstruction in its pure 

form, without consultation to any previously resolved sequence (Wajid and Serpedin, 

2012; Miller et al., 2010). In all the cases, the process is relegated to a computer, and the 

assembly process is feasible only if the target molecule is over-sampled, such that the 

totality of reads overlap at least once (Miller et al., 2010). In the best possible scenario –

when a genome assembly is fully resolved– the obtained assembly will consist in one 

contig per chromosome or, in the case of bacteria, one single circularised contig 

corresponding to the chromosome, and eventually additional contigs corresponding to 

plasmids or other types of replicons (Koren and Phillippy, 2015). Genome assemblies are, 

of course, not free of errors, and several kinds of misassemblies can happen (Figure 18) 



 
A) Unsatisfied mate pairs and correlated SNP. Repeated zones with almost perfect matches (a) can be 

misassembled, causing erroneous base calling (b). 
 
 
 

 
B) Collapse style misassemblies. Repeated zones (a and c) can be collapsed together, underestimating the 

number of copies (b and d) and in some cases leaving a region out (d). 
 
 
 

 
C) Rearrangement style misassemblies. Repeated zones (a) can cause a shuffle in the order of the 

intermediary regions (b). 
  
 
 

 
D) Inversion style misassemblies. Repeated zones in opposite orientations (a) can lead to an inverted 

assembly of the region in between (b). 
 
Figure 18. Common misassembly errors (from Phillippy et al., 2007). 
 

Genome Biology 2008, 9:R55

http://genomebiology.com/2008/9/3/R55 Genome Biology 2008,     Volume 9, Issue 3, Article R55       Phillippy et al. R55.2

process if each read had a unique placement; however, all but
the simplest organisms contain duplicated sequences
(repeats) throughout their genome. These repeats confuse the
assembly process, since reads originating from distinct copies
of the repeat appear identical to the assembler. Additionally,
for near-identical repeats, it is difficult to differentiate
sequencing error from the polymorphism between repeat
copies. This may cause an assembler to incorrectly place
repetitive reads, resulting in mis-assembly. The pairing of
reads sequenced from opposite ends of a same DNA fragment
(mate-pairs, or paired ends) helps to disambiguate read
placements within and around repeats, as show in Figure 1a
where ambiguous placements can be resolved by reads whose
mates are anchored in unique sequence.

In a correct assembly, the layout of the reads, and implicitly,
the layout of the original DNA fragments, must be consistent
with the characteristics of the shotgun sequencing process
used to generate the data. In general, a correct assembly must
satisfy the following constraints. First, the sequences of over-
lapping reads must agree; exceptions are sequencing errors,
polyploid organisms, and the assembly of mixed samples
such as non-clonal or out-bred organisms. Second, the dis-
tance between mated reads must be consistent with the size of
the fragments generated from the random shearing process;
exceptions are chimeric DNA fragments. Third, mated reads
must be oriented towards each other, that is, they must come
from opposite strands of the sequenced DNA; exceptions are
chimeric DNA fragments, and alternative pairing methods
(for example, transposon libraries). Fourth, the placement of
reads throughout the assembly must be consistent with a ran-
dom shearing process, represented mathematically as a Pois-

son process [8]; exceptions are cloning or sequencing biases.
Fifth, all reads provided to the assembler must be consistent
with the resulting assembly, that is, every read must perfectly
match at least one location in the reconstructed genome;
exceptions are sequencing errors, incomplete trimming of the
sequencing vector, and the presence of contaminants.

All five of these constraints are subject to some degree of inac-
curacy, as indicated by the exceptions indicated above. A sin-
gle violation is, therefore, not usually conclusive of mis-
assembly. Instead, multiple, coinciding constraint violations
need to be observed in order to infer the presence of an error
in assembly. The following section describes the primary
types of mis-assemblies and the pattern of constraint viola-
tions they exhibit.

Mis-assembly signatures
The majority of mis-assemblies fall into two generalized cate-
gories: repeat collapse and expansion; and sequence rear-
rangement and inversion. Each type has distinct mechanisms
for mis-assembly and results in different signatures. The first
type of mis-assembly results from incorrectly gauging the
number of repeat copies in a genome and including too few or
too many copies. Differences in copy numbers of certain
repeats are known to cause phenotypic differences between
organisms (for example, Huntington's disease [9]); therefore,
a correct assembly of such regions is essential. The second
type of mis-assembly results from shuffling the order of mul-
tiple repeat copies, thereby rearranging the unique sequence
in between. This type of mis-assembly, if uncaught, could be
misinterpreted as a biological rearrangement event. There is
a chance such false conclusions have already been drawn due
to mis-assembled genomes, and, therefore, the mechanisms
and signatures of these mis-assemblies need to be examined
in more detail.

In both collapse and rearrangement events, reads may be
placed in the wrong copy of a repeat. Small differences
between repeat copies, often single nucleotide polymor-
phisms (SNPs) caused by mutations that arose in the different
copies independently, are useful indicators of collapsed or
otherwise mis-assembled repeats. While disagreements due
to sequencing errors tend to occur at random, the differences
caused by mis-assemblies can be identified by their correlated
location across multiple reads (Figure 1b). Some correlated
SNPs may also occur due to heterogeneous sequencing sam-
ples or sequence-specific lab errors, and, therefore, correlated
SNPs by themselves are not always sufficient evidence of mis-
assembly.

Repeat collapse and expansion
In the case of a repeat collapse, the assembler incorrectly
joins reads originating from distinct repeat copies into a sin-
gle unit (Figure 2). The opposite occurs in an expansion,
where extra copies of a repeat are included in the assembly.
These often result in a greater (or lesser) density of reads than

Misplaced reads caused by the two copy repeat R and leading to (a) unsatisfied mate-pairs and (b) correlated SNPsFigure 1
Misplaced reads caused by the two copy repeat R and leading to (a) 
unsatisfied mate-pairs and (b) correlated SNPs. Unique sequence is shown 
in white and repetitive sequence in gray. Example mate-pairs are drawn as 
connected arrow heads. Properly oriented mates point towards each 
other, and properly sized pairs are connected with a solid line. All mates 
can be satisfied and the correlated SNP removed if the bottom two reads 
in R1 are moved to R2.

R1 R2

 
 
 

 AGAGCTAGC
AGAGCTAGC
AGATCTCGC
AGATCTCGC

(a)

(b)
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is expected from the random shotgun process. A missing
repeat copy causes reads to 'pile up' in the remaining copies,
thereby increasing read density. For example, in a genome
sampled at 8-fold coverage with reads of 800 bp in length, the
reads are expected to be placed at approximately 100 bp
increments throughout the genome. The collapse of a two
copy repeat results in an even denser packing of the reads in
the single remaining copy - within the collapsed repeat the
reads are spaced by roughly 50 bp and the depth of coverage
(number of reads spanning a specific location) is increased to
about 16-fold. The reverse is true for an expansion mis-
assembly, where the read density drops below normal
coverage.

In the case where two repeat copies are adjacent to each
other, that is, a tandem repeat, the reads that span the bound-
ary between the two copies cannot be placed in the collapsed
assembly. These reads only partially align to the assembly and
exhibit an identifiable mis-assembly signature where they
appear to wrap-around the boundary of the repeat. In addi-
tion, mate-pairs spanning the boundary between the two cop-
ies, but internal to the tandem, also appear to wrap around
and mates spanning the tandem are shorter than expected
(Figure 2b). For expansions, spanning mates appear
stretched. When two repeat copies are separated by a unique
region, a collapse forces the intervening section of DNA out of

the assembly, leading to the creation of two separate contigs.
Any mate-pairs that were spanning one of the repeat copies
now link from the excised contig to the middle of the col-
lapsed contig (Figure 2d). An insertion results in a similar sig-
nature, with mates spanning the insertion boundary linking
to separate contigs. In general, any non-overlapping place-
ment of two contigs with respect to each other results in the
violation of mate-pair constraints, indicating the presence of
a mis-assembly.

Rearrangements and inversions
Even when an assembler correctly gauges the number of
repeat copies, thereby avoiding the situations described
above, mis-assemblies are still possible. Such a situation is
shown in Figure 3, where, by incorrectly redistributing reads
between the three copies of repeat R, the regions B and C of
the genome have been swapped. Inversions are a special case
of rearrangement, occurring when two repeat copies are ori-
ented in opposite directions, thereby allowing the intervening
region to be inverted (Figure 4). These 'inverted' repeats can
easily confuse the assembler, and can also result in genomic
rearrangements in vivo, such as those detected within the
plasmids of Bacillus anthracis Ames [10]. In the case of mis-
assembly, heterogeneities may result within the mis-assem-
bled repeat copies, due to mis-placed reads, unless the repeat
copies are identical. In addition, mate-pair constraints are

Mate-pair signatures for collapse style mis-assembliesFigure 2
Mate-pair signatures for collapse style mis-assemblies. (a) Two copy tandem repeat R shown with properly sized and oriented mate-pairs. (b) Collapsed 
tandem repeat shown with compressed and mis-oriented mate-pairs. (c) Two copy repeat R, bounding unique sequence B, shown with properly sized and 
oriented mate-pairs. (d) Collapsed repeat shown with compressed and mis-linked mate-pairs.
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violated for any mate-pairs spanning the repeat unit. If the
repeat is not spanned by mate-pairs, this class of mis-assem-
bly is harder to detect, and it is sometimes possible to mis-
assemble the genome without violating a single mate-pair
constraint. While a random placement of the reads among
repeat copies would result in violations, assembly programs
often place the reads such that the constraints are satisfied,
thereby obscuring the mis-assembly.

Prior work
Gene Myers' original formulation of the assembly problem
stated that an assembly of a genome must match (in terms of

the Kolmogorov-Smirnoff test statistic) the statistical charac-
teristics of the process used to generate the data [11]. To our
knowledge, this is the first formulation of the assembly prob-
lem that explicitly takes into account the presence of repeats
in genomes. Furthermore, this formulation provides a
theoretical framework for developing assembly validation
tools. A simple version of this approach, the arrival-rate sta-
tistic (A-statistic), is used within Celera Assembler to identify
collapsed repeats [12].

The validation of genome assemblies was originally done
manually, in conjunction with genome finishing efforts aimed
at generating the complete sequence of organisms. Validation
software was generally provided as an add-on to assembly
editors like Consed [13], Staden package [14], or TIGR Editor
(in-house software used at The Institute for Genomic
Research). New interest in developing tools for assessing the
quality of assemblies was spurred by the race to finish the
human genome, in particular by the competition between the
publicly led effort [1] and the private challenger Celera
Genomics [2]. The ensuing controversy and flurry of papers
comparing the two assemblies underscored the absence of
objective and reliable tools for assembly validation. Eventu-
ally, the human assemblies were verified through compari-
sons to a collection of independently generated data such as
finished BAC clones [15], gene content [16,17], and (at a lower
resolution) genomic physical maps [1,2,18].

Such comparative validation methods have limited applica-
bility. First, they rely on the availability of a 'gold standard'
provided by independently generated and often manually
curated data. Second, these methods can only detect mis-
assemblies covered by the sparse curated data. A more gen-
eral approach utilizes just the assembly data themselves, such
as the constraints imposed by the mate-pairs, whose place-
ment within the assembly must be consistent with the charac-
teristics of the shotgun process. For example, a visual display
of mate-pairs, the clone-middle-plot, was used to compare
the two different assemblies of the human genome [19], and
the popular assembly viewer/editor Consed [13] includes the
means to explore the placement of paired reads along the
genome as a tool for identifying mis-assemblies. Our own
assembly viewer, Hawkeye [20], presents the assembly as a
tiling of paired reads, and provides several visualization
options aimed at highlighting possible assembly problems.
An integrated analysis of mate-pairs is built into the quality
control module of the Arachne assembler [21,22]. The
Arachne approach detects clusters of unsatisfied mate-pairs
and low quality bases to estimate the probability of mis-
assembly for each region of the assembly. In addition, two
standalone programs are available for mate-pair based
evaluations: BACCardI [23] allows the user to visualize the
placement of mate-pairs along the genome and highlights
those mate-pairs that are incorrectly placed with respect to
each other, and TAMPA [24] uses a computational geometry

Mate-pair signatures for rearrangement style mis-assembliesFigure 3
Mate-pair signatures for rearrangement style mis-assemblies. (a) Three 
copy repeat R, with interspersed unique sequences B and C, shown with 
properly sized and oriented mates. (b) Mis-assembled repeat shown with 
mis-oriented and expanded mate-pairs. The mis-assembly is caused by co-
assembled reads from different repeat copies, illustrated by the stacked 
repeat blocks.

Mate-pair signatures for inversion style mis-assembliesFigure 4
Mate-pair signatures for inversion style mis-assemblies. (a) Two copy, 
inverted repeat R, bounding unique sequence B, shown with properly sized 
and oriented mate-pairs. (b) Mis-assembled repeat shown with mis-
oriented mate-pairs.
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repeat copies would result in violations, assembly programs
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thereby obscuring the mis-assembly.
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knowledge, this is the first formulation of the assembly prob-
lem that explicitly takes into account the presence of repeats
in genomes. Furthermore, this formulation provides a
theoretical framework for developing assembly validation
tools. A simple version of this approach, the arrival-rate sta-
tistic (A-statistic), is used within Celera Assembler to identify
collapsed repeats [12].
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manually, in conjunction with genome finishing efforts aimed
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software was generally provided as an add-on to assembly
editors like Consed [13], Staden package [14], or TIGR Editor
(in-house software used at The Institute for Genomic
Research). New interest in developing tools for assessing the
quality of assemblies was spurred by the race to finish the
human genome, in particular by the competition between the
publicly led effort [1] and the private challenger Celera
Genomics [2]. The ensuing controversy and flurry of papers
comparing the two assemblies underscored the absence of
objective and reliable tools for assembly validation. Eventu-
ally, the human assemblies were verified through compari-
sons to a collection of independently generated data such as
finished BAC clones [15], gene content [16,17], and (at a lower
resolution) genomic physical maps [1,2,18].

Such comparative validation methods have limited applica-
bility. First, they rely on the availability of a 'gold standard'
provided by independently generated and often manually
curated data. Second, these methods can only detect mis-
assemblies covered by the sparse curated data. A more gen-
eral approach utilizes just the assembly data themselves, such
as the constraints imposed by the mate-pairs, whose place-
ment within the assembly must be consistent with the charac-
teristics of the shotgun process. For example, a visual display
of mate-pairs, the clone-middle-plot, was used to compare
the two different assemblies of the human genome [19], and
the popular assembly viewer/editor Consed [13] includes the
means to explore the placement of paired reads along the
genome as a tool for identifying mis-assemblies. Our own
assembly viewer, Hawkeye [20], presents the assembly as a
tiling of paired reads, and provides several visualization
options aimed at highlighting possible assembly problems.
An integrated analysis of mate-pairs is built into the quality
control module of the Arachne assembler [21,22]. The
Arachne approach detects clusters of unsatisfied mate-pairs
and low quality bases to estimate the probability of mis-
assembly for each region of the assembly. In addition, two
standalone programs are available for mate-pair based
evaluations: BACCardI [23] allows the user to visualize the
placement of mate-pairs along the genome and highlights
those mate-pairs that are incorrectly placed with respect to
each other, and TAMPA [24] uses a computational geometry
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assembled reads from different repeat copies, illustrated by the stacked 
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(Phillippy et al., 2007; Lapidus, 2009). The source of these errors mostly come from three 

factors: the lack of uniformity of coverage across the target molecule, which can cause an 

under or over representation of the reads; repetitive zones in natural sequences of DNA, 

which can cause conflicts to resolve ambiguous overlaps of sequences; or poor sequence 

quality and misalignments, which can result in chimeric contigs (Miller et al., 2010; 

Wajid and Serpedin, 2012). The quality of the assembled genomes can depend, between 

other factors, on the technology used to sequence, data quality, and to a minor extent on 

the software used for the assembly process (Salzberg et al., 2012; Luo et al., 2012). A 

study has shown that, despite its shorter read length capacity, Illumina technology offered 

equivalent, if not better assemblies than Roche 454 for the sequencing of the genomes of 

a microbial community, based on an evaluation of base-call error, frameshift frequency, 

and contig length (Luo et al., 2012). This is consistent with a previous analysis that 

showed that an increase in read length beyond ~35-60bp does not necessarily yield an 

increase in the quality of the assembled genomes when mate-pairs are available, at least 

for small genomes such as those of prokaryotes (Chaisson et al., 2008; Pop, 2009). 

Another study compared the assemblies obtained by different assembly softwares on an 

Illumina sequencing dataset, determining that the relative performance of the assemblers, 

as well as other significant differences in assembly difficulty, appear to be inherent to the 

genomes themselves, rather than related to software (Salzberg et al., 2012). The most 

influencing factor affecting the output of an assembled genome is initial data quality. 

Moreover, the degree of contiguity of an assembly varies enormously among different 

genomes and assemblers, and the correctness of the assembly also varies widely, without 

showing any correlation with statistics on contiguity (Salzberg et al., 2012). To finish the 

picture, many techniques for refining unfinished genomes have been developed through 

different strategies, e.g. by filling genome gaps through multiplex PCR approach (Sorokin 

et al., 1996) or by using hybrid assemblies from short and long reads (Ribeiro et al., 

2012), among others. In all, although the current technologies allow to obtain complete, 

gapless, circularised, bacterial genomes through different strategies, it seems that the 

choice for a particular sequencing approach and technology, and a particular assembly 

method, still depend strongly on the case in hand, while new sequencing pipelines evolve 

day-by-day and new methods appear (Anandhakumar et al., 2015). 

 

c. Genome annotation 

 The interpretation of raw DNA sequences involves the identification and 

annotation of genes, proteins, and regulatory and/or metabolic pathways. Annotation is 

the extraction of biological knowledge from raw nucleotide sequences (Médigue and 



 
Figure 19. Static and dynamic annotation of genomes. 
Annotation of genomes can be static (identification of biological features) and dynamic (interaction between the 
features and processes in which they are involved). For a correct linkage between static and dynamic annotation 
it is necessary to have the correct resources, which are supervised by humans (from Médigue and Moszer. 2007). 
 
 
  

generate additional data that contribute to the interpretation of
genomic data. These considerations are driving the community
to think about how to manage public collections of genomes in
novel ways.

In this review, we discuss progress in the development of da-
tabases and computational tools for organizing and extracting
biological meaning from the comparison of large sets of ge-
nomes. We will show that, despite all the benefits of continually
growing collections of genomes and the development of power-
ful bioinformatics approaches, full interpretation of the content
of these genomes remains challenging. We need to improve the
quality and the speed of annotation, and to combine compu-
tational analysis with results of experimental studies (both
large-scale investigations and focused assays), especially to elu-
cidate the functions of the large number of hypothetical and or-
phan genes still found in genome databases. One solution to this
challenge would be the development of integrated environments
that combine and standardize information from a variety of
sources and apply uniform (re-)annotation techniques.

2. What is genome annotation?

The process of sequencing and annotating bacterial ge-
nomes has become highly automated in these last years.

Annotation, broadly speaking, is the extraction of biological
knowledge from raw nucleotide sequences. Two main levels
of genome annotation have been identified: the first corre-
sponds to a static view of the genome whereas the second is
associated with a more dynamic view [59] (Fig. 1).

2.1. Static view of genome annotation

In the initial step of the process, several bioinformatics
methods are automatically linked up to predict the location
of genes and to describe the cellular function of gene products.
First, gene prediction programs, reviewed in [62], are executed
to find regions that are likely to encode proteins or functional
RNA products. Although very accurate for prokaryotes, gene
calling programs are still liable to miss small genes or genes
of atypical nucleotide composition. In addition, an increasing
number of genomes are being released in ‘‘draft’’ form (i.e.
before the finishing stage of a sequencing project) with high
sequencing error rates, thus leading to errors in gene predic-
tions. These initial predictions are then used for sequence sim-
ilarity searches against generalist or specialized databases
(Tables 1 and 2): information from hits above a similarity
threshold is used to assign functions to proteins. The accuracy
of this step depends not only on the software used for the

Fig. 1. General procedure used to annotate bacterial genome sequences. Automatic gene prediction and functional assignment, mainly based on sequence similarity
and domain profiles (‘‘STATIC VIEW’’ panel), provide information that can be used to identify interactions between the genomic components and to annotate
biological processes (‘‘DYNAMIC VIEW’’ panel). User-friendly interfaces are required for manual input of human expertise into these automatic predictions,
an essential step to increase the specificity of the assigned biological functions (‘‘HUMAN EXPERTISE’’ panel). These various levels of the annotation process
are based on a wide range of generalist and thematic databases (‘‘RESOURCES’’ panel; ‘‘db’’: databases).
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Moszer, 2007). When annotating genomes, gene prediction programs are executed to find 

regions containing putative protein encoding genes or functional RNA products (Médigue 

and Moszer, 2007). Open reading frame (ORF) detection methods can be either intrinsic 

or extrinsic (Bodorovsky et al., 1994). Intrinsic (a.k.a. ab initio) methods rely on the 

inherent properties of DNA without explicit referral to other sequences. These properties 

include ORF length, codon usage, presence or absence of Shine-Dalgarno sequences at an 

expected distance upstream of the initiation codon, and statistical characteristics such as 

bias in nucleotide composition that are typical of coding regions. Extrinsic (a.k.a. 

homology-based) methods rely on the comparison of a putative encoded amino acid 

sequence with protein sequences databases and a search for functional motifs 

(Bodorovsky et al., 1994). Combining both intrinsic and extrinsic methods is important 

for extracting a maximum of information from genomic sequences, and has the potential 

to enhance the reliability of the results obtained by each method separately (Bodorovsky 

et al., 1994). Due to genomic simplicity, these methods are easier to apply for bacteria 

(Bodorovsky et al., 1994) and, although very accurate for prokaryotes, gene calling 

programs still face some problems for detecting small genes or genes of atypical 

nucleotide composition (Médigue and Mozser, 2007). The phase mentioned above 

corresponds to the static annotation phase, in which genes are annotated as individual 

entities. This phase is usually followed by a dynamic annotation, which can give further 

about the genetic networks, regulation and metabolic pathways of each annotated gene 

(Figure 19) (Médigue and Moszer, 2007). To facilitate this task, it is possible to classify 

the annotated genes by the aid of different tools such as The Gene Ontology (Gene 

Ontology Consortium, 2004), the Clusters of Orthologous Groups of proteins (Tatusov et 

al., 2003), the FIGfams (Meyer et al., 2009), the SEED (Overbeek et al., 2005; Overbeek 

et al., 2014), and/or the Kyoto Encyclopaedia of Genes (KEGG) orthology (Moriya et al., 

2007). The Gene Ontology (GO) classification is useful for getting an overview of the 

role of individual proteins in the context of the cell, i.e. their biochemical role, cellular 

location, and biological processes in which they are involved (Gene Ontology 

Consortium, 2004; Médigue and Moszer, 2007). The Clusters of Orthologous Groups of 

proteins (COG) gives a classification of proteins based on orthologous relationships 

between genes, based on BLASTP comparisons from selected genomes and subsequent 

construction of clusters (Tatusov et al., 2003; Médigue and Moszer, 2007). The FIGfams 

offers a classification of proteins in terms of similarity against a database made up of over 

100,000 protein families that are the product of manual curation (Meyer et al., 2009). The 

SEED uses a subsystem-based approach to assign genes to functions, where a subsystem 

can be defined as a set of functional roles that together implement a specific biological 
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process or structural complex (Overbeek et al., 2005; Overbeek et al., 2014). The KEGG 

orthology (KO) identifiers represent ortholog groups of genes that are directly linked to 

objects in the KEGG pathway map, and are based on the best hit information using Smith-

Waterman scores as well as manual curation (Moriya et al., 2007). This task of relating a 

predicted protein to a metabolic pathway is often facilitated by the assignment of an 

Enzyme Commission (EC) number, which contains information of the biochemical 

processes and pathways in which an enzyme participates (International Union of 

Biochemistry and Molecular Biology by Academic Press, 1992). The KEGG resource 

provides a reference knowledge base for linking genomes to biological systems, in which 

groups of orthologous genes characterised by their KO identifier and assigned to their 

corresponding EC numbers are attributed to particular metabolic pathways for several 

model organisms (Kanehisa et al, 2006; Kanehisa et al., 2014).  

 Two widely used servers for genome annotation are the Prokaryotic Genomes 

Automatic Annotation Pipeline (PGAAP) proposed by NCBI (Angiuoli et al., 2008; 

Tatusova et al., 2013) and the Rapid Annotation used Subsystems Technology (RAST) 

(Aziz et al., 2008). Both servers use intrinsic and extrinsic methods to detect and annotate 

genes. 

i. The Prokaryotic Genomes Automatic Annotation Pipeline 

(PGAAP) 

 The PGAAP combines Hidden Markov Model (HMM)-based gene prediction 

methods with a sequence similarity-based approach, which combines comparison of the 

predicted gene products to the non-redundant protein database, Entrez Protein Clusters 

(NCBI Resource Coordinators, 2015), the Conserved Domain Database (Marchler-Bauer 

et al., 2004), and the Clusters of Orthologous Groups of proteins (COG) (Tatusov et al., 

2003). To predict genes, a combination of GeneMark (Borodovsky and McIninch, 1993; 

Lukashin and Borodovsky, 1998) and Glimmer (Salzberg et al., 1998) is used. rRNAs are 

predicted by sequence similarity search using BLAST (Altschul et al., 1990; Altschul et 

al., 1997) and/or by Infernal and Rfam models (Griffiths-Jones et al., 2005), and tRNAs 

are predicted using tRNAscan-SE (Lowe and Eddy, 1997). In order to detect eventual 

missing genes, the query DNA sequence is translated in all the possible six reading 

frames, previously predicted genes are masked, and the remaining sequences are searched 

using BLAST against a microbial proteins database. In case of match, the annotations are 

transferred, adding CDD and COG information from the clusters (Angiuoli et al, 2008). 

ii. The Rapid Annotation used Subsystems Technology (RAST) 

 RAST attempts to achieve accuracy, consistency, and completeness on the use of a 

subsystems library, based on protein families derived from FIGfam (Aziz et al., 2008; 
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Meyer et al., 2009; Overbeek et al., 2005). As a result, RAST produces two classes of 

gene functions: subsystem-based assertions and non-subsystem based assertions. The 

former are based on recognition of functional variants of subsystems, while the latter are 

filled in using more common approaches based on integration of evidence from a number 

of tools (Aziz et al., 2008). Moreover, the output of RAST provides an environment for 

browsing the annotated genomes and compare them to the hundreds of genomes that are 

available within the SEED integration (Aziz et al., 2008; Overbeek et al., 2014). As a first 

step, RAST uses tRNAscan-SE to call tRNAs and a tool called “search_for_rnas” to call 

rRNAs. After this, Glimmer is used to predict putative protein encoding genes (PEGs). 

The next step consists of establishing the phylogenetic context and determine the 

neighbouring genomes; for this, a small set of FIGfams that are (nearly) universal in 

prokaryotes is taken, and the occurrence of the previously predicted PEGs is evaluated. 

Once this is done, a set of FIGfams are selected from the neighbouring genomes and are 

searched in the query genome. These FIGfams correspond to genes that are likely to 

occur. A training set is created from the sequences obtained from the matched FIGfams, 

and is used to recall the PEGs. The remaining putative PEGs that had not been matched 

against the neighbouring genomes are then searched against the entire collection of 

FIGfams using BLAST. The putative proteins that still remain are processed to resolve 

issues relating to overlapping gene calls, starts that need to be adjusted, and so forth; the 

sequences are blasted against a large non-redundant protein database in order to use 

similarity-based evidence to resolve the conflicts. Once the annotation is complete, a 

metabolic reconstruction and a model of the cellular machinery is initiated from the 

information stored in the subsystems library. The access to these models is facilitated 

through the SEED-Viewer environment (Aziz et al., 2008). 

 

2. Phylogenomics and comparative genomics of O. oeni  

 

a. Phylogenomics 

Phylogenomics, as an extension of phylogenetics, also studies the relationships 

among organisms, but at the genomic features level rather than by aligning few 

sequences. Phylogenomics involves the use of whole genome data to reconstruct the 

evolutionary history of organisms (Delsuc et al., 2005); compared to classical 

phylogenetics, these methods aim to establish the relations among organisms in a broader 

and more holistic way, and several techniques have been developed, such as genomic 

SNP concatenation (Foster et al., 2009), super-matrix trees (Wu and Eisen, 2008; Wu and 



 
Figure 20. Super-tree of 28 LAB species. 
To the left, species super-tree obtained by the concatenation of 232 genes. To the right, a comparison with a tree 
for the same species, obtained by multiple alignment of 16S rRNA gene (from Zhang et al., 2011). 
 
 
 
 

 
Figure 21. Super-tree of 578 bacterial genomes. 
The tree was obtained from the alignment of 31 core genes. Each phyla is highlighted in a different colour 
acording to the legend (from Wu and Eisen, 2008). 
 
  

partitioned maximum likelihood (ML) and Bayesian ana-
lyses, yielded an identical, well-resolved tree topology
with strong supports for all nodes (BS > 99% and PP >
0.99) (Figure 1), suggesting that the accuracy of our
phylogenetic inference is independent of tree-building
methods. As revealed in Figure 1 the monophyly for
families Leuconostocaceae, Enterococcaceae and Strep-
tococcaceae were strongly supported. For Lactobacilla-
ceae, some species were more closely related to
Leuconostocaceae than the other Lactobacillaceae spe-
cies, supporting the paraphyly for family Lactobacilla-
ceae, providing a possibility that Leuconostocaceae and
Lactobacillaceae can be combined into a family.
The LAB species were divided into two groups. Group

1 included Enterococcaceae and Streptococcaceae. Group
2 included Lactobacillaceae and Leuconostocaceae.
Within Group 1, the monophyly of the genera

Enterococcus, Lactococcus and Streptococcus were
strongly supported. In Streptococcus, S. mutans and S.
thermophilus were grouped together, and S. gordonii was
their sister taxon. The relationships within Group 1
observed here were congruent with two other studies
[5,10], but disagreed with the 16 S rRNA gene tree [22]
(Figure 1). Within Group 2, LAB species were divided
into two clades. One clade composed of acidophilus com-
plex of genus Lactobacillus and two other Lactobacillus
species, Lb. sakei and Lb. casei. This result is in contra-
diction with the RNA polymerase-based study of Liu [7]
that suggested that Lb. sakei and Lb. casei are more clo-
sely related to other Lactobacillus species and the genera
Pediococcus, Oenococcus as well as Leuconostoc. However,
our results are in agreement with the RNA polymerase
trees [5,10], ribosomal-protein tree [9] and the 141-core
proteins tree [8]. Of the five recognized Lactobacillus
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Figure 1 Partitioned Bayesian/ML tree topology inferred from the selected 232 genes and the 16 S rRNA gene tree of 29 species. For
the concatenated tree of 232 genes, ML bootstrap supports and Bayesian posterior probabilities are shown above the branches. The stars imply
newly added species in this study compared with that of Claesson et al. [8]. Lb. delbrueckii subsp. bulgaricus 1 refers to Lb. delbrueckii subsp.
bulgaricus ATCC BAA-365; Lb. delbrueckii subsp. bulgaricus 2 refers to Lb. delbrueckii subsp. bulgaricus ATCC 11842; NJ analysis under 1000
bootstrap runs of 16 S rRNA genes from the study by Ventura et al [12] and Kawamura et al ‘s study [22]. ML bootstrap supports higher than 50
are shown above the branches.
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genomes have been sequenced, however, a hybrid approach
may be most fruitful. A genome tree built from sequenced
genomes can be used as a scaffold; species for which we lack

full genome sequences can be placed by comparing their SSU
rRNA sequences with those of sequenced species.

An unrooted maximum likelihood bacterial genome treeFigure 2 
An unrooted maximum likelihood bacterial genome tree. The tree was constructed from concatenated protein sequence alignments derived from 31 
housekeeping genes. All major phyla are separated into their monophyletic groups and are highlighted by color. The branches with bootstrap support of 
over 80 (out of 100 replicates) are indicated with black dots. Although the relationships among the phyla are not strongly supported, those below the 
phylum level show very respectable support. The radial tree was generated using iTOL [42].
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Scott, 2012), Average Nucleotide Identity (ANI) and genomic signatures (Richter and 

Rosselló-Móra, 2009, Chan et al., 2012). 

i. Genomic SNP concatenation 

This method consists in concatenating all the orthologous SNPs of a set of 

genomes into an artificial sequence, and reconstruct a phylogenetic tree from it. The 

phylogenomic trees obtained by this approach have been proven useful for studying the 

evolution of species that otherwise are hard to estimate by traditional methods due to a 

limited genomic diversity, e.g. Brucella species (Foster et al., 2009). However, 

phylogenies obtained by this method are hard to interpret since they are not guaranteed to 

reflect the species tree (Lemmon and Lemmon, 2013), because the concatenated set of 

SNP will depend on the genome used as reference. 

ii. Super-matrix trees 

Super-matrix trees (a.k.a. genome trees or super trees) rely on the concatenation of 

multiple markers on a large scale manner, e.g. all the genes of a coregenome or a set of 

conserved proteins, in order to reconstruct a phylogenomic tree (Wu and Eisen, 2008; Wu 

and Scott, 2012). This technique has been successfully applied to reconstruct the 

evolutionary history of 28 LAB species, by concatenating the amino acid sequences of the 

proteins coded by 232 conserved genes (Figure 20) (Zhang et al., 2011), and also to 

reconstruct the phylogenomic tree of 578 bacterial genomes belonging to different phyla 

using a 31 core genes (Figure 21) (Wu and Eisen, 2008). Although very robust, this 

method demands the correct identification of the common set of genes. 

iii. Average Nucleotide Identity 

ANI is a method to calculate the genomic distance between individuals in terms of 

global nucleotidic similarity. Two commonly used ANI algorithms estimate genomic 

distances either by MUMmer (ANIm), either by BLAST (ANIb). Because ANIm uses 

MUMmer’s NUCmer, which uses a suffix-tree algorithm to align entire genome 

sequences, it is sensible when analysing close sequences, but loses efficiency when the 

compared sequences are more divergent (Delcher et al., 2002). ANIb, on the other side, 

relies on BLAST which is better at finding matching distant sequences, but often fails to 

give an optimal alignment (Altschul et al., 1997). Also, the bigger memory usage of this 

algorithm does not allow to align whole genomes directly; instead, the genomes are first 

fragmented in random sequences of 1020bp, blasted all-vs-all, and the distance is 

calculated from the average of the best matches. The divergence of the results gets 

accentuated when the ANI value falls below 90%, while the threshold of species is around 

96%. Due to these intrinsic differences between both algorithms, the former is better 

performing when analysing different strains from the same species, while the latter is 



 
 
Figure 22. Correlation between ANIm and ANIb. 
The distances of a set of genomes were calculated by ANIb and by ANIm. The plot shows that the calculated 
distances do not always are equivalent (from Richter and Rosselló-Móra, 2009). 
 
 
 
 
 
 
 
 
 

 
 
Figure 23. Correlation between Tetra and ANIm. 
The correlation shows that Tetra is almost insensitive for cases where ANIm > 95%, while it is much more 
sensitive than ANIm below this threshold. Outlier cases are highlighted (from Richter and Rosselló-Móra, 2009). 
 
  

nomes, was achieved by comparing artificially sectioned genomes in
1,020 nucleotide fragments with independence, whether or not they
responded to real open reading frames (ORFs) (12). This approach
produced similar results as the former method based on predicted
protein-coding sequences. Other parameters, such as maximal
unique matches (MUM), have been evaluated to circumscribe
species (13). However, despite the fact that this parameter seemed
to help in embracing species, given that it correlates nicely with
ANI, this method needs to work with fully sequenced genomes and
does not work with only draft incomplete genomes.

The aim of this study was to find a way to reconcile the genomic
information with the current knowledge on the taxonomy of
prokaryotes to recommend an immediate shift from the traditional
DDH to the modern ANI parameters. A software tool (JSpecies)
was designed that easily allowed the calculation of ANI based on the
BLAST algorithm (14), as well as on the MUMmer ultra-rapid
aligning tool (15). Both methods are evaluated here. In addition, a
statistical calculation was implemented in the program based on
tetranucleotide frequencies, an alignment-free parameter that has
been successfully applied to phylogenetically sort metagenome
inserts (16). Finally, and because all hitherto ANI measurements
have been made on complete genome sequences, the use of the
pyrosequencing 454 technique was evaluated to obtain random
partial genome coverages for evaluating whether stable values can
be achieved through a reduction in sequencing costs, as previously
required (17).

Results and Discussion
Taxonomy and the Genome Database. Species descriptions tend to
present the genotypic, phenotypic, and sometimes ecologic prop-
erties of what has been regarded as a unit by the taxonomist. One
of the most important premises when classifying new taxa is the
designation of one of the strains as being the type material that
should be used as reference for any further taxonomic work. In this
regard, it is required that the designated type strain is deposited in
two international strain collections to make it publicly available
(18). For any kind of comparative study that implies the use of
taxonomic categories (e.g., evolutionary or ecological discussions),
it is of the utmost importance to ensure that any observation is
made with the type strain, or with material that has been proved by
taxonomic studies. However, one of the major drawbacks that
taxonomists may find in the current genome database (www.ncbi.
nlm.nih.gov) is that it relies on the identification of the strains that
have been sequenced. The authors submitting their sequences tag
them with a putative specific name together with a strain designa-
tion. In most cases, the strain code corresponds to that given in the
original isolation, and only about 10% of the entries are tagged with
one of the international strain collection numbers.

To track the identity of the deposited strains, all strain designa-
tions in the genome database were verified by crosschecking with
the Straininfo bioportal (19) and the List of Prokaryotic names with
Standing in Nomenclature (LPSN) (20) databases, and those
corresponding to species type strains were recognized. Our obser-
vations indicated that less than 30% of the sequenced genomes
(!50% of the validly published names listed) belonged to the type
strain of the species for which they were identified (Table S1 and
Table S2). This fact represents a major problem when trying to
implement genomic data into microbial taxonomy. For example,
from the !797 genomes identified with a validly published name,
only !255 were from a type strain. However, none of the remaining
256 validly published names (corresponding to 683 strains) listed as
sequenced genomes were represented by the corresponding type
strain (Table S1 and Table S2). In addition, !50 listed names had
never been validly published (Table S2). Incorrect identifications
will lead to mistaken observations. Perhaps (as will be described
below), these sequenced strains are not even members of the species
carrying the given name. This major drawback can be overcome by
making a sequencing effort to obtain all of the genomes of most of

the type material available, an effort that was clearly identified by
an ad hoc committee of scientists in 2006 (21). Once this catalog is
achieved, the identification of new organisms as members of a given
species may be easily based only on database matches.

ANIb and ANIm. Among the various candidate methods for substi-
tuting DDH (4), ANI may be the best choice, as it is the best in silico
parameter that could represent DDH, as has been experimentally
demonstrated (1, 11, 12). So far the results on genome comparisons
for taxonomic purposes have been made by basing the calculations
on BLAST (14). The pairwise comparisons were preceded by either
first finding the shared orthologous protein coding genes (11) or
then by artificially cutting the genomes in pieces of 1,020 nucleotide
stretches (12). However, there are new and more efficient algo-
rithms for large DNA sequences, such as the MUMmer software
package, for example (15). This uses an efficient data structure
named suffix trees to calculate alignments. These suffix trees can
rapidly align sequences containing millions of nucleotides with
precision. To facilitate the calculation of ANIb and ANIm, we
wrapped both algorithms within the software tool JSpecies that was
specially designed to calculate and compare species specific signa-
tures. The calculation time for the evaluation of the ANIm algo-
rithm was shown to be much faster, with nearly similar precision
(Fig. S1). Moreover, the speed enhancement, which is an important
factor when it comes to large comparisons, of the ANIm calculation
does not require previous slicing of the genomes into pieces or
sieving of shared orthologous genes. Hereafter, ‘‘ANIb’’ will be
used to refer to those results calculated with the BLAST algorithm
and ‘‘ANIm’’ to those calculated with the MUMmer algorithm.

Both parameters were calculated and the results were compared
by determining 200 pairwise comparisons on the available full
genomes for which we could obtain DDH values in the literature
(Table S3 and SI). Our calculations corresponded to an !80%
increase in data compared with previous calculations (12). As can
be seen in Fig. 1, the general picture is that both parameters
correlate very precisely, especially in the high ANI value zone,
where almost no differences between the ANIm and ANIb calcu-
lations could be seen. Differences started to be more evident once
the compared genomes appeared to be divergent (sharing "90%
ANI). These discrepancies were basically due to the different
sensitivity and sensibility of MUMmer over BLAST, as the former
is stricter in detecting matches with the default settings (15). The
default parameters used for the results were those that seemed to

Fig. 1. Plotted results of ANIb versus ANIm. The triangles show those values
that correspond to what taxonomists consider as ‘‘true’’ species according to
the DDH values traditionally applied and that have previously been classified.
Inset shows the regression lines of the pairwise comparisons of ANIb or ANIm
values with their corresponding percentage of aligned stretches (percentage
of nucleotides included in the study).
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be best suited for the purpose of the ANI value, to determine
whether two organisms were of the same species. In the light of
these results, we believe that ANIm provides more robust results
when the pair of genomes compared share a high degree of
similarity (ANI !90%). However, as the divergence increases (Fig.
1, inset), ANIm is more stringent in the selection of nucleotide
stretches for calculation than ANIb using default parameters.

As can be seen in Fig. 2, most of the results obtained from
organisms of the same species (i.e., DDH values !60–70% and
classified as members of the same taxon) shared an ANIm identity
of greater than 96%. In this case, we considered the set of species
Escherichia coli, Shigella flexneri, and S. sonnei as a single hybrid-
ization group that could be considered as a single species (22). In
this regard, it is important to note that, for some cases used for
special purposes by taxonomists, they will allow close genospecies
to be represented by different taxa, as is the case in maintaining the
genus Shigella for medical purposes (23). In the light of our results,
the proposed threshold of 94% ANI as the putative boundary for
species circumscriptions is reinforced, and seems to work excellently
in mirroring the DDH range of "60–70%. Actually, the whole
database for genomic comparisons of what could be considered as
a single species was checked (Table S1) and, in most of the cases,
all putative groups could be well circumscribed within the ANIm
range of 96–97%. A transition zone could be drawn where still high
DDH (!60% similarity) values led to lower ANIm values or vice
versa (Fig. 2). The most remarkable cases were (i) the hybridization
group of members of the species Methanococcus maripaludis (24),
where strains C5, C6, and C7 shared DDH values between 64% and
69% with low ANIm values #91%; or (ii) the pair of species
Thermotoga maritima MSB8 and T. petrophila RKU-1 (25) that,
despite being divergent in the DDH experiments (#28% similar-
ity), shared high ANIm values (!95%). In both cases, which show
important divergence from the expected results, it may perhaps be
questioned whether there was experimental error in the DDH
determinations or whether the deposition of the sequenced strains
was incorrect. Nevertheless, altogether, our calculations based on
"85 groups of strains putatively representing single species favor
the recommendation to use an ANI boundary of "95–96% for
taxonomically circumscribing prokaryotic species.

Tetranucleotide Signature Frequency Correlation Coefficient. ANI
values are based on pairwise alignment of genome stretches. In
contrast, statistical calculations of oligonucleotide frequencies
among sequence data are a fast, alignment-free, easy-to-implement,

and powerful alternative for a number of different applications
(26). Oligonucleotide frequencies carry a species-specific signal, but
the evolutionary reasons behind this have not been comprehensive
explained so far (27). Longer oligonucleotide signatures carry more
signal than shorter ones (17), although the former need higher
computational power. In this regard, the use of a tetranucleotide
usage pattern has been shown to be a good compromise between
computational calculation power and a pronounced phylogenetic
signal (28). Here we evaluated tetranucleotide signature frequen-
cies to assess whether an alignment-free genomic feature could be
used to circumscribe species. The tetranucleotide calculation was
also implemented in JSpecies. The codon usage of each genome
type determines a characteristic frequency occurrence for each of
the 256 combinations of groups of tetranucleotide sequences. In this
regard, it is expected that closely related genomes will show a similar
distribution of the usage of these signatures. Pairwise comparisons
between genomes can be performed by plotting each corresponding
tetranucleotide frequency and then obtaining a regression line. Two
very closely related genomes may show very high correlation values
where the plotted values follow a clear line (Fig. S2). However,
when the genomes show a certain degree of divergence, the plotted
values show higher dispersion, and the correlation tends to
decrease.

A total of 536 pairwise comparisons were determined among the
sequenced genomes in groups of strains putatively belonging to the
same species (Table S1). We analyzed the correspondence between
the ANIm values and the tetranucleotide frequency correlation
coefficients (TETRA) to evaluate the usability of the latter param-
eter (Fig. 3). As can be seen for most of the intraspecific results,
when considered with ANIm values above a 96% identity, they
corresponded to very high correlation coefficients !0.99 (trian-
gles). However, there were still cases (6% of the determinations) for
which, despite the ANIm values indicating a certain genome
divergence, the signature usage was still highly correlated. An
explanation could be that evolutionary or environmental forces
(29) may impede modifications in the genome signature despite the
fact that genetic drift may occur. The rare opposite cases (Fig. 3) in
which high gene identities (ANIm !94%) were related to very low
TETRA correlations are more difficult to explain. The only case
found was Acinetobacter baumannii strain SDF (Table S1) that
showed high ANIm values (!97%, similarly to ANIb values, not
given) with the rest of the genomes, but TETRA values very
divergent (#0.96). However, this strain just aligned about 60% with
the remaining genomes, whereas the rest aligned with each other
with values above 85%. The difficulties in aligning are perhaps due
to intrinsic characteristics of the genome that might be related to

Fig. 2. Plotted values of DDH versus ANIm. Triangles show values that
correspond to what taxonomists consider as ‘‘true’’ species according to the
DDH values traditionally applied and that have previously been classified.
Squares indicate values that appear to be in the transition zone.

Fig. 3. Plotted values of TETRA versus ANIm. Triangles show those values
that correspond to what taxonomists consider as ‘‘true’’ species according to
the DDH values traditionally applied and that have previously been classified.
Squares indicate values that appear to be in the transition zone. Note that this
is an enlarged (zoomed) portion of the graphic, and values #80% ANI and 0.90
TETRA have been skipped.

19128 ! www.pnas.org"cgi"doi"10.1073"pnas.0906412106 Richter and Rosselló-Móra
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better when analysing individuals of different species (Figure 22) (Richter and Rosselló-

Móra, 2009). It is then pertinent to say that none of both methods is completely accurate 

or better than the other: both are complementary and give better approximations 

according to the set of genomes that are being analysed, and the choice of one or the other 

depends on the case in hand. 

iv. Genomic signatures 

The genomic signature is the frequency in which the nucleotidic k-mers of any 

arbitrary length (“words”) are represented in a genome (Pride et al., 2003; Bohlin and 

Skjerve, 2009). Thus, comparing genomes by measuring the distance between their 

genomic signatures counts as an alignment-independent method. In order to calculate the 

intergenomic distance, the frequencies of all the possible words of a given length must be 

measured for each genome. The obtained frequencies are then plotted in a Cartesian 

coordinate system with each genome represented in an axis: a linear regression is made 

from the points, whose r2 value determines de distance between the genomes. The smaller 

the length of the k-mer, the fastest the calculation becomes, but at the same time less 

possibilities for forming words exist, making the distance measure less accurate, i.e. by 

measuring dinucleotides there are only 42 = 16 possible words (AA, AT, AC, AG, TA, 

TT, TC … GG) to measure, giving plots of only 16 points to calculate the r2 value. The 

longer the length of the k-mer, the possibilities of creating new words rise exponentially, 

giving much more accurate distance measurements, i.e. with pentanucleotides there are 46 

= 4096 possible words (AAAAAA, AAAAAT, AAAAAC … GGGGGG) to make points 

for calculating r2, but the memory needed for calculating rises exponentially. In general, 

k-mers of length 4 (tetramers) are well accepted for calculating distances based on 

genomic signature, since they offer a good trade-off between accuracy and memory needs 

(Richter and Rosselló-Móra, 2009). Genomic signatures are affected by GC content and 

oligonucleotide usage bias, hence they are useful for comparing organisms in terms of 

environmental pressure rather than sequence similarity (Pride et al., 2003; Deschavane et 

al., 2010). The distances measured by genomic signatures are generally very close 

between strains of a same species (r2 > 0.99) even when their sequences are relatively 

divergent (ANI ≈ 95%, when the species threshold is ~96%). However, below this ANI 

threshold the distances measured by genomic signature drop dramatically (r2 < 0.7) 

(Figure 23). For this reason, genomic signatures are not an accurate tool for measuring 

distances among strains of the same species, but they are very useful for discarding the 

affiliation of an individual to a given species. Since oligonucleotide frequencies are stable 

across a genome, they are also useful for detecting HGT events and evolutionary 

relationships between hosts and phages (Deschavanne et al., 2010). 



 
Figure 24. Odds of finding a new gene when adding a genome to a set. 
The x-axis shows the number of genomes that are added to a pangenome analysis, and the y-axis shows the 
number of new genes found. Note that the odds are not drastically affected by the sub-sampling (from Vernikos 
et al., 2015). 
 
 
 
 
 

 
A) The set of genes common to all the strains corresponds to the coregenome. Genes shared by at least two 

strains make the shellgenome, while strain-specific genes make the cloudgenome (from Garrigues et al., 
2013). 

 

 
B) The pangenome can be seen as the sum of the core, shell and cloudgenomes (from Snipen and Ussery, 

2010). 
 
Figure 25. Pan, shell, cloud and core genomes. 
  

extrapolation of the trend of the decreasing core genome
as more genomes are added).

In addition, the combinatorial aspect of the approach,
whereby all permutations of adding a genome to a set of
genomes previously analyzed are considered, does not
scale to large numbers of genomes. The number of
comparisons used to calculate the new, core and shared
genes at the nth genome can be modeled with the
following function, where C is the total number of com-
parisons and N is the total number of genomes:

C ¼ N !

ðn # 1Þ! % ðN # nÞ!

To circumvent the scalability problem, we developed a
method for sub-sampling the number of comparisons to be
performed between N genomes. The sampling approach is
controlled random in that for each strain, at each value of n,
comparisons are randomly selected while ensuring that each
strain undergoes the same number of comparisons. Each
comparison represents adding a target strain to a random
sampling of n # 1 genomes and counting the new, core and
dispensable genes. The number of comparisons per strain,
or multiplicity, is configurable such that a balance can be
struck between dataset size and available compute power.

For values of N low enough to allow for all combinations
to be calculated, we observed that even aggressive

sub-sampling still provides a representative set of data
points with average or median values nearly identical to
those of the entire set of data points (all combinations).
Figure 1 illustrates the application of three multiplicity
levels of sub-sampling on N = 8 Streptococcus agalactiae
genomes, the set of genomes we used originally to
develop the pan-genome concept [1].

We also began fitting regression curves using a power law
model (Heap’s law [8]) instead of an exponential decay.
The power law model should be fitted only on the tail of
the distribution and as such exclude low values of
n. Examples of power law regression fitting as well as
sub-sampling of comparisons include those presented in
Tettelin et al. [8] and more recent analyses we performed
on Yersinia [10], Bacillus [11], Borrelia [12] and the Strep-
neumo Sybil website dedicated to the comparative
analysis of 34 Streptococcus pneumoniae genomes ([13],
http://strepneumo-sybil.igs.umaryland.edu/pangenome).

In the recent past, in an effort to computationally
standardize pan-genome analyses, several online tools
and software suites have been developed. For example,
GET_HOMOLOGUES [14&] is a customizable and
detailed pan-genome analysis platform for microorgan-
isms addressed to non-bioinformaticians. BLAST atlas
[15] intuitively visualizes which genes from the
reference genome are present in other genomes.
Mugsy-Annotator [16] identifies syntenic orthologs
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New gene discovery plots for the pan-genome analysis of eight Streptococcus agalactiae genomes. (a) Distribution of data points for the number
of new genes identified with all combinations of adding a genome n to n # 1 genomes (see Ref. [1]). The total number of comparisons for
8 genomes without sub-sampling results in 1016 data points represented by red circles. Blue dots: sub-sampling of the comparisons at a
multiplicity of 15, resulting in 600 data points. Green dots: sub-sampling of the comparisons at a multiplicity of 5, resulting in 248 data points. The
plot shows that the controlled random sampling ensures the lack of bias in the distribution of comparisons at different multiplicities. (b) As a
consequence of the lack of bias, the averages and regression curves are not significantly affected by the sub-sampling approach.

Current Opinion in Microbiology 2015, 23:148–154 www.sciencedirect.com

Pangenome analysis of industrial starter
cultures
Analysis of the pangenome is a relatively new concept for
industrial starter cultures with only a limited number of
studies reported. Early publications were based on com-
parative genome hybridisation and used microarrays with
few strains represented owing to the low number of
genome sequences available. A micro array based on a
single strain of Bifidobacterium animalis subsp lactis was
used to compare a selection of commercially available
Bifidobacterium strains [8]; a pangenome microarray of S.
thermophilus based on three genome sequences was used
to characterise 47 industrial S. thermophilus strains [9]; a
pangenome microarray of two Lactobacillus casei genome
sequences was used to compare 21 L. casei isolates from
various environmental niches [10]; microarrays based on
four L. lactis genome sequences were used to compare 39
L. lactis isolates of plant or dairy origin [11] and micro-
arrays based on a single Lactobacillus plantarum strain was
used to characterise 60 L. plantarum isolates [12,13]. A
major disadvantage of all these studies is that only genes
present on the micro array are assessed, that is, no
information is obtained on genes not present in the
reference strains.

Pangenome analysis based on genome sequencing
includes the comparison of three Lactobacillus delbrueckii
subsp bulgaricus strains [14!] and six L. plantarum strains
[13]. The latter study revealed that comparative genome

hybridisation was subject to false negative results, that is,
genes that were actually present were concluded to be
absent as a result of low homology to the sequences
present on the microarray. In other studies, the Bifido-
bacterium pangenome was found to consist of more than
5000 genes [15!,16!!] while the pangenome of genus
Lactobacillus was determined to consist of more than
13 000 genes based on genomes from 14 species [16!!].
A significant proportion of the genes in these pangenomes
remain to be characterised and annotated.

A comparison of the genome sequences of 10 industrial S.
thermophilus strains showed that each strain contained an
average of 41 kb of DNA not present in the three pre-
viously published genome sequences [6]. Much of this
DNA encodes genes proposed to be important to the
technological properties of the strains. These include
restriction/modification systems, prophage genes and a
novel CRISPR locus relevant to the superior bacterio-
phage resistance of these strains, EPS genes relevant to
texture formation (see below), and transport genes and
metabolic genes possibly involved in faster growth and
acidification of milk. In addition, several genes of
unknown function were detected.

S. thermophilus and texture formation
Dairy strains of S. thermophilus have the ability to produce
varying amounts of exopolysaccharides (EPS) that affect
the physical, rheological, and sensoric properties of fer-
mented milk products [17,18]. EPS from S. thermophilus
display a great diversity with respect to their sugar com-
position, degree of branching, molecular weight and
structure of the repeating unit resulting in different
physical properties [19].

Genes involved in EPS biosynthesis are organised in an
operon that is usually flanked by conserved regions: deoD-
epsABCD and orf14.9 [9,20]. Based on sequence analysis of
EPS genes in 27 S. thermophilus strains, 15 types of EPS
cluster and 67 putative glycosyltransferases could be
identified reflecting the diversity of monosaccharides
present in the repeat units [18]. In an unpublished
pangenomics study of more than 30 industrial S. thermo-
philus strains, it was found that all strains contain EPS
gene clusters, even those which do not contribute texture
in milk applications (T.B. Rasmussen; personal com-
munication). Thus, other factors, for example the expres-
sion of the respective EPS genes and/or variation within
the genes, play an important role in texture production.
Furthermore, genes located outside the EPS operon,
including regulatory elements or accessory proteins yet
to be identified, could potentially be involved.

Comparative genomics and the discovery of
pili in Lactobacillus rhamnosus GG
The strain Lactobacillus rhamnosus GG (L.GG) has long
been known to adhere well to intestinal mucosa relative
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The pangenome.
The pangenome of a species consists of the entire gene set present
within the species. The core genome contains those genes common to
all strains, while group and strain-specific genes may reflect niche
specific evolution. Genome and pangenome comparisons provide a
powerful avenue to the discovery of new biological functions, and, where
they can be linked to function, to unravelling complex biological
mechanisms.

Current Opinion in Biotechnology 2013, 24:187–191 www.sciencedirect.com
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ecological niches.  For example, the shell and cloud 
would be expected to be larger for Actinobacteria 
and other organisms that produce secondary me-
tabolites.  Further, the pan-genomes of phyla 
could contain specific pathways which are phy-
lum- or class-specific (e.g. polyketides type I and II 
pathways, aminoglycosides, non-ribosomal pep-
�����ǡ�Ⱦ-lactams, etc), that would be part of phylum 
specific shells.  On the other hand, pathogenic, 
parasitic and commensal species that are not rou-
tinely found in the environment could have small-
er clouds. 

 
Figure 1. The bacterial pan-genome can be divided 
into the core (genes always occurring in any genome 
inside the pan-genome) the shell (genes frequently 
occurring) and cloud (rarely occurring genes). 

Implementation 
Standard settings for BLASTp were used, except 
the E-value cutoff, where we use 10-5. A more lib-
eral cutoff will have very small effects on the final 
results, but will slow down the procedure signifi-
cantly by producing a lot of poorer alignments in 
addition to the best alignments. Since the BLAST-
ing and parsing of BLAST results is the computa-
tional bottleneck of this procedure we have found 
this cutoff appropriate. The remaining computa-
tions and plotting have been implemented in R as 
part of a package for microbial pan-genomics. 

Pan-genome tree versus 16S phylogenetic tree 
Figure 3 show a pan-genome family tree for the 
genus Streptococcus, based on 42 completed ge-
nomes downloaded from NCBI in August 2009. We 
have used this genus as an example, because it 
contains several species with multiple completed 
genomes. All genomes within each species cluster 
together, without exception, and further the reso-
lution is good enough to distinguish smaller dif-
ferences among strains within the species. 
In Figure 4 we have, for comparison to Figure 3, 
included another tree for the same genus, based 
on the more traditional approach of computing 
evolutionary distances from the multiple align-
ment of the 16S ribosomal RNA sequences of each 
genome. Here we typically see extremely small 
distances between many strains, combined with 
some bigger distances, giving a lower resolution. 
Also, S. pyogenes is divided into two very different 
clusters with 7 and 5 genomes in each. The small-
er cluster of S. pyogenes strains all share an almost 
identical annotation of the 16S sequences differing 
in length from all other streptococci. In the pan-
genome tree of Figure 3 this division of S. pyogenes 
strains is not supported. Also the S. agalactiae 
genomes are no longer clustered in the 16S tree, 
and the strain S. pneumoniae R6 is also found se-
parated from all other S. pneumoniae strains. The 
16S tree was constructed using UPGMA in order to 
make it comparable to that in Figure 3. UPGMA is 
in general not accepted as a proper way of re-
constructing phylogenetic trees, but a tree built by 
neighbor-joining verified the separation of strains, 
even if distances between nodes changed (not 
shown).  

Effect of weights 
In Figure 5 we illustrate different choices of 
weights. Here we have used data for a single spe-
cies, Staphylococcus aureus. Annotated proteins 
for all completed genomes of this species were 
downloaded from NCBI. Note that there are some 
differences in clustering - for example, the two 
USA300 strains, which are community-acquired 
methicillin-resistant strains [15] that would be 
expected to be similar, are not as close in the shell, 
but cluster together when more weight is given to 
the “cloudy part” of the pan-genome. Thus, these 
two strains are not very similar when we consider 
the S. aureus typical part of the genomes, but be-
come more alike when we instead focus on the 
rarely occurring, more strain-specific (accessory) 
genes.  
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Even though genomic distances have been used to evaluate intra and inter-species 

evolutionary relationships (Busquet et al., 2012; Chan et al., 2012), up to date there are no 

published studies in which phylogenomic approaches are used to study in detail the 

evolutionary history of O. oeni, neither in relation to other species nor intraspecies. 

 

b. Comparative genomics and pan genome analysis of O. oeni 

With the development of NGS technologies and the rise of bioinformatics and 

genomics sciences, knowledge has started to be constructed in a more holistic approach 

and the techniques for selecting strains are becoming more and more based on knowledge 

rather than trial and error strategies. Placing genomes into an evolutionary framework has 

proved useful for understanding the functioning of organisms (Abby and Daubin, 2007). 

In the study of prokaryotes, comparative genomics has been used as a powerful tool to 

understand molecular evolution, universal features and diversity across genomes (core 

and pan genomes), the evolution of gene repertories, evolution of gene networks, HGT 

events, phylogenomics, and more (Abby and Daubin, 2007; Tettelin et al., 2008). In the 

domain of genomic knowledge, comparative genomics has the potential to take the lead in 

discovery and characterization (Haft, 2015). Pan genome analysis, as a sub discipline of 

comparative genomics, provides a framework for estimating the genomic diversity of the 

dataset at hand (Vernikos et al., 2015). A pan genome is the sum of all the genes that are 

present in a set of organisms (Tettelin et al., 2008; Snipen and Ussery, 2010; Garrigues e 

al., 2013). It is possible to talk about the pan genome of any set of organisms (e.g. lactic 

acid bacteria, or mammals), however, the concept is more often used in a monophyletic 

context (e.g. Oenococcus genus), or a single species represented by a set of strains (ex. 

Oenococcus oeni). The pan genome is not an absolute but a relative concept, since its 

composition depends on the sample used to estimate it: the Oenococcus oeni pan genome 

given by the set of stains X will be most probably different from the one given by the set 

Y. When the numbers of individuals used to determine the pan genome grows, the given 

pan genome is more representative of the real picture, since the odds of finding  non-

represented genes decrease (Figure 24) (Vernikos et al., 2015). The pan genome can be 

decomposed in the core genome and the accessory genome (Figure 25A) (Snipen and 

Ussery, 2010; Garrigues et al., 2013). The core genome is the common set of genes that 

are shared by all the individuals. As the number of individuals of the sample rises and the 

size of the pan genome grows, the size of the core genome decreases, since the odds that a 

gene that was considered as part of the core genome is absent in the newly added 

individual rise. The accessory genome is composed of the shell genome, i.e. the genes that 

are present in some individuals, and the cloud genome, i.e. the genes that are rare or 



 
Figure 26. Evolution of the pangenome content when adding genomes. 
For each genome added to a pangenome, the size of the coregenome will likely decrease (red bars) as the size of 
the accessory genome will likely increase (blue bars). The pangenome will always be the sum of both (green 
bars) (from Snipen and Ussery, 2010). 
 
 
 
 
 
 
 
 
 
 

 
Figure 27. Pangenome of 3 strains of O. oeni. 
The size of the coregenome is of 1216 genes. At least 10% of the coding potential is specific to any single strain 
(from Borneman et al., 2010). 
 
 
  

Pangenome trees 
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Figure 2. The left panel shows as an example the number of gene families found in 1, 2,…,14 genomes of the 14 
completed genomes of Staphylococcus aureus downloaded from NCBI in July 2009. The right panel illustrates three 
possible weighting schemes. The green bars give weight 1.0 to all gene families except the ORFans, i.e. those gene 
families only present in one genome, who get weight 0.0 (discarded). The blue bars give a gradually higher weight 
to the gene families found in the majority of the genomes, the shell. The red bars illustrate the opposite strategy, 
emphasizing the cloud. All gene families found in the same number of genomes get the same weights. 

 
Figure 3. Pan-genome tree for the genus Streptococcus. The red numbers 
are bootstrap values (percentages). 
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unique to one individual (Snipen and Ussery, 2010). This means that the pan genome is 

equal to the sum of core, shell and cloud genomes (Figure 25B). The analysis of the pan 

and core genomes of a set of organisms provides a powerful tool for discovering new 

biological functions and complex mechanisms (Garrigues et al., 2013). The ratio between 

the size of the pan genome and the size of the core genome of a set of individuals can give 

an estimation of the genetic diversity of the organisms being compared. When plotting the 

size of the pan and core genomes against the number of individuals added to the analysis, 

the slope of the curves can give an estimation about the representativity of the sample. 

When the set of organisms being compared is big enough, the slope of the curves tend to 

zero, meaning that the predicted pan and core genomes are close to the real ones (Figure 

26). 

Although the genomes of a considerable number of O. oeni strains have been 

sequenced until present, their individual analysis is not as informative as a comparative 

analysis between them. During the last years, more attention has been drawn towards the 

study of O. oeni’s pan genome (Borneman et al., 2010; Bartowsky and Borneman, 2011; 

Borneman et al., 2012). A first pan genome analysis of 3 strains of O. oeni (PSU-1, 

ATCC-BAA 1163 and AWRIB429) showed a core genome size of 1,216 ORF and a pan 

genome size of 2,360 ORF, with at least 10% of the coding potential being specific to any 

single strain (Figure 27) (Borneman et al., 2010). The comparison of their assembled 

genomes revealed a contig of 6.3kb that was specific to AWRIB429, with an average GC 

content considerably higher than the rest of the genome (~57% vs. 3~7.1%) and 

containing genes most probably obtained through an HGT event from a Lactobacillus. 

AWRIB429 also revealed two more unique contigs, of ~34 and ~35kb long which, based 

on sequence homology, contain the fOg44 bacteriophage of O. oeni and the p334 

bacteriophage 4628 of Lactococcus, respectively (Borneman et al., 2010). More 

interestingly, a variable zone of nearly ~50kb was identified at the region ~1,400-1,440kb 

taking PSU-1’s chromosome as reference coordinates. In PSU-1, his region contains 

genes of cell wall-associated polysaccharides synthesis, while in the other two genomes, 

this region contains several additional ORFs related to a three-component fructose-

specific PTS transporter, although they share little identity. AWRIB429 has, additionally, 

genes coding for two peptidases, an oligopeptide transporter, two PTS regulators and two 

glycosyl hydrolases (Figure 28). 

Although this study represents the foundation of the comparative genomics in O. oeni, 

three strains is far from being representative of the whole species’ diversity. A more 

complete comparison of 14 genomes of O. oeni revealed a core genome of 1,165 ORF and 

a pan genome of 2,846 ORF (Figure 29), which is consistent with the fact that the core 



 
A) Overview of a variable region across the 2 strains, spanning nearly ~50kb (from Borneman et al., 2010). 

 
 

 
B) Detail of genes contained in the variable region and their synteny (from Borneman et al., 2010). 

 
Figure 28. Variable region in 3 strains of O. oeni. 
 
 
 

 
 
Figure 29. Pangenome analysis of 14 O. oeni strains. 
Left, classification of genes from each analysed strain, in red genes belonging to the coregenome, in dark blue 
pseudogenes, and in light blue strain-specific genes (from Borneman et al., 2012). 

35 kb (ACSE01000034) which, based on sequence homol-
ogy, represent the fOg44 bacteriophage of O. oeni (Sao-
Jose, unpublished) and the p335 bacteriophage 4268 of
Lactococcus (Trotter et al. 2006), respectively.

However, in addition to the bacteriophage-related inser-
tions present in AWRIB429, there were also many
AWRIB429-specific ORFs whose presence could not be
associated with bacteriophages. Thirty four of these ORFs
were located within the large ∼50 kb variable region at
position 1,400 to 1,450 kb (Fig. 4c). Given the high degree
of variation in this region across all three strains, it was not
surprising to also find a large number of strain-specific
ORFs in PSU-1 (n=25) and BAA-1163 (n=27) (Figs. 4c
and 5). While the nucleotide sequence (and protein
encoding potential) of the 1,400 to 1,450 kb region of the
O. oeni genome has diverged substantially across these
three strains, we wished to determine whether the proteins
encoded by this region had sequence-independent, con-
served metabolic functions. The predicted ORFs of this

divergent region were therefore examined for the presence
of protein domains associated with known cellular func-
tions. The predicted peptide sequence of each ORF was
used to search the Pfam database (http://pfam.sanger.ac.uk/
search) with significant matches to functional domains
recorded for each protein (Fig. 5).

In PSU-1, nine of the proteins in the 50 kb variable
region are predicted to be involved in polysaccharide
synthesis (most likely cell wall associated polysaccharides).
In BAA-1163 and AWRIB429, like PSU-1, many of the
proteins (7 and 8, respectively) are also predicted to be
involved in polysaccharide biosynthesis. Indeed, there is a
conserved, syntenic arrangement of thirteen ORFs that
display functional conservation, while possessing very
weak nucleotide sequence homology, at the 3′ end of the
region (Fig. 4a).

However, this region in BAA-1163 and AWRIB429 also
contains several additional ORFs that display a conserved
arrangement. In BAA-1163, the primary additional function

Fig. 4 Core and pan genomes
of O. oeni. a Venn diagram
representation of the O. oeni
core and pan genomes PSU-1
(red), BAA_1163 (yellow), and
AWRIB429 (blue). The size of
each facet of the Venn diagram
is proportional to the frequency
of ORFs within a particular
combinatorial class, with the
actual number also listed. The
core or conserved genome is
highlighted in white. b Variation
in GC content as a function of
the core and non-core genomes.
Box and whisker plots are pre-
sented showing GC content for
the all ORFs predicted in
AWRIB429, ORFs from the
core and non-core genomes in
addition to contig
AWRIB429_41 (contig-41)
which has a extremely high
ORF average GC content, and
finally the non-core genome
which has been corrected for the
effect of the extreme GC content
of contig 41 (corrected non-
core). c Schematic representa-
tion of the genomic regions
from 1,365,000 to 1,493,000 bp
containing several AWRIB429-
specific ORFs. ORFs are color-
coded by their species as in (a).
Pair-wise nucleotide identity
between strains is indicated by
green shading (85% identity,
very light green; 100% identity
green)
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encoded in this region is that of a three-component,
fructose-specific PTS transporter (A subunit and a fused-
B/C subunit), of which there are two completely separate,
paralogous ORFs. Like BAA-1163, AWRIB429 is also
predicted to encode a three component fructose-specific
PTS (A, B, and C subunits in separate ORFs), but these
peptides share little homology between the two strains,
other than what might be expected for the presence of these
functional domains.

Of the three strains, AWRIB429 contains the largest
number of additional ORFs in the 50-kb diverged region.
Along with the functionally similar ORFs in PSU-1 and
BAA-1163, AWRIB429 is predicted to encode an
additional two peptidases, an oligopeptide transporter,
two PTS regulators of the RPD/PTS type and two
glycosyl hydrolases.

Discussion

O. oeni is so stringently adapted to growth in the harsh, but
relatively predictable, environment of fermenting or fer-
mented grape (and occasionally apple) juice that it is
impossible to reliably isolate this bacterium from outside of
this habitat (Bae et al. 2006; Duenas et al. 1995; Renouf et
al. 2005, 2007). As for many microorganisms that inhabit
specialized environments, O. oeni has a small genome that
is thought to encode less than 2,000 ORFs. In addition, the
genome of this species appears to be rapidly evolving, in
part due to a loss of key mismatch repair genes that could
potentially impart a “mutator-like” phenotype (4, 17). The
expected high rate of genomic mutation is supported in the
current study, with the identification of numerous large
genomic differences across a selection of O. oeni strains.
From aCGH analysis it appears that, on average, 4.8% of
the PSU-1 genome (5% of the PSU-1 protein coding
potential) has been lost from each of the O. oeni strains

studied. This included the presence of a large 20 kb
deletion that was present at an overall frequency of 45%
in the population investigated.

The loss of genomic content that was predicted to have
occurred by the aCGH, was subsequently confirmed by
whole genome sequencing of the commercial O. oeni strain
AWRIB429. Indeed, the use of high density tiling arrays
provided aCGH data that correctly identified all of the large
deletions (>250 bp) and regions of extreme nucleotide
divergence present in the assembled sequence data of
AWRIB429 (excluding genomic regions which were not
represented on the array), while only producing one false
positive prediction. The use of high density tiling arrays for
aCGH therefore produce extremely accurate data that can
be used to rapidly and efficiently characterize the genomic
profile of bacterial strains. However aCGH was not able to
detect the presence of SNPs or strain-specific genomic loci,
or reliably differentiate between deletions and regions of
high nucleotide diversity. Whole genome sequencing
remains the best approach for discovering these types of
genomic variants. With recent advances in next-generation
sequencing, the application of whole-genome sequence
comparison is becoming a realistic alternative to aCGH
for the comparison of large numbers of bacterial strains
(reviewed in MacLean et al. 2009).

Despite the evidence for significant loss of protein
coding potential compared to PSU-1 across all of the
O. oeni strains examined in this study (including 48 ORFs
from PSU-1 that are predicted to have been lost in over
90% of the other strains), there is no clear correlation
between the absence of specific ORFs and the ability of
these strains to undertake malolactic fermentation or
proliferate in wine. Either these ORFs encode cellular
functions that are not important for growth in wine or
fermenting grape juice, or there are other sequences present
in these strains that are functionally similar to the PSU-1
sequences but which lack sufficient nucleotide homology

Fig. 5 Protein domains within a region of high inter-strain nucleotide
divergence. Individual proteins within the region from ∼1,400 kb to
∼1,450 kb (boxes) are shown for PSU-1 (top), AWRIB429 (middle),
and BAA-1163 (bottom). Proteins are shaded according to the
presence of conserved functional domains (Pfam), with the identity
of each domain listed above the three species. Any additional, non-

conserved proteins that contain the same domain are also shaded in the
identical color. Proteins that lack any predicted domains (boxes
enclosed by dotted lines) and those which are not present across more
than one species (grey shading) are also shown. The two glycosidases
that are unique to AWRIB429 are also highlighted (yellow shading)
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variation in the subset of ortholgous genes present in
each strain. In order to quantify this variation in coding
potential, the extent of the core and pan genomes of this
collection of O. oeni strains were calculated. There were
2846 non-degenerate ORFs that were shown to comprise
the chromosomal pan genome of this group of O. oeni
strains, with 1165 of these representing core ORFs con-
served across all fourteen strains (Figure 1). As observed
for other bacterial species, the size of the conserved core
of protein from O. oeni decreases as a function of the
number of strains compared, while size of the pan gen-
ome increases [15-17] (Figure 1B). Also, given that the
rate of expansion of the pan genome showed no signs of
significant decrease as additional numbers of strains
were added to the analysis, it appears that the genetic di-
versity present within this strain has not yet been ex-
haustively recorded.
In total, there were 1064 non-degenerate ORFs that

were predicted to encode full-length functional proteins
(based on homology searches) in at least one of the
strains (in addition to 93 pseudogenes) that are absent in

the original PSU-1 gene annotation [9,10] (Additional
file 3). Of these, 64 are due to annotation differences
and are found in the PSU-1 genome via the annotation
pipeline applied in this study compared to that used in
the original annotation of the PSU-1 genome. For an
additional 58 of these, pseudogenes exist in PSU-1
whereas full-length proteins are present in at least one
other strain. The remaining 942 ORFs are the result of
strain-specific insertion events in strains other than
PSU-1. In addition, over one third (348) of these non-
PSU-1 proteins display their closest homology to pro-
teins from outside of O. oeni (including protein-coding
genes from BAA-1163 and AWRIB429) and represent
new additions to the O. oeni pan genome.

Horizontal gene transfer
In order to determine if any of the strain-specific genes
in the O. oeni genome were the result of horizontal gene
transfer (HGT), the genome of each strain was interro-
gated for regions with an increased probability of being
horizontally-acquired [18]. While there were numerous

Figure 1 Core and pan genomes of O. oeni. A. Proportions of core (conserved) ORFs, strain-specific ORFs and putative pseudogenes in
fourteen strains of O. oeni. The overall number of each type of ORF is also indicated based upon syntenic assignment of orthologs across all
fourteen strains. B. The estimated average size of the O. oeni core (pink solid line) and pan (light blue solid line) genomes as a function of the
number of individual strains compared. For each point, the size of core and pan genome was calculated for all combinations of x strains from the
fourteen strains analysed with the results presented as filled circles.
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genome size tends to drop while the pan genome size tends to rise when more strains are 

added to the set (Borneman et al., 2012). The described genomes fall in the expected 

range of ORFs number (1800±52) and pseudogenes (104±27). Although the number of 

ORFs is quite conserved among the strains, this is not the case for their subsets of 

orthologous genes. This study also revealed one region with a very high probability of 

being the result of HGT from a Lactobacillus, present in at least seven of the 14 strains 

compared. There is evidence that this region is actually the product of two independent 

HGT events, separated by ~65kb. This region contains genes for a glycosyltransferase, an 

integral membrane protein and a cell wall teichoic acid glycosylation protein. Other five 

regions resulting from HGT from Lactobacilli were identified, indicating that this last 

genus might be a potential provider of genes to O. oeni. Some of the observed variable 

sequences correspond to temperate bacteriophages, with six tRNA potentially involved in 

their integration. Three loci related to exopolysaccharide (EPS) production were 

discovered, showing substantial variation across the strains, which could potentially 

explain the intraspecific variation in the composition of O. oeni’s cell wall. A more 

detailed analysis, including a total of 50 strains and 8 EPS loci, was published last year 

(Dimopoulou et al., 2014). This study shows a correlation between the presence or 

absence of EPS loci and the phenotypes of the analysed strains (Figure 30). Along with 

this, 18 loci of phosphotransferse system (PTS) related genes were characterised. Of 

these, 14 were expected to be fully functional in at least one strain, and only three of them 

were conserved across all the strains, which correlates with differences in carbohydrates 

utilisation. Sugar utilisation related genes also show variations across the genomes 

(Borneman et al., 2012). Nine out of the fourteen analysed strains have an insertion of 

three genes coding for enzymes that are required for conversion of L-xylulose to D-

xylulose-5-phosphate. In contrast, the three genes coding for enzymes for L-arabinose 

consumption were present in all the strains, but they contained nonsense mutations. 

Indeed, the mutations in these genes correlated to the incapacity of these strains to 

consume this sugar. Two strains (AWRIB418 and ATCC BAA-1163) are predicted to be 

able to consume sucrose, a rare trait in O. oeni. In fact, these gene, which is intact in these 

two strains, is a pseudogene in all the others (Figure 31). Regarding amino acids, it has 

been mentioned before that O. oeni is auxotrophic for some of them in a strain-dependent 

way (Garvie, 1967). A comparison of the genes related to these metabolic pathways is 

consistent with these observations, showing a correlation between the incapacity of the 

strains to synthetize amino acids and the presence of nonsense mutations  in the 

corresponding genes (Borneman et al., 2012). 



 
 

 
Figure 30. Distribution of eps genes in a collection of 50 O. oeni strains. 
Seven loci are presented, along with their correlation to specific phenotypes. The colour of the blocks indicate 
the model of the gene (from Dimopoulou et al., 2014). 
 
 
 

 
Figure 31. Presence PTS enzyme II systems in 14 O. oeni strains. 
Blue boxes indicate presence of the gene, grey boxes indicate pseudogenes (from Borneman et al., 2012). 
 

Exopolysaccharide Synthesis by O. oeni
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Figure 5 Variation in phosphotransferase (PTS) enzyme II systems in O. oeni. A. The occurrence and location of PTS enzyme II clusters
across fourteen strains of O. oeni. The presence of a particular ORF in a specific strain is indicated (blue shading). Pseudogenes are also shown
(grey shading). Individual PTS clusters are grouped by solid lines. B. A novel PTS IIC-glycosidase gene fusion in O. oeni strains AWRIB422 and
AWRIB548. The two alternative genotypic arrangements are shown with areas of near complete sequence homology indicated by green shading.
Genomic loci that display functional similarity (e.g. both proteins are PTS IIA subunits) are also indicated by pink shading.
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These first analyses founded the comparative genomics studies in the O. oeni species. 

The contribution that these studies bring to the industry lies in the fact that, for the first 

time, the importance of the genomic features of O. oeni strains at the technological level 

was discussed.  

 

c. SNPs and indels 

Single nucleotide polymorphisms (SNP) are punctual nucleotidic substitutions on 

a given locus, in relation to a reference sequence (Figure 32) (Liao and Lee, 2010; 

Altmann et al., 2012). The SNPs that affects a coding region of DNA can be classified 

according the effect that they produce at the genetic translation level. A SNP can be 

synonymous if it does not produce any change in the amino acid sequence of the gene 

product; missense (non synonymous) if it causes a change in the amino acid sequence; or 

nonsense if it produces an early stop codon in the coding DNA sequence (CDS). A SNP 

can also extend the CDS by turning a stop codon into a translating codon, or inactivate or 

create an early start codon. Indels occur whenever short sequences of nucleotides are 

inserted or deleted in region of the DNA; if the number of nucleotides inserted or deleted 

is a multiple of 3, the protein can result in a lengthened or truncated version of the 

original one, otherwise the indel can generate a frame shift on the reading frame of the 

CDS, inactivating the protein or creating a new function (Cingolani et al., 2012). The 

effects of the SNP can be very diverse. For example, a SNP falling in a promoter region 

can alter the recognition site of a transcription factor, changing the affinity for the protein 

and affecting the transcription level of the gene (Figure 33 A); a non-synonymous SNP 

can alter the folding of an enzyme if it falls in a region that is important for keeping the 

structure (Figure 33 B) (Lao and Lee, 2010). As the genetic code is redundant and the 3rd 

position of a codon is in many cases non informative, when a mutation falls inside a CDS 

the probability that its effect is non-synonymous can be roughly approximated to 2/3. The 

ratio between the non-synonymous substitutions per non-synonymous sites over the 

synonymous substitutions per synonymous sites is called dN/dS, and a higher dN/dS 

value is an indicator of evolutionary pressure on the analysed gene (Rocha et al., 2006). 

However, the limitation of this method is the loss of sensibility when genetically close 

organisms are compared, as is the case for different strains of the same species (Rocha et 

al., 2006).  O. oeni is known for having lost the mutLS genes, which code for  the DNA 

mismatch repair system. Because of this, it mutates at a faster rate than other bacteria 

(Borneman et al., 2012). The high mutation ratio of O. oeni might explain its adaptation to 

wine, as it has already been hypothesised (Borneman et al., 2012), however, up to date 



 

 
Figure 32. Single nucleotide polymorphisms. 
Regions containing SNPs are highlighted in yellow (from Liao and Lee, 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A) SNP affecting at the transcription level. A SNP falling in a promoter can change the affinity of the DNA 

region for transcription factors and alter the transcription levels of the gene (from Liao and Lee, 2010). 
 
 
 
 
 

 
B) SNP affecting at the translation level. A non-synonymous SNP can alter the tertiary structure of a 

protein if it affects an amino acid that is important for the correct folding (from Liao and Lee, 2010). 
 
 
Figure 33. Some possible effects of SNP. 
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Fig. 1. An example of single nucleotide polymorphisms (SNPs) and the haplotype
observed in six subjects (concept adapted from [2]). Four SNPs (A/G, C/T, G/A, and
C/G/T) are found, where A/G, C/T and G/A are bi-allelic SNPs and C/G/T is a tri-allelic
SNP. Theoretically, these four SNPs allow 24 haplotypes, but only five haplotypes
are found in the six subjects.

1. Introduction

A single nucleotide polymorphism (SNP) is a nucleotide varia-
tion at a specific location in the genome (Fig. 1). (Table 1 provides a
glossary of terms in SNP studies). Typically, SNPs are bi-allelic and
by definition found in more than 1% of the population [1]. In prac-
tice, tri- or tetra-allelic SNPs, insertions, deletions and variations
found in less than 1% of the population are also referred to as SNPs.
SNPs are the most abundant variations in the human genome [2,3].
The International HapMap Project has characterized over 3.1 mil-
lion human SNPs, indicating a SNP density of approximately one
per kilobase [4].

Discrimination of genetic variants has great potential to unravel
the molecular basis for “super producer strains” and to gain insight
into functional genomics for biotechnology applications. Although
genotyping of common recombinant hosts (e.g. Chinese hamster

Table 1
Glossary of terms in single nucleotide polymorphism (SNP) studies.

Term Description

Alleles Alternate forms of a gene of chromosomal
locus that differ in DNA sequence

Bi-allelic Only two of the four common nucleotides
are found in a specific position

Expressed sequence tag Short sub-sequence of a transcribed cDNA
sequence that may be used for gene
identification

Genotype Inheritable genetic constitution carried by
living organisms

Haplotype A set of alleles located at neighboring
genes or genomic sequences that tend to
be inherited together

HapMap Genome-wide database of common
genetic sequence variation in humans

Non-synonymous SNP A single nucleotide variation in the coding
sequence that results in a change in amino
acid sequence

Pharmacogenomics The study to understand the effect of
genetic polymorphisms on drug responses

Phenotype The physical manifestation of genetic
information

Single nucleotide polymorphism
(SNP)

A single nucleotide variation in the genetic
sequence

Synonymous SNP A single nucleotide variation in the coding
sequence that results in no change in
amino acid sequence

Fig. 2. A possible framework for SNP applications in the biotechnology industry. The
approach starts with identifying phenotypes of interest. The genetic sequences of
different subjects are tested for variations. Relevant SNPs are investigated further for
their functionalities. The knowledge of functional genomics can provide insight into
genetic engineering for biotechnology applications. In addition, functional genomics
also help researchers to identify candidate genes for SNP analysis. The molecular
markers associated with a specific phenotype can also be directly used as selective
markers for strain developments in biotechnology.

ovary or CHO cells) has not been reported in the literature, SNP
analysis has been widely used in human disease genetics, pharma-
cogenetics, and breeding. These studies attempt to predict diseases,
drug responses, and breeds with higher economic values based
on the variations in the genetic sequences. We believe that these
same approaches may help the bioprocess research community
predict strain performance by searching for specific SNPs in rel-
evant recombinant host cells. Furthermore, an understanding of
the downstream effects of the genetic variation is critically impor-
tant and can provide targets for metabolic and cellular engineering
studies to design hosts with specific phenotypic characteristics of
interest to the bioprocess community. For example, newly intro-
duced transgene sequences can be adjusted to ensure optimal
production or host metabolism can be modified to favor the recom-
binant protein expression. Fig. 2 shows a proposed framework
from SNP identification to potential bioprocess applications. Fol-
lowing this framework, this review first introduces how SNPs are
discovered and associated to a phenotype of interest. The second
part describes different mechanisms of how SNPs can contribute
to phenotypes. Finally, several biotechnology applications will be
discussed.

2. SNP analysis

The recent availability of high-throughput genotyping technolo-
gies has made large scale genome scans possible. Several reviews
are available for genotyping technologies [5–8] and our goal here is
not to present an extremely detailed treatment of all available tech-
nologies; we direct the reader to those reviews for such an analysis.
In general, SNP analysis involves three steps. First, SNPs are identi-
fied and mapped onto known gene sequences or genomes. Second,
the genome sequence can be scanned for the presence or absence
of known SNPs. Third, SNPs in the genome might be linked to a
specific phenotype by different study designs and computational
analysis.

2.1. SNP discovery

Several methods are used for SNP discovery. One of the most
straightforward ways to discover novel SNPs is to sequence DNA
fragments amplified by polymer chain reaction (PCR). PCR primers
are designed to amplify both strands of DNA from genes or other
single copy genomic sequences. PCR products are sequenced and
aligned into gene sequences, allowing novel SNP identifications
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Fig. 3. An example of the effect of a SNP on DNA and transcriptional levels. Reg-
ulatory SNPs may alter DNA affinity to a transcription factor, resulting in different
mRNA levels.

in turn cause a pathological effect [22]. PupaSuite locates SNPs
that might cause a loss of functionality in the genes [23]. RAVEN
distinguishes functional genetic variations likely to influence gene
regulation from neutral variations [24]. FASTSNP (function analysis
and selection tool for single nucleotide polymorphisms) identi-
fies and prioritizes high-risk SNPs according to their phenotypic
risks and putative functional effects [25]. While these programs
aim for accelerating human genetic studies, similar strategies may
be applied to other species such as recombinant hosts.

3. How SNPs lead to different phenotypes

SNPs are not evenly distributed across the genome. In general,
SNPs occur much less frequently in coding regions of the genome
than in noncoding regions [9]. SNPs in regulatory sites of a gene
can affect transcription rates, thereby changing the expression of
corresponding proteins. In coding regions, exonic SNPs can be cat-
egorized into two classes: non-synonymous SNPs that alter the
amino acid sequence of the protein products and synonymous
SNPs that do not affect primary sequence of the products. Non-
synonymous polymorphisms have been more widely characterized
because their effects are relatively easy to detect computationally
and experimentally. Proteins with the same sequence derived from
synonymous SNPs were previously assumed to exert no discernible
effect on a gene function or a phenotype. These gene variants are
often termed “silent mutations”. However, several synonymous
mutations have been reported to alter gene expression or protein
folding [26–28]. Recently, a synonymous codon library has been
shown to result in different levels of gene expression [29]. These
reports demonstrate that synonymous SNPs can also produce dif-
ferent phenotypes.

The molecular effects of SNPs are now better understood in
many cases. Based on the central dogma, SNPs should affect phe-
notypes at the DNA, RNA and protein levels. The following section
discusses several mechanisms for how SNPs affect phenotypes. It
is important to note that these mechanisms are not exclusive. For
example, a non-synonymous SNP may affect gene expression at
both RNA and protein levels.

3.1. DNA level: from DNA to RNA

Regulatory polymorphisms can potentially cause variations in
gene expression. An early study observed that about a third of the
promoter variants in the human genome may alter gene expression
by 50% or more [30]. Regulatory polymorphisms can be classified
into two groups: a cis-acting polymorphism affects genes in or near
the locus and a trans-acting polymorphism in one gene affects the
expression of another gene at a different locus.

A SNP in a regulatory DNA binding site may alter the affinity
with the regulatory protein, resulting in different gene expressions
(Fig. 3). SNPs in the osteopontin promoter have been shown to mod-
ify DNA binding affinity to transcription factors SP1/SP3 [31]. A

GWA study revealed a G-to-A substitution in the 5′ untranslated
region (5′-UTR) of the FOXE1 gene to associate with thyroid can-
cer susceptibility [32]. Recently, this variant was found to alter
the recruitment of USF1/USF2 transcription factors [33]. The T-to-C
substitution located in the 5′-UTR of the GDF5 gene causes a differ-
ent interaction with DEAF-1, a trans-acting factor for GDF5, leading
to a reduced gene expression [34]. In addition, a SNP in 3′-UTR
of GDF5 can alter the gene expression independent of the SNP in
5′-UTR, highlighting the complexity of this gene regulation.

3.2. RNA level: from RNA to protein

SNPs can alter mRNA folding and thus affect mRNA stability
(Fig. 4a). In the dopamine receptor D2 gene, a synonymous variation
C957T resulted in different mRNA structures [35]. The authors sug-
gested that different folding caused the mRNA carrying C957T to be
degraded more rapidly than the wild type sequence. As a result, less
of the encoded protein is made, leading to cognitive disorders. An
intragenic SNP in the CDSN gene (CDSN*971T) decreased the tran-
script affinity for a 39 kDa RNA binding protein, which increased
mRNA stability twofold and up-regulated the CDSN product, cor-
neodesmosin, in patients with Psoriasis, a chronic skin disorder
with multifactorial etiology [36]. Similarly, the characterization
of two non-synonymous SNPs, C74A and G223A, in the mTPH2
gene revealed that A–A, C–A and A–G haplotypes increased mRNA
stability and enzyme activity as compared to wild-type C–G hap-
lotype [37]. Because mTPH2 synthesizes neuronal serotonin, the
up-regulation of the protein activity is hypothesized to lead to psy-
chiatric disorders.

The different structures of mRNA caused by SNPs may
also alter the protein synthesis rate (Fig. 4b). In catechol-O-
methyltransferase, three haplotypes result in different mRNA local
stem-loop structures. The most stable structure is correlated with
the lowest protein levels and enzymatic activity [38]. Because
catechol-O-methyltransferase is a key regulator of pain perception
[39], variations in enzyme activities cause changes in pain sensitiv-
ity in patients.

SNPs can affect the efficiency of translation initiation (Fig. 4c).
In the Kozak sequence of the hCD40 gene, C–T, T–T and C–C hap-
lotypes were shown to result in similar mRNA levels but different
protein levels. The authors suggested that the C polymorphism in
the Kozak sequence allowed the ribosome to initiate translation
more efficiently, resulting in a higher protein level [40].

By modifying translation elongation, SNPs may alter protein
conformations (Fig. 4d). Synonymous codon substitutions may lead
to different kinetics of protein translation, thus yielding a protein
with a different final conformation and function [41]. Kimchi-
Sarfaty et al. reported that a naturally occurring synonymous SNP
can result in altered drug interactions of P-glycoprotein (P-gp)
[42]. The authors suggested that the synonymous polymorphism
affects the timing of cotranslational folding and the insertion of P-
gp into the membrane, thereby altering the structure of substrate
and inhibitor interaction sites. This result indicates that synony-
mous SNPs might contribute to development and progression of
certain diseases and should not be neglected.

Pre-mRNA splicing is a complex mechanism that relies on the
correct recognition of protein coding sequences (exons) from the
noncoding sequences (introns) on RNA transcripts [43]. Fig. 4e illus-
trates how SNPs might affect mRNA splicing. Natural mutations
D565G and G576A and several site-directed silent substitutions
in the cystic fibrosis transmembrane-conductance receptor (CFTR)
exon 12 were shown to induce a variable extent of exon skipping
[44]. Skipping of this exon removes a part of the first nucleotide-
binding domain of CFTR, rendering the protein non-functional.

MicroRNAs (miRNAs) are a class of noncoding RNAs that can
regulate gene expression by base pairing with target mRNAs at

P.-Y. Liao, K.H. Lee / Biochemical Engineering Journal 49 (2010) 149–158 153

Fig. 4. Several examples of the effects of SNPs on mRNA and translational levels. (a) A SNP may alter mRNA folding and increase stability, allowing higher level of protein
production. (b) A SNP may increase the stability of the mRNA structure, permitting less protein translation. (c) A SNP in Kozak sequence alters the efficiency of translation
initiation, resulting in different protein levels. (d) A SNP in the coding sequence changes the kinetics of protein translation, resulting in proteins with different conformations.
(e) A SNP in the exon region induces an exon skipping, resulting in shorter products.

the 3′-UTRs, leading to an mRNA cleavage or translational repres-
sion [45]. SNPs in miRNA genes may alter miRNA processing while
SNPs around the miRNA binding sites in the target mRNAs may
affect miRNA function. SNPs in miRNA-125a and miRNA-K5 were
reported to impair miRNA processing [46]. Sun et al. tested 24
human X-linked miRNA variants in schizophrenia and autism and
reported that SNPs in miRNA genes can impair or enhance miRNA
processing as well as alter the sites of processing [47].

3.3. Protein level: from polypeptide formation to post-translation
modification

At the protein and post-translational levels, a substantial effort
has been invested in the function of non-synonymous SNPs because
their downstream effects are relatively easy to characterize. Sev-
eral reviews have described how non-synonymous SNPs affect
protein functions and interactions [48–50]. The following section
presents the change in protein activities in terms of protein stabil-
ities, binding affinities, catalytic properties, and post-translational
modifications (Fig. 5).

Variation in protein stability due to SNPs in coding sequences
can cause different levels of enzyme activities. Thiopurine
S-methyltransferase (TPMT) catalyses the S-methylation of thiop-
urine drugs. Several human TPMT variant alleles that alter the
encoded amino acid sequence of the enzyme generate less sta-
ble proteins [51]. Therefore, patients with those alleles have very
low TPMT activity and suffer severe, life-threatening drug toxic-
ity when treated with ‘standard’ doses of thiopurine drugs [52]. A
non-synonymous SNP (A428G) in human S-adenosylhomocysteine

hydrolase (AdoHcyase) is found in patients with AdoHcyase defi-
ciency [53]. This mutation decreased the unfolding temperature
by 7 ◦C as compared to a wild-type protein. The mutant protein is
more sensitive to temperature change and undergoes accelerated
aggregation with increasing temperature [54].

Non-synonymous SNPs may alter protein binding affinities and
catalytic properties. A SNP is known to alter the regulation of argi-
nine biosynthesis in Escherichia coli K12 and B strains [55,56]. In E.
coli K12, arginine represses the expression of arginine biosynthe-
sis genes and the absence of arginine activates the expression of
these genes. In E. coli B, these genes are constitutively expressed at
low levels regardless of the presence of arginine [57]. These differ-
ent regulatory patterns result from a SNP at site 70 in the arginine
repressor (ArgR) sequence, where the proline of ArgRK12 is replaced

Fig. 5. An example of the effect of a SNP on the protein and post-transcriptional lev-
els. A non-synonymous SNP alters amino acid sequence, which may change protein
conformation. Variations in protein folding may result in different protein stabilities,
binding affinities, catalytic properties, and post-translational modifications.
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there are no studies that look systematically for the specific mutations that might be 

responsible for this adaptation and the diverse phenotypes of O. oeni strains. 

 

d. Enrichment analysis 

The intricate network of genes that are present in an organism coordinate their 

functions in metabolic pathways, in which molecules are transformed to accomplish 

different biological functions. When a set of genes that are part of the same metabolic 

pathway are altered, it can be concluded that the given metabolic pathways is enriched, 

only if there is a significant difference between the quantity of alterations within the 

pathway and out of it. In order to evaluate whether this condition is met, a gene set 

enrichment analysis (GSEA) can be performed (Subramanian et al., 2005). The advantage 

of using GSEA over statistical analyses that consider genes as independent entities is that 

the former is able to detect very weak signals that are significant only when the affected 

genes are interconnected in the same metabolic pathway (Abatangelo et al., 2009). 

Although the algorithm was initially designed for quantitative transcriptomics and 

proteomics data, in practice genetic alterations can be present at any level of genetic 

information (DNA, RNA, proteins), produce many kinds of effects (e.g. repression, 

overexpression, mutations, absence of the gene, presence of extra genes, copy numbers, 

etc.), and occur in any kind of context (different environmental conditions for the same 

organism, different moments, or between different organisms). This is the reason why the 

algorithm has also been used for analysing other kinds of genomic variations such as 

regional DNA copy number (Kim et al., 2008) and SNP (Holden et al., 2008; Evangelou 

et al., 2012). Up to date, it seems that no study has ever been published using this 

technique in order to understand the differences between O. oeni strains. 

 

VII. Metabolomics, wine and O. oeni 

 

1. Metabolomic approaches 

Metabolomics refers to the chemical categorization and/or quantification of a 

partial, pre-defined and known (targeted) or the entire and unknown (untargeted) set of 

small molecules that are present in a biological sample at a given moment and under a 

certain condition (Fiehn, 2001; Zhang et al., 2010; Naz et al., 2014), or, in other 

definition, “the focus of metabolomics studies is shifting from cataloguing chemical 

structures to finding biological stories” (Baker, 2011). While targeted metabolomics focus 

on a subset of the total molecules in a system, untargeted metabolomics are global in 

scope and have the aim of simultaneously measuring as many metabolites as possible 



 

 
Figure 34. Overview of targeted and untargeted metabolomics. 
 In untargeted metabolomics the whole set of (unknown) molecules in a sample is (semi)quantified, looking for 
possible changes. In targeted metabolomics a previously known subset of metabolites is quantified (from Milne 
et al., 2013). 
 

 
 

 
Figure 35. Different levels of omics. 
Metabolomics is said to represent the final level of omics (from Zhang et al., 2010). 
 
 
 
 

 
Figure 36. Schema of Proton-Transfer-Reaction Time-of-Flight Mass-Spectrometry. 
The volatile sample is protonated inside the drift tube, then ions and their fragments are conducted through the 
transfer lens system and the reflectron ToF-MS chamber (from Jordan et al., 2009). 
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Abstract
Metabolomics is a rapidly growing field of research used in the identification and quantification of
the small molecule metabolites within an organism, thereby providing insights into cell
metabolism and bioenergetics as well as processes important in clinical medicine, such as
disposition of pharmaceutical compounds. It offers comprehensive information on thousands of
low molecular weight compounds (<1500 Da) that represent a wide range of pathways and
intermediary metabolism. Due to its vast expansion in the last two decades mass spectrometry has
become an indispensable tool in “omic” analyses. The use of different ionization techniques such
as the more traditional electrospray (ESI) and matrix-assisted laser desorption (MALDI), as well
as recently popular desorption electrospray ionization (DESI), has allowed the analysis of a wide
range of biomolecules (e.g. peptides, proteins, lipids and sugars), and their imaging and analysis in
the original sample environment in a workup free fashion. An overview of the current state of the
methodology is given, as well as examples of application.

During the last decade metabolomics has become increasingly utilized as a tool in systems
biology analyses and has been considered the latest of the “omics” technologies that could
provide the most functional information in understanding biological systems.
Comprehensive and quantitative study of small molecules (metabolites) as a read-out of
biological processes is the focus of metabolomics. The metabolome can be thought of as
encompassing the small molecular building blocks (e.g., nucleotides, sugars, amino acids),
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available, it is also becoming clear that any single ‘omics’
approach may not be sufficient to characterize the
complexity of biological systems (Gygi et al., 1999). For
example, the expression level of a given gene does not
indicate the amount of protein produced, nor its location,
biological activity or functional relationship with metabo-
lomes. Moreover, in cells many levels of regulation occur
after genes have been transcribed, such as post-transcrip-
tional, translational and post-translational regulation, and
all forms of biochemical control such as allosteric or
feedback regulation. For example, in a study by Ter Kuile
& Westerhoff (2001), control of glycolysis was shown to be
shared between metabolic, proteomic and genomic levels.
Taking this view into account, it is hard to believe that
functional genomics can stop at the mRNA level or any
single level of information. Integrated multi-‘omics’
approaches have been applied recently and the studies have
enabled researchers to unravel global regulatory mechanisms
and complex metabolic networks in various eukaryotic
organisms (Hegde et al., 2003; Mootha et al., 2003a, b; Alter
& Golub, 2004). While more work still needs to be done in
order to improve experimental protocols and computational
methodologies so that integrative analysis of multiple large-
scale ‘omics’ datasets can be used to generate new knowledge
not accessible by analysis of a single data type alone, these
early studies have clearly demonstrated that integrated
‘omics’ analysis may be a key to decipher complex biological
systems. Some of the progress and challenges associated with
integrated ‘omics’ studies have been reviewed previously in
several excellent articles (Joyce & Palsson, 2006; De
Keersmaecker et al., 2006; Steinfath et al., 2007). In this
article we review recent progress, with a focus on the
application of integrated ‘omics’ approaches in various
prokaryotic microbial systems and on the advance in various
computational methods in dealing with integrated ‘omics’
data. A brief introduction to various experimental ‘omics’
platforms is also presented.

Experimential ‘omics’ approaches

Cells are living systems full of various functional molecules,
which eventually determine the phenotype of the cells.

Such molecules include mRNA transcribed from DNA,
proteins translated from mRNA, and various metabolites
of small molecular mass generated by various enzymic
activities (Fig. 1). Obviously, only analysing the DNA
sequences of microbial genomes is not enough to obtain
crucial information regarding the functionality of these
molecules and the regulatory mechanisms involved in
generating these molecules (Nierman et al., 2000). To
address the limitation in genome analysis, the last decade
has witnessed significant growth in technologies pertaining
to molecular biological assays to measure various cellular
molecules, and these efforts have led to the establishment
of various experimental ‘omics’ strategies. Several well-
established ‘omics’ platforms that have been used in
various integrated ‘omics’ studies are briefly described
below.

Transcriptomics

Transcriptomics, also called global analysis of gene
expression or genome-wide expression profiling, is one of
the tools to measure the whole set of all mRNA molecules,
or ‘transcripts’, produced in one cell or a population of
cells. Unlike genome sequencing and comparative geno-
mics technologies that focus on DNA, which is static
information for any given microbial species and normally
does not change significantly in response to short-term
external environmental changes, transcriptomics has
enabled quantitative measurements of the dynamic expres-
sion of mRNA molecules and their variation between
different states at the genome scale, thus reflecting the
genes that are being actively expressed at any given time,
with the exception of mRNA degradation phenomena (Ye
et al., 2001; Horak & Snyder, 2002). Several popular high-
throughput transcriptomics strategies involve: (i) first
identifying mRNAs that differ in their expression status
under different experimental conditions and later defining
the identity of the respective genes, for example by
differential display or serial analysis of gene expression
(SAGE); (ii) alternatively assessing changes in the expres-
sion of previously defined genes, for example by cDNA or
oligonucleotide microarrays (Kagnoff & Eckmann, 2001),
or chip-based nanolitre-volume reverse-transcript (RT)-

Fig. 1. Schematic diagram of various ‘omics’
technologies targeting different layers of
cellular information.
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spectrometer instead of the quadrupole mass filter used in most of
the more than 150 commercial instruments worldwide in opera-
tion. Time-of-flight (TOF) mass spectrometry not only eliminates
the necessity to select a subset of ions to be monitored in a specific
experiment, but it usually has a mass resolution which allows the
separation of most nominally isobaric ions. The major obstacle so
far using TOF in combination with PTR-MS was the difficult cou-
pling situation and the significant loss of sensitivity encountered
thereby.

In 2004 Blake et al. [6] were the first to report the successful
coupling of a reflectron TOF mass spectrometer with a radioactive
ion source in combination with a drift tube. Nevertheless, typ-
ical mass resolutions achieved were 1200 m/!m and thus were
not sufficient in most cases to separate nominally isobaric species.
Moreover, due to a variety of reasons, one being the duty cycle
achieved, the highest H3O+ primary ion count rate obtained was
appr. 104 cps, which is over four orders of magnitude, lower than
that of high sensitivity Ionicon quadrupole PTR-MS instruments.
This led to a low sensitivity of about 0.17 cps/ppbv for H2S with
detection limits in the ppbv range for integration times of around
1 min. One year later Ennis et al. [7] reported on the development
of a reflectron PTR-TOF instrument incorporating a hollow cath-
ode ion source allowing the detection of trace gas components at
concentrations as low as 1 ppbv on a timescale between 10 and
60 s. Nevertheless, with a sensitivity of 3.7 cps/ppbv for toluene the
instrument was still about two orders of magnitude lower than
the commercially available quadrupole PTR-MS instruments. As in
the above case, the instrument barely allowed the separation of
nominally isobaric ions, the example given at mass 47 in the paper
being protonated ethanol and formic acid, and a large number of
NO+ and O2

+ ions were produced which makes the interpretation
of PTR mass spectra more complicated. Very recently, Inomata et
al. [8] and Tanimoto et al. [9] reported the construction of a PTR-
TOF instrument involving a linear time-of-flight mass spectrometer
with a mass resolution of about 100 m/!m in combination with a
novel discharge ion source, allowing a higher drift tube pressure
and a detection limit just below 1 ppbv for 1 min integration times.

A clear disadvantage of PTR-TOF is that the ions produced in
the drift tube need to be pulsed into the time-of-flight region. In
a conventional PTR-MS instrument a constant current of primary
ions and consequently product ions, is generated, and these ions
are usually injected into the quadrupole on line and in constant
ion mode. Injecting these ions into a TOF can only be done in ion
packages and so far at the cost of large ion losses and thus loss of
sensitivity as compared to the commercially available quadrupole
instruments. Here we report the development and one of the first
deployments of a new version of PTR-TOF-MS instruments, which
is capable of measuring VOCs at ultra-low concentrations (as low
as a few pptv) under high mass resolution (over 6000 m/!m in
the V-mode (see Fig. 1 for a schematic demonstration of the V-
and the W-mode and Fig. 2 for an estimation of the maximum
mass resolution)). This instrument was constructed by interfac-
ing the well characterized and recently improved [10] Ionicon
hollow cathode ion source and drift tube section with a Tofwerk
orthogonal acceleration reflectron time-of-flight mass spectrome-
ter. We will first discuss the set-up of this new PTR-TOF-MS mass
spectrometer instrument, its performance and finally give some
examples concerning urban air measurements where sensitivity,
detection limit and mass resolution are essential to obtain relevant
data.

2. Instrument description

The present proton-transfer-reaction time-of-flight mass spec-
trometer (PTR-TOF-MS) is an instrument based on the design of

Fig. 1. Schematic drawing of the PTR-TOF-MS instrument, consisting of the hol-
low cathode discharge ion source, the drift tube reaction chamber, the transfer lens
system and the reflectron time-of-flight mass spectrometer. Additionally the two
modes of operation of the TOF are outlined, namely the V- and the W-mode.

Fig. 2. Upper panel: PTR-TOF-MS spectrum of sesquiterpene demonstrating the low
background for an extremely small signal from an urban air sample. The signal has
been obtained by averaging 10 measuring cycles each running for a 4 min integration
time. The y-axis is calculated via the well known conditions in the drift tube (pres-
sure, temperature, length, reagent ion current, etc.). Lower panel: Measurement of
mass resolutions for several compounds using a calibration gas mixture. By fitting
the measurement points via y = a × x1/(2+b×x) the maximum achievable resolution at
high mass can be estimated to be 6976 ± 85 m/!m (FWHM).
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from biological samples without bias (Figure 34) (Patti et al., 2012; Milne et al., 2013). 

Untargeted metabolomics offer a holistic approach that is suited for large scale screens 

and discoveries (Fuhrer and Zamboni, 2015). Metabolomics is said to represent the final 

“omic” level in a biological system, since metabolites represent functional entities, unlike 

the molecules of the lower omics levels (Figure 35); changes in the proteome or the 

transcriptome –and, by extension, the genome– do not always result in altered 

biochemical phenotypes (Ryan and Robards, 2006). However, metabolomic 

characterizations are highly complex: unlike genes, transcripts and proteins, metabolites 

are not encoded in the genome; they are thus harder to catalogue. Moreover, extraction, 

separation and analytic techniques are not universal, but rather suited for one or few 

classes of metabolites and are often useless for the others (Baker, 2011). 

 

2. Some techniques used in metabolomics: advantages and drawbacks 

Among the most widely used techniques in metabolomics are worth mentioning 

[ultra-high pressure] liquid chromatography coupled with mass spectrometry ([UP]LC-

MS), [comprehensive] gas chromatography coupled with mass spectrometry ([GGx]GC-

MS), NMR spectroscopy, liquid chromatography – electrospray mass spectrometry (LC-

ESI-MS), and matrix-assisted laser desorption (MALDI) (Hong, 2011; Milne et al., 2013). 

More recently a new technique, proton transfer reaction - mass spectrometry (PTR-MS), 

has been gaining popularity in the field of metabolomics, especially when coupled to a 

time of flight detector (PTR-ToF-MS) (Figure 36) (Jordan et al., 2009). The advantages of 

PTR-ToF-MS are the capacity to measure volatile organic compounds (VOC) at very low 

concentrations (as low as a few pptv), a high mass resolution (up to 6,000m/Δm in the V-

mode), and within a range of masses of more than 100,000 amu (Jordan et al., 2009). 

PTR-MS and PTR-ToF-MS have already been used for analysing diverse food matrices 

such as cheese (Fabris et al., 2010; Galle et al., 2011), coffee (Wieland et al., 2012), fruits 

(Cappellin et al., 2012) and wine (Boscaini et al., 2004; Spitaler et al., 2007). 

Due to its advantages, NMR has also found its applications in the field of 

metabolomics: it allows an easy and clear identification of the metabolites that contribute 

to the discrimination among samples, thanks to the high reproducibility of NMR spectra. 

However, a drawback of this technique is that wine analysis requires lyophilisation and 

buffering, which results in the loss of potentially interesting compounds (Hong et al., 

2011). PTR-ToF-MS requires very few –if not at all– sample preparation, making the 

analysis fast and straight-forward; since the sample goes almost directly into the detector, 

it is ideal for following chemical reactions in real time, as long as at least one of the 

products is a volatile compound. GC-MS also offers some advantages over the other 
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methods. All the compounds suitable for GC analysis are detected non-discriminatively, 

more or less independently of the compound (Koek et al., 2006), and problems with ion 

suppression of co-eluting compounds that cause trouble in LC-MS are almost inexistent in 

GC-MS (Koek et al., 2010). It is because of this that GC-MS is the most widely used 

analytical technique for metabolomic analyses involving compounds that are (or can be 

derivatised into) volatile compounds (Wehrens et al., 2014). Not all the interesting 

compounds are volatile, though. Since LC-MS enables the detection of a high number of 

metabolites, it has been the technique of choice for global metabolomic profilings (Patti et 

al., 2012). Very detailed characterisations of wine have been made thanks to LC based 

techniques (Gougeon et al., 2009; Roullier-Gall et al., 2014). However, a common 

problem to MS techniques is the difficulty for identifying molecules without any a priori 

information. A possible solution is the utilisation of internal standards, but their number is 

limited in comparison to all the potential candidate molecules of a biological sample. 

Moreover, untargeted metabolomics studies very often seek to find molecules that have 

never been documented before, making the searches against databases something difficult 

(Patti et al., 2012; Milne et al., 2013). PTR-MS faces an extra problem since there is no 

physical separation of the molecules before sending them to the detector, making it 

difficult –if not impossible– to distinguish between isobaric compounds in complex 

matrices (Cappellin et al., 2011). Another problem common to all MS approaches is 

encountered at the moment of automated peak detection, integration and matching, 

especially because untargeted metabolomics studies are often focused on finding low 

concentration molecules. As metabolomics experimental settings commonly rely on a 

high number of samples, the processes of peak detection, integration and matching is 

usually automated. However, their efficiency is strongly influenced by background noise, 

peak area and peak shape, and the automation of the process can easily become time 

consuming and difficult (Wehrens et al., 2014). Since each method has its own 

advantages and drawbacks, it is not uncommon to use more than one technique in order to 

get additional information: NMR and LC tend to be used for primary metabolites, non-

volatile compounds and amino acids, while GC and PTR are commonly used for 

analysing the volatile fraction. Diverse targeted and untargeted metabolomic approaches 

have been used in microbiology (Zhang et al., 2010), and also for analysing wine 

(Metabolomics: Wine-omics, 2008; Rossouw and Bauer, 2009, Vrhovsek et al., 2012). 

 

3. Metabolomics in wine, LAB and O. oeni 

Diverse aspects of wine chemistry have been studied using metabolomics approaches. 

NMR-based metabolomics have been used to study a wide range of compounds such as  



	
	



	 34	

amino acids, organic acids, sugars, 2,3-butanediol, glycerol, 2-phenylethanol, trigonelline, 

and phenylpropanoids, under different environmental factors (Hong et al., 2011). The 

chemistry behind varietal typicity of wines has also been explored. For example, the 

aromatic profile of Semillon wine has been analysed by GC-MS, and a predictive model 

of sensory features including honey, toast, orange marmalade, and sweetness was 

successfully constructed from the extracted peak tables (Schmidtke et al., 2013). GC-LC 

has also been used to study forced ageing processes in wine (Castro et al., 2014). Other 

studies, this time involving LC-MS, have been done to understand the process of 

microoxygenation of wine, through metabolomic fingerprinting (Arapitsas et al., 2012). 

LC-based techniques have been developed enough so it is even possible to discriminate 

between several wines of different producers of the same appellation, regardless of the 

vintage (Roullier-Gall et al., 2014). 

The analysis of wine by PTR-MS has remained anecdotal. Compared to the other 

foods that have been analysed with PTR-MS, wine contains large amounts of ethanol, 

which interferes with the ionizing agent that make the analysis by PTR-MS possible. 

When H3O+ is used as the donor proton, ethanol can cause water depletion and act as the 

ionizing agent instead. This results in the loss of sensibility for certain molecules, and 

alcohol chemistry can lead to the formation of several molecular clusters (Boscaini et al., 

2004). A first solution was proposed by using an ethanol-saturated atmosphere as ionizing 

agent instead of hydronium ions, but even if different kinds of wines were differentiated 

according to their origins by using this method, the interpretation of spectra remained 

difficult to interpret (Boscaini et al., 2004). To overcome this problem, another approach 

was proposed by diluting the volatile fraction of wine with N2 by a factor of 1:40, and 

then using hydronium as the ionizing agent as usual (Spitaler et al., 2007). Even if a 

discrimination of different wine samples was achieved, the m/z that were responsible for 

this discrimination were not further characterised because of the intrinsic limitations of 

the PTR-MS technique. It is likely that some molecules that are interesting from an 

oenological point of view were missed from the analysis due to the dilution of the sample 

(Spitaler et al., 2007). 

The differences between MLF carried out in wine with different LAB species 

(Pozo-Bayón et al., 2005; Lee et al., 2009) or with different strains of O. oeni (Ugliano et 

al., 2005; Lee et al., 2009b) have also been studied, mainly by NMR, HPLC-MS and GC-

MS. A comparison of MLF wines fermented with two LAB species –O. oeni and L. 

plantarum– has shown that wines can present significant metabolic differences according 

to the species and specific characteristics depending on the LAB strain used, by 

modifying the amino acid content and volatile composition of wine (Pozo-Bayónet al., 



 
Figure 37. Differences of primary and secondary metabolites in wines after MLF, using different 
strains of O. oeni or different LAB species. 
Differences between primary metabolites measured by 1H NMR (A and B) and secondary metabolites measured 
by GC-MS (C and D), either between different strains of O. oeni (A and C), or between O. oeni and L. 
plantarum (B and D) (from Hong, 2011 [adapted from Lee et al., 2009a and Lee et al., 2009b]). 
 
 
 

 
 
 
 

 
Figure 38. Aromatic profile of model wine fermented with different malolactic starters. 
Model wine with aromatic precursors was inoculated either with O. oeni (O) or diverse Lactobacilli strains (L). 
Also a non inoculated control (B) was analysed. 
 
  

Acknowledgements
The author thanks Prof. Jeremy K. Nicholson at Imperial College
London for help in using the in-house MATLAB script for applica-
tion of the O-PLS-DA algorithm.

Conflicts of interest

The author declares no conflicts of interest.

References
[1] J. K. Nicholson, J. C. Lindon, E. Holmes, Xenobiotica 1999, 29, 1181.
[2] J. K. Nicholson, J. C. Lindon, Nature 2008, 455, 1054.
[3] J. M. Cevallos-Cevallos, J. I. Reyes-De-Corcuera, E. Etxeberria,

M. D. Danyluk, G. E. Rodrick, Trends Food Sci. Tech. 2009, 20, 557.
[4] D. S. Wishart, Trends Food Sci. Tech. 2008, 19, 482.
[5] J. C. Lindon, J. K. Nicholson, E. Holmes, The Handbook of Metabo-

nomics and Metabolomics, Elsevier, Amsterdam, 2007.
[6] A. Cuadros-Inostroza, P. Giavalisco, J. Hummel, A. Eckardt, L. Willmitzer,

H. Peña-Cortés, Anal. Chem. 2010, 82, 3573.
[7] L. Vaclavik, O. Lacina, J. Hajslova, J. Zweigenbaum, Anal. Chim. Acta,

2011, 685, 45.
[8] H. S. Son, K. M. Kim, F. Van Den Berg, G. S. Hwang, W. M. Park, C. H. Lee,

Y. S. Hong, J. Agric. Food Chem. 2008, 56, 8007.
[9] H. S. Son, G. S. Hwang, K. M. Kim, E. Y. Kim, F. Van Den Berg, W. M. Park,

C. H. Lee, Y. S. Hong, Anal. Chem. 2009, 81, 1137.
[10] H. S. Son, G. S. Hwang, K. M. Kim, H. J. Ahn, W. M. Park, F. Van Den Berg,

Y. S. Hong, C. H. Lee, J. Agric. Food Chem. 2009, 57, 1481.
[11] O. Beckonert, H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon,

J. K. Nicholson, Nat. Protoc. 2007, 2, 2692.
[12] I. J. Kosir, J. Kidric, J. Agric. Food Chem. 2001, 49, 50.
[13] D. S. Wishart, C. Knox, A. C. Guo, et al., Nucleic Acids Res. 2009, 37

(Database issue), D603.

[14] A. M. Weljie, J. Newton, P. M. Mercier, E. Carlson, C. M. Slupsky, Anal.
Chem. 2006, 78, 4430.

[15] J. E. Lee, G. S. Hwang, F. Van Den Berg, C. H. Lee, Y. S. Hong, Anal.
Chim. Acta 2009, 648, 71.

[16] K. Skogerson, R. O. N. Runnebaum, G. Wohlgemuth, J. De Ropp,
H. Heymann, O. Fiehn, J. Agric. Food Chem. 2009, 57, 6899.

[17] O. Cloarec, M. E. Dumas, A. Craig, R. H. Barton, J. Trygg, J. Hudson,
C. Blancher, D. Gauguier, J. C. Lindon, E. Holmes, J. Nicholson, Anal.
Chem. 2005, 77, 1282.

[18] O. Cloarec, M. E. Dumas, J. Trygg, A. Craig, R. H. Barton, J. C. Lindon,
J. K. Nicholson, E. Holmes, Anal. Chem. 2005, 77, 517.

[19] B. Fauconneau, P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit,
J. M. Merillon, Life Sci. 1997, 61, 2103.

[20] A. M. Gil, I. F. Duarte, M. Godejohann, U. Braumann, M. Maraschin,
M. Spraul, Anal. Chim. Acta 2003, 488, 35.

[21] Y. Lu, L. Y. Foo, Food Chem. 1999, 65, 1.
[22] M. Anastasiadi, A. Zira, P. Magiatis, S. A. Haroutounian, A. L. Skaltsounis,

E. Mikros, J. Agric. Food Chem. 2009, 57, 11067.
[23] G. Tomasi, F. Van Den Berg, C. Andersson, J. Chemom. 2004, 18, 231.
[24] K. A. Veselkov, J. C. Lindon, T. M. D. Ebbels, D. Crockford, V. V. Volynkin,

E. Holmes, D. B. Davies, J. K. Nicholson, Anal. Chem. 2009, 81, 56.
[25] F. Savorani, G. Tomasi, S. B. Engelsen, J. Magn. Reson. 2010, 202, 190.
[26] A. Ross, G. Schlotterbeck, F. Dieterle, H. Senn, in The Handbook of

Metabonomics and Metabolomics (Eds: J. C. Lindon, J. K. Nicholson,
E. Holmes), Elsevier, Amsterdam, 2007, p. 55.

[27] Y. S. Hong,M. Coen, C. M. Rhode, M. D. Reily, D. G. Robertson, E. Holmes,
J. C. Lindon, J. K. Nicholson, Magn. Reson. Chem. 2009, 47, S47.

[28] J. T. M. Pearce, T. J. Athersuch, T. M. D. Ebbels, J. C. Lindon, J. K. Nicholson,
H. C. Keun, Anal. Chem. 2008, 80, 7158.

[29] H. S. Son, G. S. Hwang, H. J. Ahn, W. M. Park, C. H. Lee, Y. S. Hong,
Food Res. Intl. 2009, 42, 1483.

[30] G. E. Pereira, J. P. Gaudillere, C. Van Leeuwen, G. Hilbert, O. Lavialle,
M. Maucourt, C. Deborde, A. Moing, D. Rolin, J. Agric. Food Chem.
2005, 53, 6382.

[31] G. E. Pereira, J. P. Gaudillere, C. V. Leeuwen, G. Hilbert, M. Maucourt,
C. Deborde, A. Moing, D. Rolin, Anal. Chim. Acta 2006, 563, 346.

Figure 7. Principal component analysis score plots derived from the primary metabolites by 1H NMR (A and B) and from the secondary metabolites
of volatile compounds using GC-MS (C and D), showing the metabolic dependence of wine metabolites on different strains (O. oeni Enoferm alpha,
Vinibacti111, Vinibacti222, Wyeast, and MCW) and genera (O. oeni and L. plantarum) of lactic acid bacteria (LAB) in wine during malolactic fermentation
(MLF). (Reproduced with permission from Refs. [40] and [41], Copyright 2009 by American Chemical Society).

Y.-S. Hong

wileyonlinelibrary.com/journal/mrc Copyright © 2012 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2011, 49, S13–S21

S20

in these samples increases its concentration with regard to the
control sample), methyl vanillate, acetovanillone and dihydrom-
ethyleugenol (two and five times more than the rest of the sam-
ples). Also remarkable is the high content in homovanillyl
alcohol found in the samples incubated with O. oeni 5106 strain.

As for the different aroma compounds, some of the changes in-
duced by bacteria deserve to be commented on. The levels of b-
damascenone are in all cases higher in the supplemented samples
inoculated with bacteria. This molecule is a potent odorant that
comes from the hydrolytic cleavage of some C13-norisoprenoidic
polyols present in wines in free form or as glycoside (Kotseridis,
Baumes, & Skouroumounis, 1999; Skouroumounis & Sefton,
2000; Skouroumounis & Winterhalter, 1994). Ugliano and Moio

(2006) found a significant increase of the concentration of b-dama-
scenone after MLF and suggested that the formation of this com-
pound could be related to hydrolytic action of the bacteria. In the
case of the powerful odorant b-ionone, however, only some strains
(O. oeni 5008, O. oeni 5102, O. oeni 5106 and L. casei 5199) seem to
be able to release the molecule. Terpenes were released at low lev-
els, probably because the grapes used to obtain the precursor ex-
tract were not very rich on these compounds. Interestingly, the
levels of linalool were again highest in the samples inoculated with
O. oeni 5008, O. oeni 5102, O. oeni 5106 and L. casei 5199. b-citro-
nellol was not released in absence of bacteria, which confirms that
this molecule is formed only by the bacterial metabolism from
other terpenic precursor, as already reported for the yeasts during
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2005). An intraspecies comparison of four commercial O. oeni starter strains has also 

revealed significant differences in the volatile fraction of MLF wines: several esters that 

are known to have an impact on wine aroma profile, such as ethyl-3-hydroxybutanoate 

and acetate esters, were found to increase after MLF in a strain-specific manner (Ugliano 

et al., 2005). A comparison of Korean Meoru wines fermented either with a commercial 

O. oeni starter or with Lactobacillus plantarum KACC 91436C showed differences not 

only between MLF and non MLF wine, but also between the MLF wines produced by the 

different species (Lee et al., 2009a). Compared to non-MLF wines, MLF wines had 

increased levels of primary metabolites such as lactic acid, phenylalanine, uracil, 

ornithine, alanine, threonine, leucine, isoleucine and valine, as well as decreased levels of 

monosaccharides, glycerol, malic acid and citric acid –as could be expected for any MLF 

wine. Secondary metabolites also showed differences, with levels of butanal, ethyl 

isobutylate, isobutanol, isoamyl acetate, 2-butanoate ethyl ester, isoamyl alcohol, ethyl 

hexanoate, glycine, acetic acid and benzaldehyde being higher in MLF wine. Although a 

number of primary metabolites were present in different concentrations in wines 

fermented with L. plantarum or O. oeni, no differences were observed for secondary 

metabolites. Moreover, in a further study made by the same authors, in which five 

industrial strains of O. oeni and a spontaneous MLF were compared, it was possible to 

detect differences among each of the strains. Twelve volatile secondary metabolites (2-

phenylethanol, isoamyl alcohol, 2-butanol, ethyl octanoate, ethyl hexanoate, hexadecanoic 

acid, diethyl succinate, butyl butyrate, octanoic acid, 9-hexadecanoic acid, isobutyric acid, 

and 2-ethyl-1-hexanol) contributed to the differentiation of wines according to the O. oeni 

strain used, and also for spontaneous MLF (Lee et al., 2009b) (Figure 37). Surprisingly, 

no differences were detected for the primary metabolites, as opposed to previous studies 

(Pozo-Bayón et al., 2005). In another study, metabolomic data of model wines fermented 

with different O. oeni strains was linked to their aroma profiles. Although no clear 

correspondences between volatiles and odour nuances could be assigned, it was 

demonstrated that the presence of LAB in a model wine with odour precursors causes a 

broad change in the odour profile in a strain-dependent manner (Hernandez-Orte et al., 

2009) (Figure 38). Even so, these are still very promising results in the field of LAB 

metabolomics in wine, since they offer an overview about variations in the volatile profile 

of wines fermented with different species and strains. The pathways that form the intricate 

metabolic networks of an organism are interconnected as a complex web commanded by 

genes: under the era of integrated omics, more studies regarding O. oeni need to be done, 

especially correlating genomic and metabolimic data. 
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VIII. First Article 
 

“Phylogenomic analysis of Oenococcus oeni reveals specific domestication of 

strains to cider and wines” 
 

The first objective of this thesis was to unveil phylogenomic structure of O. oeni, in order to 

understand which are the genomic features that are common to all the strains and which 

makes them different. We also wanted to understand what are the factors that contribute to the 

adaptation of different strains to different kinds of products. With this goal in mind, a set of 

fifty O. oeni genomes were collected and analysed under comparative genomics approaches. 

Fourteen of these genomes come from NCBI’s public database, and have been described in 

previous publications; the other thirty six were sequenced by us. Strains were selected in 

function of their genetic group and their source of isolation, in order to obtain a broad 

representation of the species diversity. 

The questions that we wanted to address for the development of this article required 

the implementation of a set of specific bioinformatics tools that were not available in the 

laboratory. Some of these tools were publicly accessible; others were created in-place from 

scratch. First of all, we needed not only programs to assemble genomes, but also a program 

that was able to evaluate the quality of the obtained assemblies through statistic parameters, 

and to put them in an format that was easy to read. For this task, the program N50 was 

created. N50 is able to read a set of genomes in (multi)FASTA format and output assembly 

statistics such as the genome size, number of contigs, largest and shortest contigs, contig size 

average, N50, L50, N90, L90, among others. Once the genomes were assembled, they had to 

be submitted to NCBI. A genome submission requires the assembly files to meet certain 

requirements: only contigs of more than 199bp must be uploaded, the contigs need to be 

named under a specific format, and each contig ID should carry information about the 

organism in the form of tags, which must be identical for each sequence. For this task, the 

program contigfilter was created. This program can read any (multi)FASTA file and 

accommodate it to meet the conditions required by NCBI. 

Another set of useful programs was created for calculating pan genomes from 

orthoMCL results, and for manipulating the extracted data. The program ortho2csv was 

created specifically for this task: it is able to read a list of orthogroups generated by 

orthoMCL and transform it into a bidimensional matrix, with each organism in the rows and 

each orthogroup in the columns, with values in the cell indicating the number of proteins that 

are represented in each orthogroup for each organism. This matrix can be manipulated with 



Progam Function 
N50 Calculates genome assembly statistics 
contigfilter Formats FASTA file for submitting to NCBI 
ortho2csv Converts orthoMCL orthogroups to pan genome table 
chartX2 Manipulates pan genome subfeatures 
panprog Calculates pan genome curve 
VCF2CART Parses VCF files for calculating SNP entropy 
jspecies2mega Transforms JSpecies' similarity matrices into MEGA format 
fastaGC Calculates GC content and length of all the sequences contained in a (multi)FASTA 
 
Table 1. Programs that were developed during the thesis project. 
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another program called chartX2 –also created by us–, which can extract subfeatures of the pan 

genome,  such as the core genome, shell genome, cloud genome and the absent orthogoups 

(which we called zero genome) for all the organisms or a subset of them. This program also 

has the option to transform the extracted data into a binary matrix, with a 0 value for absent 

orthogroups and 1 value for any orthogroup that is represented by more than one protein. In 

order to evaluate the diversity of a pan genome, the program panprog was created. Panprog 

can read a pan genome matrix, and for a number of N organisms it will calculate the sizes of 

the core and pan genomes in a range from 1 to N organisms. Each step will be iterated N 

times, sampling a random subset of organisms, in order to get a representative picture. The 

random selection of the subset has a restriction so that no identical subsets are ever sampled. 

This program also offers the posibility to calculate the diversity of the pan genome based 

either on the orthogroups, either on individual proteins. 

The analysis of SNPs and indels data also required the creation of programs. Pipelines 

for analysing SNPs and indels usually start with the SNP-calling, i.e. the detection and 

extraction of SNPs and indels data. Different software used for this task generate a diversity 

of output formats that are not always compatible with the formats required by the software 

downstream the analysis. In the particular case of our publication, we had performed the 

SNP-calling with MUMmer software This program outputs a tabular table that can be later 

converted to VCF format. We needed to calculate the entropy of SNPs and indels with 

entropy software, which requires the input to be in the format of a special list. We created the 

program multiVCF2CART in order to perform this task.  

 For phylogenomic analyses, we also needed to adapt data formats. Programs for 

calculating ANI and Tetra genomic distances usually output a similarity matrix in the form of 

a table. These are normally not compatible with phylogeny analysis software such as MEGA. 

In order to connect the pipeline, we developed the software jspecies2mega. This software can 

read a similarity matrix, automatically determine if the distances are derived from ANI or 

Tetra, transform the similarities into distances, and accommodate them to the format required 

by MEGA. 

Another program that was created during the preparation this publication is fastaGC, 

although it was not used for this analysis –its usage will be described later. A list of the most 

commonly used programs created during this thesis is summarized in table 1. Many of them 

were also useful in other researches. The pipeline to evaluate genome assemblies and adapt 

them to NCBI format permitted the submission of the genomes in the publications of Romano 

et al. (2013) and Dimopoulos et al. (2014) (annexes 2 and 3). The pipeline for analysing SNPs 

permitted the genotypic characterisation of the publication of El Khoury et al. (in preparation) 

(annex 4). 
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Abstract

Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation.
Molecular typingmethodshavepreviously revealed that thespecies ismadeofseveralgeneticgroupsof strains, somebeingspecific to
certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of
these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae
that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the
50O. oeni genomesdelineate twomajorgroupsof12and37strains, respectively, namedAandB,plusaputativegroupC,consisting
of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the
domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains
proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were
found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results
suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they
were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific
wines such as champagne.

Key words: Oenococcus oeni, genomics, phylogeny, population structure, domestication.

Introduction
The lactic acid bacteria species Oenococcus oeni is present on
grapes and other fruits at very low and often undetectable

levels (Lonvaud-Funel 1999; Bae et al. 2006; Barata et al.
2012). It proliferates in wine and cider during or after the
yeast-driven alcoholic fermentation and reaches population
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levels above 106 cells/ml, thus becoming the only detectable
bacterial species (Fleet et al. 1984; Lonvaud-Funel 1999). Its
development in wine is desirable because O. oeni performs
the malolactic fermentation (MLF), which mainly consists in
the conversion of malate into lactate and carbon dioxide and
improves the taste and overall quality of wine (Davis et al.
1985; Bartowsky 2005). Oenococcus oeni is often used as a
starter culture in wine to better control the onset and duration
of MLF. Starter strains are selected on the basis of their capac-
ity to promote the transformation of malate in a panel of
wines. This relies upon the tolerance of bacteria to stresses
encountered in wine, such as acidity (pH 2.9–4.0), ethanol
(10–15%), sulfites, or phenolic compounds (Torriani et al.
2011). The Oenococcus genus comprises two other species:
Oenococcus kitaharae, found in composting distilled shochu
residues (Endo and Okada 2006) and Oenococcus alcoholito-
lerans, recently documented from cachaça and bioethanol
fermentation processes (Badotti et al. 2014). Although being
adapted to alcohol-rich environments these species were not
reported in wine and differ from O. oeni in that O. kitaharae
lacks the ability to perform MLF (Marcobal et al. 2008) and O.
alcoholitolerans produces acid from sucrose, a characteristic
that is rarely found among O. oeni strains (Badotti et al. 2014;
Dimopoulou et al. 2014). The first complete O. oeni genome
sequence of strain PSU-1 revealed a reduced genome of
1,780,517 bp and a number of metabolic pathways involved
in growth in wine, MLF, and aroma production (Mills et al.
2005; Makarova et al. 2006; Makarova and Koonin 2007).
The sequences and comparative analysis of 13 additional ge-
nomes have extended the repertoire of industrially relevant
genes contributing to wine tolerance and MLF (Borneman et
al. 2010, 2012a). Interestingly O. oeni lacks the mismatch
repair genes mutS and mutL. This atypical situation was also
detected in the sister species O. kitaharae and correlated to
the hypermutable status of both species (Marcobal et al.
2008). A BLAST search for mutS and mutL on O. alcoholitoler-
ans does not show any significant match (data not shown). A
mutation in mutL has also been reported in a fast evolving
strain of Lactococcus lactis (Bachmann et al. 2012) It is antic-
ipated that hypermutability is responsible for the high allelic
diversity of O. oeni and contributes to the adaptation of the
species to the wine environment. The population structure of
the species was examined by multilocus sequence typing
(MLST) of large collections of strains isolated from various
products and places (Bilhère et al. 2009; Bridier et al. 2010).
The strains form two genetic groups, namely A and B, possibly
subdivided into subgroups linked to specific regions, such as
Chile and South Africa, or products such as cider and
champagne.

We have recently sequenced 36 additional genomes of
strains isolated from diverse origins with the aim to compare
their genetic equipment, particularly genes involved in exopo-
lysaccharides production (Dimopoulou et al. 2014). In this
study, we report the general features of these genomes and

a phylogenomic analysis of all 50 O. oeni genomes reported to
date. We also report three new genomes of O. kitaharae
strains.

Materials and Methods

Bacterial Strains, Genomic DNA Isolation, and Polymerase
Chain Reaction Conditions

All the strains analyzed in this study are listed in table 1 and
available from the indicated culture collections. Two couples
of polymerase chain reaction (PCR) primers specific for group
A and B strains targeting genes of a cell surface protein pre-
cursor and a hypothetical protein, respectively, were designed
using Primer3 (Koressaar and Remm 2007; Untergasser et al.
2012), evaluated with MFEprimer (Qu et al. 2009) and vali-
dated in the laboratory against a collection of 41 previously
genotyped strains. For total DNA PCR, 65 wine samples were
collected from 58 wineries of the Aquitaine region. DNA was
extracted from a centrifuged pellet by mechanic lysis using
glass beads, followed by Nuclei Lysis Solution and Protein
Lysis Solution (Promega) and 10% PVP solution to eliminate
phenols. Microbial DNA used for genome sequencing and
colony PCR were extracted using the wizard genomic DNA
purification kit according to manufacturer’s recommendation
(Promega). PCR amplifications were performed in a reaction
volume of 20ml containing Taq Master Mix (BioLabs), a final
concentration of 0.25mM of primers and 2.5 ng of DNA.
Sequences were amplified for 30 cycles.

Genome Sequencing, Assembly, and Annotation

Thirty-six O. oeni and three O. kitaharae genomes were se-
quenced and assembled either by using Illumina sequencing
technology and SOAPdenovo assembler (Macrogen, Seoul,
Korea) or 454 sequencing technology and Newbler assembler
(GeT-PlaGe Genotoul, Castanet Tolosan, France). Contigs
shorter than 200 bp were discarded and final genomes
were deposed on NCBI under the accession numbers listed
in table 1. All genomes were annotated by RAST (Aziz et al.
2008), curated manually and possible pseudogenes were in-
dicated. Curated genes were resubmitted to KAAS annotation
server (Moriya et al. 2007) of the KEGG project to get an extra
reference. Coding sequences (CDS) annotated by RAST and
KAAS were classified according to their ortholog groups using
OrthoMCL (Li 2003).

Modeling of the Progression of the Pangenome

The composition of the core, eco and pangenomes were cal-
culated according to the ortholog groups derived from
orthoMCL. From i = 2 to 49 genomes, the composition was
calculated by randomly picking i genomes and calculating the
composition of the pangenome, iterating the process
49 times, with the restriction that the same combination of
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Table 1

General Features of O. oeni and O. kitaharae Genomes

Straina Origin Sequence data Accession References

Method Contigs Total bp L50 N50 N50 ratiob CDS Plasmid (bp)

PSU-1 USA, red wine Sanger 1 1,780,517 1,780,517 1 0 1,878 CP000411 Mills et al. 2005

ATCC_BAA-1163 France, red wine Sanger 61 1,748,994 61,665 10 311 1,835 pLo13 (3,948) AAUV00000000 NCBI

AWRIB129 France Illumina 42 1,729,193 135,603 5 311 1,780 AJTP00000000 Borneman et al. 2012a

AWRIB202 Australia Illumina 36 1,840,757 137,205 4 288 1,914 AJTO00000000 Borneman et al. 2012a

AWRIB304 Australia Illumina 36 1,852,239 137,195 4 288 1,928 AJIJ00000000 Borneman et al. 2012a

AWRIB318 Australia Illumina 26 1,808,452 241,841 3 199 1,879 ALAD00000000 Borneman et al. 2012a

AWRIB418 USA Illumina 34 1,838,155 177,870 4 255 1,887 ALAE00000000 Borneman et al. 2012a

AWRIB419 France Illumina 46 1,793,208 135,466 5 377 1,861 pOENI-1 (18,431) ALAF00000000 Borneman et al. 2012a

AWRIB422 France, Champagne Illumina 32 1,814,530 228,430 3 309 1,893 pOENI-1v3 (21,317) ALAG00000000 Borneman et al. 2012a

AWRIB429 Italy Illumina 58 1,927,702 85,101 8 363 2,042 pOENI-1v2, (21,926) ACSE00000000 Borneman et al. 2012a

AWRIB548 France, champagne Illumina 29 1,835,383 228,488 3 251 1,929 ALAH00000000 Borneman et al. 2012a

AWRIB553 France Illumina 32 1,759,113 229,549 3 309 1,814 ALAI00000000 Borneman et al. 2012a

AWRIB568 Australia Illumina 31 1,874,865 137,199 4 209 1,968 pOENI-1v2 (22,031) ALAJ00000000 Borneman et al. 2012a

AWRIB576 Australia Illumina 28 1,877,204 241,903 3 233 1,964 pOENI-1v2 (22,005) ALAK00000000 Borneman et al. 2012a

IOEB_0205 France, champagne 454 42 1,795,037 157,775 4 399 1,879 AZHH00000000 This study

IOEB_0501 France, red wine 454 38 1,826,356 162,140 5 251 1,892 AZIP00000000 This study

IOEB_0502 France, red wine Illumina 39 1,822,270 140,250 5 265 1,883 AZKL00000000 This study

IOEB_0607 France, red wine 454 122 1,815,356 140,050 5 2855 1,873 pOENI-1v2 AZKK00000000 This study

IOEB_0608 France, red wine 454 41 1,812,611 108,677 6 239 1,882 AZKJ00000000 This study

IOEB_1491 France, red wine Illumina 42 1,772,571 96,930 7 210 1,852 AZLG00000000 This study

IOEB_8417 France 454 65 1,842,137 95,439 7 539 1,907 AZKH00000000 This study

IOEB_9304 France, cider 454 137 1,827,658 79,430 9 1,948 1,901 AZKI00000000 This study

IOEB_9517 France 454 56 1,743,782 86,291 8 336 1,824 AZKG00000000 This study

IOEB_9803 France 454 36 1,833,906 146,580 5 223 1,889 AZKF00000000 This study

IOEB_9805 France 454 57 1,843,445 138,815 6 485 1,912 AZKE00000000 This study

IOEB_B10 NA Illumina 42 1,779,079 108,811 5 311 1,841 AZJW00000000 This study

IOEB_B16 France, champagne 454 45 1,793,397 108,273 6 293 1,875 AZKC00000000 This study

IOEB_C23 France, cider Illumina 47 1,837,655 93,272 8 229 1,941 AZJU00000000 This study

IOEB_C28 France, cider Illumina 130 1,804,864 92,742 8 1,983 1,905 AZLE00000000 This study

IOEB_C52 France, cider Illumina 48 1,903,774 101,748 6 336 1,946 AZLF00000000 This study

IOEB_CiNe NA Illumina 60 1,790,871 63,847 9 340 1,863 AZJV00000000 This study

IOEB_L18_3 Lebanon, red wine Illumina 44 1,735,746 90,241 6 279 1,790 AZLO00000000 This study

IOEB_L26_1 Lebanon, red wine Illumina 26 1,794,099 154,085 4 143 1,860 AZLP00000000 This study

IOEB_L40_4 Lebanon, red wine Illumina 61 1,731,377 121,479 4 869 1,800 AZLQ00000000 This study

IOEB_L65_2 Lebanon, red wine Illumina 39 1,776,569 105,259 5 265 1,850 AZLR00000000 This study

IOEB_S277 France 454 69 1,741,397 63,100 9 460 1,798 AZKD00000000 This study

IOEB_S436a NA Illumina 44 1,764,184 107,495 5 343 1,829 AZLS00000000 This study

IOEB_S450 France Illumina 37 1,762,120 149,059 5 237 1,826 AZLT00000000 This study

IOEB_VF France Illumina 48 1,782,542 107,495 5 413 1,854 pOENI-1 (18,332) AZLM00000000 This study

S11 France, white wine Illumina 40 1,833,247 102,852 6 227 1,898 pOENI-1v2 (21,926) AZJX00000000 This study

S12 France, white wine Illumina 35 1,813,617 136,768 6 169 1,856 AZLH00000000 This study

S13 France, red wine 454 66 1,814,452 67,856 8 479 1,870 AZKB00000000 This study

S14 France, red wine Illumina 40 1,731,907 85,103 5 280 1,800 AZLI00000000 This study

S15 France, red wine Illumina 37 1,740,731 101,942 5 237 1,784 AZLJ00000000 This study

S19 France, red wine Illumina 65 1,810,386 97,002 7 539 1,889 AZLK00000000 This study

S22 France, white wine 454 43 1,810,137 141,242 5 327 1,883 AZKA00000000 This study

S23 England, white wine Illumina 50 1,805,457 84,503 7 307 1,859 AZLL00000000 This study

S25 France, red wine 454 32 1,741,301 140,671 5 173 1,808 AZJZ00000000 This study

S28 France, red wine 454 46 1,843,403 90,157 7 256 1,924 AZJY00000000 This study

S161 Red wine Illumina 35 1,789,533 108,729 5 210 1,850 AZLN00000000 This study

DSM_17330c Japan, shochu residue Illumina 1 1,833,925 1,833,825 1 0 1,841 Unnamed (8,313) ATZG00000000 Borneman et al. 2012b

NRIC_0647c Japan, shochu residue Illumina 27 1,839,043 261,715 3 216 1,849 Unnamed (8,365) JSAG00000000 This study

NRIC_0649c Japan, shochu residue Illumina 16 1,825,564 285,276 3 69 1,832 Unnamed (8,280)d JSAH00000000 This study

NRIC_0650c Japan, shochu residue Illumina 16 1,785,288 282,363 3 69 1,790 Unnamed (8,365) JSAI00000000 This study

Note.—NA, not available.
aIOEB, Faculty of Enology of Bordeaux; S, SARCO (Bordeaux, France); ATCC, American Type Culture Collection, DSM, Deutche Sammlung von Mikroorganismen und

Zellkulturen Gmb (Germany); NRIC NODAI Research Institute Culture collection (Tokyo, Japan).
bN50 ratio = ((Contigs!N50)/N50)"Contigs.
c Oenococcus kitaharae strain.
dBroken in two contigs.
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genomes cannot be chosen twice. For the 50 genomes
altogether, the composition can be calculated only once.

Detection, Analysis, and Distribution of Single Nucleotide
Polymorphisms

Raw reads were mapped against the reference genome of
strain PSU-1 with the program BWA bwasw (Li and Durbin
2010). Single nucleotide polymorphism (SNP) were extracted
with SAMtools and BCFtools (Li et al. 2009). An independent
mapping and extraction of the SNP was carried out with
MUMmer nucmer (Kurtz et al. 2004), both for the already
assembled public genomes and for the final assemblies of
the genomes of this study. The 47,621 resulting SNP positions
were parsed into a matrix containing the allele carried by each
strain. The distribution of SNP among different groups of
strains was determined by measuring the Shannon Entropy
for each SNP with the formula H =!

P
p(xi) log2p(xi), where

p(xi) represents the probability of finding the allele xi in an
arbitrarily defined group of strains. The entropy was calculated
for the groups of strains “A,”” B,” “strain IOEB_C52,”
“champagne,” and “cider” as defined in figure 2. A SNP
was considered to be unique to a certain group of strains
whenever its entropy (H) was equal to 0 for the given
group. The effect of each SNP was analyzed by snpEff
(Cingolani et al. 2012), using the public genome of PSU-1 as
reference. SNP affecting noncoding zones were discarded for
the snpEff analysis.

Distribution of Orthologs

All the CDS from all the strains were assigned to ortholog
groups according to orthoMCL v2.0.9. The output was
parsed to a matrix containing the number of CDS assigned
to each ortholog group for each strain. The distribution of CDS
among the groups of strains was determined by measuring
the Shannon Entropy of each ortholog group from a matrix,
exactly in the same way as for SNPs, except that rows repre-
sent each group of orthologs, and every cell contains the
number of CDS assigned to each ortholog group, as if it
were an allele. The distance between genomes was measured
by Canberra method from the same matrix used to calculate
the entropy. Pheatmap R package (R Core Team 2013) was
used to calculate the distance and visualize the results.

Phylogenetic Reconstructions

MLST data were collected from each genome sequence by
retrieving the sequences of seven house-keeping genes al-
ready reported (Bilhère et al. 2009) using BLAST (Altschul et
al. 1997). A 3,463-bp concatenated sequence was produced
for each strain and used to reconstruct a tree by the neighbor
joining method with 1,000 bootstrap replications and
the Kimura 2-parameter model with MEGA v5.2.2 (Tamura
et al. 2011).

Artificial sequences of 47,621 bp were produced for each
genome by concatenating all the SNPs from the SNP matrix
(see above) and used to reconstruct a tree using exactly the
same method and parameters as for MLST. The program
Structure (Hubisz et al. 2009) was used to analyze the popu-
lation structure, using the same SNP data. To choose an op-
timal k value, the program was run with k values ranging from
1 to 8, burning period of 10.000, 2.000 Markov chain Monte
Carlo repetitions, and each step was iterated ten times. The k
value that best fitted the model was selected for the definitive
analysis.

Distances between genomes were calculated by ANIm,
ANIb, and Tetra algorithms with JSpecies v1.1 (Richter and
Rosselló-Mora 2009). The difference between ANIm and
ANIb is that the latter works by cutting the genomes in
1,020 bp pieces and averages the best matches of an all-
versus-all BLAST, whereas the former does not cut the ge-
nomes and searches the matches by MUMmer. The resulting
similarity matrices were transformed into distance matrices
and used to reconstruct trees by the neighbor joining
method with MEGA v5.2.2.

All trees were further processed and plotted with APE R
Package (Paradis et al. 2004).

Results and Discussion

General Features of 36 Newly Reported O. oeni
Genomes

The general characteristics of the 36 genomes described in this
study are listed in table 1, along with those of the 14 previ-
ously described genomes and 3 new sequences of the sister
species O. kitaharae. The 36 strains associated with the ge-
nomes of this study were isolated from different products and
regions and at different years. They were selected for the di-
versity of their origins and their phylogenetic position accord-
ing to previous studies (Bilhère et al. 2009; Bridier et al. 2010;
Favier et al. 2012). Among the total of 50 studied strains, most
come from France (33), while some others come from
Australia (5), Lebanon (4), United States (2), Italy (1), and
England (1). Twelve are commercial starters that were initially
isolated from wines but afterwards produced industrially. The
36 new genomes are representative of different products: red
wine (18), white wine (4), champagne (2), and cider (4).
Illumina and 454 technologies were used to produce 21 and
15 genomes, respectively. The assembled genomes are made
of 26–137 contigs. The N50 ratio values of the genomes sug-
gest that the quality of assemblies tends to be better for ge-
nomes sequenced by Illumina, which is consistent with
previous studies (Luo et al. 2012). The range of the sizes of
the 36 new assembled genomes (from 1,731,377 to
1,903,774 bp) falls in the range of the 14 previously reported
genomes (from 1,729,193 to 1,927,702 bp). In the same way,
the number of identified CDS in the new genomes falls in the
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same range, from 1,784 to 1,946, compared with the range
from 1,780 to 2,042 for the previously reported genomes. We
did not detect any pLo13-type plasmid in any of the new
genomes, nor another cryptic plasmid, such as the one de-
scribed for the strain ATCC_BAA-1163. However, three
strains carry plasmids of the pOENI-1 family (Favier et al.
2012). The strain IOEB_C52 contains a contig with genes
that are typical of conjugative plasmids: a complete set of
the Trs proteins, conjugation proteins, integrases, and tran-
scriptional regulators. Nevertheless, we found no evidence
that this contig might be part of a plasmid rather than inte-
grated in the chromosome. The tree O. kitaharae genomes
produced here share very similar properties to that of the
previously sequenced strain DSM_17330 (Borneman et al.
2012b) and contain the same plasmid.

Pangenome of O. oeni

To evaluate whether the pangenome (sum of all the genes of
all the collected strains) (Medini et al. 2005; Tettelin et al.
2008) of the species has been fully represented, we deter-
mined the ortholog groups, analyzed the composition of the
pangenome, and plotted the evolution of the coregenome
(set of genes shared by all the strains) versus the pangenome
from 1 to 50 strains (fig. 1). Tendency of the curves suggests
that neither the coregenome nor the pangenome of the spe-
cies has been fully represented yet. The pangenome for the 50
strains is represented by 3,235 CDS, distributed in 2,469
ortholog groups (table 2). The core genome is represented
by 1,368 CDS, distributed in 1,160 orthologs. There are also
1,452 CDS that form the shellgenome (genes shared by only
some strains) distributed in 902 ortholog groups, whereas 415
CDS belong to the cloud genome (genes present in only one
strain). The size of the pangenome is consistent with previous
studies that showed a pangenome size of 2,846 CDS for a

group of 14 strains (Borneman et al. 2012a). However, the
size of the coregenome is bigger than that of the fore men-
tioned study (1,165 CDS for the group of 14 strains), a diver-
gence that is due to the different methods used to determine
orthologs. Due to this divergence of the methods, if we recal-
culate the pan and coregenomes for the group of 14 strains
we get a set of 2,639 and 1,512 genes, respectively.

Population Structure of O. oeni

The population structure of O. oeni was investigated by four
methods based on different genomic properties: MLST, signa-
ture of tetranucleotides, SNP, and whole-genome alignment.
A first phylogenetic tree, based on MLST data, was produced
in order to compare with MLST trees reported previously
(Bilhère et al. 2009; Bridier et al. 2010). The sequences of
seven housekeeping genes were extracted from all of the
50 genomes and used to reconstruct a tree. In agreement
with previous studies the MLST tree topology shows that
the 50 O. oeni strains are distributed in two major genetic
groups, A and B (fig. 2A). This tree, however, differs for
strain IOEB_C52, which had been attributed to a third putative
group C in the previous study (Bridier et al. 2010). Indeed, this
strain is not clearly excluded from group B in the tree of
figure 2A, although it branches apart from all other group B
strains.

To evaluate the similarity of the genomes in terms of envi-
ronmental pressure, we performed an analysis based on the
genomic signature of tetranucleotides by Tetra algorithm
(Karlin et al. 1997; Teeling et al. 2004; van Passel et al.
2006; Nishida et al. 2012). The genomic signature can
change upon the action of selection pressure and environ-
ment and start diverging even between genomes with similar
sequences (Pride 2003; Bohlin and Skjerve 2009; Bohlin et al.
2010), or inversely, environmental pressure can act as a driving
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FIG. 1.—Progression of the core and pangenome of O. oeni. The

progression on the composition of the core (red) and pangenome (blue)

of O. oeni was computed by adding genomes one by one and iterating the

process until reaching the 50 genomes.

Table 2

Pan and Coregenome of O. oeni

Total (50 strains) Ortholog Groups Total Genes

Coregenome 1,160 1,368

Shellgenome 902 1,452

Cloudgenome 407 415

Pangenome 2,469 3,235

Group A (37 strains)

Coregenome 1,278 1,513

Shellgenome 653 1,047

Cloudgenome 190 191

Pangenome 2,121 2,751

Group B (12 strains)

Coregenome 1,233 1,480

Shellgenome 504 807

Cloudgenome 282 293

Pangenome 2,019 2,580
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FIG. 2.—Phylogenetic and phylogenomic reconstructions of O. oeni by four different methods. Phylogenetic reconstruction by MLST was compared

against phylogenomic reconstructions by Tetra, SNP, and ANIm. When possible, bootstrap values were calculated by doing 1,000 iterations (values indicated

in bottom legend). Major genetic groups are indicated as in the legend. Strains coming from the same product (champagne, cider) are indicated when they

form a single cluster.
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force to keep the genomic signature stable even when
different strains of a species can start to differ in their genomic
sequence (Richter and Rosselló-Móra 2009). Therefore
analyzing the 50 O. oeni genomes by Tetra was useful for
confirming or refuting phylogenies based on other methods.
The tree derived from the analysis shows strain IOEB_C52 as
part of the group B, the latter being embedded inside the
group A (fig 2B). It is likely that this phylogeny is incorrect
because Tetra is less efficient to compare closely related ge-
nomes of a single species than distant genomes from different
species. However, the fact that group B strains form a well-
defined cluster in the tree constructed by Tetra throws
stronger evidence in favor of the separation of the two
groups A and B.

The SNP content of the genomes was analyzed to further
investigate the population structure of O. oeni. Mapping all
the genomes against the complete genome of strain PSU-1
revealed 47,621 SNP positions and a total of 48,230 alleles. A
concatenated sequence of 47,621 bp was produced for each
strain by extracting the alleles of all SNPs positions and the 50
sequences were used to reconstruct an unrooted tree by the
neighbor joining method (fig. 2C). This tree has a slightly dif-
ferent topology from that of the MLST. Although they both
agree in their two major branches A and B, the tree generated
from SNPs clearly excludes strain IOEB_C52 from all rest, sug-
gesting that this strain might actually be part of a third group
C. Bootstrap values show a far more consistent tree than the
one previously made by MLST. The fore mentioned trees are
consistent with the results of previous studies (Bilhère et al.
2009; Borneman et al. 2012a), except for the newly se-
quenced strain IOEB_C52 that might be part of a genetic
group that has not yet been described. SNP data was further
processed by Structure software to infer the number of pop-
ulations detected among the 50 strains. Structure is suited for
inferring population structure since it works by probabilistically
assigning individuals to populations by characterizing their
allele frequencies at each locus. This method can be more
reliable than distance-based methods such as neighbor-joining
trees which do not let incorporate additional information, so
they are more suited for exploratory analysis than for statistical
inference (Pritchard et al. 2000). The result confirmed the
presence of two populations corresponding to strains from

groups A and B plus a third population represented by strain
IOEB_C52 alone (fig. 3). For both A and B populations there is
at least 70% of genetic contribution from their own group,
and 0% to almost 25% contribution from group C. Strain
IOEB_C52, the only individual of C group, has more than
80% of group C contribution and most of the contribution
of the rest comes from B (fig. 3).

Finally, a phylogenetic tree based on whole-genome align-
ments was constructed using the average nucleotide identity
(ANI) algorithm by MUMmer alignment (ANIm). This method
calculates the distance between genomes by aligning the
whole sequences using MUMmer and averaging the best
matches. It can detect similarities that the SNP method
would miss, especially when two strains being compared
share a sequence that is absent in the reference strain used
for SNP calling. Although the SNP and ANIm methods are
strikingly different they produced trees sharing very similar
topologies (fig. 2C and D). They both exclude strain
IOEB_C52 from groups A and B. They also reveal a number
of subgroups made of closely related strains. It is noteworthy
that 4 strains isolated from Lebanon do not group together
but are disseminated among diverse locations of branch A. In
contrast, there are two clusters of strains isolated from the
same type of product: three strains from cider and four strains
from champagne. The latter were also grouped in the Tetra
analysis, which confirms that they have started to evolve in-
dependently. Although three of these strains are industrial,
IOEB_0205 is not, meaning that this genomic similarity
might not be due to industrial selection. During the prepara-
tion of this manuscript the six new genomes of O. oeni strains
isolated from “Nero di Troia” wine from cellars in the region
of Apulia (Italy) were reported (Capozzi et al. 2014). A prelim-
inary ANIm analysis showed that three of these strains are very
close genetically and form a cluster in group A, whereas two
other strains are dispersed in group A and the last strain falls in
group B, with ATCC_BAA-1163 (data not shown)

Evolution of Genetic Groups

In order to evaluate the evolutionary relationships between
O. oeni strains and between O. oeni and other species, an
ANI tree was constructed using BLAST algorithm, known as
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ANIb (fig. 4). The tree was outgrouped by including three
genomes of Leuconostoc mesenteroides subspecies mesenter-
oides and cremoris, and four genomes of the sister species
O. kitaharae (table 1). Due to differences of sensibility
between MUMmer and BLAST algorithms, discrepancies be-
tween trees constructed by both methods become more ev-
ident as genomes start to diverge (ANI<90%). ANIm results
are more robust when analyzing closely related genomes, but
ANIb is preferable in this case since the compared genomes
can have an ANI as low as 65%. A comparison of the
previously published genome of O. kitaharae (Borneman

et al. 2012b) and the three newly made genomes reported
in this study reveals that they are rather homogenous at the
sequence level in comparison to those of O. oeni. This is not
surprising since all four strains were isolated from the same
sample (Endo and Okada 2006), even if it is not uncommon to
find genetically different strains in the same environment. The
branch lengths of the reconstructed tree show that O. oeni
strains are more divergent than strains of L. mesenteroides at
the sequence level, although the latter are considered to form
two subspecies (Hemme and Foucaud-Scheunemann 2004).
However, sequence similarity alone is not enough to deter-
mine whether a set of strains corresponds to different
(sub)species or not. In one hand, in order to be considered
as a single species the genomes must share at least greater
than 95% ANI (Thompson et al. 2013), which corresponds to
the case of O. oeni. In the other hand, phenotypic character-
istics can be at least partially predicted from genomic data in
order to further classify the strains of a species (Amaral et al.
2014). This might be the case of the strains isolated from
champagne and of IOEB_C52. The former shares a set of 27
unique SNP that generate truncate or longer proteins, or that
skip the start codon. The affected genes are implied in diverse
metabolic pathways which could at least partially explain this
strains’ adaptation to champagne. They also have a cellulose
1,4-beta-cellobiosidase enzyme that does not match with the
other strains according to the orthoMCL analysis. The strain
IOEB_C52, at the sequence level, appears at the most basal
position among O. oeni strains and has a set of 65 unique
genes, some of them possibly explaining some of its techno-
logic properties. However, because this is the only individual
representing its putative group, the evidence to confirm that it
might belong to a different class is weak. From the evolution-
ary point of view, this strain might represent a genetic group
that preceded the advent of groups A and B, because domes-
tication is also driven by a loss of genetic functions and a
specialization. Interestingly this strain was isolated from cider
as three other strains from group B. It is not surprising that
O. oeni develops well in cider because cider is rather similar as
wine regarding stress parameters: acidity, ethanol, polyphe-
nols, and available substrates (sugars, malate, and citrate). The
main difference is probably the total level of alcohol that rarely
exceeds 6% in cider, whereas it is usually 11–14% in wine
(Picinelli et al. 2000). Bacteria that naturally occur on fruits are
exposed to low ethanol levels when overmaturated fruits are
decomposed by the action of molds and yeasts. Therefore it is
possible that the most ancient O. oeni strains, represented by
strain IOEB_C52, were adapted to low ethanol containing en-
vironments, and that some strains of group B and most strains
of group A have evolved to tolerate higher ethanol concen-
trations and to survive in wine. This likely represents a case of
strain domestication because the wine environment exists only
due to human activity. Domestication of O. oeni has been
already reported (Douglas and Klaenhammer 2010); however,
our results suggest that this domestication has not reached to
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the same level the strains of groups A, B, and C, which is
reflected at the genomic level and confirmed by the popula-
tion structure analysis. Because they group together, O. oeni
strains from champagne have probably evolved a supplemen-
tary adaptive ability that could be the tolerance to the extreme
acidity of this type of wine (pH ~3.0). Domestication of other
microorganisms in wine has also been observed for some spe-
cies belonging to the Saccharomyces sensu stricto complex
(Sicard and Legras 2011), such as Saccharomyces cerevisiae
(Fay and Benavides 2005; Legras et al. 2007; Albertin et al.
2009) and Saccharomyces uvarum (Almeida et al. 2014).

Occurrence of Group A and B Strains in Wine

To compare the occurrence of group A and B strains in wine, a
PCR assay was developed to detect specifically group A or B
strains with two couples of primers targeting specific genes of
each group. A first screening was performed to detect group
A and B strains in 65 wines collected during MLF. The PCR test
showed positive results for group A strains on the 65 wines,
but no detectable signal for group B strains (table 3). This
indicates that large populations of group A strains were pre-
sent in all these wines. However, it is possible that minor and
undetectable populations of group B strains were also present.
To test this possibility, a second PCR screening was performed
on 110 O. oeni strains isolated from wines during MLF. None
of the strains from this collection correspond to the genomes
reported in this work. A total of 105 strains from group A and
only 5 strains from group B were detected. This suggests that
group A strains are the best adapted to wine conditions, and a
result that is consistent with the presence of cider strains in
group B and champagne strains in group A. However, it is not
surprising to detect some group B strains in wine since they
have been previously detected in Spanish wines (Bordas et al.
2013). It would be interesting to determine if group B strains
are occasionally encountered in diverse environments or if
they predominate in some regions or types of wines.

Core and Pangenomes of A and B Strains

To better understand the role of the genetic variability in the
evolution of O. oeni, the species was analyzed in terms of the
coregenome, shellgenome, and cloudgenome of groups A
and B separately. The core and pangenomes of the 37
group-A strains and 12 group-B strains were determined by
plotting curves as described above for the whole O. oeni pop-
ulation. The coregenome was bigger for group A than for

group B (table 2). This was not expected, since the general
tendency is that the bigger a group is, the smaller becomes the
coregenome, only if the genetic diversity is equivalent be-
tween the groups being compared. It is difficult to discuss
on the composition of the shell and cloudgenomes, since
adding more strains to a group raises the probability of finding
new genes, but it also raises the probability of a gene formerly
considered as unique to be found in a new strain, becoming
part of the shellgenome. Thus, the numbers in the shell and
cloudgenome tend to be more stable than those of the pan
and coregenome. Taking that into account, we can observe
that the cloudgenome of group B is bigger than group A’s,
suggesting a greater genetic diversity. When analyzing the
pangenome, the situation was more consistent because the
larger group A had the bigger pangenome. However, when
the pangenome of group A is considered for 12 randomly
selected strains to equal the size of group B, the pangenome
contains only 2,450 ± 55 genes, which is smaller than the
pangenome of group B, and the coregenome consists of
1,563 ± 14 genes, which is bigger than that of B. These results
confirm that strains of group B are genetically more diverse
than strains of group A. Group B strains might have had more
time to diverge, whereas the strains of group A are more
conserved, but at the same time more commonly found in
wine. Also, the fact that the strains of group A have a nar-
rower pangenome suggest that they might be in process of
further domestication to wine-like environments. This is also
supported by the fact that, despite being more numerous and
commonly found in wine, group A strains are genetically
closer between them than the group B strains, according to
all the phylogenetic and genomic analyses previously men-
tioned. Both groups A and B lack the lanthionine biosynthesis
proteins that are present in IOEB_C52 and other enzymes in-
volved in the synthesis of some metabolites. Loss of genes
with consequent auxotrophy, along with an augmented
number of transporters, is another sign that the species has
been domesticated (Douglas and Klaenhammer 2010).

Specific Genetic Features of Groups of Strains

A search for specific genes and SNP was also performed in
order to determine if some of them could explain some char-
acteristics of the group where they are present. To determine
whether the groups A and B differ by the absence or presence
of specific genes, we performed a cluster analysis that depicts
the distribution of the 2,469 ortholog groups of the O. oeni
pangenome among the 50 strains (fig. 5). The resulting heat
map reveals two major clusters for genetic groups A and B,
with strain IOEB_C52 being the most external of cluster B. It is
also possible to observe a clade made of strains that come
from champagne. The genes specific of groups of strains were
identified by calculating Shannon Entropy (H) for each ortho-
log group. A total of 94 orthologs specific to strains either of
group A, B, champagne or strain IOEB_C52 were detected

Table 3

Occurrence of O. oeni A and B in Wine during MLF by PCR Test

Genetic group Total DNA Colony PCR

A 65 105

B 0 5
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(table 4A). They encode hypothetical proteins, transcription
regulators and proteins involved in diverse functions, but
none that is obviously related to ethanol resistance (supple-
mentary table S1, Supplementary Material online). Genes that
are present exclusively in groups A or B are limited to hypo-
thetical proteins. Genes unique to IOEB_C52 include, besides
the Trs system mentioned before, a phosphoglycolate phos-
phatase, lanthionine biosynthesis proteins, transporters, sugar
utilisation, and nucleotide metabolism proteins. At the same
time, this strain lacks a set of five hypothetical proteins that are

present in all the other strains. The four strains isolated from
champagne share a unique set of nine genes, seven coding for
hypothetical proteins, one for a primase–helicase, and one for
cellulose 1,4-beta-cellobiosidase. They also lack, along with
the strain IOEB_S450, a gene encoding an esterase C. The
loss of this gene in two of the champagne strains had already
been reported (Mohedano et al. 2014). A detailed list of all the
discriminating orthologs among strains of group A, B, C,
champagne and cider is shown in supplementary table S1,
Supplementary Material online.
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For the SNP analysis, a total of 48,230 alleles were ex-
tracted from 47,621 positions, giving a total of 13,144 specific
SNP (with H = 0, table 4B). The strains of group A share 2,248
specific SNP, of which 1,879 affect coding zones. Because the
SNP were mapped against the genome of the strain PSU-1 as
reference, the molecular effect of all the SNP belonging to the
same group of strains as PSU-1 are to be considered as syn-
onymous. For the genetic group B, there is a total of 2,261
specific SNP, of which 1,936 affect coding zones. Among
these, 446 are nonsynonymous and 6 are nonsense muta-
tions, all of them truncating the proteins at less than one-
third of their original length. The strain IOEB_C52, the only
member of group C, has a total of 7,534 unique SNP, of
which 6,287 affect coding zones, 1,625 are nonsynonymous,
2 are lost stop codons, and 17 are nonsense. There are also
SNP that are characteristic of strains from certain products. For
instance, the strains from champagne share a set of 1,085 SNP
that are not found elsewhere and can be considered typical of
this group. From these, 23 correspond to nonsense SNP, 3 to
start lost, and 1 to a lost stop codon. Of the 23 nonsense
mutations, 20 truncate the proteins at less than one-fourth
of their original length, and the remaining three truncate them
at less than one-third. Although some of these mutations
affect hypothetical or viral proteins, many others affect
genes that code for permeases, deiminases, decarboxylases,
dehydrogenases, kinases, transferases, RNases, and other pro-
teins which could eventually explain the adaptation of those
strains to a different environment. Strains of champagne have
a high number of unique SNP in comparison to other groups
with the same number of strains. For instance, the three
strains from cider in group B share only 131 unique SNP,
with 93 affecting coding zones: 44 are synonymous mutations
and 49 are nonsynonymous. A detailed list of all the SNP af-
fecting start and stop codons on the fore mentioned groups is

shown in supplementary table S2, Supplementary Material
online.

Conclusion
Revisiting the population structure of the O. oeni species by
comparative genomics confirmed the distribution of strains
reported in previous studies, that is, two major groups,
namely A and B, and a number of subgroups. The predomi-
nance of group A strains in wine could argue in favor of the
existence of subspecies, however group B strains are occasion-
ally detected in wine and there is not a clear phenotypic di-
vergence between strains from both groups, so that the
definition of subspecies is still premature. A phylogenomic
reconstruction including genomes of closely related species
revealed one strain that is possibly member of an ancestral
group at the origin of all other strains. This analysis, along
with the distribution of orthologs, and the presence of
unique genes and SNP, agree with the idea that O. oeni is
a species that has been domesticated to cider and wine.
Probably the group A has appeared as a new group with a
fitness that lets it dominate wine-like environments better
than group B and C. The narrowness of its pangenome in
comparison to that of group B supports the idea that group
A strains have been further domesticated than the others.
The presence of unique genes and SNP could possibly explain
some features of certain groups of strains (e.g., those
coming from champagne).

Supplementary Material
Supplementary tables S1 and S2 are available at Genome
Biology and Evolution online (http://www.gbe.oxford
journals.org/).
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IX. Second Article 

 

“Advances in wine analysis by PTR-ToF-MS: optimization of the method and 

discrimination of wines from different geographical origin and fermented with 

different malolactic starters” 

(submitted) 

 

Another of the objectives of this thesis was to develop a high-throughput analysis method that 

would let us carry out an elevated number of metabolomic comparison among MLF wines. 

A good candidate for this was a recently developed method, PTR-ToF-MS. Since this 

method is unable to distinguish between isobaric compounds and faces problems with 

matrices containing ethanol, we proposed a solution by coupling the instrument to a fastGC 

column, i.e. a fastGC-PTR-ToF-MS (Romano et al., 2014; annex 5). This method was proven 

useful for discriminating wines, and could analyse more than 10 samples per hour, in 

comparison to LC-MS, in which one sample can take from 20 minutes to 1 hour to analyse. 

Unfortunately, the fastGC-PTR-ToF-MS instrument was not available anymore when we 

needed to run our analyses for characterising MLF samples. To overcome this problem, we 

decided to improve the methods that were already in use for the PTR-ToF-MS without 

coupling it to a fastGC. 
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PTR-ToF-MS has been previously used to analyse the headspace of wine, but it is not 20	

fully exploited in the field due to problems related to the high ethanol concentration. 21	

In the case of alcoholic fermentation during bread-making, we have recently proposed 22	

improvements to the method by introducing argon in the system in order to reduce 23	

fragmentation and formation of ethanol clusters. In this study, we optimize the 24	

experimental set-up in the case of wine by i) boosting the sampling protocol (sample 25	

headspace flushing and incubation); ii) determining the optimal E/N value while using 26	

argon as carrier gas and iii) proving that the optimized protocol reduce the effect of 27	

ethanol. The new protocol has been verified to discriminate eight French wines 28	

coming from three different regions (Gers, Gironde, Languedoc) and, in order to 29	

assess the applicability of the method in a relevant problem of oenological interest, 30	

we also tested it on a set of samples consisting of a red wine fermented with two  31	

different commercial preparations of Oenococcus oeni. Using principal component 32	

analysis of selected m/z signals, differentiation among wines from different 33	

geographical origin was achievable. Samples corresponding to the reference wine and 34	

to wines inoculated with two different commercial preparations were clearly 35	

separated. Intriguingly, our approach suggest the selective degradation of volatile 36	

organic compounds by O. oeni in wine as new possible feature of malolactic starter 37	

cultures in wine.   38	
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Graphical Abstract 39	
 40	
 41	

  42	
  43	
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Highlights 44	

• A PTR-ToF-MS based protocol for the high-throughput analysis of wine is 45	

proposed. 46	

• Argon injected in the drift tube reduces the negative effect of ethanol. 47	

• Differentiation among wines from different geographical origin was 48	

achievable. 49	

• Wine fermented with different strains of Oenococcus oeni were discriminated. 50	

  51	
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1. Introduction 52	

Proton Transfer Reaction – Mass Spectrometry (PTR-MS) is a technique that has 53	

been previously used to analyse the volatile compounds of different food matrices 54	

such as fruit (Costa et al., 2011; Soukoulis et al., 2013), coffee (Özdestan et al., 2013; 55	

Sánchez-López et al., 2014; Yener et al., 2014; Yener et al., 2015), dry-cured ham 56	

(Sánchez del Pulgar et al., 2013), bread (Makhoul et al., 2014) and dairy products 57	

(Aprea et al., 2007; Benozzi et al., 2015). The application to wine is unfortunately 58	

difficult because of the high ethanol concentration. Indeed, in matrices with high 59	

concentrations of this substance, the ionizing agent (H3O+) is depleted and protonated 60	

ethanol and ethanol-containing clusters are formed. These ions act as ionising agents 61	

and make the ion chemistry in the PTR-MS drift-tube more complex and the ensuing 62	

spectra difficult to interpret (Boscaini et al., 2004, Spitaler et al., 2007). The first 63	

attempt to solve this problems was the use of an ethanol-saturated atmosphere in order 64	

to completely remove H3O+ and use ethanol as the proton donor agent (Boscaini et al., 65	

2004). This approach was unable to completely by-pass the problem of the charged 66	

clusters and spectra are difficult to analyse (Boscaini et al., 2004). A different 67	

approach was proposed by Spitaler et al. (Spitaler et al., 2007): instead of using 68	

ethanol, the authors diluted the headspace of the sample in a 1:40 ratio with N2. The 69	

method allows working in the typical PTR-MS condition with no parent ion depletion, 70	

but sample dilution reduces the sensitivity and it might end up in the loss of some 71	

low-concentration molecules that could be of oenological interest (Spitaler et al., 72	

2007). Successive trials addressed the issue by working under high E/N (where	E	is	73	

the	electric	field	in	the	drift	tube	and	N	is	the	gas	number	density) values in order 74	

to prevent the formation of clusters, which permitted the successful analysis of 75	

brandies (Fiches et al., 2014). However, under these conditions the fragmentation of 76	
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molecules is increased, making spectra analysis difficult for complex matrices such as 77	

wine (Fiches et al., 2014). Recently, coupling the technique with a previous fastGC 78	

step, and using a Time of Flight (ToF) detector to increase the resolution of the 79	

spectra (fastGC-PTR-ToF-MS), we were able to distinguish a set of wines of different 80	

grape varieties and geographical origins (Romano et al., 2014).  81	

Among the advantages of PTR-ToF-MS in the study of fermented foods, we can 82	

mention the rapidness of the method, the straight-forward protocol without need of 83	

sample manipulation, the capacity to automate the analysis, the on-line monitoring, 84	

and the soft ionization of the analytes (Romano et al., 2015). However, the potential 85	

of PTR-ToF-MS for analysing wine might not be fully exploited yet: its application 86	

still faces the problems related to ethanol, preventing it from being exploited to its 87	

maximum potential. In this work we propose a new way to analyse ethanol containing 88	

beverages such as wine by introducing Argon in the system. This is inspired by 89	

previous studies that indicate possible advantage diluting the ionizing agent with a 90	

rare gas in order to minimize the fragmentation in the PTR-MS drift tube (Inomata et 91	

al., 2008; Makhoul et al., 2014; Makhoul et al., 2015). We set up three experiments in 92	

order to optimize some parameters that could help to improve the performance of the 93	

method: 1) the autosampler parameters, to determine the optimal duration of the flush 94	

of the sample headspace and the duration of incubation at 30 ºC; 2) calibration curves 95	

to set an optimal value for the E/N of the reaction under argon used as carrier gas; 3) 96	

calibration curves to confirm whether the optimized protocol including argon can 97	

reduce the effect of ethanol. Finally, we assess the applicability of the method in two 98	

case studies: i) on eight French wines  coming from three different regions (Gers, 99	

Gironde, Languedoc) and ii) on a set of samples consisting of a red wine fermented 100	

with 2 different commercial strains of Oenococcus oeni, the main species responsible 101	
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for malolactic fermentation, a process that can dramatically change the quality of the 102	

product and is used in industry to improve flavour, aroma and stability (Bartowsky, 103	

2005).   104	

 105	

2. Experimental 106	

2.1. Sampling optimisation 107	

2.1.1. Experimental setup 108	

A multifunctional autosampler  (Gerstel, Mülheim an der Ruhr, Germany) was loaded 109	

with 48 samples of the same wine (Merlot from the Fundazione Edmund Mach, 110	

Trento, Italy) prepared by putting 2mL into 20mL vials. The headspace of each 111	

sample was flushed for 90 or 180 seconds with argon with a flow rate of 40sscm. 112	

Samples were then incubated for 30, 60 or 90 minutes at 30ºC immediately before 113	

analysis. Eight sample repetitions were prepared for each treatment. 114	

2.1.2. Proton-Transfer-Reaction Time-of-Flight Mass-Spectrometry parameters 115	

All measurements were performed with a commercial PTR-TOF 8000 instrument 116	

(Ionicon Analytik GmbH, Innsbruck, Austria). The instrument was set to a drift 117	

pressure of 2.30mbar, drift temperature of 110ºC and drift voltage of 550V, which 118	

resulted in E/N ratio of 140Td. Inlet flux was adjusted to 40sscm. Argon was injected 119	

directly into the drift tube at 1.2sscm, water vapour was injected in the ion source at 120	

1sscm.  121	

2.1.3. Data acquisition & analysis 122	

Data was recorded with the software TOF-DAQ in a range from m/z 10 to 400 in 123	

intervals of 0.1ns per channel, for a total of 350.000 channels. Data acquisition was 124	

performed at 1 spectrum per second. Mass axis calibration and calculation of peak 125	

areas were done with the in-house developed software according to Cappellin et al. 126	
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(2010; 2011). Peak areas were calculated by averaging a window of 30 cycles starting 127	

from the moment in which the sample headspace mixture reaches the instrument. 128	

Only peaks of m/z values ranging from 30 to 270, and whose average signal was 129	

higher than 10cps, were selected. Also, peaks related to ethanol and ethanol clusters 130	

(m/z 29, 30, 32, 34, 37, 39, 46, 47, 48, 55, 65, 66, 75, 76, 93, 94, 121, 122, 139) were 131	

discarded, such as H(C2H5OH)+ (ethanol, m/z=47), H(C2H5OH)2
+ (ethanol dimer, 132	

m/z=93), H(C2H5OH)3
+ (ethanol trimer, m/z=139), C2H5

+ (ethanol fragment, m/z=29), 133	

H(C2H5OH)(H2O)+ (ethanol-water cluster, m/z=65), C2H5(C2H5OH)+ (ethanol-ethanol 134	

fragment cluster, m/z=75) and C2H5(C2H5OH)2
+ (two ethanol-ethanol fragment 135	

cluster, m/z=121) (Boscaini et al., 2004; Aprea et al., 2007b). All statistical analyses 136	

such as PCA, ANOVA and PLS were done using in-house scripts written in R 137	

language (R Core team, 2013). Outlier samples were determined using the algorithm 138	

of Filzmoser, Maronna, and Werner (Filzmoser et al., 2014).  139	

2.2. Optimization of E/N 140	

2.2.1. Experimental setup 141	

To evaluate the response of the spectral signals as a function of the E/N of the 142	

reaction, calibration curves were done by measuring a constant flow of 100ppbv of 143	

standard organic gases mix within a range from 100 to 150 Td. The gas mix was 144	

obtained from Ionimed Analytik GmbH, Innsbruck, Austria. Compounds present in 145	

the gas are summarized in table 1. Curves were constructed twice, with 10% and 15% 146	

ethanol solutions respectively, to span the typical range of alcohol in wine. The 147	

sample headspace was pumped into the drift at a constant flow of 20 sscm, diluted in 148	

180sscm of carrier gas in order to reach an ethanol concentration of 100 ppbv. Carrier 149	

gas consisted of Argon previously pumped into a hydro-alcoholic solution of 10% or 150	

15% ethanol. The E/N conditions in the dift tube were modified from 100Td to 150 151	



	 60	

Td, increasing by steps of 10 Td to achieve a total of 6 points for the calibration 152	

curve. Each step lasted enough time to be at least 100 cycles long. 153	

2.2.2. PTR-ToF-MS parameters 154	

Instrument was set as mentioned in Section 2.1.2, except for the drift voltage, which 155	

was tuned in order to achieve the selected E/N value between 100 Td and 150 Td. 156	

2.3. Calibration Curves with Argon 157	

2.3.1. Experimental setup 158	

In order to validate the advantages of argon in reducing the effect of ethanol under an 159	

E/N condition of 130Td, we constructed calibration curves with a standard mix of 160	

organic gases (Table 1) under two different conditions: with and without argon. For 161	

the curves without argon, nitrogen was injected instead. For each condition, four 162	

calibration curves where constructed: with 0%, 1%, 10% and 15% of ethanol. For 163	

each curve the gas was injected in concentrations of 0, 1, 5, 10, 20, 40, 100 and 200 164	

ppbv. The instrument was set as previously mentioned, except that the drift voltage 165	

was adjusted to 510 V in order to achieve an E/N value of 130 Td.  166	

2.3.3. Data Acquisition & Analysis 167	

Data processing was done as previously described, but only the peaks corresponding 168	

to the 17 compounds present in the gas mix were extracted. 169	

2.4.1. Wine	samples	from	different	geographical	origin 170	

Eight	different	bottles	of	wine	were	collected	from	three	regions	of	France	(three	171	

from	Gers,	 three	from	Gironde	and	two	from	Languedoc),	represented	by	three	172	

grape	 varieties	 (Tannat,	 C.	 Sauvignon/Merlot	 blend	 and	 Merlot,	 respectively).	173	

Samples	of	2	mL	were	taken	in	triplicate	from	each	bottle,	using		20	mL	vials	and	174	

stored	at	4	°C.		175	

2.4.2. Wine, strains and fermentation 176	
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Cabernet sauvignon wine vintage 2013 was collected from Château Bellevue, Saint 177	

Emilion, France. Alcohol content of wine was 12%, pH 3.5, malic acid 1.9 g/L. Two 178	

samples were fermented with two commercial starter cultures, named here A and B 179	

(respectively containing two different O. oeni strains), plus a negative control 180	

consisting in wine alone, making a total of three possible treatments. Each treatment 181	

was carried out in duplicate in 50 mL falcon tubes. The strains were added at a final 182	

concentration of 106 cell/mL, except for the negative control. Fermentations were 183	

carried out at 20ºC until depletion of malic acid in 41 days. After fermentation, each 184	

sample was split and saved in two falcon tubes at 4 ºC until analysis, making a total of 185	

12 tubes for analysis. 186	

2.4.3. Sample treatment 187	

2mL of wine were put in 20 mL vials. All the tubes were sampled in triplicate, giving 188	

a total of 36 samples. Sample headspaces were flushed with a flux of 40sscm of Ar 189	

during 180 seconds and incubated at 30 ºC for 30 minutes prior to analysis. Samples 190	

were analysed in a random order to minimize possible memory effects. 191	

2.4.4. PTR-ToF-MS settings 192	

Drift voltage was adjusted to 510 V in order to achieve an E/N value of 130 Td. 193	

2.4.5. Data acquisition and treatment 194	

Spectral data were acquired and mass peaks were extracted analogously to the other 195	

experiments (see methods above). Mass peaks corresponding to undesired compounds 196	

and signals lower than 10 cps were discarded. The intensities of the remaining peaks 197	

were transformed to logarithmic scale of base 10. Outlier samples were discarded 198	

using the algorithm of Filzmoser, Maronna and Werne (Filzmoser et al., 2008).  199	

2.4.6. Tentative molecule identification 200	



	 62	

A home-made database was constructed using three different public databases that 201	

contain molecules present in wine: Wine and Metabolomic Database (WinMet) 202	

(Arbulu et al., 2015), Yeast Metabolome Database (YMDB) (Jewison et al., 2012), 203	

and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2014) for 204	

Vitis vinifera, Saccharomyces cerevisiae and Oenococcus oeni. The predicted 205	

formulas of the monoisotopic masses detected in the analysis were confronted to the 206	

molecules reported in the databases and also to reports of previous literature of PTR-207	

MS. The information about the organoleptic impact of the candidate molecules were 208	

also obtained from the mentioned databases. 209	

3. Results and Discussion 210	

3.1. Optimization of the sample headspace flushing with Argon 211	

Red wine was used in order to optimize the flushing time (90 or 180 seconds) and 212	

equilibrium time (30, 60 or 90 minutes) of the samples under a flush of Argon of 40 213	

sscm. The obtained raw data consisted of a matrix of 492 mass peaks and 48 samples 214	

corresponding to eight repetition for six possible conditions: 90 s or 180 s of flush of 215	

the sample headspace with Ar, followed by 30 min, 60 min or 90min of equilibrium 216	

time at 30ºC. This gives a total 6 possible treatments, from now referred to as: 217	

F090s_E30m, F090s_E60m, F090s_E90m, F180s_E30m, F180s_E60m, 218	

F180s_E90m; were “F” stands for the flushing time in seconds and “E” stands for the 219	

equilibrium time. After the selection of pertinent peaks, a total of 160 mass peaks 220	

were left for further consideration in the analysis.  221	

ANOVA showed 34 mass peaks in which there is a significant difference at least for 222	

one of the treatments. The most remarkable differences are reported in figure 1. The 223	

majority (28 out of 34) of the significantly different peaks show a similar tendency, in 224	

which signal is inversely proportional to both flush time and equilibrium time, being 225	



	 63	

the influence of the first stronger than the second. The treatment which produced the 226	

most outliers is the first (F90s_E30m), i.e. 4 out of 8 repetitions, while the fifth 227	

treatment didn’t produce any. However, there is a slight loss in sensibility for the 228	

latter. We wanted to find a condition in which reproducibility is maximized, but 229	

minimizing drops in sensibility. This condition corresponds to a flushing time of 180 230	

seconds and equilibrium time of 30 minutes, in which sensibility is slightly lost but 231	

there is an important gain in reproducibility of the replicates (figure 1). Most of the 232	

identified peaks could correspond to molecules that have been previously reported in 233	

wine, according to bibliography and Yeast Metabolome Database (YMDB) (Nykänen 234	

and Suomalainen, 1983; Jewison et al., 2012). For example, the peak of m/z=33 235	

corresponds to [CH4O]H+ methanol, which can be sign of a problematic fermentation 236	

(Gnekow and Ough, 1976). The peaks of m/z=45.04, [C2H4O]H+, can be tentatively 237	

assigned to ethanal, while m/z=58.07 and m/z=74.07, of formula [C4H9]H+ and 238	

[C4H9O]H+, respectively, remain ambiguous. The peak at m/z=97.03 corresponds to 239	

[C5H4O2]H+, possibly furfural, a molecule present in barrel-aged wines. Also the peak 240	

of m/z=101.06, of formula [C5H8O2]H+ is present, probably corresponding to 2,3-241	

pentanedione, an important molecule involved in wine quality. The mass peak 242	

m/z=101.09 corresponds to [C6H12O]H+ and could be either hexanal, 243	

cyclopentylmethanol, trans-3-hexen-1-ol or E-2-hexenol, all of which have been 244	

reported in wine and can influence aroma. The peak at m/z=115.08 corresponding to 245	

[C6H10O2]H+ can be either ethyl lactate or hexane-2,3-dione, which are also important 246	

from the oenological point of view, giving buttery and cheesy aromas to wine, 247	

respectively. The peak at m/z=127.07 corresponds to the formula [C7H10O2]H+ and 248	

can be tentatively assigned to 5-methyl-5-vinyldihydrofuran-2(3H)-one. The peak at 249	

m/z=135.09, [C9H10O]H+, might correspond to 4-methylacetophenone, a compound 250	
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that can give bread-like aromas when present in champagne. The peak m/z=137.13 is 251	

[C10H16]H+, which is related to various terpenes, and might possibly be limonene or 252	

myrcene, both molecules can give pleasant odours to wine. The last peak, 253	

m/z=149.09, correspond to [C10H12O]H+ and can be tentatively assigned to Anethole, 254	

a molecule that produces anise-like aromas. 255	

3.2. Optimization of E/N 256	

The response of the molecules of a mix of standard organic gases in function of the 257	

E/N of the reaction was evaluated in a range from 100 to 150 Td. 258	

After peak calibration, extraction and selection, a matrix consisting of 17 mass peaks 259	

and 6 points (100-150 Td) for 2 conditions (10%, 15% EtOH) was obtained. The 260	

peaks at m/z=47 and m/z=93 were not considered in the analysis, the first because it 261	

corresponds to ethanol and the second because toluene overlaps in the same mass with 262	

a saturated peak of an ethanol cluster. 263	

Depending on the compound, three kinds of behaviour can be observed related to 264	

different effects on the sensibility obtained with increasing E/N: sensibility decreases, 265	

increases or describes a parabola (figure 2). At low E/N conditions, the fragmentation 266	

of molecules is reduced, but clusters are more likely to form. On the contrary, at 267	

higher E/N conditions, cluster formation decreases but molecules are more likely to 268	

fragment. Aiming at finding a condition in which there is a compromise between both 269	

extremes we chose the value of 130 Td on a qualitative basis. 270	

Calibration curves were constructed from a standard mix of organic gases (Table 1) 271	

with and without argon and in operating conditions of 130 Td. 272	

As can be seen in the curves (figure 3), the presence of argon can decrease the 273	

sensibility for certain compounds at a rate of up to ~5 folds, or, in the worst cases, up 274	

to ~10 folds. However, this loss of sensibility is compensated by the fact that the 275	
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effect of ethanol is minimized between the curves done under different ethanol 276	

concentrations, which is what we search in this case in order to be able to compare 277	

wines with different ethanol contents. This can be important in the case of certain 278	

molecules such as formaldehyde (m/z=31), methanol (m/z=33), acrolein (m/z=57), 279	

acetone (m/z=59), crotonaldehyde (m/z=71), and α-pinene (m/z=137) (figure 2). 280	

Some of those molecules can be indicators of wine quality (formaldehyde, methanol, 281	

acetone), others can be highly toxic and thus important to control (acrolein, 282	

crotonaldehyde) (Feron et al., 1991; Bauer et al., 2010; Jendral et al., 2011). α-Pinene, 283	

even if not reported in wine, can be an example of the behaviour of terpenes under 284	

these conditions. 285	

3.4 Differentiation among wines from different geographical origin 286	

We analysed eight different bottles of wine collected from three regions of France 287	

(three from Gers, three from Gironde and two from Languedoc), represented by three 288	

grape varieties (Tannat, C. Sauvignon/Merlot blend and Merlot, respectively). 289	

Extracted data resulted in a bidimensional matrix of 24x264 cells, consisting in 24 290	

samples (3 repetitions for each of the 8 bottles of wine) and 264 mass peaks. From the 291	

resulting data matrix, only mass peaks higher than m/z 30 and lower than 210, and 292	

whose average intensities were higher than 10cps, were considered. Also, peaks 293	

resulting from alcohol chemistry and clusters were discarded as reported in the 294	

‘Material and Method’ section. After this cleaning step, 56 peaks were left. Intensities 295	

in cps were transformed to logarithmic scale for further processing. 296	

PCA analysis applied to the final data matrix showed no evident clustering of the 297	

groups for PC1 vs PC3, nor PC1 vs PC3 (data not shown). However, in the projection 298	

of PC2 vs PC3 can be distinguished three clusters that partially show a 299	

correspondence with the wine regions (figure 4). From the loadings can be observed 300	
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some peaks that contribute the most to this separation, such as m/z 173, 43, 107, 145, 301	

31, 101, 119, 109, 38 and 97, in decreasing order of loading weight (data not shown).  302	

3.5. Analysis of MLF wines  303	

MLF is a process that can influence the taste, the aroma and the microbial stability of 304	

the quality of wine (Lonvaud-Funel, 1999; Bartowsky, 2005). In our trials, wine was 305	

subjected to malolactic fermentation using two commercial preparations of 306	

Oenococcus oeni, namely A and B, plus an uninoculated control. Fermentations were 307	

carried in two biological replicates until depletion of malic acid. After malolactic 308	

fermentation was finished, each sample was divided and stored in two different tubes, 309	

making a total of 12 samples to analyse. Each technical replicate was then analysed 310	

thrice, giving 3 analytical replicates per biological repetition. 311	

Data was collected as indicated previously for the 12 samples (see methods). 400 312	

mass peaks were obtained ranging from m/z 31.02 to 268.99. In the following we 313	

consider the 140 peaks higher than 10 ppbv ranging from m/z 31.02 to 223.06. 314	

Signals were then converted into logarithmic scale and outlier MLF samples were 315	

detected by the Filzmoser, Maronna and Werner method (Filzmoser et al., 2008). This 316	

resulted in the elimination of one analytical replicate of the strain A, two analytical 317	

replicates of the B strain belonging to different biological repetitions, and two of 318	

negative control of the same biological repetition.  319	

PCA shows the correspondence of some mass peaks with the different wine 320	

conditions at PC1 vs. PC2 projection (figure 5). The peaks of the 16 biggest loadings 321	

are summarized from the biggest to the smallest load (table 2). These is a clear 322	

separation between the control wine and the MLF wine (figure 5). It is important to 323	

note that most of the peaks are correlated to the control, meaning that they were most 324	

probably degraded during MLF, highlighting a possible new feature of malolactic 325	
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bacteria in wine; only one peak, at m/z 87.04, is correlated to the MLF wine, as can be 326	

seen from the signal folds, expressed as the mean signal of the FML samples over the 327	

mean signal of the control samples (notice that signals were converted into 328	

logarithmic scales). In effect, the m/z 87,04 corresponds to the formula C4H6O2 and 329	

can be tentatively assigned to 3-butenoic acid, γ-butyrolactone or diacetyl; the latter is 330	

one of the most important molecules produced during MLF, and is responsible for 331	

buttery aromas in wine. It is not surprising that this is the only compound that 332	

increased in the MLF samples in comparison to the control. In the light of the possible 333	

applicative relevance, we tentatively identified the mass peaks of the probably 334	

degraded 15 compounds, finding different molecules susceptible of interest from an 335	

oenological point of view. The peak at m/z 129.13 was assigned to the formula 336	

C8H16O, which could be octanal or 1-octen-3-ol. The former produces fruit-like odour 337	

while the latter might be responsible for the cork taint defect. The peak at m/z 73.06 338	

was identified as C4H8O, possibly butan-2-one, isobutyraldehyde or ethoxy ethene; 339	

the second one might be responsible for blue cheese aromas. The peak at m/z 97.03, 340	

of formula C5H4O2, most probably corresponds to furfural, which can give almond-341	

like aromas to wine. The peak at m/z 115.08, of formula C6H10O2, can correspond to 342	

either ethyl 2-butenoate, ε-caprolactone, γ-caprolactone, ethyl methacrylate or hexan-343	

2,3-dione; γ-caprolactone is responsible for sweet and coumarin-like odours in wine, 344	

while hexan-2,3-dione is responsible for cheesy aromas. The peak at m/z 175.10, of 345	

formula C8H14O4, is probably diethyl succinate, an ester produced during the 346	

fermentation of wine by the reaction of ethanol with succinic acid. The m/z 59.05, of 347	

formula C3H6O, might correspond to the isomers propanal and acetone; both have a 348	

negative impact on wine odour, giving irritant and solvent-like aromas. The peak at 349	

m/z 115.11, assigned to the formula C7H14O, might probably be 3-hepten-1-ol, 3-350	
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heptanone, 2-heptanone or heptanal; the latter two can produce blue cheese or strong 351	

fruity odours, respectively. The m/z 101.10, of formula C6H12O, comes probably from 352	

cyclopentyl methanol, cyclohexanol; cis-3-hexenol, trans-3-hexenol, trans-2-hexenol 353	

or n-nexanal; the most important three are cis-3-hexenol, trans-2-hexenol and n-354	

hexanal, since all of them are important contributors of green, vegetable, grass and 355	

herbal aromas when present in wine. The peak at m/z 45.03, of formula C2H4O, is 356	

most probably acetaldehyde, one of the main intermediates of alcoholic fermentation. 357	

Finally, numerous molecules could be responsible for the peak m/z 173.15, of formula 358	

C10H20O2: terpin, an almost odourless molecule; decanoic acid, responsible for 359	

unpleasant sweaty aromas in wine; ethyl octanoate, that gives pineapple odour; octyl 360	

acetate, of orange-like aromas; and methyl nonanoate, known for its coconut odour.		361	

In order to determine whether the wines fermented with samples A and B were 362	

different, we performed a Student’s t-test on the totality of the 140 peaks 363	

abovementioned, resulting in 21 peaks that showed significant differences between 364	

the two groups of strains with a p-value below 0.05. From these, 17 could be 365	

tentatively identified and are listed in table 3. It is noteworthy that some of the peaks 366	

coincide with those listed in the PCA, suggesting that they are not only capable of 367	

discriminating between MLF and non-MLF wines, but also their consumption varies 368	

with the strain. Moreover, all the compounds seem to be present in lower 369	

concentrations in wine fermented with strain B, in comparison to ones fermented with 370	

strain A (figure 6). Some of these compounds also might influence wine’s flavour, or 371	

have technological implications. For example, the molecule of m/z 87.08, which 372	

corresponds to the formula C5H10O, can be tentatively assigned to 2-methylbutanal or 373	

3-methylbutanal; the former is responsible for roasted cocoa aroma. The compound of 374	

m/z 88.08, of formula C4H9NO, could be tentatively assigned to 4-aminobutanal, 375	



	 69	

which is a product of the arginine deimination pathway; indeed, some strains of O. 376	

oeni have this metabolic pathway (Tonon et al., 2001). The peak of m/z = 143.14, of 377	

formula C9H18O, might correspond to 2-nonanone, a molecule producing blue cheese 378	

odour in wine. 379	

O. oeni is the main responsible of the malolactic fermentation in wine and selected O. 380	

oeni strains are used in industry to improve flavour, aroma and stability. In this light, 381	

it appears comprehensible the interest in possible direct and indirect degradations of 382	

volatile compounds in wines, important to maximize sensorial quality of final 383	

products. The evidence of strain-dependent characters	 in	 the	 release of aroma 384	

compounds (e.g. Gagné et al., 2011), the presence of peculiar pathways connected 385	

with volatile metabolism (e.g. Vallet et al., 2008), and the increasing number of 386	

complete sequence genomes of O. oeni strains (e.g. Borneman et al., 2012; 387	

Lamontanara et al., 2014; Capozzi et al., 2014; Campbell-Sills et al., 2015), well 388	

testify the broad possible future studies dealing with these observations associated 389	

with MLF performed by selected O. oeni strains. 390	

  391	

4. Conclusions 392	

Using different approaches, we were able to optimize the flush time of the sample 393	

headspace, the time that needs the sample to reach equilibrium, set the optimal E/N 394	

value of the reaction, and confirm the effect of argon in supressing the ethanol effect. 395	

As compared with the dilution method described in previous works, the reduction of 396	

ethanol effects is obtained still with a loss of sensitivity, but with a factor that is 4-8 397	

times better. With these improvements on the PTR-ToF-MS protocol, we were able to 398	

discriminate	among i) wines from different geographical origin was achievable and ii) 399	

wines fermented with different malolactic starters. The method allow the screening of 400	
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up to 13-15 samples/hour. The PCA model separated the samples according to their 401	

biological origin regardless that they had been stored in different tubes, confirming 402	

the robustness of the method. The method permitted to identify some molecules of 403	

oenological interest.	 Interestingly, our approach suggest the selective degradation of 404	

volatile organic compounds by O. oeni in wine as new possible feature of malolactic 405	

bacteria in wine.   406	
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Tables 559	

Table 1. Gases in the mix used for the calibration curves. 560	

Name Formula Mass 

formaldehyde CH2O 30 

methanol CH4O 32 

acetonitrile C2H3N 41 

acetaldehyde C2H4O 44 

ethanol C2H6O 46 

acrolein C3H4O 56 

acetone C3H6O 58 

isoprene C5H8 68 

crotonaldehyde C4H6O 70 

2-butanone C4H8O 72 

benzene C6H6 78 

toluene C7H8 92 

o-xylene C8H10 106 

chlorobenzene C6H5Cl 112 

a-pinene C10H16 136 

1,2-dichlorobenzene C6H4Cl2 146 

1,2,4-trichlorobenzene C6H3Cl3 180 
 561	

 562	

  563	



	 79	

Table 2. Summary of the sixteen tentatively identified peaks from the PCA 564	

Mass 
peak 
(m/z) 

Sum 
formula Tentative identification† PCA 

load 
Signal 
fold* 

129,13 C8H17O+ Octanal9; 1-Octen-3-ol9; C8 aldehydes and ketones2 0,337 0,79758 

105,07 
C8H9

+ Styrene7,10; Pentylethanol fragment7 0,336 0,99544 

C5H13S+ Pentanethiol2 0,336 0,99544 

106,07 C8H10
+ 2-Phenylethyl11 0,328 0,99380 

73,06 C4H9O+ 
2-Butanone1,6,7,8; Butanal1; Isobutyraldehyde9; Ethoxy 
ethene9; C4 aldehydes and ketones2; Methyl propanal4,5; n-
Butyraldehyde5; Isobutanal6,7 

0,324 0,90017 

97,03 C5H5O2
+ Furfural4,5,6,7,8,9 0,321 0,76423 

74,07 C3H8NO+ 3-Aminopropionaldehyde9; Aminoacetone9; N,N-
dimethylformamide9 0,302 0,86397 

115,08 C6H11O2
+ 

Ethyl 2-butenoate8; ε-Caprolactone8; γ-Caprolactone9; Ethyl 
methacrylate9; Hexan-2,3-dione2,9; 5-Ethyldihydro-2(3 H)-
furanone2; 4-Methyltetrahydro-2H-pyran-2-one3,4,6,7 

0,290 0,83887 

175,10 C8H15O4
+ Diethyl succinate8,9; 1,4-Diacetoxybutane8 0,271 0,98875 

133,10 

C10H13
+ Alkyl fragment (cumin alcohol)1; 2-p-Tolyl-1-propene8 0,260 0,98426 

C5H13N2O2
+ Ornithine8,9,10 0,260 0,98426 

C7H17S+ Heptanethiol2 0,260 0,98426 

87,04 C4H7O2
+ 3-Butenoic acid8; γ-Butyrolactone8,9; Butyrolactone3,6,7; 

Diacetyl1,2,3,4,5,6,7,9 0,248 1,01786 

131,07 C6H11O3
+ 

3-Methyl-2-oxovaleric acid9; Ketoleucine9; (R)-
Pantolactone9; 6-Oxohexanoic acid10; (3S)-3-Methyl-2-
oxopentanoic acid10; 4-Methyl-2-oxovaleric acid10; 
Acetyloxy-butanone7; Ethanediol diacetate7; Oxopropoxy-
propanone7; Ethyl-oxobutanoate7 

0,245 0,82934 

59,05 C3H7O+ Acetone1,4,5,7,10; Propanal4,7,9,10 0,241 0,92835 

115,11 C7H15O+ 3-Hepten-1-ol8; 3-Heptanone8; 2-Heptanone1,9; Heptanone7; 
Heptanal1,7,9; C7 aldehydes and ketones2 0,218 0,83895 

101,10 C6H13O+ 

Cyclopentyl methanol9; Cyclohexanol9; cis-3-Hexenol8,9; 
trans-3-Hexenol8,9; trans-2-Hexenol8,9; Hexanal1,6,9; 2-
Methylpentan-1-al8; 2-Methylpentan-3-one8; 4-Methyl-2-
phenylethan-2-one8; Hexanone1; Methyl pentanone6; C6 
aldehydes and ketones2 

0,213 0,88506 

45,03 C2H5O+ Acetaldehyde1,4,5,6,9,10; Oxirane10 0,212 0,94800 

173,15 C10H21O2
+ Decanoic acid8,9,10; Ethyl octanoate8,9; Octyl acetate9; 

Methyl nonanoate9; Terpin9 0,212 0,90099 

 565	

† = (1) Galle et al., 2011; (2) Sánchez del Pulgar et al., 2013; (3) Özdestan et al., 2013; (4) Sánchez-566	

López et al., 2014; (5) Makhoul et al., 2014; (6) Yener et al., 2014; (7) Yener et al., 2015; (8) WinMet; 567	

(9) YMDB; (10) KEGG; (11) http://www.chemspider.com. 568	

* = mean signal of MLF wines / mean signal of control wine. 569	
  570	
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Table 3. Summary of the identified compounds that show significant differences 571	
between strains A and B (p-value < 0.05). 572	
 573	
Mass peak 
(m/z) Sum formula Tentative identification† 

*59,05 C3H7O+ Acetone1,4,5,7,10; Propanal4,7,9,10 

60,05 C2H6NO+ Aminoacetaldehyde9; Acetamide9 

69,07 C5H9
+ Isoprene1; 3-Hexen-2-ol1; Pentanal, aldehyde or terpene fragment5 

*73,0649 C4H9O+ 
2-Butanone1,6,7,8; Butanal1; Isobutyraldehyde9; Ethoxy ethene9; C4 
aldehydes and ketones2; Methyl propanal4,5; n-Butyraldehyde5; 
Isobutanal6,7 

*74,07 C3H8NO+ 3-Aminopropionaldehyde9; Aminoacetone9; N,N-dimethylformamide9 

*87,04 C4H7O2
+ 3-Butenoic acid8; γ-Butyrolactone8,9; Butyrolactone3,6,7; 

Diacetyl1,2,3,4,5,6,7,9 

87,08 C5H11O+ 
2-Pentanone1; 3-Pentanone8; Pentanal1,5; 2-Methylbutanal9; 3-
Methylbutanal9; C5 aldehydes and ketones2; Methylbutanal4,7 

88,08 C4H10NO+ 4-Aminobutanal9 

99,08 C6H11O+ 
cis-Hexenal9; Hexa-2,4-dienol9; C6 unsaturated aldehydes and 
ketones2; 4-Methylpent-3-en-2-one8 

101,06 C5H9O2+ 2,3-pentanedione1,2,4,7,9; Methyl-tetrahydrofuranone7; Allyl acetic acid8 

*101,10 C6H13O+ 

Cyclopentyl methanol9; Cyclohexanol9; cis-3-Hexenol8,9; trans-3-
Hexenol8,9; trans-2-Hexenol8,9; Hexanal1,6,9; 2-Methylpentan-1-al8; 2-
Methylpentan-3-one8; 4-Methyl-2-phenylethan-2-one8; Hexanone1; 
Methyl pentanone6; C6 aldehydes and ketones2 

107,05 C7H7O+ Benzaldehyde2 

*115,08 C6H11O2
+ 

Ethyl 2-butenoate8; ε-Caprolactone8; γ-Caprolactone9; Ethyl 
methacrylate9; Hexan-2,3-dione2,9; 5-Ethyldihydro-2(3 H)-furanone2; 
4-Methyltetrahydro-2H-pyran-2-one3,4,6,7 

*115,11 C7H15O+ 3-Hepten-1-ol8; 3-Heptanone8; 2-Heptanone1,9; Heptanone7; 
Heptanal1,7,9; C7 aldehydes and ketones2 

116,08 C5H10NO2
+ Acetamidopropanal9; Proline8,9,10 

*129,13 C8H17O+ Octanal9; 1-Octen-3-ol9; C8 aldehydes and ketones2 

143,14 C9H19O+ 2-Nonanone1,8,9; Nonanal1; C9 aldehydes and ketones2 

* = Also distinguishes MLF from control wine in PCA plot. 
† = (1) Galle et al., 2011; (2) Sánchez del Pulgar et al., 2013; (3) Özdestan et al., 2013; (4) Sánchez-
López et al., 2014; (5) Makhoul et al., 2014; (6) Yener et al., 2014; (7) Yener et al., 2015; (8) WinMet; 
(9) YMDB; (10) KEGG 
  574	
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Figures 575	

Figure 1. Representative compounds that show significant differences according to 576	

ANOVA for different autosampler configurations. Treatments codes stand as F090s 577	

and F180s for 90 and 180 seconds of flush time, respectively, and E30m, E60m and 578	

E90m for an equilibrium time of 30, 60 and 90 minutes, respectively. 579	

  580	

  581	

  582	
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Figure 2. Signal response of gases in the standard mix at 100sscm in function of the 583	

E/N of the reaction.  584	

 585	

 586	

  587	
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Figure 3. Calibration curves of representative compounds of the standard gas mix 588	

with and without argon. 589	

 590	

 591	

  592	
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Figure 4.	Partial Least Square model of the wine samples. PLS model of the wine 593	

samples separated by region.  594	
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Figure 5. PCA of model wine fermented with three different strains of O. oeni and 596	

negative control. Black axes indicate PC coordinates, grey axes indicate the loadings 597	

weight. Colour of the points indicate the strains: red for A, green for B, black for 598	

negative control. Shapes (circles and triangles) indicate the biological repetitions of 599	

the fermentations.  600	

 601	
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Figure 6. Concentrations of the compounds that show significant differences between 604	

strains A and B. Masses marked with an asterisk (*) also differentiate the strains from 605	

the control (C) in the PCA. 606	
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X. Third Article 
 

“Comparative genomics and metabolomics of Oenococcus oeni strains reveal 

evidences of a terroir-related evolution” 

(in preparation) 

 

The last of the objectives of this thesis was to correlate genomic and metabolomic data of 

wines fermented with different O. oeni strains, in order to determine whether the O. oeni 

strains of different genetic groups produce characteristic volatile molecules.  

During the development of metabolomics techniques to characterise wines, a study 

derived from another thesis (El Khoury, 2014) permitted to identify two groups of O. oeni 

strains that caught our attention. These strains were identified thanks to the SNP analysis 

pipeline that we developed. The strains belonging from these two groups were isolated almost 

exclusively from Burgundy wines, and they form a genetic clusters that are clearly separated 

from the rest. Curiously, one cluster is composed exclusively of strains isolated from red 

wine, while the other only contain strains isolated from white wine and champagne. We 

selected this group of strains to do a genomic and metabolomic characterisation, since it 

offers a perfect model of genetic groups that come from the same region but are adapted to 

different niches. 

Although the improvements on the PTR-ToF-MS technique had allowed an effective 

discrimination of wine samples fermented with different malolactic starters, this was not 

enough to let us catalogue the specific volatolome of each group of strains. This is the reason 

why we decided to use GC-FID and GC-MS –two more classical techniques– to characterise 

the wines that are issue of the coming study.  
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Abstract 33	

Oenococcus oeni is the bacteria most often found associated with spontaneous 34	

malolactic fermentation (MLF) of wine. During MLF, malic acid is transformed into 35	

lactic acid, modulating wine’s total acidity and improving its sensory properties. As a 36	

consequence of the metabolism of O. oeni during MLF, numerous metabolites are 37	

produced or consumed, impacting the aroma profile of wine. In previous works the 38	

genomes of several O. oeni strains have been compared, revealing that groups of 39	

strains adapted to different kinds of products (wine and cider) share specific genomic 40	

features. In the present study we have spotted two groups of genetically close –yet 41	

distinct– strains from Burgundy wines, one adapted to red wines of and the other 42	

white wines. We shed a new light on the existence of ‘virtuous’ bacterial component 43	

associated with given ‘terroirs’, and on the possible repercussions of the highlighted 44	

microbial genomic diversity on the typical quality traits of regional wines. In addition, 45	

considering the relevance of O. oeni as model organism for malolactic bacteria and its 46	

recalcitrant character to targeted genetic recombination, our study offers intriguing 47	

biological insights on the possible genetic determinants of O. oeni adaptation to 48	

‘white wine’ and to ‘red wine’ environments. The integrated analysis of genomic and 49	

metabolomic data indicate that the adaptation of each genetic group to their respective 50	

niches impacts on the contribution to the volatile fraction of wines.	All these results 51	

are promising for the innovation of rational selection of malolactic starters. 52	

  53	
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Introduction 54	

Microorganisms have, for millennia, played a central role in the discovery and 55	

development of fermented food by humans (Legras et al., 2007; Douglas and 56	

Klaenhammer, 2010). It has been observed that the biogeography of microorganisms 57	

is influenced by human practices, as microorganisms have been domesticated to 58	

different food matrices that are produced in different regions (Legras et al., 2007; 59	

Douglas and Klaenhammer, 2010). Even for products that are made (almost) 60	

worldwide such as bread and wine, in which species are not always specific to a 61	

region or product, local variations in the biogeography of microorganisms have been 62	

observed in the form of genomic traces (Legras et al., 2007; Almeida et al., 2014). 63	

Moreover, even if Saccharomyces cerevisiae is the main yeast species responsible for 64	

the fermentation of wine, the contribution of the microbiological signature of non-65	

Saccharomyces genera to the development of typical wine aroma has been unveiled 66	

(Capozzi et al., 2015). This leads to a discussion about the possible 67	

existence/dimension on the so-called ‘microbial terroir’ (Gilbert et al., 2014). 68	

Evidence suggests, at least for wine, that soil microbiome influences the grapevine-69	

associated microbiota, and that this microbial signature might be partially responsible 70	

for differential wine phenotypes (Bokulich et al., 2014; Zarraonaindia et al., 2015; 71	

Knight et al., 2015). These recent findings tip the balance towards the possibility to 72	

talk about microbial terroir of wines.  73	

Oenococcus oeni is the main bacteria responsible for the malolactic fermentation 74	

(MLF) of wine, which normally follows the alcoholic fermentation (AF) produced by 75	

yeasts (Davis et al., 1986).  It has been recently shown that the population of O. oeni 76	

is not panmitic, but rather composed of certain groups of strains that are better 77	

adapted to specific products such as red wine, cider or ‘Champagne’ (Bilhère et al., 78	
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2009; Bridier et al., 2010; Campbell-Sills et al., 2015). This adaptation is visible at the 79	

genomic level, either by the presence/absence of genes, by the presence of specific 80	

mutations, or by the genomic signatures (Borneman et al., 2012; Campbell-Sills et al., 81	

2015). A large-scale study, analysing a collection of 514 strains isolated from 82	

different regions and products, shows that the distribution of O. oeni shows some 83	

regionality but that strains are genetically adapted to some specific products rather 84	

than to geographic regions (El Khoury, 2014; El Khoury et al., unpublished results). 85	

This leads to the question whether it is pertinent to use autochthonous strains for 86	

MLF, and if they have an impact at the sensory level or not. 87	

During MLF, malic acid is transformed into lactic acid and CO2, reducing the total 88	

acidity of wine (Lonvaud-Funel, 1999). MLF is advantageous from three points of 89	

view: the conversion of malic acid into lactic acid makes wine softer in taste; the 90	

depletion of malic acid can prevent other bacteria species to develop in wine, thus 91	

protecting wine from spoilage (Lonvaud-Funel, 1999); and the primary metabolism of 92	

O. oeni transforms citric acid in other metabolites such as diacetyl, butanediol, acetate 93	

and fatty acids, changing the aromatic profile of wine. Moreover, during MLF 94	

numerous secondary metabolites, such as esters, sulphur compounds and amines are 95	

produced or consumed, also contributing to the complex aroma of wine (De Revel et 96	

al., 1999; Bartowsky, 2005; Vallet et al., 2008; Antalick et al., 2012). These 97	

compounds can modify the fruity, vegetal or smoked aromas (Antalick et al., 2012). 98	

Because of this, it is important for winemakers to master MLF. Several studies have 99	

been made regarding the genetic and genomic variability of O. oeni (Borneman et al., 100	

2010; Bartowsky and Borneman, 2011; Borneman et al., 2012), and also the impact of 101	

different strains of O. oeni and other LAB in the composition of wine after MLF, both 102	

in primary and secondary metabolites (Pozo-Gayón et al., 2005; Ugliano and Moio, 103	
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2005; Lee et al., 2009a; Lee et al., 2009b; Hernandez-Orte et al., 2009; Ruiz et al., 104	

2012; Costello et al., 2013; Sumby et al., 2013; Malherbe et al., 2013). 105	

In the abovementioned survey of 514 O. strains, we have identified two closely 106	

related –yet distinct– genetic groups of strains associated with either the white or the 107	

red wines of Burgundy. Here, we have analysed these strains at the genomic and 108	

metabolomic levels in order to elucidate the molecular bases of their specific 109	

adaptation to each type of wine, and their possible contribution to wine quality. 110	

 111	

Materials and methods 112	

 113	

O. oeni strains and culture conditions 114	

O. oeni strains were obtained from the Biological Resources Center Oenology 115	

(CRBO) of ISVV (Villenave d’Ornon, France). Strains CRBO_14194, CRBO_14195, 116	

CRBO_14196, CRBO_14198, CRBO_14200, CRBO_14202 and CRBO_14203 were 117	

isolated from Chardonnay wines of Burgundy and strains CRBO_14205, 118	

CRBO_14206, CRBO_14207, CRBO_14210, CRBO_14211, CRBO_14212 and 119	

CRBO_14213 from Pinot noir wines of Burgundy. Strain CRBO_11105 was isolated 120	

from a red wine of Aquitaine and strain CRBO_14214 from red wine of Val de Loire. 121	

All the strains were propagated at 26 °C in a grape juice medium containing 25% 122	

commercial grape juice, 5 g/L of yeast extract and 0.1% tween80, adjusted to pH 4.8 123	

with KOH.  124	

 125	

Wine and malolactic fermentation conditions 126	

A Chardonnay wine from Burgundy region (France), 12.8% alcohol, pH 3.02, 127	

titratable acidity 5.10 g/L and malic acid 3,1 g/L was filter sterilised progressively at 128	
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3 µm, 0.8 µm, and 0.2 µm. Filtered wine was stocked in 70 mL tubes at 4 ºC until 129	

inoculation.  Cells obtained from a fresh culture in grape juice medium were collected 130	

by centrifugation and inoculated to 2·106 cells/mL in wine to start MLF. Lyophilised 131	

commercial strains (Lallemand SAS) were used according to the manufacturer’s 132	

instructions and were inoculated at 0.1 g/L. MLF were carried out at 20 °C in 20 mL 133	

flasks with a minimum of contact with air. Trials were performed in triplicate and 134	

MLF progression was followed once or twice per week in only one of the replicates in 135	

order to limit the contacts with air for the two other replicates. MLF progression was 136	

monitored by determining malate concentration using the Roche Ac. L-malique kit 137	

according to the manufacturer’s recommendations (r-Biopharm).  138	

 139	

Genomic DNA purification, DNA sequencing and assembly 140	

Microbial DNAs used for genome sequencing were extracted using the wizard 141	

genomic DNA purification kit according to manufacturer’s recommendations 142	

(Promega). PCR amplifications were performed in a reaction volume of 20 µL 143	

containing Taq Master Mix (BioLabs), a final concentration of 0.25 µM of primers 144	

and 2.5 ng of DNA. Sequences were amplified for 30 cycles. The genomic DNAs 145	

were sequenced by Illumina MiSeq technology with paired-end reads and read length 146	

of 250 bp. The obtained reads were cleaned with trim_galore v. 0.4.0 and extended 147	

with FLASH v1.2.11 (Magoc and Salzberg., 2011). Genomes were assembled de 148	

novo with Minia v. 1.0.6 (Chikhi et al., 2013). Each genome was assembled either 149	

from the clean reads, either from the clean and extended reads, with kmer lengths of 150	

25, 37 and 49, giving a total of 6 independent assemblies per genome. Assembly 151	

statistics were calculated using homemade programs, and the best of the six 152	

assemblies for each genome was kept based on their assembly statistics. 153	
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 154	

Phylogenomic trees 155	

The distances between genomes were calculated using ANIm algorithm with JSpecies 156	

v. 1.2.1 software (Richter and Rosselló-Móra, 2009). The obtained similarity matrix 157	

was transformed into a distance matrix and parsed into the format required by MEGA 158	

using homemade scripts. Phylogenomic trees were reconstructed by the neighbour 159	

joining method with MEGA v. 6.06 (Tamura et al., 2013). 160	

 161	

Variants calling, determination of molecular effect of mutations, enrichment analysis 162	

and mapping of mutations on metabolic pathways 163	

The assembled genomes were mapped against the reference strain PSU-1 with the 164	

program MUMmer v. 3.23’s NUCmer utility (Kurtz et al., 2004). Variants were called 165	

with show-snps utility and parsed to a pseudo-VCF format. The pseudo-VCF files 166	

containing the mutations were analysed with snpEff v. 2.0.5d (Cingolani et al., 2012) 167	

using the available O. oeni PSU-1 data in order to classify them according to their 168	

impact at the translational level. In order to map the mutations on the metabolic 169	

pathways of O. oeni, the KEGG database (Kanehisa et al., 2014) was accessed 170	

through the KEGGREST R package (Tenenbaum et al., 2013). The specific mutations 171	

of each group of strains were analysed for enrichment with GeneAnswers R package 172	

(Feng et al., 2013). The mutations were mapped and plotted against the metabolic 173	

pathways of O. oeni PSU-1 with pathview R package (Luo and Brouwer, 2013). 174	

 175	

Genomes annotation, determination of orthogroups and subsystems 176	

Genomes were annotated on the RAST platform with Classic RAST annotation 177	

scheme, RAST gene caller and FIGfam Release70 (Aziz et al., 2008). Frame shifts 178	
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fixing was turned on. The predicted protein sequences were transformed into FASTA 179	

format and BLAST all-vs-all was performed with BLAST v. 2.2.18 (Altschul et al., 180	

1997) with an e-value cut off of 1e-5 and a percent match ≥ 50%. The resulting output 181	

was treated and analysed with orthoMCL v. 2.0.9 (Li, 2003) to find the orthogroups. 182	

The mcl inflation value used was 1.5. The features of the genomes annotated by 183	

RAST were also systematically classified in subsystems as part of the annotation 184	

pipeline, and data mining was facilitated through the SEED environment (Overbeek et 185	

al., 2014). A matrix containing the quantity of features falling into each subsystem 186	

category was built for each strain. For cluster analysis, the matrix was normalised 187	

with the formula log1p(x-min(x)), where x represents the number of features. The 188	

clusterisation was performed using Canberra distances and Ward clustering method 189	

using pheatmap R package. Since Canberra distances computation does not admit 190	

vectors composed of only 0’s, the normalised categories composed of only 0’s were 191	

replaced by 1’s; it doesn’t have any effect in the clusterisation given that they 192	

represent non-informative categories (i.e. all the strains have the same number of 193	

features for the same category, hence they do not contribute to their discrimination). 194	

 195	

Pan-genome analysis, determination of unique genes and unique mutations 196	

The composition of the pan-genome was computed with homemade scripts, based on 197	

the orthogroups obtained with orthoMCL. The unique genes were searched by 198	

mutually subtracting the core-genomes and pan-genomes of the two groups of strains. 199	

In order to identify unique mutations, the pseudo-VCF files containing variant calls 200	

were parsed into a matrix containing all the alleles of each strain for each mutation at 201	

each variable position, and the SNPs present exclusively in each group of strains were 202	

extracted using homemade scripts. 203	
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 204	

Chemicals 205	

Butan-1,4-diol and ethanol (≥99.9%) were obtained from Merck (Damstadt, 206	

Germany). 4-methylpental-2-ol (99%) and octan-3-ol (99%) were supplied from 207	

Sigma-Aldrich (Steinheim, Germany). Ethyl butyrate-4,4,4-d3 (>99%), ethyl 208	

hexanoate-d11 (>98%), ethyl octanoate-d15 (>98%) and ethyl trans-cinnamate-d5 209	

(phenyl-d5) (>99%) were obtained from Cluzeau (Sainte Foy la Grande, France). 210	

Methanol (>99.9%), dichloromethane (>99%) and sodium chloride (norma pure) were 211	

from VWR Chemicals (Fontenay-sous-Bois, France). Sodium sulphate anhydrous 212	

(99%) was supplied from Scharlau Chemie (Sentmenat, Spain). 213	

 214	

Determination of higher alcohols and ethyl acetate (direct injection and GC/FID 215	

analysis) 216	

Propan-1-ol, 2-methylpropanol, 2-methylbutan-1-ol and 3-methylbutan-1-ol were 217	

quantified using a modified version of official OIV method (OIV-MA-AS315-02A). 218	

According to this method, 5 mL of wine were spiked with 50 µL of internal standard 219	

solution (4-methylpentan-2-ol at 14.062 g/L in 50% hydroalcoholic solution). The 220	

vials were filled with this solution for direct injection into a gas chromatograph HP 221	

5890 coupled to a flame ionisation detector (FID).  Injections were in the split mode 222	

(1/60). The column was a CP-WAX 57 CB (50 m x 0.25 mm x 0.2 µm, Varian). The 223	

oven temperature was programmed at 40°C for 5 min then raised to 200 °C at 4 224	

°C/min. Compounds were quantitated by extrapolating from a calibration curve made 225	

on 12% hydroalcoholic solution. 226	

 227	

Determination of acetoin and butanediols (direct injection and GC/FID analysis) 228	
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The method developed by de Revel (1992) allowed the quantification of ethyl lactate, 229	

dextro-butan-2,3-diol and meso-butan-2,3-diol. According to this method, 1 mL of 230	

wine was spiked with 50 µL of internal standard solution (octan-3-ol at 412.9 g/L in 231	

50 % hydroalcoholic solution) and diluted with 2 mL of methanol. The vials were 232	

filled with this solution for direct injection into a gas chromatograph Agilent 6890N 233	

coupled to a flame ionization detector (FID). Injections were in the splitless mode for 234	

0.4 min. The column was a FFAP type (BP21, 50 m x 0.25 mm x 0.2 µm, SGE). The 235	

oven temperature was programmed at 80°C for 5 min then raised to 200°C at 236	

3°C/min, and then held at that temperature for 15 min. Compounds were quantitated 237	

by extrapolating from a calibration curve made on 12% hydroalcoholic solution. 238	

 239	

Determination of apolar esters (HS-SPME-GC/MS) 240	

The method developed and validated by Antalick et al. (2010) was used to quantify 241	

thirty esters: six ethyl fatty acid esters, seven acetates of higher alcohol, four ethyl 242	

branched acid esters, three methyl esters, three isoamyl esters, three ethylic esters 243	

with odd number of carbon, two ethyl cinnamates, and some other minor esters. A 244	

mixture of ethyl butyrate-4,4,4-d3, ethyl hexanoate-d11, ethyl octanoate-d15 and ethyl 245	

trans-cinnamate-d5 (phenyl-d5) at about 200 mg/L in ethanol was used as internal 246	

standard. In accordance with this method, 5 µL of internal standard solution was 247	

added to 5 mL of wine then introduced into a 20 mL standard headspace vial filled 248	

with 3.5 g of sodium chloride. The solution was homogenized with a vortex shaker 249	

and then loaded onto a Gerstel autosampling device. The program consisted of 250	

swirling the vial at 500 rpm for 2 min at 40 °C, then inserting the fibre into the 251	

headspace for 30 min at 40 °C as the solution was swirled again, then transferring the 252	

fibre to the injector for desorption at 250°C for 15 min. The fibre used was 253	
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polydimethylsiloxane 100 µm (PDMS-100) (Supelco, Bellefonte, PA, USA). It was 254	

conditioned before use as recommended by the manufacturer.  255	

Gas chromatographic analyses were carried out on an Agilent 7890A GC system 256	

coupled to an Agilent 5975C quadrupole mass spectrometer and equipped with a 257	

Gerstel MPS2 autosampler. Injections were in the splitless mode for 0.75 min, using a 258	

2 mm I.D. non-deactivated direct liner. A BP21 capillary column (50 m x 0.32 mm, 259	

0.25 µm film thickness, SGE, Courtaboeuf, France) was used and the carrier gas was 260	

helium N55 with a column-head pressure of 8 psi. The oven temperature was 261	

programmed at 40 °C for 5 min then raised to 220 °C at 3 °C/min, and then held at 262	

that temperature for 30 min. The mass spectrometer was operated in electron 263	

ionization mode at 70 eV with selected-ion-monitoring (SIM) and SCAN mode. 264	

Monitored ions are listed in table S1A. Compounds were quantitated by extrapolating 265	

from a calibration curve made on Chardonnay white wine. 266	

 267	

Determination of additional volatile compounds (liquid-liquid extraction and GC/MS 268	

analysis) 269	

A method adapted from that developed and validated by Antalick (2010) was used to 270	

quantify five polar esters: ethyl 2-hydroxyisovalerate, ethyl 2-hydroxy-4-271	

methylpentanoate (or ethyl leucate), ethyl 3-hydroxybutanoate, ethyl 2-272	

hydroxyhexanoate, and ethyl 3-hydroxyhexanoate. According to this method, 10 mL 273	

of wine were spiked with 5 µL of internal standard solution (octan-3-ol at 1.04 g/L in 274	

ethanol). The mixture was successively extracted with 8 mL and twice with 4 mL of 275	

dichloromethane. The organic phases were blended, dried over sodium sulfate, and 276	

concentrated under nitrogen flow (100 mL/min) to obtain 250 µL of wine extract.  277	
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Total esters concentration were quantified using an Agilent 7890A gas chromatograph 278	

coupled to a quadrupole mass spectrometer (MSD 5975C, Agilent Technologies Inc., 279	

Santa Clara, CA). One microliter of organic extract was injected in splitless mode 280	

(injector temperature, 250°C; splitless time, 0.75 min). The column was a BP21 281	

capillary column (50 m x 0.32 mm, 0.25 µm film thickness, SGE, Courtaboeuf, 282	

France). The oven was programmed at 40°C for the first minute, raised to 220°C at 3 283	

°C/min, and then held at that temperature for 20 min. The mass spectrometer was 284	

operated in electron impact mode at 70 eV with SIM and SCAN modes. Monitored 285	

ions are listed in table 1SB. Compounds were quantitated by extrapolating from a 286	

calibration curve made on Chardonnay white wines. 287	

 288	

Untargeted metabolomics analysis of chromatograms by PARAFAC 289	

The same chromatograms that had been used for the determination of apolar esters 290	

were also analysed under untargeted metabolomics approaches. All raw 291	

chromatogram files were exported from Agilent Chemstation version D.03.00.611 292	

(Agilent Technologies) as netCDF-files and imported into MATLAB version 8.0 293	

(R2012b) (The MathWorks Inc., Natick, MA, USA) using built-in functions. In-house 294	

written and PLS-Toolbox functions have been used for further data processing in 295	

MATLAB. Preprocessing of the multi-way array was done using the nprocess.m 296	

function of the N-way toolbox (Anderson and Bro, 2000). Prior to the mathematical 297	

transformations useless parts of the chromatogram at the beginning and at the end 298	

were removed. The data analysis approach has been reported recently (Vestner et al., 299	

in review). The methodology consists of the segmentation of full scan GC-MS 300	

chromatograms along the retention time axis (corrected by an internal standard) and 301	

mathematical transformations including the calculation of sums of squares and cross 302	
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product (SSCP) matrices of segments. The result of the segmentation and 303	

mathematical transformation is a three-way array with the dimensions number of 304	

samples × number of samples × number of segments (first and second mode are 305	

identical) which can be decomposed using parallel factor analysis (PARAFAC). 306	

Loadings of the first and second mode (sample mode) of the PARAFAC model can be 307	

interpreted in the same way as PCA scores, while the loadings of the third mode 308	

(segment mode) are represented as congruence loadings which represent the 309	

contribution (‘correlation’) of a segment on the corresponding PARAFAC 310	

component. Segments with high congruence loadings (> 0.75) are considered to 311	

‘highly correlate’ with the corresponding component, and therefore, as important to 312	

explain systematic differences among samples which are represented by this 313	

component in the sample mode loadings (‘scores’). Important segments are 314	

deconvoluted and peak profiles are integrated using AMDIS (Stein, 1999) and 315	

corrected by an internal standard. All peaks which were significantly different 316	

(Student’s t-test, alpha = 0.5) between the two groups of lactic acid bacteria were 317	

compiled in a peak table. The identification of peaks was done by comparing their 318	

spectra against the NIST database. 319	

 320	

 321	

Results 322	

 323	

Phylogenomic distribution of strains 324	

We have analyzed the genomes of 14 O. oeni strains that were associated with two 325	

genetic groups of white and red wines of Burgundy (El Khoury et al., unpublished 326	

results). They were sequenced by the Illumina method and assembled to produce 327	
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drafts of 127 to 287 contigs (table 1). All the reported genomes have a size of around 328	

1.8 Mb, which is consistent with previous reports for O. oeni (Mills et al., 2005; 329	

Borneman et al., 2010; Borneman et al., 2012; Campbell-Sills et al., 2015). The 330	

number of protein encoding genes (PEG) that were detected and annotated by RAST 331	

fall in the order of ~1,800, which is also comparable with data reported in the 332	

scientific literature (Mills et al., 2005; Borneman et al., 2010; Borneman et al., 2012; 333	

Campbell-Sills et al., 2015). To ascertain their phylogenetic distribution, a 334	

phylogenomic tree was reconstructed with these 14 newly sequenced genomes and 50 335	

additional ones reported in previous works (Borneman et al, 2012, Campbell-Sills et 336	

al, 2015). The tree was calculated from ANIm distances and reconstructed by the 337	

neighbour joining method. Figure 1 shows that all the new strains belong to the 338	

genetic group A reported previously (Bilhère et al., 2009; Bridier et al, 2010, 339	

Campbell-Sills et al., 2015), and more precisely to subgroups A2.8 and A5, depending 340	

whether they were isolated from red or white wines, respectively, in agreement with 341	

El Khoury et al. (unpublished results). The tree also revealed that the 14 new genomes 342	

are closely related and that are more distant from all other genomes, suggesting that 343	

strains of subgroups A2.8 and A5 have evolved from a common “regional” ancestor 344	

prior to adapt to red and white wines. It is noteworthy that group A5 also includes 345	

four strains isolated from ‘Champagne’ (IOEB_B16, IOEB_0205, AWRIB422 and 346	

AWRIB548) and group A2.8 has one strain isolated from a red wine of Aquitaine 347	

(CRBO_11105) and another from Val de Loire (CRBO_14214).  348	

 349	

Cluster analysis of subsystems 350	

The hierarchy of the functional roles of genes permits to classify the genetic 351	

functions into four levels: categories, subcategories, subsystems and roles, starting 352	
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from the most general up to the most specific (Overbeek et al., 2005). All the PEGs of 353	

red wines and ‘Champagne’/white wine strains, as well as those of the reference strain 354	

PSU-1, were classified according to this hierarchy, making a total of 22 categories, 74 355	

subcategories, 241 subsystems and 796 roles.  356	

A cluster analysis based on the 74 subcategories confirmed that the strains form two 357	

different groups and revealed the functional categories that contribute to distinguish 358	

each group of strains (figure 2). This analysis demonstrated that only 2 of the 4 strains 359	

isolated from champagne show an evident separation from the rest of the 360	

‘Champagne’/white wine strains cluster (figure 2), suggesting, in accordance with the 361	

phylogeny obtained by ANIm (figure 1), that all the other strains of ‘Champagne’ and 362	

white wine strains still belong to only one family. More in depth, the cluster analysis 363	

revealed that genes of the ‘monosaccharides’ subcategory are overrepresented in all 364	

‘Champagne’/white wine strains. A preliminary analysis of the roles present in this 365	

subcategory indicated that these genes belong to fructose utilisation functions. In 366	

exchange, genes of the ‘sugar alcohols’, ‘oxidative stress’ and ‘periplasmic stress’ 367	

subcategories are more abundant in red wine strains. A preliminary analysis of the 368	

roles in the sugar alcohols subcategory shows that the genes correspond to mannitol 369	

and ß-glucoside utilisation functions; among the roles of genes of the periplasmic and 370	

oxidation stress are an intramembrane protease RasP/YluC, an organic hydroperoxide 371	

resistance, a ferroxidase and an iron-binding ferritin-like antioxidant protein. The 372	

presence of fructose specific components and absence of mannitol specific 373	

components in ‘Champagne’ and white wine strains is consistent with the same 374	

observation made for two of the analysed strains of champagne (AWRIB422 and 375	

AWRIB548) (Borneman et al, 2012). 376	
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 The isoprenoids subcategory was underrepresented in all the strains in 377	

comparison to PSU-1. A search for unique roles in this subcategory showed that all 378	

the Burgundy strains lost two genes related to the phytoene metabolism: the phytoene 379	

synthase and phytoene dehydrogenase. A local Tblastn search for the sequences of the 380	

enzymes encoded by these genes against the 50 strains reported in Campbell-Sills et 381	

al (2015) shows that nearly half of the strains carry the genes. Their absence in all the 382	

Burgundy strains seems to be a characteristic of this group. 383	

We registered other differences, but they are not equally distributed among all strains, 384	

suggesting that these features do not represent peculiar characteristic of the groups. 385	

For instance, 9 to 10 genes of phages and prophages are present in white-wine strains, 386	

whereas they are absent in 4 red-wine strains and detected at 7 to 25 copies in the 4 387	

other red-wine strains. This is not surprising since phage-free O. oeni strains have 388	

already been reported, even if numerous phages genes have been detected in many 389	

other strains (Mills et al., 2005; Borneman et al.,, 2010; Borneman et al., 2012; 390	

Jaomanjaka et al., 2013; Kot et al., 2014). 391	

 392	

Pan- and core-genome 393	

An analysis for determining the orthogroups of the Burgundy strains cluster was 394	

performed with orthoMCL, resulting in a pan- and a core-genome of 2,393 and 1,478 395	

PEGs, respectively, distributed in 2,354 and 1,474 orthogroups. The pan- and core-396	

genomes were also calculated separately for the strains coming from red wines and 397	

‘Champagne’/white wines. The strains coming from red wines have a pan- and core-398	

genome of  2,209 and 1,549 PEGs, respectively, distributed in 2,181 and 1,545 399	

orthogroups, while the strains coming from ‘Champagne’/white wines have pan- and 400	

core-genomes of 2,009 and 1,720 PEGs, distributed in 1,990 and 1,714 orthogroups. 401	
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This generally in accordance with previous reports (Borneman et al., 2012; Campbell-402	

Sills et al., 2015), although direct comparisons are hard to establish since the size of a 403	

pan-genome depends both on the annotation method and the algorithm for computing 404	

the orthogroups (Tettelin et al., 2008) 405	

A screening for unique orthogroups of red wine or champagne/white wine 406	

strains was performed. It revealed that the strains coming from red wines have a set of 407	

32 orthogroups that are not present in any strain coming from ‘Champagne’ and white 408	

wines; on the opposite, the strains coming from ‘Champagne’ and white wine have all 409	

in common 63 orthogroups that are not present in any strain from red wine (table S2). 410	

Among the orthogroups that are exclusively of ‘red wine’ strains are enzymes of 411	

amino acid metabolism such as a threonine synthase, an argininosuccinate lyase, a 412	

glutathione S-transferase, and an L-alanyl-gamma-D-glutamyl-L-diamino acid 413	

endopeptidase; sugar metabolism enzymes such as L-ribulose-5-phosphate 4-414	

epimerase and L-xylulose-5-phosphate 3-epimerase, and a glycosyltransferase; an 415	

esterase C; several transcriptional regulators and genes coding for viral proteins. As 416	

for the strains coming from champagne and white wine, some of their unique 417	

orthogroups are amino acid metabolism genes such as a methionine ABC transporter 418	

subunits, an aspartate racemase, part of an ABC-type polar amino acid transport 419	

system, an arginine deiminase, an L-alanyl-gamma-D-glutamyl-L-diamino acid 420	

endopeptidase that is different from the one present in red wine strains; some 421	

glycosyltransferases that are also different to their counterparts in red wine strains; 422	

several sugar transport and metabolism proteins; an esterase/lipase; and a high 423	

number of viral proteins. These results are congruent with the observations of the 424	

subsystems cluster analysis, clarifying differences in the content of sugar metabolism 425	

genes between both groups of strains. A local Tblastn search for one the 426	
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glycosyltransferases that are unique to white wine strains against all the strains 427	

reported in Campbell-Sills et al. (2015), revealed that it corresponds to the gtf gene 428	

with a 95 to 98% of identity, which it is present in all the strains of the A5 group. Out 429	

of this group, the only strain carrying the gene for this enzyme is IOEB_0502. This is 430	

completely coherent with the evidences reported by Dimopoulou et al. (2015). 431	

 432	

SNPome, group-specific SNPs and enrichment analysis 433	

In order to look for group-specific mutations in the strains, each genome was aligned 434	

against the reference strain PSU-1. A total of 14,523 variant sites (SNP and small 435	

indels) were detected, with each strain having from ~6,000 to ~8,500 (table 1). A 436	

search for unique mutations revealed that 1,552 of them are exclusive to ‘red wine 437	

strain’s, while 1,780 are present only in white wine strains. In order to study their 438	

impact at the translation level, the whole set of SNPs and indels was analysed with 439	

snpEff, and the unique mutations of each group of strains were classified according to 440	

their molecular effect (table 2). Surprisingly, for the ‘white wine’ strains there are 441	

more non synonymous SNPs than synonymous ones. This confirms recent 442	

observations reported for ‘Champagne’ strains (Campbell-Sills et al., 2015) and 443	

suggests that this is a characteristic peculiar of strains belonging to the subgroup A5. 444	

Moreover, the ‘Champagne’ and ‘white win’ strains have more than twice counts of 445	

indels causing frame shifts in comparison to ‘red wine’ strains (56 vs. 24), and almost 446	

thrice more nonsense mutations (23 vs. 9). This might be a sign of specific 447	

domestication to this product/environment, reflected in a genome decay: a 448	

phenomenon congruent with the observations made on the ratio of  the pan and 449	

coregenomes of this group of strains. 450	
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In order to evaluate whether the mutations are dispersed all over the genomes 451	

or rather concentrated in specific pathways, an enrichment analysis was performed. 452	

The results show that both groups of strains have 7 enriched pathways with p-values < 453	

0.1. In the case of ‘red wine’ strains, the enriched pathways correspond to the pentose 454	

and glucuronate interconversions, fructose and mannose metabolism, amino sugar and 455	

nucleotide sugar metabolism, peptidoglycan biosynthesis, sphingolipid metabolism, 456	

RNA degradation, and nucleotide excision repair. For white wine strains, the enriched 457	

pathways correspond to glycolysis/gluconeogenesis, purine metabolism, pyrimidine 458	

metabolism, lysine biosynthesis, cyanoamino acid metabolism, peptidoglycan 459	

biosynthesis, and pyruvate metabolism. Of all, only the peptidoglycan biosynthesis 460	

pathway is enriched for both groups of strains. 461	

Although an enrichment analysis is interesting because it can detect the 462	

cumulative effect of mutations in a particular pathway, it is important to underline 463	

that also a single mutation, such as a nonsense mutation or a frame shift, can have a 464	

drastic effect on a gene. In this light, all the unique mutations of both groups of strains 465	

were mapped to the metabolic pathways of PSU-1, in order to look for particular 466	

cases. As some genes have more than one mutation, each mutation for each gene was 467	

given a particular score according to their molecular effect: -1 (most drastic mutations 468	

such as early stop codon, start codon lost or frame shift), -0.5 (stop codon lost), 0 (non 469	

synonymous coding), 0.5 (synonymous coding or synonymous stop codon), or +1 (no 470	

SNP reported); only the mutation with the lower score was chosen as representative 471	

for each gene. After mapping the mutations against the metabolic pathways, the most 472	

interesting mutations were listed (table 3). The analysis gave a total of 1 interesting 473	

mutation present in all the strains of the Burgundy cluster, 4 mutations affecting 474	

exclusively ‘red wine’ strains, and 11 mutations specific to ‘white wine’ strains. 475	
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These mutations correspond to early stop codons in 5 cases, and to frame shift 476	

mutations in all the other cases. The most commonly affected pathways listed belong 477	

to purines and pyrimidines metabolism, ABC transporters, amino acids metabolism, 478	

glucolysis/gluconeogenesis, citrate cycle and pyruvate metabolism. 479	

 480	

Integration of subsystems, orthogroups and SNPome 481	

An integrated analysis of genomic data revealed some interesting features of 482	

each group of strains that could not be detected by the preceding methods alone: they 483	

become evident only when the preceding observations are taken together. For 484	

example, many of the drastic mutations of ‘Champagne’ and ‘white wine’ strains 485	

affect genes of the primary metabolism and sugars metabolism, amino acids 486	

metabolism, purines and pyrimidines metabolism, and metabolisms of sulphur 487	

compounds and esters (figure S1). Considering sugars metabolism, the beta subunit of 488	

the E1 component of the acetoin dehydrogenase complex of ‘Champagne’ and ‘white 489	

wine’ is disrupted by an early stop codon. This enzyme is involved in the 490	

glycolysis/gluconeogenesis, in the citrate cycle and in the pyruvate metabolism; it is 491	

noteworthy that only about 1/3 of the C-end of the protein is truncated, and that all the 492	

strains of belonging to this group could achieve MLF without evident problems. The 493	

alpha-galactosidase gene carries a frame shift mutation: this gene is implied in the 494	

metabolism of galactose and participates in the utilisation of various sugars such as 495	

melibiose (figure S1A). Moreover, two ABC transporters that participate in the 496	

transport of sugars and metal ions also seem to be disrupted in these strains. These 497	

observations are consistent with the ones mentioned in the subsystem analysis, and 498	

these mutations could eventually explain the sugar-utilization profile of these groups 499	

of strains. 500	
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Regarding the amino acids metabolism, all the strains seem to carry the gene 501	

for the arginine deiminase enzyme, however the strains from champagne and white 502	

wine carry a stop codon at the codon 264 of 414, most probably inactivating the gene 503	

(figure S1B). This is not the only gene related to amino acids metabolism that is 504	

disrupted in this group of strains: the aspartate kinase gene shows a frame shift 505	

mutation. This gene is important for the biosynthesis of methionine, threonine, lysine 506	

and homoserine. Also the gene coding for 3-phosphoshikimate 1-507	

carboxyvinyltransferase, which participates in the biosynthesis of aromatic amino 508	

acids, also seems to be inactivated by a mutation in this group of strains. Another 509	

gene participating in the amino acids metabolism that is mutated in these strains is the 510	

one coding for the small unit of the carbamoyl-phosphate synthase, which participates 511	

in the pyrimidine metabolism and the alanine, aspartate and glutamate metabolism. 512	

Moreover, a first analysis based solely on the subsystems had shown that all the 513	

strains had an L-alanyl-gamma-D-glutamyl-L-diamino acid endopeptidase, while the 514	

study of the orthogroups revealed that the enzymes carried by the two groups of 515	

strains are indeed different: the version that is present in ‘Champagne’ and white wine 516	

strains has a deletion of 24 amino acids in the central region. Except for this deletion, 517	

the sequence of the enzyme carried by the strains CRBO_14213 and CRBO_14214 518	

seems to be closer to that of white wine strains than red wine strains. 519	

Of the genes participating in purines and pyrimidines metabolism, the gene 520	

coding for phosphoribosylformylglycinamidine cyclo-ligase (purM), which is present 521	

in all the analysed O. oeni strains, carries a mutation causing a frame shift in all the 522	

strains. However, the mutation is not in the same position for the strains coming from 523	

red and white wine. In all the cases, it is likely that this mutation is inactivating the 524	

gene. Also the uridine kinase gene, which participates in the pyrimidine metabolism 525	
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interconverting uridine and UMP, has a frame shift mutation in all the champagne and 526	

white wine strains.  527	

Of the genes participating in the metabolism of odorant molecules that are 528	

disrupted in champagne and white wine strains, the gene coding for homoserine O-529	

succinyltransferase carries a frame shift mutation. This gene participates in the 530	

cysteine and methionine metabolism, as well as the sulphur compounds metabolism. 531	

This mutation might have a potential impact in the aromatic profiles of wines, since 532	

sulphur compounds contribute wine aroma. Also the medium-chain acyl-[acyl-carrier-533	

protein] hydrolase gene is mutated in white wine strains. This gene drives the 534	

formation of octa, deca and dodecanoic acids, which are precursors of the esters that 535	

contribute to wine aroma. 536	

The four mutations that affect uniquely the strains of red wine participate in 537	

four pathways: purine metabolism, methane metabolism, cationic antimicrobial 538	

peptide (CAMP) resistance, and ABC transporters. The gene participating in the 539	

purine metabolism is phosphoribosylaminoimidazolecarboxamide formyltransferase 540	

(purH) which, together with the purM gene, would account for the second gene 541	

mutated of this metabolic pathway for red wine strains. 542	

 543	

Comparison of wines produced using strains from both groups  544	

To determine whether the genomic characteristics of O. oeni strains impact on 545	

the bacterial phenotype in the wine environment, influencing the quality of 546	

oenological productions, we inoculated several strains in order to induce the MLF, 547	

analysing the volatile fraction of the obtained wines. Preliminary trials showed that 548	

most of group A5 strains were unable to start the MLF in a red wine of ‘Pinot noir’ 549	

variety (El Khoury, personal communication). Therefore MLF were performed 550	
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exclusively in a white wine of ‘Chardonnay’ variety. The wine collected after 551	

alcoholic fermentation was filter sterilised and inoculated with four strains from each 552	

group (A5 and A2.8). Also two commercial strains, named C1 and C2, were used as 553	

positive controls. All the trials were performed in three biological replicates. All four 554	

white wine strains (group A5) completed MLF in 35 to 55 days (table 4). In contrast 555	

MLF lasted for more than 100 days using the four red-wine strains (group A2.8) and 556	

both commercial starters and in some cases the fermentation was only partially 557	

achieved (strain CRBO_14208 and CRBO_14210), or not achieved at all (strain 558	

CRBO_14212).  559	

In order to evaluate the volatile profile of the obtained wines, 42 molecules of 560	

different kinds were quantified by GC/FID and GC/MS: ethyl acetate, higher 561	

alcohols, acetoin, butanediols (meso and dextro), and polar and apolar esters. The 562	

differences in the quantifications of each metabolite were evaluated by Student’s t-563	

test. From the 42 compounds, 12 showed slight but statistically significant differences 564	

between wines fermented with strains from red or white wine with a p-value cut off of 565	

0.06 (figure 3). From these, 1 compound corresponds to ethyl lactate, and the 566	

remaining 11 molecules correspond to 3 polar and 8 apolar esters (table 5). Ethyl 567	

lactate is formed by the condensation of wine’s ethanol and the lactate produced by 568	

the primary metabolism of O. oeni, and is one of the main contributors to the typical 569	

aroma of a MLF wine, giving a lactic odour. The higher abundance of this molecule 570	

in wines fermented with white wine strains is totally consistent with the fact that they 571	

achieved MLF. However, ethyl lactate is present below the perception threshold 572	

levels in all the wines (table 5). Esters also make an important contribution to wine 573	

aroma, due to their fruity odours. Of the 11 esters reported with significant differences 574	

among both groups of strains, we know the perception threshold of 9; of these, 8 are 575	
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present in our wine samples above their corresponding threshold. To complement this 576	

analysis, a PCA was performed on a matrix containing all the metabolites for each 577	

strain, and the eight factors contributing the most for the separation were listed (figure 578	

4). The PCA confirms the correlation between the strains of champagne and white 579	

wine and the presence of ethyl lactate. Also, a new set of molecules that appear to 580	

correlate also with red wine strains were identified, which are not visible by a simple 581	

Student’s t-test. Among these, there is ethyl propanoate, ethyl hexanoate, and ethyl 582	

isobutyrate; all of them belong to the ethyl apolar esters group. 583	

 584	

Untargeted metabolomics analysis 585	

With the aim of obtaining a maximum of chemical information, the chromatograms 586	

that were used for determining the esters’ concentrations were further analysed under 587	

an untargeted metabolomics pipeline based on PARAFAC method. Segmentation of 588	

the chromatograms resulted in a total of 86 segments. Moreover, 24 segments 589	

containing only baseline or artefact peaks such as siloxane peaks from column 590	

bleeding were excluded from the data set. The three-way array obtained from 591	

mathematical transformations of the remaining 61 segments had the dimensions 16 × 592	

16 × 61 (number of samples × number of samples × number of segments) including 593	

duplicates of each sample. PARAFAC models with 2 to 15 components were built to 594	

examine the optimal number of components. Core consistency diagnostic (22), 595	

residuals, captured variance and interpretability of loadings were examined to find an 596	

appropriate PARAFAC model which explains the variation among samples the best. 597	

An 8 component PARAFAC model gave the best interpretable results by explaining 598	

75.6 % of the total variation in the dataset. PARAFAC components two (12.2 % 599	

explained variation) and four (7.8 % explained variation) contain information on 600	
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systematic differences between the two groups of samples (figure 5), while the other 601	

components reflect only unsystematic differences in the chromatograms. The 602	

segments 48 and 57 on component 2, and the segments 15, 23 and 39 on component 4 603	

are responsible for the differentiation of the two groups of samples. These segments 604	

are considered to be ‘highly correlated’ with the raw data (congruence loadings > 605	

0.75). Only peaks from these 5 segments were deconvoluted and integrated using 606	

AMDIS. All integrated peaks were checked for differences between mean values of 607	

the two groups of samples using Student’s t-test with alpha = 0.5 %. Five peaks 608	

showed significant differences between the two groups of samples. 609	

Of the five significant peaks identified by PARAFAC, only two could be 610	

identified: they correspond to diethyl succinate and butyl ethyl succinate. A 611	

comparison of the peak areas of these compounds reveal that they are present at 612	

comparable concentrations between the wines fermented with ‘Champagne’ and 613	

‘white wine’ and the control wine, while it is present at about twice the concentration 614	

in wines fermented with ‘red wine’ strains (table 6).   615	

 616	

 617	

Discussion 618	

 619	

The distribution of the analysed strains in two genetic groups as shown by ANIm is 620	

not surprising. The two separated clusters of white and red wine strains, and the fact 621	

that some strains from red wine of Aquitaine and Val de Loire group with the strains 622	

from red wine of Burgundy, can be explained since these wines share some 623	

similarities: a high acidity and a lower content of polyphenols in ‘Champagne’ and 624	

Burgundy white wines, and a lower acidity and the presence of phenolic compounds 625	
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in red wines. The sizes of the pan and core-genomes of each group if strains do not 626	

differ drastically from the size of individual genomes. This is due to the fact that the 627	

analysed groups are composed of closely related strains. The narrower size of the pan-628	

genome of ‘Champagne’ and white wine strains compared to that of red wine strains 629	

seems to be a sign of domestication to their specific environment, as it had been 630	

already observed for the group A5 (Campbell-Sills et al., 2015). Neither it is 631	

surprising that MLF were generally long because the wine recovered after sterile 632	

filtration is depleted in nutrients and difficult to ferment. However, the difference 633	

observed between white and red wine strains suggests that they are specifically 634	

adapted to different types of wines.  635	

In this study we delve into the biological and oenological significance of a 636	

specific phylogenetic island of O. oeni ecotypes associated with Burgundy wine 637	

region, throughout a genomics/metabolomics analysis. The study of this specific 638	

ecological niche of O. oeni biodiversity reveals a considerable importance under 639	

different points of view. With concern of microbiogeography and bacteria evolution, 640	

our findings confirm the suggested interest in the examination microbial diversity 641	

associated with fermented foods environments as possible general models in 642	

microbiology (Wolfe and Dutton, 2015). Furthermore, we shed a new light on the 643	

existence of microbiological component associated with given ‘terroirs’, and on the 644	

possible repercussions of the highlighted microbial genomic diversity on the typical 645	

quality traits of regional wines (a field of considerable economic importance) 646	

(Capozzi and Spano, 2011). In addition, considering the relevance of O. oeni as model 647	

organism for malolactic bacteria and its recalcitrant character to targeted genetic 648	

recombination, our study offers intriguing biological insights on the possible genetic 649	

determinants of O. oeni adaptation to ‘white wine’ and to ‘red wine’ environments. In 650	
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fact, we detected several genomic variations observed at different levels in the ‘red 651	

wine’ and ‘white wines’ groups of strains. The evidence of a lack of growth of ‘white’ 652	

strains in ‘red’ wine well testify the relevance of our observations. Obliviously, 653	

biochemical processes are so interconnected and complex that require the association 654	

of a metabolomic analysis in association to the comparative genomics in order to 655	

suggest possible influence of the chemicals content of wine. Our integrate approach 656	

(analyses of orthogroups, subsystems, SNP/indels and metabolic pathways) was 657	

conceived to permit us to unveil the  genetic features associated with the studied 658	

microbial diversity. The integrate approaches shed light on the understanding of 659	

possible complex biological phenomena involved in explaining the existing 660	

differences.  For example, the mutated galactosidase enzyme would have been passed 661	

unperceived without consideration of the metabolic pathway map revealing the 662	

various reactions in which it participates. These integrate approaches serve also for 663	

double-checking possible false positive results or erroneous preditions. For instance, a 664	

first analysis based solely on the subsystems showed that all the strains carried an L-665	

alanyl-gamma-D-glutamyl-L-diamino acid endopeptidase, but the study of the 666	

orthogroups revealed that the two groups of strains carry different versions. It might 667	

be interesting to compare the activities of the different versions of the enzyme. In 668	

other cases the integrated analysis helped us to discard possible errors. For example, a 669	

preliminary SNP analysis reported a nonsense mutation in a gene implied in 670	

peptidoglycan production in white strains (E.C. 3.4.16.4); the sequences retrieved 671	

from the subsystems classification proved us that this SNP had been indeed a false 672	

positive calling produced by a similar sequence. We underline how the huge amounts 673	

of data generated by ‘omics’ approaches often need human verification, by means of 674	
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methodologically independent degrees of analysis, in order to provide evidences 675	

possibly linked to the phenotype.  676	

The advantages or problems that could carry the gained and lost functions to 677	

each group of strains are complex to determine. The subsystem analysis suggests that 678	

‘Champagne’ and ‘white wine’ strains carry the fructose specific components of the 679	

PTS, while red wine strains have the mannitol specific components. The features of 680	

PTS provide bacteria a system to assure optimal utilisation of carbohydrates in 681	

complex environments (Kotrba and Yukawa, 2001). Several sugars are present in 682	

wine after alcoholic fermentation, especially fructose and pentoses such as ribose, 683	

arabinose, and xylose (Ribéreau-Gayon et al., 2012). LAB can use fructose as an e- 684	

acceptor to produce mannitol during heterolactic fermentation, which permits the 685	

generation of ATP (Hornsey, 2007; Lahtinen et al., 2011). It has been reported that O. 686	

oeni can use the mannitol pathway in fructose fermentation due to limiting redox 687	

regeneration capacity of the ethanol pathway, and that the choice of the fermentation 688	

pathway between mannitol and fructose is tightly regulated in O. oeni in order to 689	

maintain the equilibrium of NAD(P)H (Richter et al., 2003a, Richter et al., 2003b). It 690	

is not surprising then that the presence of the mannitol specific PTS components 691	

present in red wine strains correlate with the presence of genes of oxidative stress 692	

response, as it exists specific stressors and stress intensities characterizing red wines 693	

with respect of white ones. This is not the only function found in this study that might 694	

be related to the stress adaptation of O. oeni. The Dps protein that was lost in white 695	

wine strains has been shown to correlate with fitness in wine (Bon et al., 2009). In 696	

effect, E. coli over-expressing this gene has gained resistance to wine, copper and 697	

ferric ions (Athané et al., 2008). Although not all the Dps proteins display a 698	

ferroxidase activity (Facey et al., 2013), ‘Champagne’ and ‘white wine’ strains have 699	
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also lost another enzyme of predicted ferroxidase function that is present in all ‘red 700	

wine strains’ (including PSU-1). 701	

Focusing on the peculiar feature of the whole Burgundy cluster, all the strains 702	

carry the ggpps gene, which codes for the enzyme geranylgeranyl pyrophosphate 703	

synthase (GGPS1), while they lost the genes coding for the enzymes phytoene 704	

synthase (PSase) and phytoene dehydrogenase (PSD), which are downstream in the 705	

metabolism of phytoene. The GGPS1 enzyme catalyzes the synthesis of 706	

geranylgeranyl pyrophosphate (GGPP). In a further reaction, catalysed by PSase, two 707	

molecules of GGPP are condensed to give prephytoene pyrophosphate (PPPP), a 708	

molecule that rearranges to form phytoene (Iwata-Reuyl et al., 2003). In a successive 709	

step, catalysed by PSD, phytoene is desaturated to give ζ-carotene. It has been 710	

observed that under ethanol stress conditions the expression level of ggpps in O. oeni 711	

augments, allowing a flow of isoprenoid precursors towards the carotenoids and 712	

related pathways to stabilize bacterial cell membranes (Cafaro et al., 2014). The 713	

PSase enzyme is also involved in the biosynthesis of sterols that can increase the 714	

rigidity of the membrane, which might also confer resistance to lactic acid (Pieterse et 715	

al,. 2005). 716	

EPS are very important for the adaptation of O. oeni to its ecological niche 717	

(Dimopoulos et al., 2014). The fact that all the ‘Champagne’ and ‘white wine’ strains 718	

carry the gtf gene is not surprising: the presence of this gene is correlated to an 719	

increased resistance to several stresses occurring in wine (alcohol, pH, SO2) (Dols-720	

Lafargue et al., 2008). In particular, among this stressors, in the case of ‘Champagne’ 721	

and white wines of Burgundy, the acid stress characterized these matrices when 722	

compared with  other wines. In the study by Dols-Lafargue et al. (2008), 7 out of 8 723	

strains carrying the gtf gene had been isolated from white wine or ‘Champagne’. Just 724	
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as for the genes of sugar utilisation, the presence of the gtf gene is not only a matter of 725	

survival for O. oeni, but also can have consequences at the organoleptic level since it 726	

is sometimes associated to a ropiness phenotype in wine (Dols-Lafargue et al., 2008; 727	

Dimopoulos et al., 2014).   728	

Bacteria having mutated the purM gene have already been observed. The gene 729	

purM is not essential, but a loss of its function causes auxotrophy for purines as 730	

phenotype (Kilstrup et al., 2005). It has also been observed that the transcription of 731	

the purM gene is downregulated by purine rich environments (Saxild and Nygaard, 732	

1991; Stevens et al., 2000; Herve-Jimenez et al., 2009), and that purM mutants of 733	

pathogenic bacteria show a poor growth rate, as well as a reduced capacity to infect 734	

their hosts, both plants and animals (Breitbach et al., 2008; Yang et al., 2004; Han et 735	

al., 2006). The purH gene also participates in the de novo purine biosynthesis (Aiba 736	

and Mizobuchi, 1989). Moreover, an enhanced expression of the purH gene is 737	

correlated to a higher production rate of L-histidine (Klyachko et al., 2010), and this 738	

gene has been reported as a virulence-associated gene (Huang et al., 2006). Wild 739	

bacterial mutants for the uridine kinase gene have also been isolated, showing that the 740	

gene is not essential since UMP can be obtained through alternative pathways 741	

(Martinussen and Hammer, 1995; Kilstrup et al., 2005; Arsene-Ploetze et al., 2006We 742	

can speculate that O. oeni strains has lost the function of these genes, as long as they 743	

have the capacity to obtain purines and pyrimidines from another sources.  744	

Succinate and its derived esters are normally present in wine (Ribéreau-Gayon 745	

et al., 2012). The formation of diethyl succinate during MLF carried out by O. oeni 746	

has been reported several times (Pozo-Bayón et al., 2005; Ugliano et al., 2005; 747	

Izquierdo Cañas et al., 2008). Succinate, one of the precursors of diethyl succinate, 748	

can be combined with L-homoserine by the enzyme homoserine O-749	
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succinyltransferase (HSST), coded by the gene metA, in the reversible reaction 750	

succinyl-CoA + L-homoserine ⇌ CoA+ O-succinyl-L-homoserine. The HSST 751	

enzyme is also the first step in one of the three possible pathways of L-methionine 752	

biosynthesis from L-homoserine (Liu et al., 2008), with succinate being re-released in 753	

one of the intermediary reactions catalysed by the enzyme Cystathione gamma 754	

synthase (CGS) (Rowbury and Woods, 1964; Liu et al., 2008). Although O. oeni does 755	

not carry the CGS enzyme, it does carry the cystathione gamma lyase (CGL) enzyme, 756	

that has been reported to be able to produce α-ketobutyrate and succinate from O-757	

succinyl-L-homoserine (Knoll et al., 2011). Moreover, the transcription of the gene 758	

coding for HSST is repressed by L-methionine (Saint-Girons et al., 1988). A 759	

comparison against the genomes reported in Campbell-Sills et al. (2015) shows that 760	

this mutation is unique to ‘Champagne’ and ‘white wine’ strains. The enzyme CGL, 761	

in exchange, is intact in all the strains. Our results suggest a link between the mutation 762	

of this enzyme in all the strains from ‘Champagne’ and ‘white wine’ and the low 763	

levels of diethyl succinate produced, although the exact mechanism remains 764	

unknown. The fact that ‘Champagne’ and ‘white wine’ strains could achieve MLF 765	

suggests that they are most probably obtaining L-methionine by other means; this is 766	

not surprising, since previous studies on 4 O. oeni strains determined that they were 767	

auxotroph for methionine (Remize et al., 2006).  768	

Finally, our research has raised questions about the possible organoleptic 769	

impact on wine caused by these genomic differences of the strains. 8 out of 10 of the 770	

compounds showing significant differences in wines fermented with each group of 771	

strains are present above their perception threshold, suggesting a probable impact at 772	

the sensory level. Concerning the possible perceived effects, it appears difficult to 773	

speculate giving that there are many studies linking compounds and aromas, but less 774	
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is known about how compounds act and interact together to affect the organoleptic 775	

quality of wines, and there is no definite consensus.   776	

 777	

Conclusions 778	

The study of a specific phylogenetic island of O. oeni ecotypes associated with 779	

Burgundy wine region, throughout a genomics/metabolomics analysis	 offers 780	

intriguing biological insights on the possible genetic determinants of O. oeni 781	

adaptation to ‘white wine’ and to ‘red wine’ environments, confirming the increasing 782	

interest in the examination microbial diversity associated with fermented foods 783	

environments as possible general models in microbiology. Furthermore, we shed a 784	

new light on the existence of microbiological component associated with given 785	

‘terroirs’, and on the possible implications on the typical quality traits of regional 786	

wines. Further studies, including other non-volatile important metabolites and more 787	

strains of distant genetic groups, will give more clues on the impact of these 788	

variations at the organoleptic quality of wine.	All these results are promising for the 789	

innovation of rational selection of malolactic starters. 790	
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Tables 1084	
 1085	
Table 1. Assembly and annotation statistics of the sequenced strains 1086	

Strain 
Sequence 
coverage 

(X) 

Genome 
size (bp) 

Number 
of 

contigs 
N50 L50 N90 L90 PEGs Variant 

sites 

CRBO_11105 48 1793882 200 28533 23 4638 81 1830 8543 
CRBO_14194 38 1786610 196 27411 18 4263 82 1847 5985 
CRBO_14195 71 1789621 127 49436 13 7354 49 1853 6056 
CRBO_14196 48 1798795 208 27547 23 5901 77 1862 5984 
CRBO_14198 88 1789795 174 28822 19 6019 73 1850 6014 
CRBO_14200 90 1789801 167 39836 13 5457 64 1847 5979 
CRBO_14203 48 1807672 131 40244 15 7105 55 1874 5837 
CRBO_14205 66 1729210 225 23427 21 3884 93 1772 6388 
CRBO_14206 63 1738384 202 25660 21 4438 86 1790 6317 
CRBO_14207 40 1779011 251 24022 23 4989 81 1806 7084 
CRBO_14210 64 1830066 202 28303 19 5172 81 1893 6495 
CRBO_14211 46 1775057 287 13491 39 3274 139 1822 6030 
CRBO_14213 102 1814591 137 38947 15 7291 55 1901 6968 
CRBO_14214 50 1754584 271 15632 33 3074 130 1786 6997 
 1087	

Table 2. Molecular effect of the specific mutations of each group of strains 1088	

effect \ group red white 
synonymous coding 684 554 
non synonymous coding 474 738 
frame shift 24 56 
start lost 3 2 
stop gained 9 23 
stop lost 1 0 
synonymous stop 2 0 
codon deletion 3 0 
codon change plus codon deletion 1 1 
intragenic 0 1 
intergenic 351 405 
total 1552 1780 
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Table 3. Mutated genes and the implied metabolic pathways  1091	

Group Gene in PSU-1 Product E.C. 
number Metabolic pathway Effect 

all OEOE_1131 
(purM) 

phosphoribosylformylglycinamidine 
cyclo-ligase 6.3.3.1 purine metabolism frame 

shift 

red OEOE_0441 phosphosulfolactate synthase 4.4.1.19 methane metabolism stop 
gained 

red OEOE_0588 N-acetylmuramoyl-L-alanine amidase 3.5.1.28 cationic antimicrobial peptide 
(CAMP) resistance 

frame 
shift 

red OEOE_1061 
ABC-type multidrug transport 
system, ATPase and permease 
component 

- ABC transporters frame 
shift 

red OEOE_1129 
(purH) 

phosphoribosylaminoimidazole-
carboxamide formyltransferase 2.1.2.3 purine metabolism 

one carbon pool by folate 
stop 
gained 

white OEOE_0152 3-phosphoshikimate 1-
carboxyvinyltransferase 2.5.1.19 phenylalanine, tyrosine and 

tryptophan biosynthesis 
frame 
shift 

white OEOE_0260 carbamoyl-phosphate synthase small 
subunit 6.3.5.5 

pyrimidine metabolism 
alanine, aspartate and 
glutamate metabolism 

frame 
shift 

white OEOE_0329 acetoin dehydrogenase complex, E1 
component, beta subunit 1.2.4.1 

glycolysis / gluconeogenesis 
citrate cycle 
pyruvate metabolism 

stop 
gained 

white OEOE_0767 homoserine O-succinyltransferase 2.3.1.46 
cysteine and methionine 
metabolism 
sulfur metabolism 

frame 
shift 

white OEOE_1033 uridine kinase 2.7.1.48 pyrimidine metabolism frame 
shift 

white OEOE_1056 ABC-type metal ion transport system, 
ATPase component - ABC transporters frame 

shift 

white OEOE_1118 arginine deiminase 3.5.3.6 
arginine biosynthesis 
arginine and proline 
metabolism 

stop 
gained 

white OEOE_1403 medium-chain acyl-[acyl-carrier-
protein] hydrolase 3.1.2.21 fatty acid biosynthesis frame 

shift 

white OEOE_1459 ABC-type sugar transport system, 
periplasmic component - ABC transporters stop 

gained 

white OEOE_1544 aspartate kinase 2.7.2.4 

glycine, serine and threonine 
metabolism 
monobactam biosynthesis 
cysteine and methionine 
metabolism 
lysine biosynthesis 

frame 
shift 

white OEOE_1781 alpha-galactosidase 3.2.1.22 
galactose metabolism 
glycerolypid metabolism 
sphingolipid metabolism 

frame 
shift 
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Table 4. Quantification of malic acid at the end of malolactic fermentation 1094	

Strain-repetition Malic acid (mg/L) 
CRBO_14194-A not detected 
CRBO_14194-B not detected 
CRBO_14195-A not detected 
CRBO_14195-B not detected 
CRBO_14196-A not detected 
CRBO_14196-B not detected 
CRBO_14202-A not detected 
CRBO_14202-B not detected 
CRBO_14206-A not detected 
CRBO_14206-B not detected 
CRBO_14208-A 0,553 
CRBO_14208-B 0,52 
CRBO_14210-A 0,066 
CRBO_14210-B 1,597 
CRBO_14212-A 1,805 
CRBO_14212-B 2,051 
PN4-A 0,009 
PN4-B 0,137 
VP41-A not detected 
VP41-B not detected 
Control-A 2,363 
Control-B 2,24 
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Table 5. Compounds showing significant differences between the two groups of strains 1097	

Molecule 

Mean 
red 

wine 
strains 
(mg/L) 

SD 
red 

wine 
strains 

Mean 
white 
wine 

strains  
(mg/L) 

SD 
white 
wine 

strains 

Difference 
(mg/L) 

Fold  
red/white 

(x) 
P-value 

Perception 
threshold 
(mg/L) 

Odours 

ethyl lactate 35,638 17,162 66,68 5,861 -31,043 0,534 0,00104 154 Fruity, 
lactic 

ethyl 2-
hydroxyisovalerate 10,286 0,592 9,739 0,271 0,548 1,056 0,03914 - Fruity, 

strawberry 

ethyl 2-hydroxy-4-
methylpentanoate 73,484 1,417 70,014 1,942 3,47 1,05 0,00133 0,3 Berry 

ethyl 3-
hydroxyhexanoate 50,175 8,619 26,02 4,869 24,155 1,928 0,00003 - 

Citrus, 
pineapple, 

grape, 
fruity 

propyl acetate 16,966 1,219 18,516 1,579 -1,55 0,916 0,04643 65 Solvent, 
fruity 

isobutyl acetate 22,521 1,428 25,005 2,186 -2,484 0,901 0,01959 2,1 Solvent, 
fruity 

ethyl 2-
methylbutyrate 17,941 1,142 16,516 1,466 1,425 1,086 0,04891 1,89 Fruity, 

kiwi 

ethyl isovalerate 25,387 1,736 23,378 2,131 2,01 1,086 0,05836 0,003 Cheese, 
fruity 

isoamyl acetate 133,944 7,766 152,798 12,779 -18,854 0,877 0,00411 0,86 Banana 

ethyl phenylacetate 1,949 0,116 1,801 0,154 0,147 1,082 0,04971 0,073 Flowery, 
rose, winy 

phenylethyl acetate 8,016 0,309 8,654 0,666 -0,638 0,926 0,03409 0,25 

Flowery, 
mimosa, 
fruity, 
olive 

ethyl cinnamate 0,539 0,02 0,56 0,017 -0,021 0,962 0,03976 0,0016 

Cherry, 
figs, 

fruity, 
flowery 

 1098	
 1099	
Table 6. Normalized peak areas for diethyl succinate and butyl ethyl succinate. 1100	

Strain 
Diethyl 
succinate 

Butyl ethyl 
succinate 

CRBO_14194 0,142374471 0,001323516 
CRBO_14195 0,147940436 0,001537357 
CRBO_14196 0,149965305 0,001627149 
CRBO_14202 0,166299305 0,001866422 
CRBO_14206 0,42525789 0,004896165 
CRBO_14208 0,412989979 0,003758966 
CRBO_14210 0,353188052 0,004011809 
CRBO_14212 0,218210325 0,002060242 
Control 0,171401571 0,001898268 
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Figures 1102	

 1103	

 1104	
Figure 1. Phylogenomic tree of the sequenced strains. 1105	
The newly sequenced strains have been placed in the phylogenomic tree reported by Campbell-Sills et 1106	
al. (2015). The cluster of Burgundy strains is shown, strains isolated from red wine are highlighted in 1107	
red, strains from white wine are highlighted in yellow. The distance is expressed in dissimilarity 1108	
percent.  1109	
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 1110	
Figure 2. Cluster analysis of the subsystems of the annotated strains. 1111	
The number inside the cells indicate the quantity of features that fall into each category. Colour codes 1112	
indicate from less abundant features (blue) to more abundant (red) in each category. Colour boxes in 1113	
the upper dendrogram indicates the group of strains as indicated in the legend.  1114	
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 1115	
Figure 3. Compounds showing significant differences between the two groups of strains. 1116	
The bars are coloured according to the origin of the strains group, yellow for white wine strains and red 1117	
for red wine strains. Abbreviations names of the esters are: E2H3MB, ethyl 2-hydroxyisovalerate; 1118	
E2H4MP, ethyl 2-hydroxy-4-methylpentanoate; E3HH, ethyl 3-hydroxyhexanoate; C3C2, propyl 1119	
acetate; iC4C2, isobutyl acetate; C2 2-mC4, ethyl 2-methylbutyrate; C2iC5, ethyl isovalerate; iC5C2, 1120	
isoamyl acetate; C2PhC2, ethyl phenylacetate; 2-PhC2C2, phenylethyl acetate; C2cin, ethyl 1121	
cinnamate. 1122	
 1123	

  1124	
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 1125	
Figure 4. PCA of all the analysed metabolites. 1126	
The projection of PC2 vs. PC3 is shown. Dots are coloured according to the groups of strains, yellow 1127	
for white wine strains and red for red wine strains. Grey dotted lines indicate the loads and the name of 1128	
the correlated molecules. Abbreviated names of the esters are: C2C3, ethyl propanoate; C2C6, ethyl 1129	
hexanoate; C2C8; ethyl octanoate; C2C10, ethyl decanoate; C2iC4, ethyl isobutyrate; E3HH, ethyl 3-1130	
hydroxyhexanoate. 1131	
 1132	

 1133	
Figure 5. PARAFAC model of the MLF wine samples. 1134	
Two modes of PARAFAC are superposed: the samples mode and the loadings mode. The colours of 1135	
the points and polygons indicate the group of the strains, either ‘Champagne’ and ‘white wine’, either 1136	
‘red wine’. Blue dots indicate the congruence loadings of the segment modes. 1137	
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Supplementary material 1138	

 1139	

Table S1. Compounds and monitored ions. Quantifier ions are shown in bold, and the others 1140	
serve as qualifiers. Compounds marked with an * are used as internal standards. 1141	

A. HS-SPME - GC - MS 
Compound Abbreviation Ions (m/z) 

Ethyl propanoate C2C3 102, 57, 75 

Ethyl isobutanoate C2iC4 116, 88, 71 

Propyl acetate C3C2 61, 43 

Isobutyl acetate iC4C2 56, 43 

Ethyl butanoate C2C4 88, 71, 60 

Ethyl 2-methylbutanoate C2 2-mC4 102, 57, 85 

Ethyl isovalerate C2iC5 88, 85, 57 

Butyl acetate C4C2 56, 43 

Isoamyl acetate iC5C2 70, 55, 43 

Ethyl valerate C2C5 85, 88, 101 

Methyl hexanoate C1C6 74, 87, 99 

Ethyl hexanoate C2C6 88, 99, 60 

Isoamyl butanoate iC5C4 71, 70, 55 

Hexyl acetate C6C2 56, 43 

Ethyl heptanoate C2C7 88, 101 

Ethyl trans-2-hexenoate C2hex 99, 97, 55 

Isobutyl hexanoate iC4C6 99, 56, 71 

Methyl octanoate C1C8 74, 87, 127 

Ethyl octanoate C2C8 88, 101, 127 

Isoamyl hexanoate iC5C6 99, 70 

Ethyl nonanoate C2C9 88, 101 

Methyl decanoate C1C10 74, 87 

Ethyl decanoate C2C10 88, 101 

Isoamyl octanoate iC5C8 127, 70 

Methyl trans-geranate C1ger 114, 69 

Ethyl phenylacetate C2PhC2 91, 105 

2-Phenylethyl acetate 2-PhC2C2 104, 91, 43 

Ethyl dodecanoate C2C12 88, 101 

Ethyl dihydrocinnamate C2dhcin 104, 91, 178 

Ethyl cinnamate C2cin 176, 131 

*Butyrate-4,4,4-d3  74, 89 

*Ethyl hexanoate-d11  91, 110 

*Ethyl octanoate-d15  91, 142 

*Ethyl trans-cinnamate-d5 (phenyl-d5)  136, 181 
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B. Liquid-liquid extraction - GC - MS 
Compound Abbreviation Ions (m/z) 

Ethyl 2-hydroxyisovalerate E2H3MB 73, 55, 76 

Ethyl 2-hydroxy-4-methylpentanoate E2H4MP 69, 87, 104 

Ethyl 3-hydroxybutanoate E3HB 87, 71, 88 

Ethyl 2-hydroxyhexanoate E2HH 87, 58, 88 

Ethyl 3-hydroxyhexanoate E3HH 117, 89, 71 

*Octan-3-ol  83, 101, 43 

 1142	
Table S2. Unique orthogroups for the strains isolated from red wine and white wine. 1143	
Group Orthogroup Annotations (RAST) 
red ooe.rast_1755 Mannitol operon activator, BglG family 
red ooe.rast_1767 Threonine synthase (EC 4.2.3.1) 
red ooe.rast_1768 Argininosuccinate lyase (EC 4.3.2.1) 
red ooe.rast_1770 Late competence protein ComGD, access of DNA to ComEA, FIG038316 
red ooe.rast_1771 Transcriptional regulator KdgR, KDG operon repressor 
red ooe.rast_1772 oxidoreductase (putative) 
red ooe.rast_1773 PTS system, cellobiose-specific IIC component (EC 2.7.1.69) 
red ooe.rast_1774 XRE family transcriptional regulator 
red ooe.rast_1775 hypothetical protein 
red ooe.rast_1776 FIG00885768: hypothetical protein 
red ooe.rast_1777 hypothetical protein 
red ooe.rast_1778 FIG00885943: hypothetical protein 
red ooe.rast_1779 Transcriptional regulator, ArsR family 
red ooe.rast_1780 Glutathione S-transferase (EC 2.5.1.18) 
red ooe.rast_1781 L-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4) 
red ooe.rast_1782 L-xylulose 5-phosphate 3-epimerase (EC 5.1.3.-) 
red ooe.rast_1783 Putative carbohydrate kinase, FGGY family 
red ooe.rast_1784 hypothetical protein 
red ooe.rast_1785 Glycosyltransferase 
red ooe.rast_1786 membrane protein 
red ooe.rast_1787 capsular polysaccharide biosynthesis protein 

red ooe.rast_1789 FIG00886282: hypothetical protein 
hypothetical protein 

red ooe.rast_1791 Late competence protein ComEC, DNA transport 
red ooe.rast_1792 ComF operon protein A, DNA transporter ATPase 

red ooe.rast_1793 Non-specific DNA-binding protein Dps / Iron-binding ferritin-like 
antioxidant protein / Ferroxidase (EC 1.16.3.1) 

red ooe.rast_1794 hypothetical protein 
red ooe.rast_1795 hypothetical protein 
red ooe.rast_1796 Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) 
red ooe.rast_1797 esterase C 

red ooe.rast_1798 PTS system, mannitol-specific IIB component (EC 2.7.1.69) / PTS system, 
mannitol-specific IIC component (EC 2.7.1.69) 
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red ooe.rast_1799 PTS system, mannitol-specific IIA component 
red ooe.rast_1800 L-alanyl-gamma-D-glutamyl-L-diamino acid endopeptidase 

white ooe.rast_1766 
Capsular polysaccharide biosynthesis protein 
Tyrosine-protein kinase transmembrane modulator EpsC 
hypothetical protein 

white ooe.rast_1769 FIG00886281: hypothetical protein 
white ooe.rast_1788 Glycosyltransferase 
white ooe.rast_1790 Methionine ABC transporter substrate-binding protein 
white ooe.rast_1806 Aspartate racemase (EC 5.1.1.13) 
white ooe.rast_1807 NADH-dependent oxidoreductase 

white ooe.rast_1808 Transmembrane component of energizing module of predicted 
pantothenate ECF transporter 

white ooe.rast_1809 Permeases of the major facilitator superfamily 
white ooe.rast_1810 Methionine ABC transporter permease protein 
white ooe.rast_1811 Methionine ABC transporter ATP-binding protein 
white ooe.rast_1812 N-acetylmuramidase 
white ooe.rast_1813 ABC-type polar amino acid transport system, ATPase component 
white ooe.rast_1814 Esterase/lipase 
white ooe.rast_1815 hypothetical protein 
white ooe.rast_1816 hypothetical protein 
white ooe.rast_1817 hypothetical protein 
white ooe.rast_1818 hypothetical protein 
white ooe.rast_1819 ABC transporter, ATP-binding/permease protein, putative 
white ooe.rast_1820 PlcB, ORFX, ORFP, ORFB, ORFA, ldh gene 
white ooe.rast_1821 hypothetical protein 
white ooe.rast_1822 DNA-directed RNA polymerase omega subunit (EC 2.7.7.6) 
white ooe.rast_1823 Glycosyltransferase 
white ooe.rast_1824 Putative ABC transporter ATP-binding protein, spy1790 homolog 
white ooe.rast_1825 cellulose 1,4-beta-cellobiosidase 
white ooe.rast_1826 Nicotinamide phosphoribosyltransferase (EC 2.4.2.12) 

white ooe.rast_1827 PTS system, fructose-specific IIB component (EC 2.7.1.69) / PTS system, 
fructose-specific IIC component (EC 2.7.1.69) 

white ooe.rast_1828 PTS system, fructose-specific IIB component (EC 2.7.1.69) / PTS system, 
fructose-specific IIC component (EC 2.7.1.69) 

white ooe.rast_1829 PTS system, fructose-specific IIB component (EC 2.7.1.69) 
white ooe.rast_1830 PTS system, fructose-specific IIA component (EC 2.7.1.69) 
white ooe.rast_1831 PTS system, galactitol-specific IIA component (EC 2.7.1.69) 
white ooe.rast_1832 hypothetical protein 
white ooe.rast_1833 hypothetical protein 
white ooe.rast_1834 putative glycosyl transferase 
white ooe.rast_1835 hypothetical protein 
white ooe.rast_1836 hypothetical protein 
white ooe.rast_1837 site-specific recombinase, phage integrase family 
white ooe.rast_1838 Chromosome (plasmid) partitioning protein ParA 
white ooe.rast_1839 hypothetical protein 
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white ooe.rast_1840 Phage protein 
hypothetical protein 

white ooe.rast_1841 hypothetical protein 
white ooe.rast_1842 death-on-curing family protein 
white ooe.rast_1843 hypothetical protein 
white ooe.rast_1844 Arginine deiminase (EC 3.5.3.6) 
white ooe.rast_1845 hypothetical protein 
white ooe.rast_1846 hypothetical protein 
white ooe.rast_1847 Probable two-component response regulator 
white ooe.rast_1848 Glycosyltransferase involved in cell wall biogenesis (EC 2.4.-.- ) 

white ooe.rast_1849 Cellulose synthase catalytic subunit [UDP-forming] (EC 2.4.1.12) 
Glycosyltransferases, involved in cell wall biogenesis 

white ooe.rast_1850 Cellulose synthase catalytic subunit [UDP-forming] (EC 2.4.1.12) 
white ooe.rast_1851 hypothetical protein 
white ooe.rast_1852 hypothetical protein 
white ooe.rast_1853 hypothetical protein 
white ooe.rast_1854 hypothetical protein 
white ooe.rast_1855 L-alanyl-gamma-D-glutamyl-L-diamino acid endopeptidase 
white ooe.rast_1856 6-phospho-beta-glucosidase (EC 3.2.1.86) 
white ooe.rast_1857 Glucose 1-dehydrogenase (EC 1.1.1.47) 
white ooe.rast_1858 hypothetical protein 
white ooe.rast_1859 permease of the major facilitator superfamily 
white ooe.rast_1860 hypothetical protein 
white ooe.rast_1861 putative hydrolase( EC:3.3.2.9 ) 
white ooe.rast_1862 Possible periplasmic aspartyl protease 
white ooe.rast_1863 hypothetical protein 
white ooe.rast_1864 hypothetical protein 
 1144	
  1145	
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Figure S1. Localisation of mutated enzymes in metabolic pathways. 1146	

 1147	
A. Alpha-galactosidase (EC 3.2.1.22) in galactose metabolism. The enzymes participating in each 1148	
metabolic pathways are identified by their E.C. number. Each enzyme is coloured with two codes. The 1149	
colour to the left indicates the impact of the mutations of the gene in red wine strains, the colour to the 1150	
right indicates for white wine strains. Green indicates genes that carry synonymous mutations, grey 1151	
indicates non synonymous mutations, and red indicates genes that carry mutations that have a nonsense 1152	
or frame shift mutation. 1153	

 1154	
B. Arginine deiminase (EC 3.5.3.6) in arginine biosynthesis. 1155	
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 1156	
C. Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) and 1157	
phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) in purine metabolism. 1158	

 1159	
D. Medium-chain acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.21) in fatty acid biosynthesis. 1160	
 1161	
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Discussion and perspectives 

 

The implementation of a bioinformatics platform allowed us to successfully achieve our goal 

of better understanding the phylogenomic structure of the species. Before this study, we 

barely knew the structure of the population and the genomic variability of O. oeni. Although 

the existence of groups A and B had been reported, no evidence of domestication of specific 

genetic groups to certain products had been found. This discovery arises new questions about 

the evolution of O. oeni and its adaptation to wine, and also has technological implications: 

would it be possible that the specific domestication of some strains to certain kinds of product 

can lead to a rational strain selection, according to the characteristics of the desired product? 

Only a better understanding of the species’ phylogenomic structure, along with further 

metabolomic and phenotypical characterisations can answer to this question. 

 A problem that arose during this first publication was the difficulty to give a 

consistent representation of the intra-species phylogenomic structure of O. oeni along with its 

inter-species relationships in a single tree. Due to intrinsic differences in the algorithms ANIb 

and ANIm,  the choice of one or another tree would cause a bias in the representation of the 

structure of the species. This forced us to represent the intra-species and the inter-species 

relationships of O. oeni in separated trees. During a further development of our phylogenomic 

analyses, we ideated a solution to this problem by generating a hybrid tree. In this approach, 

we calculate the distance among genomes both by ANIb and by ANIm. In the following step, 

both matrices are joined by choosing for each pair of genomes the distance in function of their 

taxa: if the two genomes belong to the same species, we choose the ANIm distance, otherwise 

we chose the ANIb. This procedure results in a phylogenomic tree with an optimal solution 

both for intra-species and inter-species relationships. 

 As we mentioned before, the program fastaGC was created during the preparation of 

the first publication. This program allows to easily spot possible HGT events. By receiving as 

input a (multi)FASTA file, fastaGC is able to calculate the GC content and the length of each 

of the nucleotidic sequences contained inside. This information is then represented visually by 

plotting each sequence contained in the (multi)FASTA as a point: the x-axis shows the GC 

content of the sequence, while the y-axis shows the name of the source FASTA. The size of 

the points is proportional to the length of each sequence, and a black dot indicates the average 

GC content of the source FASTA. When used in a set of genomes, this program is useful for 

spotting genes with an abnormal GC content, and to see them in relation to the average GC 

content. By the time that this program was ready, the manuscript of our first publication was 

already submitted, making it impossible to exploit the results obtained with it. However, it is 



 
Figure 39. Analysis on the GC content of a set of genomes, obtained with fastaGC. 
The x-coordinates indicate the GC content of each CDS, while the size of the points is proportional to the CDS 
length. CDS of abnormal GC contents are easily spotted. 
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still a program that can be used for coming studies –an example of its usage is shown in 

figure 39. 

 Regarding the development of a PTR-ToF-MS method to analyse wine, this technique 

was able to discriminate wines from different regions and also MLF wines fermented with 

different malolactic starters. However, the lack of a fastGC step made it impossible to 

distinguish between isobaric compounds, resulting in an incapacity of the method to perform 

the detailed metabolomic characterisation of wines that we needed. This is the main reason 

why we decided to take a step back and use more classical methods instead. Nevertheless, 

PTR-ToF-MS can still find numerous applications in wine that are interesting both for 

research and for industry. For example, our PTR-ToF-MS protocol could be used as a fast 

method to discriminate between wines that were subject of MLF and wines that weren’t, or 

for fingerprinting of different wine varieties and terroirs. 

  Several problems arose during the preparation of the last publication. In the first place, 

not all the strains achieved malolactic fermentation. Although it was expected that white wine 

strains wouldn’t perform well in red wine, red wine strains were supposed to achieve MLF in 

white wine. Except for one case, the ability to achieve MLF or not was consistent between the 

two biological repetitions of the strains. This makes us think that it is a problem related to the 

strains themselves, and not of the experimental setup. In all the cases, the fact that some 

strains couldn’t be able to achieve MLF is already a result: it might be interesting to analyse 

the genomic differences between the red wine strains that could carry out fermentation and 

those that couldn’t. The second problem arose because not all the genomes were successfully 

sequenced, as expected. As part of the project involving this publication, we sequenced a new 

set of 86 O. oeni strains. However, the quality of the sequences that we obtained for some 

strains was so poor that it didn’t even allow for a SNP-calling: only for 65 out of the 86 

genomes we could obtain an acceptable assembly (for the assembly statistics of all the 

genomes involved in this thesis see annex 6). The original experimental setup contemplated 

the utilisation of genomic data from the same strains that were used to ferment wine, strategy 

that we were forced to change for obvious reasons. In all the cases, we trust the fact that the 

size of the pan and core genomes of each group of strains is narrow in comparison to groups 

reported previously. This means that adding or subtracting genomes from the analysis 

wouldn’t have changed the results drastically. In the worst case, it would have produced a 

smaller number of candidate genes that could explain the differences between both groups of 

strains, as the size of the core genome of each group diminishes when adding more 

individuals. The same would have happened for the SNP and indels analysis, since the set of 

common SNP and indels of a group of strains diminishes when individuals are added to the 



 
Figure 40. Phylogenomic tree of 125 O. oeni strains and some close species. 
Distances among genomes were calculated with a hybrid ANI. Strains belonging to specific products 
or regions are highlighted. The branching separating the species were truncated for better display. The 
values under the dashed lines indicate the total branch length. 
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analysis. In the near future we hope to sequence these strains again in order to obtain the 

whole set of genomic data. 

The timing in which we received the last run of genome sequences made it impossible 

to perform systematic analyses of all the genomes as we would have desired. For example, 

our experiences have made us prefer quality of the genome annotation service proposed by 

PGAAP (NCBI) rather than the one proposed by RAST. However, the slowness of the former 

has made it impossible to use it for analysing the genomes for our last publication. This 

forced us to chose the RAST service, even if it wasn’t the best choice in our opinion. Even so, 

the utilisation of RAST left a positive side: it allowed us to use the analysis of subsystems as 

a powerful tool to detect genetic functions that were specific of each genetic group, by using a 

hierarchical clustering approach. Nevertheless, we are still waiting for a direct comparison 

with the annotations given by PGAAP; as long as the genomes remain unannotated, it is 

impossible to continue the pipeline for other analyses, e.g. pan genomes or strain-specific 

genes. Despite this fact, we have already started the analyses that do not require gene 

annotation, such the SNPome and the phylogenomic reconstructions. 

The phylogenomic reconstruction that we recently performed for the newly sequenced 

strains, integrated to the ones that were already published, gives us new insights about the 

genomic diversity of O. oeni (Figure 40). The tree shows a group of strains belonging to the 

same cluster than the strain IOEB_C52. This confirms our previous prediction of the 

existence of group C, reported in Campbell-Sills et al. (2015). All these strains were indeed 

isolated from cider. Along with this, more strains isolated from cider belonging to the group B 

were identified; they all form a single cluster that is separated from the rest of the B strains 

that were isolated from wine. This, again, gives us new clues about the structure of O. oeni’s 

genetic groups and their correspondence to specific niches. Probably the most striking feature 

of this tree is the presence of four major genetic groups of strains, instead of the three that we 

had documented previously. All the strains of the new group, that we called D, have been 

isolated from kombucha, a beverage made from fermented tea with a very low alcohol 

content. A new genomic comparison including this strains, along with phenotypic 

characterisations, will give us further hints about the adaptation of O. oeni to cider, wine and 

other environments. The Oenococcus oeni species is far from being panmitic as it was 

initially thought. Evidence proves that the species is divided in at least four genetic groups, 

with some of them being domesticated to specific products. This separation of O. oeni in 

different genetic groups is visible at different levels: by the sequence similarity, the 

presence/absence of specific genes, the presence of unique mutations, and the genomic 

signatures. 
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It is noteworthy that the genomic distances that separate the genetic groups of O. oeni 

strains, as revealed by the hybrid ANI tree, are similar –if not bigger– to those that separate 

different subspecies of Leuconostoc mesenteroides: ssp. mesenteroides and cremoris. It is 

then valid to ask ourselves if a classification of O. oeni into subspecies would be pertinent. Of 

course, genetic distances are far from being the last word to define different subspecies; but 

they can give hints. It might be at least interesting to evaluate the affiliation of O. oeni as a 

single species.  

Although some correlations could be made between the genomic features of a set of 

strains and their possible technological implications, the complexity of a phenotype is rarely 

explained by a single genetic trait. This means that the aromatic profile that any single O. oeni 

strain can confer to a wine most probably depends on a complex interaction between gene 

networks and metabolic pathways. Even so, a number of genes and mutations that could 

potentially explain simple phenotypes such as the capacity to ferment certain sugars, to 

biosynthesise certain amino acids, or to express a stress-defence mechanism were successfully 

identified by using comparative genomics approaches. This might open the doors, in future, 

for a rational selection of malolactic starters based on their genomic characteristics in function 

of the type of product desired. 

The initial scope of this thesis contemplated the characterisation of only the volatile 

fraction of the metabolome (a.k.a. volatolome), we were looking for candidate genes 

impacting wine aroma. However, our last research strongly suggests that many mutations 

affect enzymes that participate in the synthesis of amino acids and the metabolism of sugars. 

Taking this into consideration, metabolomic characterisations of non-volatile compounds 

might be extremely interesting for future projects,. As the tendency towards using indigenous 

fermentation starters is gaining popularity, it would be equally interesting to continue 

studying the impact of the genomic features of authochtonous O. oeni strains on the 

metabolomic profile of wines. By doing so, we hope to answer whether it would be pertinent 

or not to exploit the natural genetic diversity of the species for technological purposes. 

 



	
	
	
	
	
	
	

REFERENCES	
	 	



	
	



	 151	

References 

 
Abatangelo, L., Maglietta, R., Distaso, A., D’Addabbo, A., Creanza, T., Mukherjee, S., and 

Ancona, N. (2009). Comparative study of gene set enrichment methods. BMC 

Bioinformatics 10, 275. 

Abby, S., and Daubin, V. (2007). Comparative genomics and the evolution of prokaryotes. 

Trends in Microbiology 15, 135–141. 

Alegre, M.T., Rodriguez, M.C., and Mesas, J.M. (1999). Nucleotide sequence analysis of 

pRS1, a cryptic plasmid from Oenococcus oeni. Plasmid 41, 128–134. 

Almeida, P., Barbosa, R., Zalar, P., Imanishi, Y., Shimizu, K., Turchetti, B., Legras, J.-L., 

Serra, M., Dequin, S., Couloux, A., et al. (2015). A population genomics insight into 

the Mediterranean origins of wine yeast domestication. Molecular Ecology 24, 5412–

5427. 

Altmann, A., Weber, P., Bader, D., Preuss, M., Binder, E.B., and Muller-Myhsok, B. (2012). 

A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum 

Genet 131, 1541–1554. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local 

alignment search tool. J Mol Biol 215, 403–410. 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, 

D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Research 25, 3389–3402. 

Amerine, M.A., and Roessler, E.B. (1983). Wines, their sensory evaluation (W.H. Freeman). 

Anandhakumar, C., Kizaki, S., Bando, T., Pandian, G.N., and Sugiyama, H. (2015). 

Advancing small-molecule-based chemical biology with next-generation sequencing 

technologies. ChemBioChem 16, 20–38. 

Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G.M., Kodira, 

C.D., Kyrpides, N., Madupu, R., Markowitz, V., et al. (2008). Toward an online 

repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. 

OMICS: A Journal of Integrative Biology 12, 137–141. 

Ansorge, W.J. (2009). Next-generation DNA sequencing techniques. New Biotechnology 25, 

195–203. 

Antalick, G., Perello, M.-C., and De Revel, G. (2012). Characterization of fruity aroma 

modifications in red wines during malolactic fermentation. Journal of Agricultural and 

Food Chemistry 60, 12371–12383. 



	 152	

Arapitsas, P., Scholz, M., Vrhovsek, U., Di Blasi, S., Biondi Bartolini, A., Masuero, D., 

Perenzoni, D., Rigo, A., and Mattivi, F. (2012). A metabolomic approach to the study 

of wine micro-oxygenation. PLoS ONE 7, e37783. 

Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., 

Gerdes, S., Glass, E.M., Kubal, M., et al. (2008). The RAST Server: Rapid 

Annotations using Subsystems Technology. BMC Genomics 9, 75. 

Bachmann, H., Starrenburg, M.J.C., Molenaar, D., Kleerebezem, M., and van Hylckama 

Vlieg, J.E.T. (2012). Microbial domestication signatures of Lactococcus lactis can be 

reproduced by experimental evolution. Genome Research 22, 115–124. 

Badotti, F., Moreira, A.P.B., Tonon, L.A.C., de Lucena, B.T.L., Gomes, F. de C.O., Kruger, 

R., Thompson, C.C., de Morais, M.A., Rosa, C.A., and Thompson, F.L. (2014). 

Oenococcus alcoholitolerans sp. nov., a lactic acid bacteria isolated from cachaça and 

ethanol fermentation processes. Antonie van Leeuwenhoek 106, 1259–1267. 

Baker, M. (2011). Metabolomics: from small molecules to big ideas. Nature Methods 8, 117–

121. 

Baldauf, S.L. (2003). Phylogeny for the faint of heart: a tutorial. Trends in Genetics 19, 345–

351. 

Barraclough, T.G., and Nee, S. (2001). Phylogenetics and speciation. Trends in Ecology & 

Evolution 16, 391–399. 

Barrangou, R., Azcarate-Peril, M.A., Duong, T., Conners, S.B., Kelly, R.M., and 

Klaenhammer, T.R. (2006). Global analysis of carbohydrate utilization by 

Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National 

Academy of Sciences of the United States of America 103, 3816–3821. 

Bartowsky, E.J. (2005). Oenococcus oeni and malolactic fermentation–moving into the 

molecular arena. Australian Journal of Grape and Wine Research 11, 174–187. 

Bartowsky, E.J., and Borneman, A.R. (2011). Genomic variations of Oenococcus oeni strains 

and the potential to impact on malolactic fermentation and aroma compounds in wine. 

Applied Microbiology and Biotechnology 92, 441–447. 

Bartowsky, E.J., and Henschke, P.A. (2004). The “buttery” attribute of wine–diacetyl–

desirability, spoilage and beyond. Int J Food Microbiol 96, 235–252. 

Betteridge, A., Grbin, P., and Jiranek, V. (2015). Improving Oenococcus oeni to overcome 

challenges of wine malolactic fermentation. Trends in Biotechnology 33, 547–553. 

Bilhère, E., Lucas, P.M., Claisse, O., and Lonvaud-Funel, A. (2009). Multilocus sequence 

typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic 

recombination. Applied and Environmental Microbiology 75, 1291–1300. 



	 153	

Biochemistry, I.U. of, Committee, M.B.N., and Webb, E.C. (1992). Enzyme nomenclature 

1992: recommendations of the Nomenclature Committee of the International Union of 

Biochemistry and Molecular Biology on the nomenclature and classification of 

enzymes (Published for the International Union of Biochemistry and Molecular 

Biology by Academic Press). 

Bloem, A., Bertrand, A., Lonvaud-Funel, A., and De Revel, G. (2006). Vanillin production 

from simple phenols by wine-associated lactic acid bacteria: vanillin production by 

lactic acid bacteria. Letters in Applied Microbiology 44, 62–67. 

Bloem, A., Lonvaud-Funel, A., and de Revel, G. (2008). Hydrolysis of glycosidically bound 

flavour compounds from oak wood by Oenococcus oeni. Food Microbiology 25, 99–

104. 

Bohlin, J., and Skjerve, E. (2009). Examination of genome homogeneity in prokaryotes using 

genomic signatures. PLoS One 4, e8113. 

Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S.D., 

and Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium 

Lactococcus lactis ssp. lactis IL1403. Genome Research 11, 731–753. 

Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S., Lapidus, 

A., Goltsman, E., Mazur, M., Pusch, G.D., et al. (2004). Complete sequence and 

comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat 

Biotech 22, 1554–1558. 

Borneman, A.R., Bartowsky, E.J., McCarthy, J., and Chambers, P.J. (2010). Genotypic 

diversity in Oenococcus oeni by high-density microarray comparative genome 

hybridization and whole genome sequencing. Applied Microbiology and 

Biotechnology 86, 681–691. 

Borneman, A.R., McCarthy, J.M., Chambers, P.J., and Bartowsky, E.J. (2012a). Comparative 

analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-

relevant pathways. BMC Genomics 13, 373. 

Borneman, A.R., McCarthy, J.M., Chambers, P.J., and Bartowsky, E.J. (2012b). Functional 

divergence in the genus Oenococcus</> as predicted by genome sequencing of the 

newly-described species, Oenococcus kitaharae</i>. PLoS ONE 7, e29626. 

Borodovsky, M., and McIninch, J. (1993). Recognition of genes in DNA sequence with 

ambiguities. Biosystems 30, 161–171. 

Borodovsky, M., Rudd, K.E., and Koonin, E.V. (1994). Intrinsic and extrinsic approaches for 

detecting genes in a bacterial genome. Nucleic Acids Research 22, 4756–4767. 



	 154	

Boscaini, E., Mikoviny, T., Wisthaler, A., Hartungen, E. von, and Märk, T.D. (2004). 

Characterization of wine with PTR-MS. International Journal of Mass Spectrometry 

239, 215–219. 

Bridier, J., Claisse, O., Coton, M., Coton, E., and Lonvaud-Funel, A. (2010). Evidence of 

distinct populations and specific subpopulations within the species Oenococcus oeni. 

Applied and Environmental Microbiology 76, 7754–7764. 

Brito, L., and Paveia, H. (1999). Presence and analysis of large plasmids in Oenococcus oeni. 

Plasmid 41, 260–267. 

Brito, L., Vieira, G., Santos, M.A., and Paveia, H. (1996). Nucleotide sequence analysis of 

pOg32, a cryptic plasmid from Leuconostoc oenos. Plasmid 36. 

Brocchieri, L. (2001). Phylogenetic inferences from molecular sequences: review and 

critique. Theor Popul Biol 59, 27–40. 

Burke, M.K., Liti, G., and Long, A.D. (2014). Standing genetic variation drives repeatable 

experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol 

Biol Evol 31, 3228–3239. 

Busquets, A., Pena, A., Gomila, M., Bosch, R., Nogales, B., Garcia-Valdes, E., Lalucat, J., 

and Bennasar, A. (2012). Genome sequence of Pseudomonas stutzeri strain JM300 

(DSM 10701), a soil isolate and model organism for natural transformation. Journal of 

Bacteriology 194, 5477–5478. 

Capozzi, V., and Spano, G. (2011). Food microbial biodiversity and “microbes of protected 

origin.” Frontiers in Microbiology 2, 237. 

Capozzi, V., Russo, P., Lamontanara, A., Orru, L., Cattivelli, L., and Spano, G. (2014). 

Genome sequences of five Oenococcus oeni strains isolated from Nero Di Troia wine 

from the same terroir in Apulia, southern Italy. Genome Announcements 2, e01077–

14 – e01077–14. 

Cappellin, L., Biasioli, F., Granitto, P.M., Schuhfried, E., Soukoulis, C., Costa, F., Märk, 

T.D., and Gasperi, F. (2011). On data analysis in PTR-TOF-MS: From raw spectra to 

data mining. Sensors and Actuators B: Chemical 155, 183–190. 

Cappellin, L., Soukoulis, C., Aprea, E., Granitto, P., Dallabetta, N., Costa, F., Viola, R., 

Märk, T.D., Gasperi, F., and Biasioli, F. (2012). PTR-ToF-MS and data mining 

methods: a new tool for fruit metabolomics. Metabolomics 8, 761–770. 

Cappello, M.S., Stefani, D., Grieco, F., Logrieco, A., and Zapparoli, G. (2008). Genotyping 

by amplified fragment length polymorphism and malate metabolism performances of 

indigenous Oenococcus oeni strains isolated from Primitivo wine. International 

Journal of Food Microbiology 127, 241–245. 



	 155	

Castro, C.C., Martins, R.C., Teixeira, J.A., and Silva Ferreira, A.C. (2014). Application of a 

high-throughput process analytical technology metabolomics pipeline to Port wine 

forced ageing process. Food Chemistry 143, 384–391. 

Cavalieri, D., McGovern, P.E., Hartl, D.L., Mortimer, R., and Polsinelli, M. (2003). Evidence 

for S. cerevisiae fermentation in ancient wine. Journal of Molecular Evolution 57, 

S226–S232. 

Chaisson, M.J., Brinza, D., and Pevzner, P.A. (2008). De novo fragment assembly with short 

mate-paired reads: Does the read length matter? Genome Research 19, 336–346. 

Chan, J.Z., Halachev, M.R., Loman, N.J., Constantinidou, C., and Pallen, M.J. (2012). 

Defining bacterial species in the genomic era: insights from the genus Acinetobacter. 

BMC Microbiology 12, 302. 

Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and 

Ruden, D.M. (2012). A program for annotating and predicting the effects of single 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 

strain w1118; iso-2; iso-3. Fly 6, 80–92. 

Claisse, O., and Lonvaud-Funel, A. (2012). Development of a multilocus variable number of 

tandem repeat typing method for Oenococcus oeni. Food Microbiology 30, 340–347. 

Collins, M.D., Wallbanks, S., Lane, D.J., Shah, J., Nietupski, R., Smida, J., Dorsch, M., and 

Stackebrandt, E. (1991). Phylogenetic analysis of the genus Listeria based on reverse 

transcriptase sequencing of 16S rRNA. International Journal of Systematic 

Bacteriology 41, 240–246. 

Costello, P.J., Siebert, T.E., Solomon, M.R., and Bartowsky, E.J. (2013). Synthesis of fruity 

ethyl esters by acyl coenzyme A: alcohol acyltransferase and reverse esterase 

activities in Oenococcus oeni and Lactobacillus plantarum. Journal of Applied 

Microbiology 114, 797–806. 

Coton, E., Rollan, G., Bertrand, A., and Lonvaud-Funel, A. (1998). Histamine-producing 

lactic acid bacteria in wines: early detection, frequency, and distribution. American 

Journal of Enology and Viticulture 49, 199–204. 

Coucheney, F., Gal, L., Beney, L., Lherminier, J., Gervais, P., and Guzzo, J. (2005). A small 

HSP, Lo18, interacts with the cell membrane and modulates lipid physical  state under 

heat shock conditions in a lactic acid bacterium. Biochim Biophys Acta 1720, 92–98. 

Couto, J.A., and Hogg, T.A. (1994). Diversity of ethanol-tolerant lactobacilli isolated from 

Douro fortified wine: clustering and identification by numerical analysis of 

electrophoretic protein profiles. Journal of Applied Bacteriology 76, 487–491. 



	 156	

Davis, C.R., Wibowo, D.J., Lee, T.H., and Fleet, G.H. (1986). Growth and metabolism of 

lactic acid bacteria during and after malolactic fermentation of wines at different pH. 

Applied and Environmental Microbiology 51, 539–545. 

Delaquis, P., Cliff, M., King, M., Girard, B., Hall, J., and Reynolds, A. (2000). Effect of two 

commercial malolactic cultures on the chemical and sensory properties of Chancellor 

wines vinified with different yeasts and fermentation temperatures. American Journal 

of Enology and Viticulture 51, 42–48. 

De Las Rivas, B., Marcobal, A., and Munoz, R. (2004). Allelic diversity and population 

structure in Oenococcus oeni as determined from sequence analysis of housekeeping 

genes. Applied and Environmental Microbiology 70, 7210–7219. 

Delcher, A.L., Phillippy, A., Carlton, Jane, and Salzberg, Steven L. (2002). Fast algorithms 

for large-scale genome alignment and comparison. Nucleic Acids Research 30, 2478–

2483. 

Delmas, F., Pierre, F., Coucheney, F., Divies, C., and Guzzo, J. (2001). Biochemical and 

physiological studies of the small heat shock protein Lo18 from the lactic acid 

bacterium Oenococcus oeni. J Mol Microbiol Biotechnol 3, 601–610. 

Delsuc, F., Brinkmann, H., and Philippe, H. (2005). Phylogenomics and the reconstruction of 

the tree of life. Nature Reviews Genetics 6, 361–375. 

De Revel, G., Martin, N., Pripis-Nicolau, L., Lonvaud-Funel, A., and Bertrand, A. (1999). 

Contribution to the knowledge of malolactic fermentation influence on wine aroma. J. 

Agric. Food Chem. 47, 4003–4008. 

De Revel, G., Bloem, A., Augustin, M., Lonvaud-Funel, A., and Bertrand, A. (2005). 

Interaction of Oenococcus oeni and oak wood compounds. Food Microbiology 22, 

569–575. 

Deschavanne, P., DuBow, M.S., and Regeard, C. (2010). The use of genomic signature 

distance between bacteriophages and their hosts displays evolutionary relationships 

and phage growth cycle determination. Virology Journal 7, 163. 

Dicks, L.M.T., Dellaglio, F., and Collins, M.D. (1995). Proposal to reclassify Leuconostoc 

oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. International Journal of 

Systematic Bacteriology 45, 395–397. 

Dimopoulou, M., Vuillemin, M., Campbell-Sills, H., Lucas, P.M., Ballestra, P., Miot-Sertier, 

C., Favier, M., Coulon, J., Moine, V., Doco, T., et al. (2014). Exopolysaccharide 

(EPS) synthesis by Oenococcus oeni: from genes to phenotypes. PLoS ONE 9, 

e98898. 



	 157	

Douglas, G.L., and Klaenhammer, T.R. (2010). Genomic evolution of domesticated 

microorganisms. Annual Review of Food Science and Technology - (new in 2010) 1, 

397–414. 

Du Toit, M., and Pretorius, I.S. (2000). Microbial spoilage and preservation of wine: using 

weapons from nature’s own arsenal–a review. South African Journal of Enology and 

Viticulture 21, 74–96. 

Edwards, S.V. (2009). Is a new and general theory of molecular systematics emerging? 

Evolution 63, 1–19. 

El Khoury, M. (2014). Etude de la diversité des souches d’Oenococcus oeni responsables de 

la fermentation malolactique des vins dans différentes régions vitivinicoles. Université 

de Bordeaux. 

Endo, A., and Okada, S. (2006). Oenococcus kitaharae sp. nov., a non-acidophilic and non-

malolactic-fermenting oenococcus isolated from a composting distilled shochu 

residue. International Journal of Systematic and Evolutionary Microbiology 56, 2345–

2348. 

Evangelou, M., Rendon, A., Ouwehand, W.H., Wernisch, L., and Dudbridge, F. (2012). 

Comparison of methods for competitive tests of pathway analysis. PLoS ONE 7, 

e41018. 

Fabris, A., Biasioli, F., Granitto, P.M., Aprea, E., Cappellin, L., Schuhfried, E., Soukoulis, C., 

Märk, T.D., Gasperi, F., and Endrizzi, I. (2010). PTR-TOF-MS and data-mining 

methods for rapid characterisation of agro-industrial samples: influence of milk 

storage conditions on the volatile compounds profile of Trentingrana cheese. Journal 

of Mass Spectrometry 45, 1065–1074. 

Farnworth, E.R. (2008). Handbook of fermented functional foods (CRC press). 

Favier, M. (2012). Etude des plasmides et génomes d’Oenococcus oeni pour l’identification 

des gènes d’intérêt technologique. Université de Bordeaux 2. 

Favier, M., Bilhère, E., Lonvaud-Funel, A., Moine, V., and Lucas, P.M. (2012). Identification 

of pOENI-1 and related plasmids in Oenococcus oeni strains performing the 

malolactic fermentation in wine. PLoS ONE 7, e49082. 

Feng, Z., Xu, M., Zhai, S., Chen, H., Li, A., Lv, X., and Deng, H. (2015). Application of 

autochthonous mixed starter for controlled Kedong sufu fermentation in pilot plant 

tests. J Food Sci 80, M129–M136. 

Ferré, L. (1922). Influence de la rétrogadation de l’acide malique sur la composition des vins 

blancs. Ann. Sci. Agronomiques 5, 276–282. 

Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to 

understand metabolic networks. Comparative and Functional Genomics 2, 155–168. 



	 158	

Folio, P., Ritt, J., Alexandre, H., and Remize, F. (2008). Characterization of EprA, a major 

extracellular protein of Oenococcus oeni with protease activity. International Journal 

of Food Microbiology 127, 26–31. 

Foster, J.T., Beckstrom-Sternberg, S.M., Pearson, T., Beckstrom-Sternberg, J.S., Chain, 

P.S.G., Roberto, F.F., Hnath, J., Brettin, T., and Keim, P. (2009). Whole-genome-

based phylogeny and divergence of the genus Brucella. Journal of Bacteriology 191, 

2864–2870. 

Fremaux, C., Aigle, M., and Lonvaud-Funel, A. (1993). Sequence analysis of Leuconostoc 

oenos DNA: organization of pLo13, a cryptic plasmid. Plasmid 30, 212–223. 

Gagné, S., Lucas, P.M., Perello, M.C., Claisse, O., Lonvaud-Funel, A., and De Revel, G. 

(2011). Variety and variability of glycosidase activities in an Oenococcus oeni strain 

collection tested with synthetic and natural substrates: Diversity of O. oeni 

glycosidases. Journal of Applied Microbiology 110, 218–228. 

Galle, S.A., Koot, A., Soukoulis, C., Cappellin, L., Biasioli, F., Alewijn, M., and van Ruth, 

S.M. (2011). Typicality and geographical origin markers of protected origin cheese 

from the Netherlands revealed by PTR-MS. Journal of Agricultural and Food 

Chemistry 59, 2554–2563. 

Garmyn, D., Monnet, C., Martineau, B., Guzzo, J., Cavin, J.F., and Divies, C. (1996). Cloning 

and sequencing of the gene encoding alpha-acetolactate decarboxylase from 

Leuconostoc oenos. FEMS Microbiol Lett 145, 445–450. 

Garofalo, C., El Khoury, M., Lucas, P., Bely, M., Russo, P., Spano, G., and Capozzi, V. 

(2015). Autochthonous starter cultures and indigenous grape variety for regional wine 

production. J Appl Microbiol 118, 1395–1408. 

Garrigues, C., Johansen, E., and Crittenden, R. (2013). Pangenomics – an avenue to improved 

industrial starter cultures and probiotics. Current Opinion in Biotechnology 24, 187–

191. 

Garvie, E.I. (1967). Leuconostoc oenos sp. nov. Journal of General Microbiology 48, 431–

438. 

Gene Ontology Consortium (2004). The Gene Ontology (GO) database and informatics 

resource. Nucleic Acids Research 32, 258D – 261. 

Gindreau, E., Joyeux, A., De Revel, G., Claisse, O., and Lonvaud-Funel, A. (1997). 

Evaluation of the settling of malolactic starters within the indigenous microflora of 

wines. J. Int. Sci. Vigne Vin 31, 197–202. 

Gougeon, R.D., Lucio, M., Frommberger, M., Peyron, D., Chassagne, D., Alexandre, H., 

Feuillat, F., Voilley, A., Cayot, P., Gebefügi, I., et al. (2009). The chemodiversity of 



	 159	

wines can reveal a metabologeography expression of cooperage oak wood. 

Proceedings of the National Academy of Sciences 106, 9174–9179. 

Grada, A., and Weinbrecht, K. (2013). Next-Generation Sequencing: methodology and 

application. Journal of Investigative Dermatology 133, e11. 

Griffiths-Jones, S. (2004). Rfam: annotating non-coding RNAs in complete genomes. Nucleic 

Acids Research 33, D121–D124. 

Guerrini, S., Mangani, S., Granchi, L., and Vincenzini, M. (2002). Biogenic amine production 

by Oenococcus oeni. Curr Microbiol 44, 374–378. 

Guzzo, J., Delmas, F., Pierre, F., Jobin, M.P., Samyn, B., Van Beeumen, J., Cavin, J.F., and 

Divies, C. (1997). A small heat shock protein from Leuconostoc oenos induced by 

multiple stresses and during stationary growth phase. Lett Appl Microbiol 24, 393–

396. 

Guzzo, J., Jobin, M.P., Delmas, F., Fortier, L.C., Garmyn, D., Tourdot-Marechal, R., Lee, B., 

and Divies, C. (2000). Regulation of stress response in Oenococcus oeni as a function 

of environmental changes and growth phase. Int J Food Microbiol 55, 27–31. 

Haft, D.H. (2015). Using comparative genomics to drive new discoveries in microbiology. 

Current Opinion in Microbiology 23, 189–196. 

Hald, T. (2011). EFSA Panel on Biological Hazards (BIOHAZ); scientific opinion on risk 

based control of biogenic amine formation in fermented foods (European Food Safety 

Authority). 

Hernandez-Orte, P., Cersosimo, M., Loscos, N., Cacho, J., Garcia-Moruno, E., and Ferreira, 

V. (2009). Aroma development from non-floral grape precursors by wine lactic acid 

bacteria. Food Research International 42, 773–781. 

Holden, M., Deng, S., Wojnowski, L., and Kulle, B. (2008). GSEA-SNP: applying gene set 

enrichment analysis to SNP data from genome-wide association studies. 

Bioinformatics 24, 2784–2785. 

Holland, R., Liu, S.-Q., Crow, V.L., Delabre, M.-L., Lubbers, M., Bennett, M., and Norris, G. 

(2005). Esterases of lactic acid bacteria and cheese flavour: milk fat hydrolysis, 

alcoholysis and esterification. International Dairy Journal 15, 711–718. 

Holzapfel, W.H., and Wood, B.J.B. (2014). Lactic acid bacteria: biodiversity and taxonomy 

(Wiley Blackwell). 

Hong, Y.-S. (2011). NMR-based metabolomics in wine science: NMR in wine science. 

Magnetic Resonance in Chemistry 49, S13–S21. 

Jara, C., and Romero, J. (2015). Genome sequences of three Oenococcus oeni strains isolated 

from Maipo valley, Chile. Genome Announcements 3, e00866–15. 



	 160	

Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, 

R., Sulzer, P., and Märk, T.D. (2009). A high resolution and high sensitivity proton-

transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). International 

Journal of Mass Spectrometry 286, 122–128. 

Kanehisa, M. (2006). From genomics to chemical genomics: new developments in KEGG. 

Nucleic Acids Research 34, D354–D357. 

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014). 

Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic 

Acids Research 42, D199–D205. 

Kawamura, Y., Hou, X.-G., Sultana, F., Miura, H., and Ezaki, T. (1995). Determination of 

16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and 

phylogenetic relationships among members of the genus Streptococcus. International 

Journal of Systematic Bacteriology 45, 406–408. 

Kelly, W.J., Huang, C.M., and Asmundson, R.V. (1993). Comparison of Leuconostoc oenos 

strains by pulsed-field gel electrophoresis. Applied and Environmental Microbiology 

59, 3969–3972. 

Kim, T.-M., Jung, Y.-C., Rhyu, M.-G., Jung, M.H., and Chung, Y.-J. (2008). GEAR: genomic 

enrichment analysis of regional DNA copy number changes. Bioinformatics 24, 420–

421. 

Klaenhammer, T., Altermann, E., Arigoni, F., Bolotin, A., Breidt, F., Broadbent, J., Cano, R., 

Chaillou, S., Deutscher, J., Gasson, M., et al. (2002). Discovering lactic acid bacteria 

by genomics. Antonie Van Leeuwenhoek 82, 29–58. 

Klaenhammer, T., Barrangou, R., Buck, B., Azcarateperil, M., and Altermann, E. (2005). 

Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS 

Microbiology Reviews 29, 393–409. 

Koch, A. (1900). Ueber die Ursachen des Verschwindens der Säure bei Gärung und Lagerung 

des Weines. Weinbau Und Weinhandel 40-42, 395–396, 407–408, 417–419. 

Koek, M.M., Muilwijk, B., van der Werf, M.J., and Hankemeier, T. (2006). Microbial 

metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry 78, 

1272–1281. 

Koek, M.M., Jellema, R.H., van der Greef, J., Tas, A.C., and Hankemeier, T. (2011). 

Quantitative metabolomics based on gas chromatography mass spectrometry: status 

and perspectives. Metabolomics 7, 307–328. 

Koren, S., and Phillippy, A.M. (2015). One chromosome, one contig: complete microbial 

genomes from long-read sequencing and assembly. Current Opinion in Microbiology 

23, 110–120. 



	 161	

Kwok, C.K., Tang, Y., Assmann, S.M., and Bevilacqua, P.C. (2015). The RNA structurome: 

transcriptome-wide structure probing with next-generation sequencing. Trends in 

Biochemical Sciences 40, 221–232. 

Lafon-Lafourcade, S., Carre, A., Lonvaud-Funel, A., and Ribéreau-Gayon, P. (1983a). 

Induction de la fermentation malolactique des vins par inoculation d’une biomasse 

congelée de Leuconostoc oenos après réactivation. Conn. Vigne Vin 17, 55–71. 

Lafon-Lafourcade, S., Carre, E., and Ribéreau-Gayon, P. (1983b). Occurrence of lactic acid 

bacteria during the different stages of vinification and conservation of wines. Applied 

and Environmental Microbiology 46, 874–880. 

Lamontanara, A., Orru, L., Cattivelli, L., Russo, P., Spano, G., and Capozzi, V. (2014). 

Genome sequence of Oenococcus oeni OM27, the first fully assembled genome of a 

strain isolated from an Italian wine. Genome Announcements 2, e00658–14 – e00658–

14. 

Lapidus, A.L. (2009). Genome sequence databases (overview): sequencing and assembly. 

Lawrence Berkeley National Laboratory. 

Larisika, M., Claus, H., and Konig, H. (2008). Pulsed-field gel electrophoresis for the 

discrimination of Oenococcus oeni isolates from different wine-growing regions in 

Germany. Int J Food Microbiol 123, 171–176. 

Lee, J.-E., Hwang, G.-S., Lee, C.-H., and Hong, Y.-S. (2009). Metabolomics reveals 

alterations in both primary and secondary metabolites by wine bacteria. Journal of 

Agricultural and Food Chemistry 57, 10772–10783. 

Legras, J.-L., Merdinoglu, D., Cornuet, J.-M., and Karst, F. (2007). Bread, beer and wine: 

Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology 16, 

2091–2102. 

Le Jeune, C., and Lonvaud-Funel, A. (1997). Sequence of DNA 16S/23S spacer region of 

Leuconostoc oenos (Oenococcus oeni): application to strain differentiation. Res 

Microbiol 148. 

Liao, P.-Y., and Lee, K.H. (2010). From SNPs to functional polymorphism: The insight into 

biotechnology applications. Biochemical Engineering Journal 49, 149–158. 

Liu, M., Bayjanov, J.R., Renckens, B., Nauta, A., and Siezen, R.J. (2010). The proteolytic 

system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11, 

36. 

Liu, S., Pritchard, G.G., Hardman, M.J., and Pilone, G.J. (1995). Occurrence of arginine 

deiminase pathway enzymes in arginine catabolism by wine lactic acid bacteria. 

Applied and Environmental Microbiology 61, 310–316. 



	 162	

Long, A., Liti, G., Luptak, A., and Tenaillon, O. (2015). Elucidating the molecular 

architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16, 

567–582. 

Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation 

of wine. Ant. van Leeuwenhoek 317–331. 

Lonvaud-Funel, A. (2001). Biogenic amines in wines: role of lactic acid bacteria. FEMS 

Microbiology Letters 199, 9–13. 

Lonvaud-Funel, A., and De Saad, S.A. (1982). Purification and properties of a malolactic 

enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Applied and 

Environmental Microbiology 43, 357–361. 

Lonvaud-Funel, A., Joyeux, A., and Ledoux, O. (1991). Specific enumeration of lactic acid 

bacteria in fermenting grape must and wine by colony hybridization with non-isotopic 

DNA probes. Journal of Applied Bacteriology 71, 501–508. 

Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of 

transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 0955–0964. 

Lucas, P.M., Claisse, O., and Lonvaud-Funel, A. (2008). High frequency of histamine-

producing bacteria in the enological environment and instability of the histidine 

decarboxylase production phenotype. Applied and Environmental Microbiology 74, 

811–817. 

Lukashin, A.V., and Borodovsky, M. (1998). GeneMark. HMM: new solutions for gene 

finding. Nucleic Acids Research 26, 1107–1115. 

Luo, C., Tsementzi, D., Kyrpides, N., Read, T., and Konstantinidis, K.T. (2012). Direct 

comparisons of Illumina vs. Roche 454 sequencing technologies on the same 

microbial community DNA sample. PLoS ONE 7, e30087. 

Maitre, M., Weidmann, S., Rieu, A., Fenel, D., Schoehn, G., Ebel, C., Coves, J., and Guzzo, 

J. (2012). The oligomer plasticity of the small heat-shock protein Lo18 from 

Oenococcus oeni influences its role in both membrane stabilization and protein 

protection. Biochem J 444, 97–104. 

Maitre, M., Weidmann, S., Dubois-Brissonnet, F., David, V., Coves, J., and Guzzo, J. (2014). 

Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small 

heat shock protein Lo18 in membrane integrity. Applied and Environmental 

Microbiology 80, 2973–2980. 

Makarova, K.S., and Koonin, E.V. (2007). Evolutionary genomics of lactic acid bacteria. 

Journal of Bacteriology 189, 1199–1208. 

Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., 

Pavlova, N., Karamychev, V., Polouchine, N., et al. (2006). Comparative genomics of 



	 163	

the lactic acid bacteria. Proceedings of the National Academy of Sciences 103, 15611–

15616. 

Malherbe, S., Menichelli, E., du Toit, M., Tredoux, A., Muller, N., Naes, T., and Nieuwoudt, 

H. (2013). The relationships between consumer liking, sensory and chemical attributes 

of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni 

starter cultures: Consumer liking, sensory and chemical attributes of Pinotage wines. 

Journal of the Science of Food and Agriculture 93, 2829–2840. 

Marchler-Bauer, A., Anderson, J., Cherukuri, P., DeWeese-Scott, C., Geer, L., Gwadz, M., 

He, S., Hurwitz, D., Jackson, J., Ke, Z., et al. (2005). CDD: a Conserved Domain 

Database for protein classification. Nucleic Acids Research 33, D192–D196. 

Marcobal, A., Martin-Alvarez, P.J., Polo, M.C., Munoz, R., and Moreno-Arribas, M.V. 

(2006). Formation of biogenic amines throughout the industrial manufacture of red 

wine. J Food Prot 69. 

Marcobal, A.M., Sela, D.A., Wolf, Y.I., Makarova, K.S., and Mills, D.A. (2008). Role of 

hypermutability in the evolution of the genus Oenococcus. Journal of Bacteriology 

190, 564–570. 

Mardis, E.R. (2008). The impact of next-generation sequencing technology on genetics. 

Trends in Genetics 24, 133–141. 

Martinez-Murcia, A.J., and Collins, M.D. (1990). A phylogenetic analysis of the genus 

Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. FEMS 

Microbiol Lett 58. 

Matthews, A., Grbin, P.R., and Jiranek, V. (2006). A survey of lactic acid bacteria for 

enzymes of interest to oenology. Australian Journal of Grape and Wine Research 12, 

235–244. 

McGovern, P.E. (1986). Neolithic resinated wine. Nature 381, 480–481. 

McGovern, P.E., Zhang, J., Tang, J., Zhang, Z., Hall, G.R., Moreau, R.A., Nuñez, A., 

Butrym, E.D., Richards, M.P., Wang, C., et al. (2004). Fermented beverages of pre-

and proto-historic China. Proceedings of the National Academy of Sciences of the 

United States of America 101, 17593–17598. 

McKay, L.L., and Baldwin, K.A. (1990). Applications for biotechnology: present and future 

improvements in lactic acid bacteria. FEMS Microbiology Reviews 7, 3–14. 

Médigue, C., and Moszer, I. (2007). Annotation, comparison and databases for hundreds of 

bacterial genomes. Research in Microbiology 158, 724–736. 

Mendoza, L.M., Saavedra, L., and Raya, R.R. (2015). Draft genome sequence of Oenococcus 

oeni strain X2L (CRL1947), isolated from red wine of northwest Argentina. Genome 

Announcements 3, e01376–14 – e01376–14. 



	 164	

Mesas, J.M., Rodriguez, M.C., and Alegre, M.T. (2001). Nucleotide sequence analysis of 

pRS2 and pRS3, two small cryptic plasmids from Oenococcus oeni. Plasmid 46, 149–

151. 

Mestres, M., Busto, O., and Guasch, J. (2000). Analysis of organic sulfur compounds in wine 

aroma. J Chromatogr A 881, 569–581. 

Meunier, J.M., and Bott, E.W. (1979). Das verhalten verschiedener aromastoffe in 

Burgunderweinen im verlauf des biologischen saureabbaues. Chemie Mikrobiologie 

Technologie Lebensmittel 6, 92–95. 

Meyer, F., Overbeek, R., and Rodriguez, A. (2009). FIGfams: yet another set of protein 

families. Nucleic Acids Research 37, 6643–6654. 

Miller, J.R., Koren, S., and Sutton, G. (2010). Assembly algorithms for next-generation 

sequencing data. Genomics 95, 315–327. 

Mills, D., Rawsthorne, H., Parker, C., Tamir, D., and Makarova, K. (2005). Genomic analysis 

of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiology 

Reviews 29, 465–475. 

Milne, S.B., Mathews, T.P., Myers, D.S., Ivanova, P.T., and Brown, H.A. (2013). Sum of the 

parts: mass spectrometry-based metabolomics. Biochemistry 52, 3829–3840. 

Molenaar, D., Bringel, F., Schuren, F.H., de Vos, W.M., Siezen, R.J., and Kleerebezem, M. 

(2005). Exploring Lactobacillus plantarum genome diversity by using microarrays. 

Journal of Bacteriology 187, 6119–6127. 

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. (2007). KAAS: an 

automatic genome annotation and pathway reconstruction server. Nucleic Acids 

Research 35, W182–W185. 

Morozova, O., and Marra, M.A. (2008). Applications of next-generation sequencing 

technologies in functional genomics. Genomics 92, 255–264. 

Möslinger, R. (1901). Über die Säuren des Weines und den Säuerungsgang. Z. Untersuch. 

Nahr. Genussm 4, 1120–1130. 

Müller-Thurgau, H. (1891). Ergebnisse neuer Untersuchungen auf dem Gebiete der 

Weinbereitung. Weinbau Und Weinhandel 9, 421–428. 

Nannelli, F., Claisse, O., Gindreau, E., De Revel, G., Lonvaud-Funel, A., and Lucas, P.M. 

(2008). Determination of lactic acid bacteria producing biogenic amines in wine by 

quantitative PCR methods: LAB producing biogenic amines in wine. Letters in 

Applied Microbiology 47, 594–599. 

Naouri, P., Chagnaud, P., Arnaud, A., and Galzy, P. (1990). Purification and properties of a 

malolactic enzyme from Leuconostoc oenos ATCC 23278. J Basic Microbiol 30, 577–

585. 



	 165	

Naz, S., Vallejo, M., García, A., and Barbas, C. (2014). Method validation strategies involved 

in non-targeted metabolomics. Journal of Chromatography A 1353, 99–105. 

NCBI Resource Coordinators (2015). Database resources of the National Center for 

Biotechnology Information. Nucleic Acids Research 43, D6–D17. 

Nykänen, L., and Suomalainen, H. (1983). Aroma of beer, wine and distilled alcoholic 

beverages (Akademie-Verlag). 

Ordonneau, C. (1891). Cause of acidity in green grapes. Tartomalic acid. Bull. Soc. Chim. 

France 6, 261–264. 

Ough, C.S., Crowell, E.A., and Mooney, L.A. (1988). Formation of ethyl carbamate 

precursors during grape juice (Chardonnay) fermentation. I. Addition of amino acids, 

urea, and ammonia: effects of fortification on intracellular and extracellular 

precursors. American Journal of Enology and Viticulture 39, 243–249. 

Overbeek, R. (2005). The subsystems approach to genome annotation and its use in the 

project to annotate 1000 genomes. Nucleic Acids Research 33, 5691–5702. 

Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., 

Gerdes, S., Parrello, B., Shukla, M., et al. (2014). The SEED and the Rapid 

Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic 

Acids Research 42, D206–D214. 

Pasteur, L. (1866). Etudes sur le vin, ses maladies, causes qui les provoquent, procédés 

nouveaux pour le conserver et pour le vieillir (Imprimerie impériale). 

Patti, G.J., Yanes, O., and Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the 

omics trilogy. Nature Reviews Molecular Cell Biology 13, 263–269. 

Pettersson, E., Lundeberg, J., and Ahmadian, A. (2009). Generations of sequencing 

technologies. Genomics 93, 105–111. 

Peynaud, E., and Domercq, S. (1959). Possibilité de provoquer la fermentation malolactique 

en vinification à l’aide de bactéries cultivées. Compt. Rend. Acad. Agr. France 45, 

355–358. 

Pfeiler, E.A., and Klaenhammer, T.R. (2007). The genomics of lactic acid bacteria. Trends in 

Microbiology 15, 546–553. 

Phillippy, A.M., Schatz, M.C., and Pop, M. (2008). Genome assembly forensics: finding the 

elusive mis-assembly. Genome Biol 9, R55. 

Pilone, G.J., Kunkee, R.E., and Webb, A.D. (1966). Chemical characterization of wines 

fermented with various malo-lactic bacteria. Applied Microbiology 14, 608–615. 

Pop, M. (2009). Genome assembly reborn: recent computational challenges. Briefings in 

Bioinformatics 10, 354–366. 



	 166	

Pozo-Bayón, M.A., G-Alegría, E., Polo, M.C., Tenorio, C., Martín-Álvarez, P.J., Calvo de la 

Banda, M.T., Ruiz-Larrea, F., and Moreno-Arribas, M.V. (2005). Wine volatile and 

amino acid composition after malolactic fermentation: effect of Oenococcus oeni and 

Lactobacillus plantarum starter cultures. Journal of Agricultural and Food Chemistry 

53, 8729–8735. 

Pretzer, G., Snel, J., Molenaar, D., Wiersma, A., Bron, P.A., Lambert, J., de Vos, W.M., van 

der Meer, R., Smits, M.A., and Kleerebezem, M. (2005). Biodiversity-based 

identification and functional characterization of the mannose-specific adhesin of 

Lactobacillus plantarum. Journal of Bacteriology 187, 6128–6136. 

Pride, D.T. (2003). Evolutionary implications of microbial genome tetranucleotide frequency 

biases. Genome Research 13, 145–158. 

Priefert, H., Rabenhorst, J., and Steinbuchel, A. (2001). Biotechnological production of 

vanillin. Appl Microbiol Biotechnol 56, 296–314. 

Priévost, H., Cavin, J.F., Lamoureux, M., and Diviès, C. (1995). Plasmid and chromosome 

characterization of Leuconostoc oenos strains. American Journal of Enology and 

Viticulture 46, 43–48. 

Ramos, A., Lolkema, J.S., Konings, W.N., and Santos, H. (1995). Enzyme basis for pH 

regulation of citrate and pyruvate metabolism by Leuconostoc oenos. Applied and 

Environmental Microbiology 61, 1303–1310. 

Reguant, C., and Bordons, A. (2003). Typification of Oenococcus oeni strains by multiplex 

RAPD-PCR and study of population dynamics during malolactic fermentation. 

Journal of Applied Microbiology 95, 344–353. 

Remize, F., Gaudin, A., Kong, Y., Guzzo, J., Alexandre, H., Krieger, S., and Guilloux-

Benatier, M. (2006). Oenococcus oeni preference for peptides: qualitative and 

quantitative analysis of nitrogen assimilation. Archives of Microbiology 185, 459–

469. 

Renouf, V., Delaherche, A., Claisse, O., and Lonvaud-Funel, A. (2008). Correlation between 

indigenous Oenococcus oeni strain resistance and the presence of genetic markers. J 

Ind Microbiol Biotechnol 35, 27–33. 

Ribeiro, F.J., Przybylski, D., Yin, S., Sharpe, T., Gnerre, S., Abouelleil, A., Berlin, A.M., 

Montmayeur, A., Shea, T.P., Walker, B.J., et al. (2012). Finished bacterial genomes 

from shotgun sequence data. Genome Research 22, 2270–2277. 

Ribéreau-Gayon, J. (1936). Sur la “désacidification biologique” des vins. Soc. Sci. Phys. Nat. 

Bordeaux 23–25. 

Ribéreau-Gayon, P. (1954). Evaluation of the malic acid of wines by paper chromatography. 

Ann. Falsif. Fraudes 47. 



	 167	

Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., and Lonvaud, A. (2012). Traité 

d’oenologie - Tome 1 - 6e éd. - Microbiologie du vin. Vinifications (Dunod). 

Richter, M., and Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the 

prokaryotic species definition. Proceedings of the National Academy of Sciences 106, 

19126–19131. 

Ritt, J.-F., Guilloux-Benatier, M., Guzzo, J., Alexandre, H., and Remize, F. (2008). 

Oligopeptide assimilation and transport by Oenococcus oeni. Journal of Applied 

Microbiology 104, 573–580. 

Ritt, J.-F., Remize, F., Grandvalet, C., Guzzo, J., Atlan, D., and Alexandre, H. (2009). 

Peptidases specific for proline-containing peptides and their unusual peptide-

dependent regulation in Oenococcus oeni. Journal of Applied Microbiology 106, 801–

813. 

Rocha, E.P.C., Smith, J.M., Hurst, L.D., Holden, M.T.G., Cooper, J.E., Smith, N.H., and Feil, 

E.J. (2006). Comparisons of dN/dS are time dependent for closely related bacterial 

genomes. Journal of Theoretical Biology 239, 226–235. 

Romano, A., Trip, H., Lonvaud-Funel, A., Lolkema, J.S., and Lucas, P.M. (2012). Evidence 

of two functionally distinct ornithine decarboxylation systems in lactic acid bacteria. 

Applied and Environmental Microbiology 78, 1953–1961. 

Romano, A., Trip, H., Lolkema, J.S., and Lucas, P.M. (2013). Three-component 

lysine/ornithine decarboxylation system in Lactobacillus saerimneri 30a. Journal of 

Bacteriology 195, 1249–1254. 

Rossouw, D., and Bauer, F.F. (2009). Wine science in the omics era: the impact of systems 

biology on the future of wine research. S. Afr. J. Enol. Vitic. 30, 101–109. 

Roullier-Gall, C., Witting, M., Gougeon, R.D., and Schmitt-Kopplin, P. (2014). High 

precision mass measurements for wine metabolomics. Frontiers in Chemistry 2, 102. 

Ruiz, P., Izquierdo, P.M., Sesena, S., and Palop, M.L. (2010). Selection of autochthonous 

Oenococcus oeni strains according to their oenological properties and vinification 

results. Int J Food Microbiol 137, 230–235. 

Ryan, D., and Robards, K. (2006). Metabolomics: The greatest omics of them all? Analytical 

Chemistry 78, 7954–7958. 

Salzberg, S.L., Delcher, A.L., Kasif, S., and White, O. (1998). Microbial gene identification 

using interpolated Markov models. Nucleic Acids Res 26, 544–548. 

Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T.J., 

Schatz, M.C., Delcher, A.L., Roberts, M., et al. (2012). GAGE: A critical evaluation 

of genome assemblies and assembly algorithms. Genome Research 22, 557–567. 



	 168	

Sanger, F., and Coulson, A.R. (1975). A rapid method for determining sequences in DNA by 

primed synthesis with DNA polymerase. J Mol Biol 94, 441–448. 

Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating 

inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467. 

Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J., and Roe, B.A. (1980). Cloning in 

single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143, 

161–178. 

Schmidtke, L.M., Blackman, J.W., Clark, A.C., and Grant-Preece, P. (2013). Wine 

metabolomics: objective measures of sensory properties of Semillon from GC-MS 

profiles. J. Agric. Food Chem. 61, 11957–11967. 

Segurel, M.A., Razungles, A.J., Riou, C., Salles, M., and Baumes, R.L. (2004). Contribution 

of dimethyl sulfide to the aroma of Syrah and Grenache Noir wines and estimation of 

its potential in grapes of these varieties. J Agric Food Chem 52, 7084–7093. 

Seifert, W. (1901). Über die säureabnahme im wein und den dabei stattfinden 

gahrungsprozess. Z Landwirstch Versuchsu Deut Oest 4, 980–992. 

Sgorbati, B., Palenzona, D., and Sozzi, T. (1985). Plasmidograms in some heterolactic 

bacteria from alcoholic beverages and their structural relatedness. Microbiol. Alim. 

Nutr. 3, 21–34. 

Sgorbati, B., Palenzona, D., and Ercoli, L. (1987). Characterization of the pesticides-

resistance plasmid pBL34 from Leuconostoc oenos. Microbiol. Alim. Nutr. 5, 295–

301. 

Sicard, D., and Legras, J.-L. (2011). Bread, beer and wine: yeast domestication in the 

Saccharomyces sensu stricto complex. Comptes Rendus Biologies 334, 229–236. 

Smit, A.Y., Du Toit, W.J., and Du Toit, M. (2008). Biogenic amines in wine: understanding 

the headache. S. Afr. J. Enol. Vitic. 29, 109–127. 

Snipen, L., and Ussery, D.W. (2010). Standard operating procedure for computing 

pangenome trees. Standards in Genomic Sciences 2, 135–141. 

Solieri, L., and Giudici, P. (2010). Development of a sequence-characterized amplified region 

marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus 

oeni during wine malolactic fermentation. Applied and Environmental Microbiology 

76, 7765–7774. 

Speranza, B., Bevilacqua, A., Corbo, M.R., Altieri, C., and Sinigaglia, M. (2015a). Selection 

of autochthonous strains as promising starter cultures for Fior di Latte, a traditional 

cheese of southern Italy. J Sci Food Agric 95. 



	 169	

Speranza, B., Racioppo, A., Bevilacqua, A., Beneduce, L., Sinigaglia, M., and Corbo, M.R. 

(2015b). Selection of autochthonous strains as starter cultures for fermented fish 

products. J Food Sci 80, M151–M160. 

Spettoli, P., Nuti, M.P., and Zamorani, A. (1984). Properties of malolactic activity purified 

from Leuconostoc oenos ML34 by affinity chromatography. Applied and 

Environmental Microbiology 48, 900–901. 

Spitaler, R., Araghipour, N., Mikoviny, T., Wisthaler, A., Via, J.D., and Märk, T.D. (2007). 

PTR-MS in enology: advances in analytics and data analysis. International Journal of 

Mass Spectrometry 266, 1–7. 

Stamatakis, A. (2005). Phylogenetics: applications, software and challenges. Cancer 

Genomics-Proteomics 2, 301–305. 

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., 

Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set 

enrichment analysis: a knowledge-based approach for interpreting genome-wide 

expression profiles. Proceedings of the National Academy of Sciences of the United 

States of America 102, 15545–15550. 

Sumby, K.M., Jiranek, V., and Grbin, P.R. (2013). Ester synthesis and hydrolysis in an 

aqueous environment, and strain specific changes during malolactic fermentation in 

wine with Oenococcus oeni. Food Chem 141, 1673–1680. 

Sun, Z., Harris, H.M.B., McCann, A., Guo, C., Argimón, S., Zhang, W., Yang, X., Jeffery, 

I.B., Cooney, J.C., Kagawa, T.F., et al. (2015). Expanding the biotechnology potential 

of lactobacilli through comparative genomics of 213 strains and associated genera. 

Nature Communications 6, 8322. 

Szauter, P. (2013). Lecture 25 - Genome structure (New Mexico University). 

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., 

Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., et al. (2003). The 

COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. 

Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Ciufo, S., and Li, W. (2013). 

Prokaryotic Genome Annotation Pipeline. In The NCBI Handbook [Internet], 

(National Center for Biotechnology Information (US)),. 

Taylor, L. (2012). PHAST (Phage Assembly Suite and Tutorial): a web-based genome 

assembly teaching tool. Davidson College. 

Tenreiro, R., Santos, M.A., Paveia, H., and Vieira, G. (1994). Inter-strain relationships among 

wine Leuconostocs and their divergence from other Leuconostoc species, as revealed 

by low frequency restriction fragment analysis of genomic DNA. J Appl Bacteriol 77, 

271–280. 



	 170	

Tettelin, H., Riley, D., Cattuto, C., and Medini, D. (2008). Comparative genomics: the 

bacterial pan-genome. Current Opinion in Microbiology 11, 472–477. 

Tonon, T., Bourdineaud, J.P., and Lonvaud-Funel, A. (2001). The arcABC gene cluster 

encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction 

of a CRP-like gene. Res Microbiol 152, 653–661. 

Torriani, S., Felis, G.E., and Fracchetti, F. (2010). Selection criteria and tools for malolactic 

starters development: an update. Annals of Microbiology 61, 33–39. 

Ugliano, M., and Moio, L. (2005). Changes in the concentration of yeast-derived volatile 

compounds of red wine during malolactic fermentation with four commercial starter 

cultures of Oenococcus oeni. Journal of Agricultural and Food Chemistry 53, 10134–

10139. 

Ugliano, M., and Moio, L. (2006). The influence of malolactic fermentation and Oenococcus 

oeni strain on glycosidic aroma precursors and related volatile compounds of red 

wine. Journal of the Science of Food and Agriculture 86, 2468–2476. 

Vallet, A., Lucas, P., Lonvaud-Funel, A., and de Revel, G. (2008). Pathways that produce 

volatile sulphur compounds from methionine in Oenococcus oeni. Journal of Applied 

Microbiology 104, 1833–1840. 

Vernikos, G., Medini, D., Riley, D.R., and Tettelin, H. (2015). Ten years of pan-genome 

analyses. Current Opinion in Microbiology 23, 148–154. 

Vivas, N., Bellemère, L., Lonvaud-Funel, A., Glories, Y., and Augustin, M. (1995). Etudes 

sur la fermentation malolactique des vins rouges en barriques et en cuves. Revue 

Française D’œnologie 35, 39–45. 

Vrhovsek, U., Masuero, D., Gasperotti, M., Franceschi, P., Caputi, L., Viola, R., and Mattivi, 

F. (2012). A versatile targeted metabolomics method for the rapid quantification of 

multiple classes of phenolics in fruits and beverages. Journal of Agricultural and Food 

Chemistry 60, 8831–8840. 

Wajid, B., and Serpedin, E. (2012). Review of general algorithmic features for genome 

assemblers for next generation sequencers. Genomics, Proteomics & Bioinformatics 

10, 58–73. 

Webb, R.B., and Ingraham, J.L. (1960). Induced malo-lactic fermentations. American Journal 

of Enology and Viticulture 11, 59–63. 

Wehrens, R., Weingart, G., and Mattivi, F. (2014). metaMS: An open-source pipeline for 

GC–MS-based untargeted metabolomics. Journal of Chromatography B 966, 109–116. 

Weidmann, S., Rieu, A., Rega, M., Coucheney, F., and Guzzo, J. (2010). Distinct amino acids 

of the Oenococcus oeni small heat shock protein Lo18 are essential for damaged 

protein protection and membrane stabilization. FEMS Microbiol Lett 309, 8–15. 



	 171	

Wibowo, D., Eschenbruch, R., Davis, C.R., Fleet, G.H., and Lee, T.H. (1985). Occurrence 

and growth of lactic acid bacteria in wine: a review. American Journal of Enology and 

Viticulture 36, 302–313. 

Wieland, F., Gloess, A.N., Keller, M., Wetzel, A., Schenker, S., and Yeretzian, C. (2012). 

Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass 

spectrometry (PTR-ToF-MS): towards a real-time process control for a consistent 

roast profile. Analytical and Bioanalytical Chemistry 402, 2531–2543. 

Wohlgemuth, G. (2008). Metabolomics: wine-omics. Nature 455, 699. 

Wouters, D., Bernaert, N., Anno, N., Van Droogenbroeck, B., De Loose, M., Van Bockstaele, 

E., and De Vuyst, L. (2013). Application and validation of autochthonous lactic acid 

bacteria starter cultures for controlled leek fermentations and their influence on the 

antioxidant properties of leek. Int J Food Microbiol 165, 121–133. 

Wu, M., and Eisen, J.A. (2008). A simple, fast, and accurate method of phylogenomic 

inference. Genome Biol 9, R151. 

Wu, M., and Scott, A.J. (2012). Phylogenomic analysis of bacterial and archaeal sequences 

with AMPHORA2. Bioinformatics 28, 1033–1034. 

Zapparoli, G., Reguant, C., Bordons, A., Torriani, S., and Dellaglio, F. (2000). Genomic 

DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis 

and randomly amplified polymorphic DNA-PCR. Current Microbiology 40, 351–355. 

Zavaleta, A.I., Martinez-Murcia, A.J., and Rodriguez-Valera, F. (1997). Intraspecific genetic 

diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence 

analyses. Applied and Environmental Microbiology 63, 1261–1267. 

Zhang, W., Li, F., and Nie, L. (2010). Integrating multiple “omics” analysis for microbial 

biology: application and methodologies. Microbiology 156, 287–301. 

Zhang, Z.-G., Ye, Z.-Q., Yu, L., and Shi, P. (2011). Phylogenomic reconstruction of lactic 

acid bacteria: an update. BMC Evolutionary Biology 11, 1. 

Zuniga, M., Pardo, I., and Ferrer, S. (1996). Nucleotide sequence of plasmid p4028, a cryptic 

plasmid from Leuconostoc oenos. Plasmid 36, 67–74. 

 



	
	



	
	
	
	
	
	
	

ANNEXES	
	

	 	



	
	



	
	
	
	
	
	
	

ANNEX	1	
 
 

The chemistry behind the four main NGS methods 
 
 
  



	
	



 
A) Illumina. The DNA sample is fragmented and adapters are ligated to the ends of each DNA fragment. 

Fragments are amplified. Modified dNTPs are added, each type of dNTP labelled with a fluorophore of 
different colour. The sequences are amplified again, in separated wells; every time a dNTP is 

incorporated, a light signal of the corresponding colour is emitted (from Anandhakumar et al., 2015). 
 
 
 
 

 
B) Roche 454. Single DNA templates are attached to beads and amplified in an emulsion PCR. Each bead 

is deposited into an individual well for pyrosequencing. dNTPs are added one type at a time. Every time 
a dNTP is incorporated, the luciferase enzyme reacts with the released PPi, emitting a light signal (from 

Anandhakumar et al., 2015). 
  



 
C) Ion Torrent. DNA is fragmented in selected sizes, and adapters are ligated. Fragments are fixed in beads 

and amplified by emulsion PCR. Beads are put into individual wells, and dNTPs are added one type at a 
time. Every time a dNTP is incorporated, a proton is released and a change in pH is measured (from 

Anandhakumar et al., 2015). 
 
 
 
 

 
D) PacBio-SMRT. DNA is fragmented and adapters are ligated to the ends. Fragments are put into 

individual wells containing a DNA polymerase attached to the bottom. dNTPs are added, each one 
labelled with a fluorophore of different colour. Every time a dNTP is incorporated, a light signal is 

emitted (from Anandhakumar et al., 2015). 
 
 
  



	
	
	
	
	
	
	

ANNEX	2	
 
 

Collaboration in Romano et al. (2013) 
 

Romano, A., Trip, H., Campbell-Sills, H., Bouchez, O., Sherman, D., Lolkema, J.S., and 
Lucas, P.M. (2013). Genome sequence of Lactobacillus saerimneri 30a (formerly 

Lactobacillus sp. strain 30a), a reference lactic acid bacterium strain producing biogenic 
amines. Genome Announcements 1, e00097–12 – e00097–12. 
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Lactobacillus sp. strain 30a (ATCC 33222) was isolated from
horse stomach in the early 1950s as the first strain of the genus

Lactobacillus that produced biogenic amines (1). This is the only
strain described thus far that forms all three biogenic amines—
histamine, putrescine, and cadaverine—from histidine, orni-
thine, and lysine, respectively (1, 2). Lactobacillus sp. 30a has been
used as a reference strain in many laboratories and in many studies
relating to the production of biogenic amines by lactic acid bacte-
ria (LAB). Lactobacillus sp. 30a carries a pyruvoyl-dependent
histidine decarboxylase and a pyridoxal-phosphate-dependent
ornithine decarboxylase that have been characterized extensively
(3–10). Their genes have been identified (4), but their overall
genomic environment remains unknown. Lactobacillus sp. 30a
also possesses a pyridoxal-phosphate-dependent lysine decarbox-
ylase (10), although this enzyme has not been identified in this
strain or in any other LAB.

Here, we report the genome sequence of Lactobacillus sp. strain
30a, which was grown in deMan, Rogosa, and Sharpe (MRS) broth
at 37°C. Genomic DNA was extracted using the Wizard genomic
DNA purification kit (Promega). Whole-genome sequencing was
performed at Genotoul (Toulouse, France) using single-read
analysis of a fragment library with the 454 GS-FLX Titanium py-
rosequencing system (Roche Diagnostics). A total of 213,826
reads were obtained and assembled using Newbler (454 Life Sci-
ences), with an average coverage of 47-fold. Annotation of genes
and rRNA was performed using the Prokaryotic Genome Anno-
tation Pipeline (PGAAP) (11). tRNAs were identified with
tRNAscan-SE (12).

The draft genome has 1,634,278 bases in 24 contigs (N50,
150,234) and a G!C content of 42.6%. It contains 1,519 predicted
coding sequences, two 16S-23S-5S operons, and 55 tRNAs. No
plasmids were detected in the sequenced DNA. Lactobacillus sp.

30a was attributed to the species Lactobacillus saerimneri on the
basis of 16S rRNA gene analysis ("99% sequence identity with
that of L. saerimneri).

The gene encoding the histidine decarboxylase is surrounded
by the three genes typically encountered in the histamine-
producing pathway in LAB (13). The ornithine decarboxylase
gene stands alone, in contrast to in other LAB strains, where it is
associated with an ornithine/putrescine exchanger gene (14, 15).
Lactobacillus sp. 30a also contains a biosynthetic ornithine decar-
boxylase, which may account for its intracellular production of
putrescine (15). A third gene that codes for a putative ornithine
decarboxylase is also present and is associated with a predicted
amino acid transporter; this likely represents the lysine decarbox-
ylase pathway genes (unpublished results).

Nucleotide sequence accession numbers. This Whole Ge-
nome Shotgun project has been deposited at DDBJ/EMBL/
GenBank under the accession no. ANAG00000000. The version
described in this article is the first version, ANAG01000000.
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Abstract

Oenococcus oeni is the bacterial species which drives malolactic fermentation in wine. The analysis of 50 genomic sequences
of O. oeni (14 already available and 36 newly sequenced ones) provided an inventory of the genes potentially involved in
exopolysaccharide (EPS) biosynthesis. The loci identified are: two gene clusters named eps1 and eps2, three isolated
glycoside-hydrolase genes named dsrO, dsrV and levO, and three isolated glycosyltransferase genes named gtf, it3, it4. The
isolated genes were present or absent depending on the strain and the eps gene clusters composition diverged from one
strain to another. The soluble and capsular EPS production capacity of several strains was examined after growth in different
culture media and the EPS structure was determined. Genotype to phenotype correlations showed that several EPS
biosynthetic pathways were active and complementary in O. oeni. Can be distinguished: (i) a Wzy -dependent synthetic
pathway, allowing the production of heteropolysaccharides made of glucose, galactose and rhamnose, mainly in a capsular
form, (ii) a glucan synthase pathway (Gtf), involved in b-glucan synthesis in a free and a cell-associated form, giving a ropy
phenotype to growth media and (iii) homopolysaccharide synthesis from sucrose (a-glucan or b-fructan) by glycoside-
hydrolases of the GH70 and GH68 families. The eps gene distribution on the phylogenetic tree was examined. Fifty out of 50
studied genomes possessed several genes dedicated to EPS metabolism. This suggests that these polymers are important
for the adaptation of O. oeni to its specific ecological niche, wine and possibly contribute to the technological performance
of malolactic starters.
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Introduction

Oenococcus oeni, formerly Leuconostoc oenos is the bacterial species
which most frequently drives malolactic fermentation (MLF) in
wine. Nowadays, MLF is recommended for most red wines (and
sometimes for white ones), especially when they are meant to age
[1–3]. Quantitatively, the main change observed during MLF is
the transformation of malic acid into lactic acid. However, many
other metabolic transformations occur during MLF which
undoubtedly have a major effect on wine quality. In order to
better control MLF, the use of O. oeni as a malolactic starter was
proposed early [4]. Wines are inoculated with selected O. oeni
strains at the end of or after alcoholic fermentation. However, O.
oeni strains strongly differ regarding their respective ability to
survive and conduct MLF after inoculation in wine [5–6].
Comparative genomic as well as less global studies led to identify
genes with potential technological interest [2,7–12]. Among the
metabolic equipments which could explain the different tolerance
to inoculation in wine, the biosynthesis of exopolysaccharides

(EPS) was recently examined through genomic studies [12], in
wine [13] or through the functional study of specific glucan-
synthase [14]. EPS are extracellular polymers composed of sugar
monomers. With the few O. oeni strains studied, the soluble EPS
yields and the EPS monomer composition vary depending on the
strain and/or on the growth medium composition [15]. Actually,
O. oeni is able to synthesize both homo and heteropolysaccharides,
via distinct metabolic pathways [16]. Most of the time, the
medium viscosity is unaltered after EPS synthesis, with the
exception of ropy strains which produce b-glucan [13–14,16–18].

Considering that O. oeni genome has a limited size (,1.8 Mb),
whole genome sequencing appeared to be the best strategy to
rapidly assess the diversity of genes associated with EPS
biosynthesis present in the O. oeni pangenome. We therefore
analyzed the 14 genomic sequences available [12], and 36 new
sequenced ones. The 50 strains studied displayed divergent EPS
production level and represented different genetic groups in the O.
oeni species [19–20]. Glycosyltransferase, glycoside-hydrolase and
sugar nucleotide precursor biosynthetic genes were identified and
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the gene cluster organisation was investigated. The link between
eps genes and the observed EPS phenotypes as well as the eps gene
distribution on the O. oeni species phylogenetic tree were
examined.

Materials and Methods

Strains
The names of the O. oeni strains studied and their origin are

presented in Table 1. Lactococcus lactis IL1403 was also used for
developing the method for capsule observation by electronic
microscopy.

Genome Screening, eps Gene Identification and
Nomenclature

Genomic sequences were recovered from databases or produced
by GeT-PlaGe Genotoul (Castanet Tolosan France) and Macro-
gen (Seoul Korea) (unpublished). All 36 new sequences were
annotated by RAST (Rapid Annotation using Subsystem Tech-
nology, rast.nmpdr.org) and Kaas (KEGG Automatic Annotation
Server) [21]. These sequences have been deposited at DDBJ/
EMBL/GenBank under the accession numbers listed in Table 1.
The versions described in this paper for eps gene content are
versions XXXX01000000.

Multilocus sequence typing (MLST) was performed for all
strains according to the procedure described by Bilhère et al. [19]
with some modifications. The sequence type (ST) of each strain
was constructed from six housekeeping genes: gyrB, g6pd, pgm, dnaE,
purK and rpoB whose sequences were obtained by genome analysis
in Seed Viewer application of RAST. Sequence treatment was
performed by using BioEdit 7.2.3 and the phylogenetic tree was
constructed by the neighbor-joining method with a Kimura two-
parameter distance model, using MEGA 4 software [22].
Bootstrap values were obtained after 1,000 iterations.

From the 3 genomes sequences publicly available at the
beginning of our work (genomes of strains O. oeni PSU- 1, ATCC
BAA-1163 and AWRI B429), we created a database of 82 protein
sequences (Table S1, panel initial database), potentially associated
with the EPS metabolism including glycosyltransferases, flippases
(wzx) and polymerases (wzy) but also glycoside-hydrolases and
protein sequences involved in the synthesis of precursors (sugar
nucleotides). The 47 other annotated genome sequences were then
analyzed for the presence of orthologs of these 82 proteins
(BLASTP). Once an ortholog was identified, the gene genomic
environment was examined. In addition, all the genes encoding
proteins different from those in the initial database (identity ,
70%), but displaying significant homology (BLASTP or
TBLASTX cutoff level of 1e230), suggesting proteins with related
enzymatic activity, were listed and their genomic environment was
analyzed. A second analysis was done by searching, among the
proteins deduced from the annotated genomes, the conserved
motifs of glycoside-hydrolases and glycosyltransferases. Both
methods gave the same results, i.e. the same list of eps genes and
proteins. To assign protein functions, we used the Pfam database
(http://pfam.sanger.ac.uk/). Glycosyltransferase genes were also
assigned to GT families, based on the CAZy database. Genes were
named (Table S1) according to the bacterial polysaccharide gene
nomenclature (BPGN) system [23]: this system is applicable to all
species; it distinguishes different classes of genes and provides a
single name for all genes of a given function. The prefix wo–. was
chosen in reference to Oenococcus. The genes in cluster eps1 were
named woa- and those in eps2 cluster wob-, woc-, wod- and woe-. The
A majuscule was used only for the initial transferase.

Growth Media
O. oeni was propagated either in Grape juice medium [15] or in

a semi defined (SMD) medium specifically developed for EPS
production by O. oeni. The SMD medium contained: (base)
casamino acids 10 g/L, sodium acetate 3.4 g/L, KH2PO4 1 g/L,
MgSO4, 7 H2O 0.1 g/L, MnSO4, 4 H2O 0.1 g/L, ammonium
citrate 2.7 g/L, bactotryptone 5 g/L, malate 3 g/L, yeast nitrogen
base 6.7 g/L, adenine, uracil, thymine, guanine 5 mg/L each, and
a carbohydrate (either glucose 20 g/L or glucose and sucrose,
10 g/L each). The pH was adjusted to 5.0. The carbohydrate
solutions were prepared as 10X solutions and were sterilized
20 min at 121uC, while the base was prepared as a 2X solution
and sterilized by filtration (0.2 mm cut off). L. Lactis was propagated
in MRS medium [15].

EPS Synthesis and Quantification
After a two-week growth in SMD medium at 25uC without

agitation, the soluble EPS concentration was measured. The whole
culture medium was centrifuged (8,0006g, 5 min, 4uC), and the
pellet was removed. Three volumes of ethanol-HCl 1 N (95-5)
were added to the supernatant to precipitate the polysaccharides.
The tubes were let to stand for 24 hours at 4uC. Then, they were
centrifuged (18,0006g, 5 min, 4uC), and the pellet was washed
with ethanol (80%vol), centrifuged again, dried for 20 min at 65uC
and dissolved in distilled water. The amount of neutral polysac-
charides was determined by the anthrone sulfuric acid method
[24], using glucose as the standard. For each sample, the polymer
precipitation and assays were done in triplicate.

Immunoagglutination and Capsule Observation
To visualize the bacterial capsule, 10 ml of cell suspension (one

week grape juice or SMD culture broth) were deposited on a
microscope slide and mixed with 20% nigrosine aqueous solution
and let to dry (5 min). Afterwards, 10 ml of 1% crystal violet
solution was added and the slide was examined under Olympus
BX51 microscope (6100, under oil immersion). The capsule
appeared as a white halo around the cells. The b-glucan layer was
not sufficiently compact to be visualized by this method. As a
result, agglutination tests were performed using S. pneumoniae type
37-specific antiserum, as previously reported [14]. Four microliters
of antiserum were spotted on a slide with 20 ml of culture broth
and incubated 30 min at 4uC before observation using phase
contrast microscopy.

For transmission electron microscopy (TEM), bacteria were
fixed for 2 hours in 0.1 M sodium cacodylate buffer (pH 7.2)
containing 2% glutaraldehyde, at room temperature. Fixed
bacteria were stored at 4uC in the fixative solution. They were
rinsed in cacodylate buffer, then in 1% gelatin and postfixed (i)
with 1% osmium tetroxide containing 1.5% potassium cyanofer-
rate and (ii) with 3% uranyl acetate at 4uC. They were gradually
dehydrated in ethanol (30% to 100%) and embedded in Epon.
Thin sections (70 nm) were collected on 150-mesh cooper grids,
before examination with a Hitachi H7650 TEM. Negative staining
and TEM observation gave the same results (presence or absence
of capsule) for all the strains examined.

EPS Purification and Structural Analysis
For capsule structure determination, 500 mL of SMD-glucose

culture medium was centrifuged and the pellet was washed twice
with PBS buffer (NaCl 137 mM, KCl 2.7 mM, Na2HPO4

10 mM, pH 7). Then the pellet was washed with 100 ml of
ultrapure water and the cell walls were recovered by centrifugation
(60006g, 4uC, 20 min) and freeze dried. The capsular polysac-
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Table 1. List and origin of the strains studied.

Strain namea Collectionb Origin/commercial name Accession numberc

0205 IOEB Champagne isolate AZHH00000000

0501 IOEB Red wine France AZIP00000000

0502 IOEB French isolate AZKL00000000

0607 IOEB French isolate AZKK00000000

0608 IOEB French isolate AZKJ00000000

1491 IOEB Red wine France AZLG00000000

277 IOEB-S commercial SB3, Laffort France AZKD00000000

436a IOEB-S Red wine Bordeaux France AZLS00000000

450 IOEB-S commercial 450 PreAc, Laffort, France AZLT00000000

8417 IOEB Ropy red wine, France AZKH00000000

9304 IOEB Cider France AZKI00000000

9517 IOEB Floc de Gascogne France AZKG00000000

9803 IOEB Red wine France AZKF00000000

9805 IOEB Red wine France AZKE00000000

ATCC BAA-1163 ATCC Red wine, France AAUV00000000*

B10 IOEB French isolate AZJW00000000

B129* AWRI DSM 20252/ATCC23279, Red wine France AJPT00000000*

B16 IOEB commercial B16, Laffort France AZKC00000000

B202* AWRI Australian isolate AJTO00000000*

B304* AWRI Australian isolate AJIJ00000000*

B318* AWRI NCDO 1884, Australia ALAD00000000*

B418 AWRI MCW Lallemand ALAE00000000*

B419 AWRI Lalvin EQ54 Lallemand ALAF00000000*

B422 AWRI Viniflora CHR35, Chr. Hansen ALAG00000000*

B429 AWRI Lalvin VP41 Lallemand ACSE00000000*

B548 AWRI BL-01 Lallemand ALAH00000000*

B553* AWRI Elios-1 Lallemand ALAI00000000*

B568* AWRI Australian isolate ALAJ00000000*

B576* AWRI Australian isolate ALAK00000000*

C23 IOEB Cider Normandy France AZJU00000000

C28 IOEB Cider, Bretagne France AZLE00000000

C52 IOEB Cider Normandy France AZLF00000000

CiNe IOEB Starter CHR Hansen AZJV00000000

L18_3 IOEB Red wine Lebanon AZLO00000000

L26_1 IOEB Lebanon isolate AZLP00000000

L40_4 IOEB Red wine Lebanon AZLQ00000000

L65_2 IOEB Red wine, Lebanon AZLR00000000

PSU-1 commercial Red wine USA NC_008528*

S11 S Sparkling white wine France AZJX00000000

S12 S White wine France AZLH00000000

S13 S Red wine France AZKB00000000

S14 S Red wine France AZLI00000000

S15 S Red wine France AZLJ00000000

S161 S, commercial 350 PreAc, Laffort France AZLN00000000

S19 S Red wine France AZLK00000000

S22 S Sparkling white wine Bourgogne France AZKA00000000

S23 S white wine, England AZLL00000000

S25 S Red wine France AZJZ00000000
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charides were then recovered by the method described by Gorska
et al [25].

In order to analyze the soluble EPS produced in SMD-Glucose
or SMD-glucose-sucrose, 500 mL of a two-week culture broth
were centrifuged (10 0006g, 20 min, 4uC), and the supernatant
was dialyzed for 48 h against water (MWCO 3500 Da) and freeze
dried.

The molecular weight distribution of an aqueous solution of
freeze dried soluble EPS was established by high-performance size-
exclusion chromatography (HPSEC) using a system composed of a
234-Gilson sampling injector (Roissy, France) and an LC-10 AS
Shimadzu pump (Kyoto, Japan). HPSEC elution was performed
on two serial Shodex OHPAK KB-803 and KB-805 columns
(0.8630 cm; Showa Denko, Japan), connected to an ERC-7512
refractometer (Erma, Japan), at a 1 mL/min flow rate in 0.1M
LiNO3. The apparent molecular weights were calculated from the
calibration curve established with a Pullulan calibration kit (Showa
Denko, Japan).

Neutral monosaccharides were released after polysaccharides
hydrolysis by treatment with 2 M trifluoroacetic acid (120uC,
75 min) [26]. The released monosaccharides were methylated
using methyl sulfinyl carbanion and methyl iodide [27], and
converted to their corresponding alditol acetates by treatment with
NaDH4 and then acetylated [28]. The methylated residues were
quantified by gas chromatography (GC), using a fused silica DB-
225 (210uC) capillary column (30 m60.32 mm internal diameter,
0.25 mm film), with hydrogen as the carrier gas, on a Shimadzu
GC-2010 plus gas chromatograph. The alditol acetates were
identified from their retention times, by comparison with
standards. Neutral sugars amounts were calculated relative to
the internal standard (myo-inositol).

The neutral, acidic and amino sugar composition of the EPS
was determined after N-reacetylation after solvolysis with anhy-
drous MeOH containing 0.5 M HCl (80uC, 16 h), and gas
chromatography of the per-O-trimethylsilylated methyl glycoside
derivatives (TMS). The TMS derivatives were separated on two
DB-1 capillary columns (30 m 6 0.25 mm i.d., 0.25 mm film)
(temperature program 120 to 200uC, 1.5uC/min), coupled with a
single injector inlet, through a two-holed ferrule, with H2 as the
carrier gas, on a Shimadzu GCMS-QP2010SE gas chromato-
graph. The outlet of one column was directly connected to a FID
(250uC). The second column was connected to a mass detector, via
a desactived fused-silica column (0.25 m 60.11 mm i.d.). Samples
were injected in pulsed split mode, with a 20:1 split ratio. The
transfer line to the mass was set at 280uC. Electro Ionization (EI)
mass spectra were obtained from m/z 50 to 400 every 0.2 s, in
total ion-monitoring mode (200uC ion source temperature, a
60 mA filament emission current and a 70 eV ionization voltage).

The EPS produced on SMD-Glucose-sucrose were also
analyzed for glycosidic linkage. Five mg of EPS in 0.5 ml
dimethylsulfoxide were methylated as described above and then
hydrolyzed with 2 M trifluoroacetic acid (120uC, 1.15 h). The

released methylated monosaccharides were converted to their
corresponding alditol acetates. The partially methylated alditol
acetates were analyzed by GC-EI-MS on a Shimadzu GCMS-
QP2010SE gas chromatograph using a DB-1 capillary column
(30 m 6 0.25 mm i.d., 0.25 mm film) and the following
temperature program: 135uC for 10 min, and rise to 180uC at
1.2uC/min. The transfer line to the mass was set at 280uC. EI
mass spectra were obtained from m/z 50 to 400 every 0.2 s, in
total ion-monitoring mode (200uC ion source temperature, a
60 mA filament emission current and a 70 eV ionization voltage).

Results

eps Gene Inventory
Global analysis. Many genes potentially associated with EPS

biosynthesis were identified: these included glycosyltransferase and
glycoside hydrolase genes, either isolated or clustered, and genes
associated with the synthesis of nucleotide-sugars or other
precursors. These genes are listed in Table S1. Only some of
these genes, because (i) their link with EPS metabolism is plausible
and (ii) they are not strictly conserved in all the genomes studied,
will be presented in detail in this article. All the genes studied were
chromosomal (Figure 1). There were two complex heteropolysac-
charide clusters, eps1 and eps2, displaying a high density of coding
sequences and related to the eps clusters previously described by
Dimopoulou et al. [16], genes of glycoside-hydrolases (dsrO, dsrV
and levO) and 3 isolated glycosyltransferase genes (gtf, it3 and it4).
All the genes and clusters studied, when present, were always
located at the same site on the bacterial chromosome, except the
gtf gene which could be found in two different positions in the

Table 1. Cont.

Strain namea Collectionb Origin/commercial name Accession numberc

S28 S commercial B28 PreAc, Laffort, France AZJY00000000

VF Commercial Starter VF, Martin Vialatte AZLM00000000

athe * indicates that the strain was not available in our laboratory for phenotypic analysis.
bTCC: American type culture collection; AWRI: Australian wine research institute; IOEB: Institut d’Oenologie de Bordeaux, France; S: Sarco, Biolaffort, France.
cThe* indicates that the genome sequence was already available in the databases.
doi:10.1371/journal.pone.0098898.t001

Figure 1. Schematic representation of the eps loci on the
chromosome of O. oeni. The chromosome of O. oeni PSU-1 is
represented with its own eps genes or loci (black). The position of the
adjacent regions of the additional loci found in other O. oeni strains are
presented in gray: eps1 and eps2: heteropolysaccharide clusters; gtf: b-
glucan synthase gene; it3 and it4: priming glycosyltransferase isolated
genes; dsrO and dsrV: dextransucrase genes; levO: levansucrase gene.
doi:10.1371/journal.pone.0098898.g001
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chromosome (Figure 1). The analysis also indicated that each of
the 50 genomes studied was equipped with several distinct genes
encoding distinct EPS biosynthetic pathways. This point will be
detailed below, locus by locus.

Cluster eps1. All the genomes studied displayed a eps1
cluster. The analysis the 50 eps1 sequences indicated the existence
of three related models named A, B and C (Figure 2). Fourteen out
of 50 genomes displayed a model A of cluster eps1, 28/50 genomes
displayed a model B, and the remaining eight genomes had a
model C. When two genomes displayed the same model of eps1,
the cluster gene sequences were over 97% conserved.

The three models of cluster eps1 differed by the presence of
additional genes and by gene synteny. However, more than half of
the genes in the cluster were highly conserved (Figure 2, Table 2).
The genes encoding UDP-glucose dehydrogenase (ugd) and
galactopyranomutase (glf) were the most conserved ones. The
model A was that previously described for strains PSU-1 and BAA-
1163 [16]. This was the least complex model of cluster eps1
regarding the glycosyltransferase gene composition (5 genes,
Table 2). Model B differed from model A by the presence of
five additional genes (woaF, G, H, I and J). Model B therefore
encoded seven putative glycosyltransferases, a putative phospho-
glyceroltransferase WoaF and a protein with unknown function,
WoaH. Moreover, WoaD and WoaE were relatively divergent
between models B and A (Table 2). In model C, the gene woaF was
present, as in model B, but genes woaC, D, E, G, H, I and J were
absent and new genes were present (woaK, L M and N, Figure 2).

The protein Wzy encoded in model C was highly divergent
compared to versions A and B (Table 2).

Whatever the model, the cluster apparently brought all the
information necessary for the establishment of a heteropolysac-
charide biosynthetic pathway: a priming glycosyltransferase gene
woaA, genes encoding glycosyltransferases potentially associated
with the synthesis of the repeating unit (woaB to woaN) or to
precursor synthesis, glf and ugd. The functional annotation of Ugd,
Glf and WoaF suggests the presence of glucuronic acid,
phosphoglycerol and galactose in the synthesized product. The
wzz gene encoded a protein which exhibited little homology in the
data bases, but may participate in the regulation of the
biosynthetic pathway (chain length regulation). The cluster also
comprised a flippase gene, wzx, and a potent polymerase gene,
wzy. Indeed, whatever the model of cluster eps1 considered, the
gene wzy was very singular. It may encode a polysaccharide
polymerase (Wzy) and, in this case, the cluster encodes a complete
heteropolysaccharide biosynthetic pathway. However, the analysis
of conserved domains (PFAM hidden Markov models (HMM)
Table S1, panel eps1) and the analysis of membrane spanning
domains (not shown) suggest that it might rather be a O- antigen
ligase (Wzy-C superfamily, WaaL,). Enzymes of this family
catalyze the binding of polysaccharides moieties of lipopolysac-
charide on the oligosaccharide core anchored in the lipid
membrane in Gram negative bacteria [29] However, such an
activity has never been described in Gram-positive bacteria.

Cluster eps2. Forty-three out of fifty genomes displayed a
second heteropolysaccharide cluster eps2. Fifteen models of cluster

Figure 2. The three models of cluster eps1. The arrows filling indicate the putative function of the encoded proteins. The amino acid sequence
similarities between the models are shown. Model A: reference strain O. oeni PSU-1, other strains: BAA1163, B418, C23, C28, 0501, 0502, 8417,
9304, 9805, 9803, S12, S13, S14. Model B: reference strain O. oeni B429, other strains: B202, B304, B318, B553, B568, B576, B10, 1491, L18_3,
L40_4, L65_2, 9517, 0608, S161, L26_1, CiNe, 277, 450, S28, 0607, C52, S11, S15, S19, S22, S23, S25. Model C, reference strain O. oeni B422, other
strains B129, B419, B548, 436a, VF, 0205, B16.
doi:10.1371/journal.pone.0098898.g002
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eps2 were identified (Figure 3, Table S1, eps2 panel). The cluster
size ranged from 5.4 kb to 20.6 kb, but 12 out of 15 models had a
size of between 13.1 and 15.9 kb. When two genomes displayed
the same model of cluster eps2, the nucleotide sequence identity
was very high (99 to 100% for each gene in the cluster). Cluster
eps2 was always positioned at the same site in the chromosome of
O. oeni, between an amidase gene, called amiO (OEOE_1519 in O.
oeni PSU-1) on the 59 end, and the recP gene (OEOE_1480 in O.
oeni PSU-1) on the 39 end (Figure 3). Genes other than eps genes
were systematically inserted between genes amiO and recP. The
nature of the additional genes and the total size of the insert varied
from strain to strain. The size of the sequence between genes amiO
and recP ranged from 25 to about 50 kb. This chromosome section
did not present mobile elements that could explain its high level of
plasticity.

With the exception of araC and a few other genes, all the genes
in cluster eps2 were oriented in the same direction as genes amiO
and recP (Figure 3). The araC, wzd and wze regulatory genes were
highly conserved in all the genomes that displayed a cluster eps2,
with strong sequence conservation. They always appeared in the
same order and always at the 59 end of the eps cluster, although the
sequence upstream araC, between araC and amiO, was highly
variable. In most eps2 clusters (13 out of 15), the fourth gene was
wobA. This gene encoded the priming glycosyltransferase that
initiates the synthesis of the repeating unit. Three alleles of the
priming glycosyltransferase gene (wobAPSU1, wobAB429, wobAS12)
were found among the 13 models of cluster eps2 displaying this
gene (Figure 3). The protein WobAB429 displayed 39% identity
with WobAS12 and 65% identity WobAPSU1, while forms
WobAPSU1 and WobAS12 shared 38% identity. Nine of the 15
models of clusters eps2 encoded a priming glycosyltransferase
related to WobAPSU1 (protein identity .85%), three models
encoded a priming glycosyltransferase related to WobAB429 and
model S12 was the sole to encode the allele WobAS12. The gene
wobA was absent in the genome of strain ATCC BAA-1163, but
also in that of strains B422, B548, B16 and 0205. In the last four
genomes, the cluster eps2 was highly truncated: next to the
conserved regulatory genes, there was only a truncated gene

related to a flippase gene, wzx, strongly resembling the flippase
gene of PSU-1 eps2 model (99% nucleotide identity).

Next to the wobA gene, most of the models of eps2 cluster
displayed the genes encoding the glycosyltransferases potentially
involved in the repeating unit synthesis. The polymerase and
flippase genes but also genes encoding enzymes involved in
precursor synthesis or modification complete the cluster. The 59
end of this part of the cluster (beyond wobA) was sometimes
conserved between genomes (black arrows), whereas the 39 end
was highly divergent (light gray arrows in Figure 3). Indeed, in that
39end ‘‘gray’’ zone of cluster eps2, no nucleotide identity was found
between models taken in pairs, except for a few flippase genes
(wzx, see below). However, function homologies (same PFAM)
between encoded proteins were common. The proteins deduced
from genes in this 39-end of the eps2 clusters displayed homologies
(35 to 85%) with proteins sequenced from very diverse bacteria:
Lactobacillus rhamnosus, Lb casei, Lb fermentum, Lb amylovorus, Lb
paracasei, Lb delbrueckii, Lb plantarum, Lb vaginalis, Streptococcus
thermophilus, S. pneumoniae, S. sanguis, S. sanguinis, S. agalactiae,
Leuconostoc citreum, Ln. mesenteroides, L. lactis, Pediococcus acidilactici,
Enterococcus faecalis, Bifidobacterium bifidum, Bacillus coagulans or
Bacteroides dorei. Few of these species are encountered in wine
environment, but very few wine bacteria genomes have been
sequenced and published at the time of this study.

Sequence analysis of the protein sequences deduced from the 15
models of cluster eps2 led to identify (Figure 3, Table S1, panel
eps2):

N 3 highly conserved regulatory proteins (AraC, Wzd, Wze),

N 13 distinct polymerase (Wzy), displaying low identity with the
sequences in the database. WodC encoded in model 9304 of
eps2 may be a 14th polymerase,

N 9 flippases families: B422/PSU1 (99% identity), BAA-1163/
9805 (80% identity), 0502/9304/0607/C52/C23 (more than
75% identity), 0501, B429, 9517, S13, 277, S12,

N 3 alleles of priming glycosyltransferases WobA (WobAPSU1,
WobAB429, WobAS12),

Table 2. Protein sequence identity in eps1 clusters.

Protein name Protein size (aa) GC % Putative functiona Model of eps1

Ab Bb Cb

WoaA 209 40.5 Priming glycosyltransferase 100% 92% 91%

WoaB 250 36.5 Glycosyltransferase NC 100% 92% 87%

Glf 391 36.6 UDP-galactopyranose mutase 100% 99% 97%

Wzz 181 33.0 Polysaccharide synthesis regulation 100% 65% 41%

Wzy 455 29.0 Polymerase or O-antigen ligase 100% 72% 30%

WoaD 312 31.5 Glycosyltransferase NC 100% 67% 39%

Ugd 388 37.8 UDP-glucose 6 dehydrogenase 100% 99% 97%

WoaE 269 26.3 Glycosyltransferase GT-2 100% 68% Abs

Wzx 479 29.2 flippase 100% 91% 51%

WoaF 652 37.9 glycerophosphotransferase Abs 100% 65%

Strains displaying the model out of 50 14/50 28/50 8/50

aNC: No Cazy number.
bIdentity (%) between proteins of selected strains representative of each model :O. oeni PSU-1 (model A) is used as a reference, and ortholog proteins of strain O. oeni
B429 (model B) and O. oeni B422 (model C) are compared to O. oeni PSU-1 ones, except for WoaF, for which the sequence found in O. oeni B-429 is used as the reference.
When two strains display the same model of cluster eps1, the identity between related proteins is higher than 98%. Abs: protein absent.
doi:10.1371/journal.pone.0098898.t002
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Figure 3. Comparison of the eps 2 gene clusters. In front of each model of cluster eps2, the name of the model strain and the size of the cluster
are indicated. When present, the eps2 cluster is always located between recP and amiO (core genome genes in O. oeni chromosome). It displays, in its
59 end, the three genes araC, wzd and wze, the initial transferase gene wobA (3 different versions), and then, genes specific to each model. The arrows
filling indicate the putative function of the encoded proteins. The black and dark gray fillings indicate genes shared by several models of eps2. On the
other hand, light gray arrows indicate genes specific to a single model. Groups of strains bearing the same eps2 cluster: Model PSU-1: B418, Model
0502: B10, Model 0607: L26_1, S22, S25, Model B553: L65_2, 9517 Model 277: S15, S161, L18_3, 450, S14, Model 9805:9803, 8417, Model 9304: C28,
Model B429: B202, B304 B318, B568, B576, 0608, CiNe, S11, S23, S28, model B422: B548, 0205, B16. No eps2: VF, S19, 1491, B129, L40_4, 436a, B419.
doi:10.1371/journal.pone.0098898.g003
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N 5 putative rhamnosyltransferases WobB, WobF, WobJ, WobS
and WobU (1GT-1, 4GT-2),

N 4 putative galactosyltransferases, WocK, WocS, WodQ and
WodS (1 GT-1, 2 GT-2, 1 GT-28),

N 3 putative choline phosphotransferases (LicD277, LicDC23,
LicDC52),

N 1 putative glucosyltransferase, WobE,

N 53 glycosyltransferases, whose substrate specificity could not be
predicted by sequence analysis and, among them, 24
glycosyltransferases classified in GT-2, 19 in GT-1, 2 in GT-
4 and 8 not associated with a CAZy family,

N 4 putative acetyltransferases and 2 putative pyruvyltrans-
ferases,

N 3 UDP-glucose-dehydrogenase (UgdB553, Ugd0501, UgdS12), 2
glycerol-3-P-cytidyltransferase (TagD277, TagDC23), 1 nucleotidyl-
transferase (Abp1C52) and 1 epimerase (Abp2C52),

N and 6 proteins with unknown function (WocE, WocP, WocT,
WodC, wodK, wodU).

The substrate specificity prediction for glycosyltransferases and
others enzymes encoded in clusters eps1 and eps2 suggests that the
monomers found in the heteropolysaccharides produced by O. oeni
may be different from one strain to the other. These heteropoly-
saccharides may be made of either galactose, rhamnose, glucose
and/or glucuronic acid. Furthermore, they may be substituted by
acetate, pyruvate, choline and glycerol. Other monomers may also
be present, given the high proportion of glycosyltransferases whose
protein sequence did not enable to predict their substrate
specificity. Nevertheless, the strong similarity between the flippases
encoded by different models of cluster eps2 suggests that the
repeating units transported may be of relatively close composition
or structure, unless these flippases are sufficiently flexible to
transport different oligosaccharide structures.

Precursors. Beyond the substrate specificity of the glycosyl-
transferases in the eps clusters, the precursors biosynthetic
pathways may also limit the variety of monomers encountered in
O. oeni heteropolysaccharides [30–31]. It is generally accepted that
the monomers are transferred from sugar nucleotides (NDP-
linked), except for acetyl and pyruvyls which are respectively
transferred from acetyl-CoA and phosphoenolpyruvate (PEP). The
genes associated with the biosynthesis of these different precursors
have been sought in the different genomes (Table S1, panel
precursors). Most of these genes were located outside the eps1 and
2 clusters and formed part of the core genome. Thus, as indicated
in Figure 4, all the strains studied were equipped to synthesize
PEP, acetyl-CoA, UDP-glucose, UDP-galactopyranose and UDP-
galactofuranose, dTDP-rhamnose and dTDP-glucose, UDP-gluc-
uronate and, provided that phosphoglucomutase is able to catalyze
the conversion of glucosamine-6-phosphate to glucosamine-1-
phosphate, UDP-N -acetylglucosamine and UDP-N-acetylgalac-
tosamine.

On the other hand, only a few strains were apparently able to
produce CDP-glycerol (proteinTagD provided by eps2 models 277
or C23) or UDP-N-Acetyl mannosamine (Mna provided by eps2
model C52). Regarding the biosynthesis of NDP-arabitinol, the
genes abp1 and abp2 were found in the C52 genome (in cluster eps2)
but the deduced proteins exhibited moderate identities with
proteins Abp1 and Abp2 found in the databases (37% and 30%).
Finally, the biosynthetic pathway for CDP- choline (LicA and
LicC) was not found in any of the studied genomes, although three
models of cluster eps2 (8 strains involved) encoded a choline
phosphotransferase (LicD). Nevertheless, we cannot exclude that

these functions are performed by highly divergent proteins in
O. oeni.

Additional glycosyltransferase genes. Another element
may contribute to the modulation of the structure of the EPS
produced by O. oeni: the presence of additional glycosyltransferase
genes, outside eps1 and eps2 clusters. However, most of the
additional glycosyltransferase genes studied formed part of the
core genome (Table S1, panel additional glycosyltransferases). It
should be noted, among these highly conserved glycosyltransferase
genes, the presence of a priming glycosyltransferase gene (it3) that
could complement truncated eps clusters such as the BAA-1163
eps2 model.

Other genes were present in a smaller number of genomes.
Thus, another putative gene of priming glycosyltransferase (it4)
was present in 8/50 genomes. The analysis of adjacent genes
indicated that the acquisition of this gene was probably related to a
phage attack (gene in a phage remnant). Furthermore, 5 out of 50
genomes encoded a processive glucosyltransferase, Gtf, 97%
identical to the glucosyltransferase described in Pediococcus parvulus
IOEB 8801, for the biosynthesis of b-1,3 -b-1,2 glucan associated
with wine ropiness [17,32]. The gtf gene of O. oeni IOEB 0205 was
previously characterized [14] but its exact location on the
chromosome and its presence in the 4 other genomes were
discovered in the present study. Two separate insertion sites were
identified for gtf (Figure 1). The gene is located within a 15.5 kb
insert (phage remnant) in the genome of strains B422, B548, 0205
and B16. In 0502 genome, the gtf gene was inserted in a potentially
mobile prophage (40.9 kb insert).

Glycoside-hydrolases. Three glycoside hydrolases genes
were identified. The first one, dsrO, was present in 49 genomes
and always inserted in the same site on the chromosome (Figure 1).
The entire sequence of this gene extended to 4428 nt (Figure 5).
Point mutations could however shorten it, and modify the activity
of the proteins produced. For example, for 10 out of 50 strains,
dsrO had a stop codon at position 3303 nt, still generating a
potentially active protein –as codons for amino acids of the
catalytic triad were conserved [33–34]. For 4 strains out of 50, two
stop codons in the sequence produced three ORFs, probably
encoding inactive DsrO protein fragments. The protein DsrO was
more than 90% conserved in the area preceding the mutation. In
its long form (1475aa), it displayed 72% identity with the
dextransucrase DsrP produced by Leuconostoc mesenteroides IBT-PQ
(NCBI AAS79426.1) [35].

Eleven out of 50 genomes displayed an additional dextransu-
crase pseudogene (dsrV ), whose sequence was 90% identical
(100% coverage) between the genomes displaying it. However, the
deduced protein was always truncated in the catalytic site, and
may therefore be inactive in all cases (Figure 5). The position of the
truncation varied depending on the strain studied. The identity
between the genes dsrO and dsrV was 50%.

Thirteen out of 50 genomes had a levansucrase gene (levO),
whose sequence was 98% identical between the strains displaying
it. In strains 9304, C28 and S13, levO was cut prematurely, and
most likely encoded an inactive enzyme. LevO displayed 49%
identity with the putative levansucrase identified in Oenococcus
kitaharae DSM17330 (WP_007744218.1), and 36% identity with
the levansucrase LevS, produced by Leuconostoc mesenteroides B-512
F, characterized in 2006 [36].

Although present in a small number of genomes, and levO and
dsrV genes were always inserted at the same site on the
chromosome (Figure 1). Analysis of adjacent genes indicated the
acquisition of dsrV could be linked to a phage attack (remnant) and
rearrangements due to transposases. Regarding levO, no trace of
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Figure 4. Putative precursor biosynthetic pathways active in O. oeni deduced from genome analysis. The enzyme full names and the
accession numbers of reference proteins are shown in Table S1 (panel precurors). The solid arrows indicate the central pathways (glucose 6-P to
xylulose-5-P and PEP and acetyl-CoA) and the pathways potentially active in all the strains studied, as the associated enzymes are encoded by the 50
genomes studied. The dashed arrows indicate pathways putatively active in a smaller number of strains. The EPS monomer precursors potentially
available in all the strains studied are boxed in solid lines, while the precursors putatively available in a limited number of strains are boxed with
dotted lines. ‘‘?’’ indicate metabolic steps for which no enzyme was identified from the genome analyses. P: phosphate, CoA : coenzyme-A, NDP :
nucleotidyl-diphosphate, CDP : cytidyl-diphosphate, UDP : uridine-diphosphate; GDP: guanosine-diphosphate, dTDP : desoxythymidine diphosphate, Glc :
glucose, Fru : fructose, GlcA : glucuronic acid, Gal : galactose, Galp : galactopyranose, Galf : galactofuranose, LicA: choline kinase, LicC: choline
cytidyltransferase LRha, L-rhamnose, GlN : glucosamine, N-Ac-Glc : N-acetyl glucosamine, N-Ac-Gal : N-acetyl-galactosamine, N-Ac-Man : N-acetyl-
mannosamine, G-A-P : glyceraldehyde 3-phosphate, DHAP: dihydroxyacetone phosphate, PEP : phosphoenolpyruvate.
doi:10.1371/journal.pone.0098898.g004

Figure 5. Genetic organization of O oeni chromosome regions harboring dsrO and dsrV genes. Example of strains O. oeni PSU-1, BAA-1163,
0607 and 277. The strain 277 also diplays a dsrO gene, similar to that found in O. oeni PSU-1.
doi:10.1371/journal.pone.0098898.g005
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mobile element nearby could explain the mode of acquisition of
the gene.

Distribution of eps Genes and phylogenetic tree
The 50 genome sequences were used for MLST typing using 6

housekeeping genes in order to construct a consensus dendrogram.
The strains distributed into two main phylogroups (A and B), as
previously described [11,19–20]. The repartition of the eps genes
and EPS phenotype on this dendrogram was then examined
(Figure 6). All genomes in the branch B, except C52, displayed a
model A of cluster eps1, while genomes in the branch A displayed
the three models of cluster eps1 (A, B or C). The strains having levO
or the same version of dsrO were grouped on the phylogenetic tree.
In contrast, the strains carrying gtf, dsrV or it4, putatively acquired
via phage attack, were not grouped.

Regarding cluster eps2, strains that carried the same eps2 model
were generally grouped on the tree. For example, the 11 strains
having a B429 model were all on the same branch. In other cases,
strains with the same eps2 are far apart on the tree: for example,
strains displaying model PSU-1 or 0502 of eps2 could belong to the
A or B branches of the tree. In addition, strains belonging to
remote subdivisions in branch A displayed the model 277 of eps2
(450, S14, S161, L18_3, S15 and 277). In these cases, the
acquisition of the eps2 cluster may result from distinct events in the
strains considered.

Some links between the eps loci appeared on the dendrogram.
Actually, although strains with eps2 model 277 or model 0501
sometimes have a model A of cluster eps1 (450 or 0501), sometimes
a model B of cluster eps1 (277, S15, S161, L18_3 and B10), most of
the time, when two genomes displayed the same cluster eps2, they
also had the same eps1. Indeed, all the genomes with a cluster eps2
model B429 or 0607 displayed a model B of cluster eps1, and all
the genomes with a cluster eps2 model 9805 or PSU-1 displayed a
model A of cluster eps1, even if they are far apart on the
phylogenetic tree. Furthermore, genomes with model C of cluster
eps1 systematically had a truncated or absent cluster eps2. In
addition, genomes B422, B548, B16 and 0205, in which eps2
cluster was strongly truncated (5.4 kb), were also those whose gtf
gene was located in a phage remnant. The four strains, all from
Champagne region [20], were grouped on the dendrogram. They
may have diverged after the acquisition of their eps genes. In
addition, in these 4 genomes, gtf may be ‘‘stabilized’’ compared to
the genome 0502 which displayed gtf in a prophage and also a non
truncated eps2 cluster.

Links between eps Genes and EPS Phenotypes
O. oeni is not amenable to genetic transformation. The

consequence is that evidence for phenotype cannot be obtained
by gene inactivation. As a result, we analyzed the phenotypes of a
high number of strains, in order to identify potent links with the
identified genotypes. Previous work suggested that, during growth
in the presence of glucose as the sole carbon substrate, the EPS
synthetic routes using nucleotide sugars were the sole active (Wzy

dependent pathway and Gtf synthase pathway), whereas, in the
presence of sucrose, the action of glycoside-hydrolases supplement
the bacterial biosynthetic capabilities [16]. Phenotypes were
therefore studied in the presence of glucose alone or in the
presence of glucose and sucrose, most of the O. oeni strains studied
being unable to use sucrose as a growth substrate [37–38].

In glucose-only medium, the strains studied produced low
amounts of soluble EPS (,80 mg/l) with the exception of strains
S15, 277 and of the 5 strains carrying the gtf gene (B422, B548,
B16, 0205, and 0502), for which the medium also became ropy
(Figure 6). The strain IOEB0205 is already known to produce b-
glucan [14]. The 4 other ropy strains agglutinated in the presence
of antibody targeting the b-glucan (not shown) indicating that they
also produced this specific polymer. Except for these ropy strains,
it was difficult to establish a link between the concentration of
soluble EPS observed after growth in SMD-Glucose and the eps
gene variants (Figure 6).

The monomer composition of the few soluble EPS produced on
SMD-Glucose was investigated for a selection of 10 strains. All the
genomes of the strains studied displayed eps1 and eps2 clusters. The
strains 9803, 9805, PSU-1 9304 and S13 displayed a model A of
eps1, while the others strains examined displayed a model B.
Regarding eps2, the strains S11 and B429 had the same genotype
(model B-429), the strains 9803 and 9805 had the same genotype
(model 9805), and the others ones (9304–model 9304-, S13–model
S13-, S22–model 0607-, PSU-1–model PSU-1-, 9517-model
B553- and 277–model 277-) displayed different genotypes
(figure 6). Soluble polysaccharides obtained after growth in
SMD-glucose medium were of moderate size (less than
400 kDa). Whatever the strain studied, the soluble EPS produced
on SMD-glucose medium only contained glucose, galactose and
rhamnose. No trace of osamine, pyruvate, acetate, glycerol or
uronic acid was detected.

The low level of EPS production on SMD-glucose prompted us
to look for the presence of capsular polysaccharides. Indeed, after
growth on either SMD-glucose or grape juice medium, most of the
studied bacteria appeared encapsulated (Figure 6). Only the
bacteria having a highly truncated or no eps2 cluster showed no
capsule, whatever the model of cluster eps1 they displayed: model
B (1491 or L40_4) or model C (B129, 436a, B419, VF, B422, B16,
B548 or 0205). Observed by transmission electron microscopy, this
capsule was thicker or thinner depending on the strain (Figure 7).
Monomer composition analysis of the capsular EPS of strains
9304, S28 and S11 gave the following results : 9304 (Galactose :
Glucose : Rhamnose, 68.4: 15.2: 6.9), S28 (Galactose : Glucose :
Rhamnose, 41.7: 35.2: 11.1) and S11 (Galactose : Glucose :
Rhamnose, 41.2: 31.2: 20.7). The strains S28 and S11, which
displayed the same eps genotype, produced capsular polymers with
close monomer composition compared to strain 9304 which
displayed a different eps genotype.

The addition of sucrose to the medium induced a marked
overproduction of exopolysaccharides with some strains (Figure 6),
although 75% did not use sucrose as a growth substrate. The EPS

Figure 6. Distribution of eps genes and EPS phenotypes in the 50 O. oeni strains. The genome sequences were used for MLST typing in
order to construct a consensus dendrogram, using the neighbor-joining method with bootstrap values (cut-off.70%). The two phylogroups A and B
are indicated. Legend: eps1 model: A: light blue, B: medium blue; C: dark blue; eps2 : each of the 14 complex models displays its own color, while the
absence of eps2 is indicated by a white box bearing the sign - and the presence of a truncated inactive eps2 model is indicated by T. dsrO size: dark
box: 4428 nt, medium color box: 3303 nt, light color box: 806 nt and white (2) box: no dsrO. levO is present when the box is parm and the symbol T
indicates a truncated gene; dsrV is present when the box is gray and the symbol T indicates a truncated gene; gtf is present when the box is pink and
it4 is present when the box is garnet colored. For EPS production from glucose: 1: [EPS],20 mg/l: 2: [EPS],50 mg/l and 3: [EPS].80 mg/l. The ropy
phenotype is indicated by +. For EPS production from sucrose: +++: [EPS].1000 mg/l: ++: [EPS].250 mg/l and+[EPS].100 mg/l. A white box (2)
indicates an [EPS],100 mg/l in the conditions of the assays. The incapacity to produce EPS from sucrose cannot be proved by this method. The
presence of a capsule around the cells (negative staining) is indicated by+and its absence by -; Nd: not determined.
doi:10.1371/journal.pone.0098898.g006
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produced in the presence of sucrose being considerably more
abundant, more precise structure analyses could be made (Table 3).
First, analysis of the culture supernatants by size exclusion
chromatography indicated that the addition of sucrose to the
culture medium induced the appearance of a peak corresponding
to additional polymers of very high molecular weight (6 000 to 10

000 kDa), with all the strains examined, except strain S25. This
last strain was the only one in Table 3 which did not encode a
functional glycoside-hydrolase. The structure of the high molec-
ular weight polymer was determined. In all cases, the peak
contained a homopolysaccharide or a homopolysaccharide mix-
ture. All strains having a functional dsrO gene (gene length $

Figure 7. Observation of O. oeni capsules by transmission electron microscopy. The black arrow indicates the place where the capsule may
appear as a dark halo/layer when present. The strain L. lactis IL1403, which displays a thin polysaccharide pellicle as demonstrated by Chapot Chartier
et al. [70], serves as a reference. Strains O. oeni S28 and 0607 are clearly encapsulated, while strain 0205 has no dense area beyond the peptidoglycan
layer (light gray layer).
doi:10.1371/journal.pone.0098898.g007

Table 3. Structural analysis of the soluble exopolysaccharides produced by selected strains.

Straina
Glycoside-hydrolase
genes*

EPS produced on SMD-
glucoseb mg.l21

EPS produced on SMD-glucose-
Sucroseb mg.l21

Structure of the EPS of high molecular weight
(.30 kDa) produced on SMD-Glucose-sucrosec

S25 dsrO (806 nt) 2063 (1) 8564 (1) ND

9517 dsro (4428 nt) 7666 (1) 9566 (2) Glucan 92% (no linkage determination)

S11 dsrO(4428 nt) 3865 (1) 3867623 (2) 100% glucan (95% 1,6 linked, 5% 1,3 linked)

B-429 dsrO (4428 nt) 1063 (1) 20806125 (2) 100% glucan (95% 1,6 linked, 5% 1,3 linked)

9304 dsrO (3303 nt) levO
(truncated)

3766 (1) 18486119 (2) 100% glucan (93% 1,6 linked, 7% 1,3 linked)

BAA-1163 dsrO (3303 nt) levO 3165 (1) 18196157 (2) 40% glucan (95% 1,6 linked, 5% 1,3 linked) and 60%
fructan (2,6 linked)

0501 dsrO (3303 nt) levO,
dsrV truncated)

5566 (1) 32886210 (2) 5% Glucan and 95% fructan (2,6 linked)

aAll the strains in the Table also displayed eps1 and eps2 clusters. None displayed gtf.
bThe EPS concentration was determined by the anthrone sulfuric method. The number between brackets indicates the number of chromatographic peaks after gel
permeation on superdex 30 column. The peak at 5500 Da was always present. The second peak, when present indicates the presence of polymers with molecular
weight higher than 1 000 000 Da.
cND: not determined, no high molecular weight EPS produced.
doi:10.1371/journal.pone.0098898.t003
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3303 nt) produced a 1,6 linked glucan displaying about 5% 1,3
branches. Hydrolysis of the polymer by dextranase confirmed this
was an a-glucan (dextran). Besides dextran, strains BAA- 1163 and
0501 produced a 2.6-bound fructan. This fructan contained links
with b configuration (Vuillemin, unpublished data).

The strains which were not able to produce EPS from sucrose
displayed different glycoside-hydrolase genotype and links between
genotype and phenotype were not obvious. Indeed, the lack of
EPS synthesis from sucrose is coherent in the case of strains with
only a truncated dextransucrase dsrO (strains 0607, S22, S25,
L26_1). However, it cannot be explained, for many others, by the
absence or mutation of glycoside-hydrolase genes (i.e. in some
strains with a dsrO gene 3303 to 4428 nt long, such as CiNe, 0608,
S14 and many others, Figure 6).

Discussion

Oenococcus oeni, which drives malolactic fermentation in most
wines (especially red ones) and ciders, is very rarely encountered
elsewhere or at other stages of winemaking. This is a unique and
perfectly specialized bacteria [9]. The analysis of 50 genomes of O.
oeni shows that genes dedicated to EPS metabolism are distributed
all around the chromosome. The eps loci are numerous (eps1, eps2,
dsrO, dsrV, levO, gtf, it3, it4) and often divergent from one genome to
another. This high diversity fully justifies the method chosen to
establish an inventory of eps genes (genome sequencing). Genes of
interest were identified on the basis of sequence homology, as
proposed in other studies [39]. Though the matrix genes blasted in
our study are much more numerous (82 reference genes instead of
one single gene of priming glycosyltransferase), the existence of
genetic determinants with widely differing sequence cannot
completely be excluded. However, we found a large number of
genes potentially involved in the production of EPS, whose
presence is generally relatively well correlated with the observed
phenotypes. This suggests that the majority of genes of interest
were identified. It appeared that the strains that induced medium
ropiness all display gtf and produce b-glucan. They represent 10%
of the strains in the collection studied, while previous work
reported a 22% prevalence for gtf [14]. The strains that produce b-
fructan in the presence of sucrose all exhibit a non truncated
levansucrase gene, levO. The prevalence of levO is 26%, with levan
production in 77% of the levO strains. Regarding dextran synthesis
and dextransucrase gene (dsrO), the relationship between genotype
and phenotype is less clear. Indeed, the presence of functional
genes is not always sufficient to explain the observed phenotypes.
Gene expression and activity of DsrO could be modulated by
certain environmental factors or the physiological state of cells. In
previous studies, we observed that glucan and fructan production
from sucrose was not detectable in MRS medium but only in semi
defined one [15–16]. Anyway, the glycoside-hydrolases of O. oeni
are not original as regards both the protein primary structure and
the structure of the polymers produced. All the encapsulated O.
oeni strains displayed a cluster eps2 which encodes the proteins
necessary for reconstituting a wzy-dependent pathway. The
absence or the significant truncation of cluster eps2 are always
associated with the absence of the polysaccharidic capsule.
Nevertheless, the fact that the strain BAA-1163 is encapsulated,
although its eps2 cluster lacks the priming glycosyltransferase,
suggests that internal complementation for priming glycosyltrans-
ferase is possible (for example by means of genes woaA or it3). In all
cases examined, the capsular polymer contains glucose, galactose
and rhamnose. This close monomer composition contrasts with
the vast diversity of eps2 cluster sequences. Differences in the osidic
bounds encountered in the repeating unit could still exist, and

further structure analyses will be necessary to establish a link
between the transferases and the monomers present.

The role of cluster eps1 and of the isolated genes it3 and it4 could
not be determined in this study. The advantage of the presence of
two eps clusters remains obscure, but it is clear that this is a
common feature to all genomes in the species. Moreover, this is
also the case for O. kitaharae, the other species in the genus
Oenococcus [40]. Analysis of conserved domains did not enable to
clearly predict the function of the Wzy protein encoded in eps1
(polymerase or ligase). If Wzy is a polymerase, then eps1 operon
would direct the synthesis of an exopolysaccharide. The wzy-
dependent synthesis route would be duplicated (one being encoded
by eps1 and the other by eps2) with production of two distinct
polysaccharide structures, as described for other lactic acid
bacteria [41–42]. On the other hand, if the wzy gene in eps1
encodes a ligase (WaaL), the cluster eps1 may direct the synthesis of
an oligosaccharide wherein the ligase then fixes a polysaccharide
synthesized by proteins encoded in another cluster (eps2 for
example), on the model of lipopolysaccharide of Gram-negative
bacteria [43–44]. In both cases, the product whose synthesis is
directed by the eps1 should be minor because (i) glucuronic acid
and phosphoglycerol are never found in the structural analysis of
the EPS examined (either soluble or capsular), and (ii) the strains
lacking eps2 cluster but displaying eps1 show no capsule and
produce very low level of soluble EPS in SMD-Glucose.

The distribution of the eps genes on the phylogenetic tree is
complex. Some genes have clearly been acquired by horizontal
transfer after the attack of a bacteriophage (it4, gtf, dsrV), while
others, could have been acquired earlier in the history of the
species (levO, dsrO, eps1) or could result of very numerous
chromosome modifications (eps2). The eps2 clusters are the most
polymorphic among the studied loci. Such a diversity (15 cluster
models for 50 genomes) is surprising in a non-pathogenic
bacterium as it resembles what is described in Streptococcus
pneumoniae, in which, eps clusters direct the synthesis of a major
virulence factor, the pneumococcal capsule [45]. Regarding the
cluster organization, the eps2 clusters, inserted between amiO and
recP also strongly resemble those described for streptococci,
whether S. thermophilus, in which the eps loci are inserted between
genes deoD and pgm, or S. pneumoniae, in which cps loci are inserted
between genes dexB and aliA [46–47] or for Lactococci or Lactobacilli
[48–50]. Genes dexB and aliA are spaced by 10 to 30 kb maximum
[47], while amiO and recP and genes can be distant from 50 kb.
This region is the most heterogeneous in the O. oeni chromosome
[51]. According to Golubchik et al. [52], the acquisition of eps
cluster may be accompanied by a large number of changes, spread
all along the chromosome. The acquisition of the eps2 could thus
be the cause of the divergence of certain genomes. Loss of cluster
eps2 is rare and in some cases, it is accompanied by the acquisition
of the gtf gene (Champagne strains). The presence of a truncated
eps2 could have been a selection pressure for the stabilization of gtf
(phage remnant). This situation reminds again, what is described
in S. pneumoniae Type 37 [53].

The fact that the 50 genomes studied possess genes dedicated to
EPS metabolism suggests that these polymers are very important
for the adaptation of O. oeni to its ecological niche. This is even
more true for eps clusters, not only because they occupy a
significant portion of the O. oeni small chromosome, but also
because the biosynthetic pathway encoded (wzy dependent) is
energy consuming [9,54–56]. It is generally claimed that capsular
polysaccharides have a mainly protective role while free EPS are
interesting from a technological point of view [49,57]. The
production of soluble polysaccharides by the strains studied is low
in the absence of sucrose (,80 mg/L), but similar to that
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described for some other lactic acid bacteria [14,16,49,55–56], or
for O. oeni in wine [13]. Thirty-two out of 43 strains examined are
encapsulated (75%), against 30% for S. thermophilus [57] or 50% for
S. pneumoniae [47]. In S. pneumoniae, the capsule is an essential
virulence factor. The capsule could thus be a key element for O.
oeni survival in a hostile environment. In general, capsular EPS do
not constitute an energy supply for the cell that produces them
[58–59]. These should rather constitute a protective layer against
desiccation, osmotic acid or cold stress, digestion by lysozyme, or
against toxic compounds such as alcohol or sulphur dioxide
[50,60–63]. EPS could also play a role in biofilm formation,
thereby facilitating the colonization of various ecosystems and
especially grapes pellicules, barrels and other wine-making
material [14,44,59,64–66]. As regards the protection against
phage attacks, opposite effects have been described: certain EPS
are specifically recognized by certain phages and predispose
bacteria to the attack by these phages, while others would be a
protective barrier [57,67]. It might be interesting in the future to

connect the diversification of eps genes with the high variability in
Oenophages recently described [12,68,69].

Supporting Information

Table S1 In silico inventory of eps genes. List of eps genes
encountered in the initial database and then, in the 50 genome
sequences studied, locus by locus (eps1 and eps2 clusters, isolated
glycosyltransferase and glycoside hydrolase genes, and genes
involved in precursor synthesis).
(XLSX)
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Summary 

 

Microorganisms of soil, grapes and wine play a critical role in the quality of wine and are 

possibly components of the terroir that contributes to the typical characteristics of regional 

wines. Oenococcus oeni is the main bacterial species involved in winemaking. It naturally 

develops in wine and cider following the alcoholic fermentation and performs the malolactic 

fermentation, which changes the taste and aromas. Here we have analysed the diversity and 

distribution of O. oeni strains in six regions with the aim to determine to which extent they 

contribute to the regionality of their products. More than 200 wines and ciders were sampled 

during spontaneous malolactic fermentations and used to collect about 3,000 isolates of O. 

oeni, representing a total of 514 strains. Their geographic and genetic distribution revealed 

that each region holds a huge diversity of strains which are generally unique to a region but 

belong to diverse genetic groups whose members are widely disseminated. In contrast, some 

groups of strains are adapted to products such as cider, white wine or red wine of Burgundy. It 

is concluded that the distribution of O. oeni shows some regionality but that strains are 

genetically adapted to some specific products rather than to geographic regions.  

    

Keywords: Biogeography, microorganism, Oenococcus oeni, terroir, wine 
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Introduction 

The biogeography of microbial populations aims to unveil the diversity of microorganisms at 

the local, regional, continental and environmental scales, to understand their distribution and 

factors that contribute to it (Green & Bohannan, 2006; Ramette & Tiedje, 2007). Some 

microorganisms have a ubiquitous distribution while others present specific biogeographic 

patterns, which are more influenced by environmental differences between habitats and 

separations due to geographical barriers than geographical distances (Green & Bohannan, 

2006; Horner-Devine et al, 2004; Martiny et al, 2006; Nemergut et al, 2011; Whitaker et al, 

2003). Biogeography studies have a particular implication in oenology since they address the 

concept of "terroir". The question is whether microorganisms of soil, grapes and wine can be 

associated with particular regions and considered as a component of the terroir that 

contributes to the specific taste of wine.  

 A complex microbial consortium is associated with grape and wine. It is composed of 

molds, yeasts and bacteria with two emblematic species: The yeast Saccharomyces cerevisiae 

that is responsible for the alcoholic fermentation (AF) and the lactic acid bacteria Oenococcus 

oeni, which naturally develops in wine after AF and performs the malolactic fermentation 

(MLF), a secondary fermentation that improves the taste and aromatic complexity of wine 

(Bae et al, 2006; Barata et al, 2012; Fleet et al, 1984; Lonvaud-Funel, 1999). Recently it was 

shown that the fungal and bacterial grape microbiotas are influenced by the vineyard 

environmental conditions, suggesting that there is a nonrandom microbial terroir (Bokulich et 

al, 2014; Zarraonaindia et al, 2015). Ecological studies based on global sampling of S. 

cerevisiae from diverse origins suggest that different strain populations are associated with 

different products such as wine, spirits, beer or bread, while geographic origin explains only 

28% of variability (Fay & Benavides, 2005; Legras et al, 2007). In contrast larger sample 

sizes from fewer locations provide evidence for a regional delineation of S. cerevisiae 
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populations associated with vines and conducting the spontaneous fermentations of wines 

produced from these vines (Knight & Goddard, 2015). A direct correlation was established 

between the origin of yeasts that conduct AF in New Zealand and the chemical composition 

of wines, suggesting that microbial populations are important for the regional identity of wine 

(Knight et al, 2015).  

 Contrary to S. cerevisiae, little is known about the biogeography of O. oeni. The species 

was first described in 1967 (Garvie, 1967) and reclassified in 1995 (Dicks et al, 1995). It is a 

fastidious bacterium that is rarely detected in the environment and requires a rich medium for 

growth, whereas it develops well in wine and cider -thanks to its tolerance to ethanol and 

acidity- and generally becomes the only detectable bacterial species during MLF (Fleet et al, 

1984). Numerous studies based on various molecular methods have revealed that there is a 

huge diversity of strains performing MLF in wine (Kelly et al, 1993; Larisika et al, 2008; 

Reguant & Bordons, 2003). Strain diversity is important not only in regions, but also in 

wineries (Cappello et al, 2010; Gonzalez-Arenzana et al, 2015; López et al, 2007; Reguant & 

Bordons, 2003). Up to 10 different genotypes were detected all together during a spontaneous 

fermentation, with one or more genotypes being predominant during all or part of MLF 

(Gonzalez-Arenzana et al, 2012; Reguant & Bordons, 2003). Inventories carried out on the 

same wines during several consecutive vintages showed that strains are generally different, 

but some of them can persist during several years (Reguant & Bordons, 2003). Population 

structure analyses based on multilocus sequence typing (MLST) of 47 and 248 strains from 

diverse products and geographic origins have revealed that the O. oeni species comprises two 

major genetic groups of strains, named A and B, and possibly a third group C (Bilhere et al, 

2009; Bridier et al, 2010). All group-A strains were isolated from wine, while group-B strains 

were from wine and cider. Interestingly, some strains from specific products or geographic 

areas such as champagne, Chile and South Africa formed distinct subgroups (Bridier et al, 
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2010). Phylogenomics based on the comparative analysis of 12 and 50 genomes of strains 

isolated from diverse origins confirmed the distribution in the groups A and B and revealed 

genetic properties that can be linked with adaptation to wine, such as exopolysaccharides 

biosynthesis, sugar- and amino acid transport and metabolism (Borneman et al, 2012; 

Campbell-Sills et al, 2015; Dimopoulou et al, 2014). Phylogenomics also suggest that O. oeni 

strains were domesticated to cider and wine, with some strains possibly being further 

domesticated to specific wines such as champagne (Campbell-Sills et al, 2015).  

 Recent studies based on small samples of strains collected in a few regions have shown 

that regional strains may belong to different genetic groups (A and B) and are able to ferment 

local wines more or less efficiently (Bordas et al, 2013; Garofalo et al, 2015; Gonzalez-

Arenzana et al, 2014; Wang et al, 2015). Here, with the aim to determine the biogeography of 

O. oeni, we have analyzed around 3000 isolates of O. oeni strains collected from wines and 

ciders of six regions of France and Lebanon. To our knowledge, this is the largest sampling 

ever analyzed. Isolates were identified at the strain level by Multiple-Locus Variable number 

tandem repeat Analysis (MLVA) as recently reported (Claisse & Lonvaud-Funel, 2014) and 

in order to assign them to the genetic groups A or B we have developed and applied a strategy 

based on Single Nucleotide Polymorphism (SNP) genotyping using the Sequenom MassArray 

iPLEX platform (Gabriel et al, 2009). This allowed us to analyze the diversity, specificity and 

dissemination of strain over several wine regions of France.  

 

Results  

 

O. oeni strain collection  

O. oeni strains were isolated from 226 samples collected during spontaneous MLF of wines 

from five regions of France and Lebanon. Nine samples collected in cider fermentations 

analyzed in order to include cider strains in the panel. Classical LAB populations were 
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measured in most samples (~2.10E7 CFU.ml-1), with lower levels (+/-5.10E6 CFU.ml-1) in 

ciders and Burgundy wines, which may be caused by the lower temperature during MLF or 

other conditions which are specific to these products. A PCR analysis of 3,212 isolates 

revealed that 2,997 (93.3%) were O. oeni, which confirmed that it is the best-adapted species 

for conducting MLF in wines (Table 1). Non-O. oeni isolates were detected in all regions and 

products, but mainly in ciders and Burgundy wines in which they accounted for 23% and 

7.5% of all isolates, respectively. In the latter, they were bacteria of the species Pediococcus 

damnosus, which are sometimes detected in wine and associated with the default known as 

the "ropy" character (Dols-Lafargue et al, 2008), while in cider they were species frequently 

reported in this product, such as Lactobacillus paracollinoides or Zymomonas mobilis (Coton 

et al, 2006). The analysis of the 2,997 O. oeni isolates at the strain level by the MLVA 

method (Claisse & Lonvaud-Funel, 2014) revealed 2,411 complete MLVA genotypes, out of 

which 514 different genotypes were considered to represent 514 different strains: 489 from 

wine and 25 from cider (Table 1). Aquitaine, Burgundy, Languedoc-Roussillon and Lebanon 

were the regions in which the most samples were collected (32 to 80) and accordingly, the 

most strains were isolated (from 57 to 200), while only 25 and 29 strains were obtained from 

the 9 and 8 samples collected from cider plants and wineries of Val de Loire, respectively 

(Table 1).   

 

Relative abundance of isolates and strains  

The vast majority of O. oeni strains (306 strains, 59.6% of all strains) were isolated only once 

or twice (Fig. 1A). Only 19 of them (3.7%) were isolated more than 25 times and up to 62 

times for the most abundant. The same distribution was observed in the regions (data not 

shown). This confirms the huge diversity of O. oeni that was reported in previous studies, and 

also shows that there is no predominant strain in the regions investigated. This is even more 
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obvious when considering that most of the strains were isolated from only one sample (Fig. 

1B). It was quite rare to detect isolates of the same strain in more than 3 samples. 

Interestingly, the MLVA genotypes of three commercial strains were detected in this 

collection: strains CiNE and L31 that were isolated once in Lebanese red wines and strain 

Lalvin VP41 that represents 25 isolates from 6 samples of Aquitaine and Burgundy. This low 

amount of commercial starters suggests that they do not disseminate in the wine environment. 

In addition, although less than 15 isolates were analyzed from each wine, the number of 

strains per sample was rather high, and it was different for red and white wines: one to 10 

strains were detected in each of the 201 red wines, which represents 4.23 genotypes on 

average, whereas it was only 1 to 4 strains in the 25 white wines, with on average 2,46 

genotypes (Fig. 1C).  

   

Diversity of strains in regions and products 

When looking at the distribution of strains there was a clear distinction between ciders and 

wines. No strain was detected in both products (Fig. 2A). It is unlikely that this situation 

results from a geographical separation because cider samples were collected just a few dozen 

kilometers from the wine region Val de Loire. The reason is more likely an incompatibility of 

strains in the other product. Similarly, a divergence between red and white wine strains was 

perceptible, given that very few strains were found in both types of wines (Fig. 2A). The same 

trend was observed for rosé wine strains, although it concerns very few strains. 

It was anticipated that a large proportion of wine strains should be present in a unique 

region since most were isolated only once (43.9%) or from a single sample (55.6%). It 

appeared that the number of strains found in a single region was even more abundant: 435 of 

the 489 wine strains, which represents 89% of strains (Table 2). The distribution of unique 

and shared strains is depicted in Fig. 2B It shows that not a single strain was found in the five 
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regions simultaneously, only one was found in four regions, three in 3 regions, and 62 in two 

regions. Aquitaine and Languedoc-Roussillon share the largest number of strains (33) and 

much fewer with Burgundy, although all three regions are almost equally distant. The 

geographic distance was apparently not the main factor that contributed to this distribution as 

it was also denoted that 11 out of the 57 strains from Lebanon were detected in at least one of 

the French regions. The population diversity in each region was estimated by rarefaction 

analyses and diversity indexes (Table 2). Comparable populations were found in Aquitaine, 

Languedoc-Roussillon and Burgundy, with a maximum number of strains estimated in the 

order of several hundred, although it concerns only strains that perform MLF and surely 

underestimates the actual total number of strains. For all three regions, Shannon and Pielou 

diversity indexes were close to 4.5 and 1, respectively, with slight variations between regions 

meaning that the populations are very diverse, with no or little predominant strains. This also 

confirms the quality of samplings carried out in those regions, since it appears that the 

maximum diversity was reached. A quite different situation was observed in Lebanon, where 

the maximum population was about three times less, and where diversity indexes also showed 

a less heterogeneous population in which some strains were predominant. In region Val de 

Loire and Brittany, too few samples were collected to analyze populations reliably. 

 

Development of a genotyping method based on SNP analysis  

Although the MLVA method allowed to differentiate all isolates and strains of O. oeni, it did 

not bring any information about their genetic affiliation to groups A or B, thus making it 

impossible to determine if the different regions and products were shaped by strains which are 

phylogenetically related or not. To get this information, we have developed a genotyping 

method based on SNP analysis using the Sequenom MassArray iPLEX platform (Gabriel et 

al, 2009). A phylogenetic tree based on the 50 O. oeni genomes available in databases was 
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used to delineate 11 groups of phylogenetically-related strains (Fig. S1). They were named 

groups A and B, according to previous studies (Bilhere et al, 2009; Campbell-Sills et al, 

2015), and sub-groups A1 to A6 and B1 to B3. A comparative genomic analysis revealed 11 

to 1,695 SNPs specific for each of the 11 groups (Table S1). A total of 40 SNPs were 

manually selected, with two to six SNPs specific for each group of strains, except for 

subgroup B2 for which no SNP could be retained (see section methods). Concatenation of the 

40 selected SNPs specified 11 sequence types (ST) corresponding to each of the 10 groups, 

plus strain C52 (group N), which does not belong to groups A and B (Bridier et al, 2010; 

Campbell-Sills et al, 2015) (Table S2). The 40 SNPs were determined for each of the 514 

strains identified in this study and for 63 “control” strains isolated from wines and ciders in 

previous works and attributed to group A or B, or not characterized (Bridier et al, 2010). SNP 

data analysis revealed that 466 of the 577 strains possessed SNP combinations corresponding 

to the 11 predefined STs (Table S2), whereas the 111 remaining strains (19.2%) had variant 

SNP combinations corresponding to 32 new STs (Table S2). Ninety-three strains had 20 

newly defined STs which differed from the 11 predefined STs by only one or two SNP 

positions and could be attributed to new subgroups in A or B (Fig. 3A). This concerned 93 

strains. The 12 others STs had hybrids combinations of SNPs and were attributed to group 

“N” (strain C52) and subgroups N1 to N11. This concerned 15 cider strains and 3 wine strains 

isolated from Aquitaine, Val de Loire and Languedoc-Roussillon. A tree based on the 

comparison of all 43 STs showed that the new STs occupy an intermediate position between 

the groups and subgroups A and B, but SNP data were not appropriate to conclude whether 

the strains form a new group "C" or are incorrectly positioned (Fig. 3A). For instance the 

three wine strains of subgroup N8 are possibly members of group B (Fig. 3A).  

 

Distribution of strains in phylogroups  
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The distribution of strains in phylogroups was analyzed by constructing minimum spanning 

trees in which each group of strains is represented by a circle of size proportional to the 

number of strains it contains. Fig. 3B shows that the vast majority of strains (466/577, 84.2%) 

belong to group A and only 12.6% (73/577) to group B. This distribution is in agreement with 

previous reports on the species population structure (Bilhere et al, 2009; Bridier et al, 2010), 

although it is noteworthy that strains analyzed here were collected during MLF and it is 

possible that a different ratio would be obtained if the sampling included strains collected on 

fruits or in grape must. Subgroups A2 and A1 are by far the most important. They contain 

respectively 148 and 116 strains, which represents 45.7% of all strains. It is likely that they 

contain strains that could be separated into various subgroups, but the SNPs analyzed in this 

study are not sufficiently informative for this.  

When looking at the distribution of strains according to their region of origin, it 

appeared that each of the analyzed wine regions contained strains from different subgroups, 

mainly from group A, but also from group B in some cases (Fig. 3C). For instance, strains of 

Aquitaine were found in no less than 16 subgroups, not only from group A but also from 

group B. The same situation was observed in all other regions. Conversely, most of the 

subgroups were formed by strains from different regions, with the exception of smaller sub-

groups containing one to six strains which may correspond to a single region, but are not 

representative. However subgroups A5 and A2-8 contain respectively 17 and 28 strains that 

come almost exclusively from Burgundy. These results show that all regions were colonized 

by strains of different genetic origins and there is little or no genetic groups that are specific 

for a particular region.  

The distribution of strains according to their product of origin shows a quite different 

picture (Fig. 3D). First, all cider strains are found in the sub-groups B and N, which separates 

them from almost all wine strains. Only the subgroup B2 contains a combination of wine and 
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cider strains (38 in total), but it is possible that analyzing different SNPs would separate them. 

Second, white wine strains were distributed in very few subgroups (mainly A5 and A1). 

Although much fewer white wine than red wine strains were analyzed (25 and 464, 

respectively), this low dispersion suggests that strains found in white wines actually have 

unique genetic characteristics. This is particularly evident when looking at group A5 which 

contains a large majority of strains from white wines of Burgundy (17/21) and four other 

strains isolated for white wine of Champagne. Interestingly, another group consists almost 

exclusively of Burgundy strains, but only strains isolated from red wine (subgroup A2-8). It is 

remarkable that strains of this region form two genetic groups associated two types of wines. 
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Experimental procedures 

 

Sampling and strain collection 

Bacterial strains analyzed in this work were isolated from 235 wines and ciders collected 

during the malolactic fermentation from 74 vineyards distributed in four major wine-

producing regions of France: Aquitaine, Burgundy, Languedoc-Roussillon and Val de Loire, 

different wine-producing areas of Lebanon: mainly the Beqaa valley and one cider-producing 

region: Brittany. Samplings were performed during vintages 2011 in Lebanon (32 wines), 

2012 in Aquitaine (69 wines), Burgundy (59 wines) and Languedoc-Roussillon (36 wines), 

and 2013 in Aquitaine (11 wines), Burgundy (11 wines), Val de Loire (8 wines) and Brittany 

(9 ciders). All of the 514 new strains reported here were deposited in the Biological Resources 

Center CRB OENO (ISVV, Villenave d’Ornon, France). Representative strains are available 

upon request. All other bacteria used in this work were obtained from the CRB OENO. 

 

Isolation and storage of bacterial strains and cell lysates  

Dilutions of wine and cider samples were plated on a grape juice medium containing 250 

mL/L commercial red grape juice, 5 g/L yeast extract, 1 mL/L Tween80, 15 g/L agar and 100 

mg/L pimaricine adjusted to pH 4.8. Plates were incubated anaerobically (AnaeroGen, Oxoid) 

for 7 to 10 days at 25°C. Fifteen colonies were randomly selected from each sample and 

inoculated in 1 mL of liquid grape juice medium. After 7 days of incubation, an aliquot of the 

culture was preserved at -80°C in 30% glycerol for subsequent isolation of bacteria. Another 

aliquot of 200 µL was centrifuged at 10,000 r.p.m. for 5 min. The cell pellet was re-suspended 

in 200 µL of sterile water and cells were lysed by freezing at -20°C and melting at room 

temperature. Cells lysates were kept at -20°C until use.   
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MLVA genotyping 

A preliminary study performed on Aquitaine’s wines about the MLF in, we have shown that 

99% of the MLF were performed by O. oeni (data not shown). Therefore, we have chosen to 

genotype all the colonies of LB isolated by Mutilocus Variable number of tandem repeat 

analysis (MLVA) specific to O. oeni, which can simultaneously define the species (if O. oeni) 

and give the MLVA profile. The MLVA was performed as described in the publication of 

Claisse and Lonvaud (2014). Briefly, for each isolate two multiplex PCRs are performed 

using labeled primers to amplify 5 tandem repeats. The multiplex 1 (M1): with primers TR1 

and TR2 and the multiplex 2 (M2) with primers TR3, TR4 and TR5. M1: 5 pmol of primer 

pair TR1, 5 pmol of primer TR2 pair, 5 µL Qiagen multiplex mix 2x, 1 µl suspension stored 

at -20°C, H2O ppi qs 10 µL. M2: 2.5 pmol of primer pair TR3, 2.5 pmol of primer pair TR4, 

TR5 5 pmol, 5 µL Qiagen multiplex mix 2x, 1 µL suspension stored at -20°C, H2O ppi qs 10 

µL. Both PCR were performed under the same conditions in a thermocycler T_100 (Bio-Rad, 

France) with the following program: 95 °C for 15 min, followed by 30 cycles: 30 sec at 94 °C 

followed by 90 sec at 62 °C and 90 sec at 72 °C for 90 sec, the program ends with one last 

step of 30 min at 60 °C. Then the PCR products M1 and M2 are diluted 40 and 60 times 

respectively and mixed, 2µL of the mixture are added to 9 µL of HI-DITM formamide 

(Applied Biosystems) and sent for analysis to the company MWG- Eurofins- Operon (Cochin 

institute, France). 

The genotyping results are processed with the GenMarker (SoftGenetics) software in 

which a specific MLVA panel has been incorporated, in order to automatically determine the 

number of repetition of each TR. The combination of the number of repetition of TR1 to TR5 

represents the digital profile of a colony. All the MLVA profiles are then integrated in a 

database of the BioNumerics v5.1 (Applied Maths, Belgium) software and a number is 

affiliated to each different profile to facilitate their analysis. Minimum Spanning Tree are then 
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calculated by ranking the variables of each TR and profile number by category (Calculate 

minimum spanning tree, coefficient: Categorical). 

 

Pielou’s and Shannon Weaver diversity indexes 

Shannon Weaver and Pielou's diversity indexes as well as the rarefaction curves were 

calculated using the EstimateS 9.1.0 software (Colwell & Elsensohn, 2014). These two 

indexes are complementary and make it possible to assess the diversity of O. oeni strains and 

the evenness of their distribution across the studied regions. 

 

Classification of strains in phylogroups using SNP genotyping 

A method for strain classification by SNP genotyping was developed to assign the newly 

identified strains of O. oeni to the phylogenetic groups A and B and their respective 

subgroups previously reported in Campbell-Sills et al. (2015) (Fig. S1). According to this 

method, a set of genomic regions containing SNPs were identified by whole-genome mapping 

of the 49 genomes reported in Campbell-Sills et al. (2015) against PSU-1 (Table S1). From 

the whole set, only regions containing SNPs that could discriminate at 100% between strains 

from the different subgroups of A and B strains were selected, resulting in a list of 40 

candidates. In order to amplify these genomic regions, we designed multiplex PCR of primers 

with the software Suite 1.0 Assay Design (Sequenom). The genotyping of the collected strains 

was performed using the iPLEX GOLD kit on the MassARRAY facility (Sequenom Inc., San 

Dieg, CA). The extension products are spotted onto a SpectroCHIP and analyzed by MALDI-

TOF. The assignment of alleles is done in real time on the SpectroCALLER software, then the 

results are displayed on the SpectroACQUIRE software (Sequenom Inc., San Diego, CA). 

The genotyping results of the 40 SNPs for each strain are concatenated into a single 

sequence of 40 bp. The sequence alignments and phylogenetic analysis were performed with 
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the MEGA software 6.0.5 (Tamura et al, 2013) with 1000 bootstraps on Neighbor-Joining 

distance calculation with Kimura 2 parameter. The data were also included in the v5.1 

BioNumerics software (Applied Maths, Belgium). A similarity matrix is then calculated with 

Neighbor-Joining clustering parameter with 100% open gap penalty for pairwise alignment 

and an MST is built from this matrix. 
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Tables 

 

Table 1. Collection of O. oeni strains isolated from wines and ciders   

Region Number of 
samples 

Number of LAB 
isolates 

Number of O. 
oeni isolates 

Number of 
complete 

MLVA 
genotypes 

Number of 
incomplete 

MLVA 
genotypes 

Number of 
O. oeni 
strainsa 

 Aquitaine 80 1125 1072 912 160 200 

 Burdundy 70 895 837 631 206 142 

 Languedoc-Roussillon 36 534 514 379 135 134 

 Val de Loire 8 120 117 91 26 29 

 Lebanon 32 403 353 339 14 57 

 Brittany (cider) 9 135 104 59 45 25 

 Total 235 3212 2997 2411 586 514* 

  
aEach VNTR profiles was considered to represent a different strain. Strains present in different regions are 
counted only once in the total.  
 

 

Table 2. O. oeni populations in each region   

Region Number of 
strains 

Region-specific 
strainsa 

Estimated maximum 
number of strainsb 

Shanon 
diversity index 

Pielou 
diversity index 

Aquitaine 200 150 (75%) 410 4.57 0.86 

Burdundy 142 124 (87.3%) 300 4.19 0.84 

Languedoc-
Roussillon 134 93 (69.4%) 350 4.28 0.87 

Val de Loire 29 22 (75.8%) nd nd nd 

Lebanon 57 46 (80.7%) 123 3.17 0.82 

Brittany (cider) 25 25 (100%) nd nd nd 

   aStrains detected in only one region.  

bDetermined using EstimateS with 95% upper and lower limits (Colwell, 2006).   

nd: not determined 
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Figure legends 

 

Fig. 1. Frequency of isolates and strains of O. oeni. The distribution of 2997 isolates and 514 

strains of O. oeni was examined to determine: (A) the number of isolates obtained from each 

strain, (B) the number of samples in which a same strain was detected, and (C) the number of 

strains detected in each sample of white or red wine. 

 

Fig. 2. Venn diagrams denoting the numbers of unique and shared strains in different products 

(A) and wine-production regions (B) 

 

Fig. 3. Distribution of strains in phylogroups. A neighbor joining tree was constructed using 

the 43 different concatenated sequences of SNP identified by analyzing 577 O. oeni strains 

(A). Minimum spanning trees (B, C, D) represent the distribution of strains in the genetic 

groups and subgroups and are colorized according to their groups of affiliation (A), their 

region of origin (C), and their product of origin (D).The size of the circles is proportional to 

the number of strains belonging to the phylogroup, maximum 148 for A2 and minimum 1 for 

the smallest. 
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Fig. 1. Frequency of isolates and strains of O. oeni. 
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Fig. 2. Venn diagrams denoting the numbers of unique and shared strains in different products 

(A) and wine-production regions (B) 
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Fig. 3. Distribution of strains in phylogroups.  
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Supporting information 

 

Table S1. Number of SNPs per genetic group used for genotyping by Sequenom   

Group 
Number of SNPs per genetic group 

Total Manual preselection Used for genotyping 

A 1626 10 4 

A1 198 10 5 

A2 11 7 4 

A3 164 9 5 

A4 207 9 3 

A5 808 10 2 

A6 1181 7 2 

B 1695 9 6 

B1 130 10 5 

B2 12 0 0 

B3 70 13 4 

Total 6120 94 40 
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Table S2. Primers used for SNP genotyping. 

TERM SNP_ID 2nd-PCRP 1st-PCRP AMP_LEN UP_CONF MP_CONF Tm PcGC PWARN UEP_DIR UEP_MASS 
iPLEX A1oeoe_0413_212 ACGTTGGATGTGGTTTCGTCGTTGGATCAC ACGTTGGATGGTTTTCCGTATTTGCGTGCC 94 99.9 70.7 46.0 60.0 d F 4553.0 
iPLEX A2oeoe0450_200 ACGTTGGATGAGTTGTATAAAGCGGCATGG ACGTTGGATGTACACGCGATCGCAATCATC 109 98.2 70.7 55.0 73.3 D R 4665.0 
iPLEX A3oeoe_0425_112 ACGTTGGATGAGCAAGGTGCTTTTTCCTCC ACGTTGGATGTGGCAATCATCTGATCTTGG 119 97.1 70.7 47.8 56.2 D R 5057.3 
iPLEX A3oeoe_0529_139 ACGTTGGATGGCCTCTTGAATCTGCTGCTT ACGTTGGATGGGATAACTTGGAGGCGATTG 119 96.1 70.7 46.8 41.2 ds R 5120.4 
iPLEX A3oeoe_0433_150 ACGTTGGATGGGTGTTTTCAGCTCTTTGCC ACGTTGGATGAGCGAACCAAAGGCTTCCTG 109 98.2 70.7 46.2 53.3 D F 5217.4 
iPLEX A5oeoe_0326_101 ACGTTGGATGATCGATATGCCCATGAACGG ACGTTGGATGAAGGTTACCCTCCAACAGTC 100 100.0 70.7 49.4 56.2 

 
R 5244.4 

iPLEX Boeoe_0402_105 ACGTTGGATGGCTCAAGATGATGCTTTTCC ACGTTGGATGCGCTTAAATCAGCACGTTCC 111 98.1 70.7 46.1 47.1 D F 5265.4 
iPLEX Boeoe_0340_216 ACGTTGGATGGGGATTTTTATGGATCGTGG ACGTTGGATGACCAGGCCATCCAAAAGAAC 100 98.6 70.7 47.7 50.0 ds F 5616.6 
iPLEX A4oeoe_0344_196 ACGTTGGATGCCGATTTTTGCGTACTTGCC ACGTTGGATGTGCGTCATCCTCACATTGCC 111 98.1 70.7 46.9 36.8 

 
R 5777.8 

iPLEX A5oeoe_0420_106 ACGTTGGATGCGCATTTCGCTGGGAATTCT ACGTTGGATGGGTTATGCTTATGAAACCTG 107 91.8 70.7 46.0 42.1 D R 5802.8 
iPLEX A2oeoe0450_176 ACGTTGGATGCGATGTTCCTGAAAATTGGG ACGTTGGATGATTGCCAATTCGATGGCACC 94 98.4 70.7 48.0 44.4 

 
F 5900.9 

iPLEX Boeoe_0456_151 ACGTTGGATGGGACATCCCAGTGGAAAATG ACGTTGGATGGAATCAACTCCGAAGATCCG 102 100.0 70.7 47.2 35.0 D R 6073.0 
iPLEX B1oeoe_0360_186 ACGTTGGATGTCTTGCGGAGTTGTTTTCGG ACGTTGGATGTCTTCCAAAACCATTCGATG 97 94.3 70.7 46.0 35.0 d F 6207.1 
iPLEX Aoeoe_0558_100 ACGTTGGATGTGTATCGTTCATCTGACCGC ACGTTGGATGACCACCGCAACATATGCAAG 104 99.9 70.7 48.2 38.1 d R 6349.2 
iPLEX A2oeoe0450_97 ACGTTGGATGAGAAGTGGATTGGTCTTCCC ACGTTGGATGCCCAAACTGTTGCCCATATC 99 100.0 70.7 49.8 58.8 D F 6376.2 
iPLEX A3oeoe_0424_156 ACGTTGGATGCCGGTCACAATAGTTGTATG ACGTTGGATGAACAGGGGACACATGTCAAG 99 94.2 70.7 45.0 35.0 g R 6500.2 
iPLEX A1oeoe_0449_29 ACGTTGGATGGTGCAGTAACCTGCACAATC ACGTTGGATGGAAGATTTCGTTCTTATCG 85 86.8 70.7 45.2 36.8 D R 6565.3 
iPLEX B1oeoe_0384_211 ACGTTGGATGTTTTTTTTGCTGCCAAGCGG ACGTTGGATGGGGTCGACAAACTAATTGGG 87 97.9 70.7 49.1 31.8 

 
R 6730.4 

iPLEX Aoeoe_0642_106 ACGTTGGATGGCATCCCAATCATTAAGGGC ACGTTGGATGTCGGGTCGTATACAAAGGTC 106 99.9 70.7 46.7 38.1 
 

F 6742.4 
iPLEX A2oeoe0450_37 ACGTTGGATGTTTGGGATTGGGTCGACCAG ACGTTGGATGCGCCTCCATAGGCATAAAAG 92 98.3 70.7 47.1 44.4 d F 6848.5 
iPLEX Aoeoe_0563_200 ACGTTGGATGTACTCGATTTGTCGTATCTC ACGTTGGATGAATGCCTTTCAACACGCTGG 102 94.3 70.7 47.2 35.0 D R 6949.5 
iPLEX B3oeoe_1166_150 ACGTTGGATGACCAAGTATCGGACCGATTG ACGTTGGATGCCGAAAAATCGTCAAGCCTC 98 100.0 70.7 46.5 42.1 D R 6952.5 
iPLEX B3oeoe_0574_239 ACGTTGGATGTTTGGAGATTAGCTTGGAAG ACGTTGGATGCTATGCCTCCTGATTTAACG 111 92.6 70.7 48.8 50.0 

 
F 7095.6 

iPLEX B1oeoe_0375_150 ACGTTGGATGAGCCACAAAGACAGGCAAAC ACGTTGGATGGTCTGCTTGGTCAAAACCAG 108 99.7 70.7 49.3 29.2 
 

F 7312.8 
iPLEX B1oeoe_0379_150 ACGTTGGATGGCCGTTTTTATCGGTTTGAC ACGTTGGATGATCGCCGGTAACTATGAAGG 119 97.1 70.7 47.0 30.4 

 
F 7381.8 

iPLEX A4oeoe_0390_191 ACGTTGGATGTTCTTAGCAGCAAAAGAGCG ACGTTGGATGAACGACACTGCCTTTGAACG 112 98.0 70.7 51.0 38.1 DS R 7560.9 
iPLEX A3oeoe_0370_150 ACGTTGGATGCCCTCTGTCGATATTTGTTG ACGTTGGATGTCTACAACTCAAACAGAGGG 117 96.0 70.7 48.9 28.0 

 
R 7612.0 

iPLEX Boeoe_0622_105 ACGTTGGATGCTTGCTTTATTGATCGTTCAG ACGTTGGATGAAGAGAAAAGATAATATCAG 115 62.2 70.7 45.4 28.6 D F 7742.0 
iPLEX B3oeoe_0490_154 ACGTTGGATGTTTGCCGACGATTTGTTGGG ACGTTGGATGCGCCATGATTTGCTGGAAAC 116 99.0 70.7 48.7 36.4 D R 7913.2 
iPLEX A6oeoe_0378_102 ACGTTGGATGGAAAAGCTACGTTATGGACTG ACGTTGGATGTATTTTCTTGAGCCAGGCCC 120 93.0 70.7 49.4 38.1 h F 8014.2 
iPLEX A1oeoe_0391_241 ACGTTGGATGTTAACAAGAGCCGAACAGAG ACGTTGGATGTTCCGATTGAAACCGGAGTG 114 97.8 70.7 47.4 33.3 Ds F 8048.3 
iPLEX A6oeoe_0423_179 ACGTTGGATGCAACCTTTTCAACAATTGGG ACGTTGGATGGTTCGTGGCTCATTAGTTGG 114 93.6 70.7 53.8 47.8 Dg R 8171.3 
iPLEX Aoeoe_0663_109 ACGTTGGATGAGCTCTGCCTCAAGAGAAAC ACGTTGGATGGCGGCATCATACCCTAAATC 107 99.8 70.7 45.1 20.8 

 
F 8317.5 

iPLEX B3oeoe_1057_150 ACGTTGGATGGCAACAACGCCTTTCATTAG ACGTTGGATGGTTAAAGGATCGAGGCTCAC 110 98.2 70.7 45.9 30.4 D F 8402.5 
iPLEX Boeoe_0357_114 ACGTTGGATGTGGACACATCGGATGAATGG ACGTTGGATGGAGGCAGTCGTTTCATCAAC 99 100.0 70.7 54.4 47.8 D F 8404.5 
iPLEX B1oeoe_0428_164 ACGTTGGATGTGCTGATTTTGTTTCACCAC ACGTTGGATGCCTGAAAAAACAAGAGACGG 116 92.1 70.7 45.9 28.0 DH F 8488.5 
iPLEX A1oeoe_0440_163 ACGTTGGATGTCAGTCATTGACCTCTTGGC ACGTTGGATGCGCTGCCAAATCAATCAATG 113 97.9 70.7 50.9 33.3 DH R 8553.6 
iPLEX Boeoe_0327_114 ACGTTGGATGGAACTCGCTTTCCAAATCTC ACGTTGGATGTAACCGGAACCCAAATGACG 106 98.4 70.7 48.3 25.0 dh R 8631.6 
iPLEX A4oeoe_0483_150 ACGTTGGATGGTTCTGGCTAATTGTGAAAC ACGTTGGATGACCAAGTACCGGATTTGGAC 110 94.0 70.7 47.7 29.2 d F 8710.7 
iPLEX A1oeoe_0469_150 ACGTTGGATGCCTGAAAACAGCTGTTAAAC ACGTTGGATGTCAAGCCGCTTTCGGAAATC 97 88.2 70.7 53.4 40.0 dh F 8878.8 
 
Extension primer 
TERM SNP_ID UEP_SEQ EXT1_CALL EXT1_MASS EXT1_SEQ EXT2_CALL EXT2_MASS EXT2_SEQ 

  iPLEX A1oeoe_0413_212 CACCGATGGCCTATG C 4800.2 CACCGATGGCCTATGC T 4880.1 CACCGATGGCCTATGT 
 iPLEX A2oeoe0450_200 GCGGCATGGTTGCGG G 4912.2 GCGGCATGGTTGCGGC A 4992.1 GCGGCATGGTTGCGGT 
 iPLEX A3oeoe_0425_112 gCCTCCACCACTTTTGC G 5304.5 gCCTCCACCACTTTTGCC T 5328.5 gCCTCCACCACTTTTGCA 
 iPLEX A3oeoe_0529_139 TCTGTTCAATTGCCACA T 5391.6 TCTGTTCAATTGCCACAA C 5407.6 TCTGTTCAATTGCCACAG 
 iPLEX A3oeoe_0433_150 ggTTGGCGATCATGCTC C 5464.6 ggTTGGCGATCATGCTCC T 5544.5 ggTTGGCGATCATGCTCT 
 iPLEX A5oeoe_0326_101 cTGAGGTCGACGACAGA G 5491.6 cTGAGGTCGACGACAGAC A 5571.5 cTGAGGTCGACGACAGAT 
 iPLEX Boeoe_0402_105 GTTTTGGACAACGATGG C 5512.6 GTTTTGGACAACGATGGC T 5592.5 GTTTTGGACAACGATGGT 
 iPLEX Boeoe_0340_216 tgTGGATCGTGGTTGGAT C 5863.8 tgTGGATCGTGGTTGGATC T 5943.7 tgTGGATCGTGGTTGGATT 
 iPLEX A4oeoe_0344_196 GCGTACTTGCCAATTTTAA G 6025.0 GCGTACTTGCCAATTTTAAC A 6104.9 GCGTACTTGCCAATTTTAAT 
 iPLEX A5oeoe_0420_106 CTGGGAATTCTTTCAGAAC G 6050.0 CTGGGAATTCTTTCAGAACC A 6129.9 CTGGGAATTCTTTCAGAACT 
 iPLEX A2oeoe0450_176 tAAAATTGGGCAGATCGAG A 6172.1 tAAAATTGGGCAGATCGAGA T 6228.0 tAAAATTGGGCAGATCGAGT 

iPLEX Boeoe_0456_151 ACAGATTTTATTTTTCCGGC G 6320.1 ACAGATTTTATTTTTCCGGCC A 6400.1 ACAGATTTTATTTTTCCGGCT 
iPLEX B1oeoe_0360_186 AATATGGACAAAACGATGAG C 6454.3 AATATGGACAAAACGATGAGC T 6534.2 AATATGGACAAAACGATGAGT 
iPLEX Aoeoe_0558_100 GACCGCCATAAATACCTTTAT G 6596.3 GACCGCCATAAATACCTTTATC A 6676.3 GACCGCCATAAATACCTTTATT 
iPLEX A2oeoe0450_97 cccaGTCTTCCCGGAGAAACG C 6623.3 cccaGTCTTCCCGGAGAAACGC T 6703.2 cccaGTCTTCCCGGAGAAACGT 
iPLEX A3oeoe_0424_156 cATAGTTGTATGGCTAGGATA T 6771.5 cATAGTTGTATGGCTAGGATAA C 6787.5 cATAGTTGTATGGCTAGGATAG 
iPLEX A1oeoe_0449_29 cccCACCTCATTTTCCGATAAT G 6812.5 cccCACCTCATTTTCCGATAATC A 6892.4 cccCACCTCATTTTCCGATAATT 
iPLEX B1oeoe_0384_211 AGCGGATCACTTTTTTTGATAT G 6977.6 AGCGGATCACTTTTTTTGATATC A 7057.5 AGCGGATCACTTTTTTTGATATT 
iPLEX Aoeoe_0642_106 tGGCCTATACGGAAAATTAATC A 7013.6 tGGCCTATACGGAAAATTAATCA G 7029.6 tGGCCTATACGGAAAATTAATCG 
iPLEX A2oeoe0450_37 gaggCCAGGGACTTTTGAAGAA A 7119.7 gaggCCAGGGACTTTTGAAGAAA G 7135.7 gaggCCAGGGACTTTTGAAGAAG 
iPLEX Aoeoe_0563_200 cccTCTCTTAAATAACTTGGCGT T 7220.7 cccTCTCTTAAATAACTTGGCGTA C 7236.7 cccTCTCTTAAATAACTTGGCGTG 
iPLEX B3oeoe_1166_150 tccgGCATAACCTAAATTCCAGC G 7199.7 tccgGCATAACCTAAATTCCAGCC A 7279.6 tccgGCATAACCTAAATTCCAGCT 
iPLEX B3oeoe_0574_239 gggtcGCTTGGAAGTTTCACCAG C 7342.8 gggtcGCTTGGAAGTTTCACCAGC T 7422.7 gggtcGCTTGGAAGTTTCACCAGT 
iPLEX B1oeoe_0375_150 AACAAACTGTAACAATCGATTACT A 7584.0 AACAAACTGTAACAATCGATTACTA T 7639.9 AACAAACTGTAACAATCGATTACTT 
iPLEX B1oeoe_0379_150 gGATAATGATTTATTTCCTGCAGA G 7669.0 gGATAATGATTTATTTCCTGCAGAG T 7708.9 gGATAATGATTTATTTCCTGCAGAT 
iPLEX A4oeoe_0390_191 ccctAGCGCAATTTTTCAATCGAAC G 7808.1 ccctAGCGCAATTTTTCAATCGAACC A 7888.0 ccctAGCGCAATTTTTCAATCGAACT 
iPLEX A3oeoe_0370_150 CAACATTTTCTTGATTTTCGGATAT G 7859.2 CAACATTTTCTTGATTTTCGGATATC A 7939.1 CAACATTTTCTTGATTTTCGGATATT 
iPLEX Boeoe_0622_105 ggagAATTAATTGGTTTGTTTCCAG C 7989.2 ggagAATTAATTGGTTTGTTTCCAGC T 8069.1 ggagAATTAATTGGTTTGTTTCCAGT 
iPLEX B3oeoe_0490_154 ttgaAACTCTTCAATCGTATAAACCG C 8200.4 ttgaAACTCTTCAATCGTATAAACCGG A 8240.3 ttgaAACTCTTCAATCGTATAAACCGT 
iPLEX A6oeoe_0378_102 gggtgTTTGATTTTTGTCCTGACCAG C 8261.4 gggtgTTTGATTTTTGTCCTGACCAGC T 8341.3 gggtgTTTGATTTTTGTCCTGACCAGT 
iPLEX A1oeoe_0391_241 taCGAACAGAGATTATATTTAGTTGG C 8295.4 taCGAACAGAGATTATATTTAGTTGGC T 8375.4 taCGAACAGAGATTATATTTAGTTGGT 
iPLEX A6oeoe_0423_179 ccccCAATTGGGGTAACCTTACCTTCG T 8442.5 ccccCAATTGGGGTAACCTTACCTTCGA C 8458.5 ccccCAATTGGGGTAACCTTACCTTCGG 
iPLEX Aoeoe_0663_109 ccgGAATTAATTAAAAAAGCCAAAGAT A 8588.7 ccgGAATTAATTAAAAAAGCCAAAGATA G 8604.7 ccgGAATTAATTAAAAAAGCCAAAGATG 
iPLEX B3oeoe_1057_150 ggtgGCAAGAATTTTATTAAGGGATAC A 8673.7 ggtgGCAAGAATTTTATTAAGGGATACA G 8689.7 ggtgGCAAGAATTTTATTAAGGGATACG 
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iPLEX Boeoe_0357_114 gggtGATGAATGGATTCGCAGTCGAAC C 8651.6 gggtGATGAATGGATTCGCAGTCGAACC T 8731.6 gggtGATGAATGGATTCGCAGTCGAACT 
iPLEX B1oeoe_0428_164 cccCTTTTCTATAATCATATGGCTAATG A 8759.7 cccCTTTTCTATAATCATATGGCTAATGA G 8775.7 cccCTTTTCTATAATCATATGGCTAATGG 
iPLEX A1oeoe_0440_163 ccacTTTTATGGCCTTGATAGTCAATGA G 8800.8 ccacTTTTATGGCCTTGATAGTCAATGAC T 8824.8 ccacTTTTATGGCCTTGATAGTCAATGAA 
iPLEX Boeoe_0327_114 agtaTTTATTTTTATTGCGCGAAAGATA T 8902.9 agtaTTTATTTTTATTGCGCGAAAGATAA C 8918.9 agtaTTTATTTTTATTGCGCGAAAGATAG 
iPLEX A4oeoe_0483_150 agttAAACAAATCAAGAAGTTAGAAGAG C 8957.9 agttAAACAAATCAAGAAGTTAGAAGAGC T 9037.8 agttAAACAAATCAAGAAGTTAGAAGAGT 
iPLEX A1oeoe_0469_150 ctgaCTGAAAACAGCTGTTAAACAAGCTC A 9150.0 ctgaCTGAAAACAGCTGTTAAACAAGCTCA G 9166.0 ctgaCTGAAAACAGCTGTTAAACAAGCTCG 
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Table S3. Alignment of the concatenated sequences of SNPs specific for different genetic 
groups 

Group Concatenated SNP Sequence 
A0	 TCGAAGACATGCTGACGGCCACGATAGAACCGGTCCTAT 
A0-1	 TCGAAGACATGCTGACGGCCACGATAGAACCGGTCCCAT 
A1	 CTTGAGACATGCTGACGGCCACGATAGAACCGGTCCTAT 
A1-1	 CCTGAGACATGCTGACGGCCACGATAGAACCGGTCCTAT 
A1-2	 TTTGAGACATGCTGACGGCCACGATAGAACCGGTCCTAT 
A1-3	 TC-GAGACATGCTGACGGCCACGATAGAACCGGTCCTAT 
A2	 TCGATAGTATGCTGACGGCCACGATAGAACCGGTCCTAT 
A2-1	 TCGATAGTATGCTGACGGCCATGATAGAACCGGTCCTAT 
A2-2	 TCGATAGTATGCTAACGGCCACGATAGAACCGGTCCTAT 
A2-3	 TCGATAGTATGCTGGCGGCCACGATAGAACCGGTCCTAT 
A2-4	 TCGGTAGTATGCTGACGGCCACGATAGAACCGGTCCTAT 
A2-5	 TTGGTAGTATGCTGACGGCCACGATAGAACCGGTCCTAT 
A2-6	 TCGATAGTATGCTGACGGCCACGATAGAACCGGTCCCAT 
A2-7	 TCGATAGCATGCTGACGGCCACGATAGAACCGGTCCTAT 
A2-8	 TCGAAAGTATGCTGACGGCCACGACAGAACCGGTCCTAT 
A3	 TCGAAGACGCTTCGACGGCCACGATAGAACCGGTCCTAT 
A3-1	 TCGAAGACGTGTCGACGGCCACGATAGAACCGGTCCTA- 
A4	 TCGAAGACATGCTAGTGGCCACGATAGAACCGGTCCTAT 
A4-1	 TCGAAGACATGCTGGCGGCCACGATAGAACCGGTCCTAT 
A5	 TCGAAGACATGCTGACAACCACGATAGAACCGGTCCTAT 
A5-1	 TCGAAGACATGCTGACGACCACGATAGAACCGGTCCTA- 
A6	 TCGAAGACATGCTGACGGTTACGATAGAACCGGTCCTAT 
B1	 TCGAAGACATGCTGACGGCCGTAGCTTGGCCGGCTTCGC 
B1-1	 TC-AAGACATGCTGACGGCCGTAGCTTGACCGG-TTCG- 
B1-2	 TCGAAGACATGCTGACGGCCGTAGTTTAGCCGG-T-CG- 
B2	 TCGAAGACATGCTGACGGCCGTAGTAGAACCGGCTTCGC 
B3	 TCGAAGACATGCTGACGGCCGTAGTAGAAATAACTTCGC 
B3-1	 TCGAAGACATGCTGACGGCCGTAGTAGAAATGG-TTCG- 
B3-2	 TCGAAGACATGCTGACGGCCGTAGTAGAAATAG-T-CG- 
B4	 TCGAAGACATGCTGACGGCCGTAGTAGAACCGA-TTCG- 
B5	 TC-AAGACATGCTGACGGCCGTAGTAGAACCGGTTTTG- 
C52	 TCGAAGACATGCTGACGGCCGTAGTAGAACCGGTCCTAT 
N1	 TC-AAGACATGCTAACGGCCGCGGTAGAACCGGTCCTA- 
N2	 TC-AAGACATGCTGACGGCCGCGGTAGAACCGGTTCCA- 
N3	 TC-AAGACATGCTGACGGCCGCGGCAGGACCGGTTCTG- 
N4	 TC-AAGACATGCTGACGGCCGTGGTAGAACCGGTCCCA- 
N5	 TC-AAGACATGCTAACGGCCGTGGTAGAACCGG-CCTA- 
N6	 TC-AAGACATGCTAACGGCCGTGGTAGAACCGGTTCTA- 
N7	 TCGAAGACATGCTAACGGCCGTAGTAGAACCGGTCCCA- 
N8	 TC-AAGACATGCTGACGGCCGTAGTAGAACCGG-CTCGC 
N9	 TC-AAGACATGCTAACGGCCGTGGC-GAACCGGTTTTG- 
N10	 TC-AAGACATGCTAACGGCCGTGGTAGAACCGGTCTTG- 
N11	 TC-AAGACATGCTGACGGCCGTGGTAGAACCGGTTTTG- 
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Fig. S1. Phylogenomic tree based on 50 O. oeni genome sequences used to define groups of 

genetically related strains. The tree was obtained with ANIm using publicly available genome 

sequences as described in (Campbell-Sills et al, 2015). Groups indicated in red were 

delineated on the basis of genetic distances between strains and named A1 to A6 and B1 to B3 

to conform to group designations employed in (Bilhere et al, 2009).  
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A B S T R A C T

Proton transfer reaction-mass spectrometry (PTR-MS) has successfully been applied to a wide variety of
food matrices, nevertheless the reports about the use of PTR-MS in the analysis of alcoholic beverages
remain anecdotal. Indeed, due to the presence of ethanol in the sample, PTR-MS can only be employed
after dilution of the headspace or at the expense of radical changes in the operational conditions. In the
present research work, PTR-ToF-MS was coupled to a prototype FastGC system allowing for a rapid (90 s)
chromatographic separation of the sample headspace prior to PTR-MS analysis. The system was tested on
red wine: the FastGC step allowed to rule out the effect of ethanol, eluted from the column during the first
8 s, allowing PTR-MS analysis to be carried out without changing the ionization conditions. Eight French
red wines were submitted to analysis and could be separated on the basis of the respective grape variety
and region of origin. In comparison to the results obtained by direct injection, FastGC provided additional
information, thanks to a less drastic dilution of the sample and due to the chromatographic separation of
isomers. This was achieved without increasing duration and complexity of the analysis.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wine is a highly differentiated product, that is evaluated by
consumers and experts -more than for most other foods and
beverages- on a strictly hedonic basis [8]. A paramount role in wine
appreciation is played by the flavor and aroma imparted to the
beverage by its volatiles, whose structure and origin are extremely
diverse: flavor and aroma compounds can be released from non
volatile precursors of grape and oak wood, or they can originate
during fermentation [17,23]. The in-depth characterization of wine
headspace has for the most part been accomplished through gas
chromatographic techniques: in this way libraries of wine
molecules were redacted and are continuously being updated
[9,25]. Alternative analytical approaches are based upon the
employment of direct injection mass spectrometry [2,24], optical
sensors (near and mid-infrared spectroscopy) and electrochemical
sensors (electronic nose, electronic tongue) [21]. These are aimed

at rapid analytical profiling and allow for the discrimination of
wines based upon variety and country of origin, and taste and
aroma prediction.

Proton transfer reaction-mass spectrometry (PTR-MS) coupled
to time of flight (ToF) mass analyzers represents a valid
compromise between the two aforementioned approaches. Being
a direct injection technique, PTR-ToF-MS has a high analytical
throughput whereas mild ionization by means of a pure beam of
hydronium ions and the high mass resolution granted by the ToF
mass analyzer provide cutting-edge sensitivity and mass spectra
with a high informational content [14]. Thanks to these character-
istics, PTR-ToF-MS has been widely employed in discriminating
food samples based upon their origin, with applications on ham
[10], coffee [18], apples [7], and cheese [13].

In spite of the potential interest lying in the application of PTR-
MS to alcoholic beverages, the employment of the technique has
been limited so far, due to the presence of ethanol itself. The
presence of considerable amounts of ethanol in the headspace of
the sample results in consistent depletion of the hydronium ions
and in the generation of complex mass spectra, that contain peaks
deriving from ethanol dimers and trimers, clusters between

* Corresponding author. Tel.: +39 461615189.
E-mail address: andrea.romano@fmach.it (A. Romano).
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ethanol and water, and fragments thereof. In the last analysis, the
presence of ethanol compromises discrimination ability, quantifi-
cation, and spectra interpretation altogether [1,3].

Over the last decade, researchers have implemented differ-
ent strategies in the attempt to overcome the limitations of
PTR-MS in the analysis of alcoholic beverages. The dilution in a
1:10 ratio of the wine headspace in an ethanol-saturated
nitrogen stream allows to employ ethanol and ethanol dimers
as primary ions, but the interpretation of spectra is complicated
by cluster formation [3]. Instead, when the headspace of wines
is diluted with nitrogen alone in a 1:40 ratio the typical
reaction conditions of PTR-MS analysis are restored, at the
expense of a considerable loss in sensitivity [22]. More recently,
French researchers [12] carried out the PTR-MS analysis of
hydro-alcoholic standard solutions in conditions of high
collisional energy, with E/N values as high as 454 Td (1 Td = 10
!17 cm2V!1 s!1). Such conditions allowed to prevent depletion
and allowed to discriminate brandies according to the degree of
aging [11]. The employment of these modified conditions also
resulted in a high degree of fragmentation: this might reduce
the applicability of such an approach to alcoholic beverages with
a more complex composition, such as wine.

Summarizing, all solutions employed so far for the analysis of
alcoholic beverages by PTR-MS allowed to restore discrimination
ability, but this either required the dilution of the sample or
compromised the interpretation of spectra (or both). In the present
work an alternative approach is proposed for wine analysis, based
on the coupling of PTR-ToF-MS to a rapid step of chromatographic
separation (FastGC). FastGC allowed to eliminate the effect of
ethanol and perform PTR-MS analysis without the need to
drastically change the ionization conditions. At the same time
the chromatographic separation provided an additional dimension
to the data without affecting the analytical throughput.

2. Materials and methods

2.1. Built-in FastGC system

We have used a PTR-ToF-MS (PTR-ToF 8000, IONICON Analytik,
Innsbruck, Austria), which already provides separation and
identification of isobaric compounds through its high mass
resolution in real-time. The technique has been described
extensively elsewhere [14]. However, isomers, compounds with
the same exact mass, cannot be separated. With the built-in FastGC
it is now also possible to separate isomeric compounds in fast
spectral runs. In short, in a gas chromatographic (GC) column,
compounds are primarily separated in retention time according to
their boiling point and can be further separated according to their
polarity by choosing a polar column. A coupling of a conventional
GC column with a PTR-ToF has been demonstrated previously [15].
Moreover, also the implementation of a fast GC pre-separation
with a PTR-ToF-MS has already been reported in [20], where the
fast pre-separation had been realized using a multi-capillary
column, which provides spectral runs in a few minutes.

In the present work, we have taken a new approach in order to
facilitate even faster spectral runs. The complete setup, consisting
of a short (3.5 m) nonpolar pure dimethyl polysiloxane GC column
(MXT-1, 0.25 mm ID, 0.25 mm df, from Restek, Bellefonte, PA), a
custom made valve block, a flow controller, and a heating
controller, is built into the PTR-ToF-MS and uses the same sample
inlet (Fig.1). The column is resistively heated by applying a current,
which allows for fast heating rates (>10 "C/s). The low thermal
mass of the heating module also also ensures fast cooling rates
(from 200 "C to 50 "C in less than 20 s). The FastGC mode can be
activated when required while not affecting the normal PTR-ToF
operation otherwise.

2.2. Direct injection and FastGC measurements

During all measurements the ionization conditions in the drift
tube were the following: 100 "C drift tube temperature, 2.30 mbar
drift pressure, 550 V drift voltage. This led to an E/N ratio of 130 Td
(1 Td = 10!17 cm2V!1 s!1). The inlet line consisted of a PEEK
capillary tube (internal diameter 0.40 mm) heated at 100 "C. The
inlet flow was set at 100 sccm. Analysis took place at an acquisition
rate of one spectrum every 900 ms and 90 ms for direct injection
and FastGC, respectively.

The switch between direct injection and FastGC measurement
modes was carried out by means of the custom made valve block
(Fig. 1). The valves are electronically controlled and were used in
the configurations shown in Table 1.

When measuring in direct injection mode a dilution of the
sample in a 1:40 ratio with nitrogen was carried out, by properly
setting the FC N2 controller valve (Fig. 1). The principle of a FastGC-
PTR-ToF cycle is as follows: the sample loop is filled with the gas
sample connected to the PTR-ToF inlet. Upon start of the
measurement, during the Injection time a fraction of the sample
gas in the sample loop is injected into a FastGC column. The sample

Fig. 1. Schematic drawing of a PTR-ToF-MS inlet system with a FastGC setup,
including the additional components valves 1–4, and the flow controller (FC N2).
The valves are depicted in their NO (normally open) state, as they are when FastGC is
disabled.

Table 1
Valve configurations for operation of the FastGC add-on. O = open, as depicted in the
schematics, X = switched.

Mode Valve 1 Valve 2 Valve 3 Valve 4

Real-time measurement O O O O
Loading the sample loop X O O X
Injection into column O X X X
GC measurement X X O X
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is pressed through a short GC column by a constant flow of N2. In
the GC column the compounds experience different retentions and
elute from the column at different times. The column separation
efficiency is influenced by its operating parameters like tempera-
ture, elution gas flow, and pressure and is limited by its length,
coating thickness, and diameter. The compounds eluting from the
column at different times are analyzed by PTR-ToF-MS.

The temperature of the column has a significant influence on
the retention time and can be changed during a GC run. A
configurable heating ramp for the column temperature, allows to
speed up the transit of compounds with a larger retention time by
heating, after faster compounds have already eluted from the
column. The fast heating and cooling rates allow optimizing a
spectral run to less than a minute.

The samples have been introduced into the FastGC-PTR-ToF by
sampling headspace above the sample for a few seconds to
ensure that the sample loop is filled and then conducting the
FastGC measurement cycle described above. The injection time
was set to 2.5 s. The temperature of the FastGC column was left at
the temperature inside the instrument of 35 !C, which was
optimal for the separation of the investigated highly volatile
compounds.

2.3. Wine samples

A 2010 Merlot originating from Trentino (Italy) was employed for
the optimization of instrumental parameters (designated as “test”
sample inTable 2). Eight red wines originating from different regions
of France were employed in a further session of analysis (Table 2).
Physical–chemical properties of the samples were determined
following the international methods for wine and must analysis
published by the International Grape and Wine Organisation (OIV,
http://www.oiv.int/oiv/info/frmethodesinternationalesvin).

2.4. Data analysis

Dead time correction, internal calibration of mass spectral data
and peak extraction were performed according to a procedure
described elsewhere [4,5] using a modified Gaussian peak shape.
Peak intensity in ppbV was estimated using the formula described in
literature [16], using a constant value for the reaction rate constant
coefficient (k = 2.10"9 cm3 s"1). This introduces a systematic error
for the absolute concentration for each compound that is in most
cases below 30% and could be accounted for if the actual rate
constant coefficient is available [6]. Concentrations were calculated
by averaging over 30 and 5 spectra in direct injection and FastGC

mode, respectively. Chromatographic data were processed using in-
house developed scripts written in R programming language (R
foundation for statistical computing, Vienna, Austria).

3. Results and discussion

3.1. FastGC separation allows to eliminate the effect of ethanol

The optimization of instrumental parameters was performed
using a 2010 Merlot red wine from Trentino, Italy (Table 2). Fig. 2
shows the chromatogram obtained for ion peak m/z 117.091 Th,
tentatively assigned to C6 esters, along with the time evolution of
the hydronium ion (monitored by following the 18O isotopologue at
m/z 21.022 Th) and the ethanol dimer (13C isotopologue at m/z
94.094 Th). After injection (at 5.0 s) an abrupt decrease in available
hydronium ions was observed, then the signal underwent an
increase and finally reached a steady state at approximately 90% of
the initial value, roughly 8 s after the beginning of the analysis. The
behavior of ethanol dimers was exactly the opposite: signal
intensity peaked shortly after injection, rapidly decreasing by
two orders of magnitude within the first 8 s and slowly tailing down
throughout the analysis. The same trend was shown by ion peak m/z
48.053 Th, employed to monitor ethanol (not shown). The
chromatogram of ion m/z 117.091 Th showed four distinct peaks
at 7, 12, 15, and 54 s, respectively. The first was probably an artifact,
generated by the rapid switch from ethanol to water chemistry.

In summary, between 5 and 8 s hydronium ions were severely
depleted due to the reaction with the high concentration of
ethanol. In the following phase the hydronium ion signal remained
stable providing normal PTR-MS reaction conditions. In the
following analytical cycles, data acquired between 8 and 90 s
were processed while the first 8 s (i.e. before injection and during
the initial depletion phase) were omitted.

3.2. Chromatographic retention times and peak areas are repeatable

The same Merlot wine was analyzed six times at regular intervals
overoneday.Theinspectionofchromatogramsrevealedthepresence
of 1–4 chromatographic peaks for each mass. Among others, the
spectra contained ion peaks tentatively identified as esters and
displayingfrom5to8carbonatoms.Duetotheimportanceofestersin
the volatile profile of wine [17,19], these were selected to monitor
instrumental performance. Fig. 3 and Table 3 show the

Table 2
Main characteristics of the wines.

Sample Vintage Region Appellation Grape variety Ethanol
(%v/v)

pH

Test 2010 Trentino Trentino Merlot 13.5 3.75
1 2010 Gers AOC Saint

Mont
Tannat 13.1 3.69

13 2009 Gers AOC Saint
Mont

Tannat 15 3.69

14 2009 Gers AOC
Madiran

Tannat 14.5 3.63

19 2011 Languedoc Vin Pays
d’Oc

C. Sauvignon 12.1 3.61

20 2012 Languedoc Vin Pays
d’Oc

C. Sauvignon 13 3.51

2 2012 Gironde AOP
Bordeaux

C. Sauvignon
Merlot

12.7 3.87

7 2012 Gironde AOP
Bordeaux

C. Sauvignon
Merlot

12.8 3.56

26 2011 Gironde Côtes de
Bourg

C. Sauvignon
Merlot

12.6 3.64

Fig. 2. Wine analysis: time evolution of three selected ion peaks (m/z 21.022 Th:
water; m/z 94.094 Th: ethanol dimer; m/z 117.091 Th: C6 ester). The red line at 8.1 s
is arbitrarily set as boundary between ethanol and water chemistry conditions. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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chromatograms and corresponding retention times and peak areas
obtained on the replicate analysis of the same wine. Overall,
coefficients of variation were in the order of 2–3% and 14–30% for
retention times and peak areas, respectively. These results demon-
strated the reliability of FastGC separation coupled to PTR-ToF-MS.

3.3. PTR-ToF-MS allows to discriminate wines according to the grape
variety and region of origin

The applicability of FastGC coupled to PTR-ToF-MS to wine
analysis was tested on eight French red wines originating from
different regions and grape varieties. Each wine was analysed in
triplicate. The samples were relatively heterogeneous in terms of
physical–chemical properties, such as pH, ethanol content
(Table 2), volatile and total acidity, and sulfite content (not
shown). The samples could be grouped according to the
geographical regions of origin, which also corresponded to
different grape varieties (or mixtures thereof, as shown in Table 2).
The eight wines were also analysed by PTR-ToF-MS in the
conventional way (i.e. by direct injection). With the aim to avoid
the analytical problems due to the presence of ethanol, during
direct injection the flows of the inlet system were set in order to
perform a 1:40 dilution of the sample headspace (Section 2).

The analysis by direct injection, after background subtraction,
afforded 79ionpeaksoverall. FastGCanalysisresultedinatotalof135
chromatographicpeaks,correspondingto90masses.Theareasof the
chromatographic peaks were calculated after baseline subtraction.

The datasets obtained in the two analytical modes were
submitted to principal component analysis (PCA). The overall data,
visualized employing the first two principal components (Fig. 4,

top and bottom graphs for direct injection and FastGC, respective-
ly), showed a good repeatability of analytical replicates. Further-
more, when different samples were grouped according to grape
variety it was possible to visualize a good degree of separation. This
is not surprising, given the well-known influence of grape variety
on the volatile profiles of wines [2,24–25].

3.4. FastGC PTR-ToF-MS provides additional insight for wine analysis

The datasets generated in the analysis of the wine samples in
direct injection and FastGC modes were further investigated. The
number of ion peaks were 79 and 90 for direct injection and FastGC,
respectively; the two corresponding peak lists were only partially
overlapping, with 37 peaks found to be common to the two datasets.
In direct injection mode some compounds were possibly not

Fig. 3. Chromatograms obtained on a red wine (six replicates) and four selected
peaks, tentatively attributed to esters.

Table 3
Analytical parameters of the repeated (n = 6) analysis of a Merlot wine. Mean
retention times and areas of four selected ion peaks, tentatively attributed to esters,
are reported.

Ion peaks
(Th)

Retention times
(s)

10.0
(!0.2a)

12.2
(!0.2)

14.8
(!0.2)

19.9
(!0.4)

23.1
(!0.5)

54.9 (!1.5)

Peak areas(ppbV s)
m/z
103.076

158
(!26)

n.a. n.a. 145
(!25)

n.a. n.a.

m/z 117.092 n.a. 453
(!85)

143
(!21)

n.a. n.a. 71 (!18)

m/z 131.109 n.a. n.a. n.a. 201
(!43)

28 (!5) n.a.

m/z 145.128 n.a. n.a. n.a. n.a. n.a. 154
(!47)

a Standard deviation (n = 6); n.a.: non applicable.

Fig. 4. Score plots of the first two dimensions of PCA on the autoscaled mass
spectral data of eight French wines as analyzed by direct injection (top) or after
FastGC separation (bottom). Numbers refer to different wines and labels denote
grape varieties (Cab: Cabernet Sauvignon, C/M: C. Sauvignon/Merlot, Tan: Tannat).
Loadings relative to the ten most abundant ion peaks are represented by means of
arrows.
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detected because of excessive dilution; on the other hand when
FastGC was performed some polar compounds were supposedly lost
in the first part of the analysis (i.e. during or before the switch from
ethanol to water chemistry). The superposition of the two peak lists
generated a database of 132 ion peaks, out of which 112 could be
assigned to a sum formula (Table S1, Supplementary material). Some
peaks that were detected in direct injection mode could be
tentatively assigned to volatile compounds that are known to be
abundant in the headspace of wine: obviously ethanol, but also
methanol (m/z 34.037 Th), acetic acid (m/z 61.028 Th), and ethyl-
acetate (m/z 89.060 Th). Expectedly for ethanol the data showed
some redundancy, including altogether as many as 12 peaks, that
could be tentatively assigned to water clusters, ethanol dimers and
the respective fragments. The perusal of the whole dataset revealed
ion peaks correlated to a wide variety of molecules (i.e. esters,
alcohols, terpenes, carboxylic acids, furans, carbonyls, phenols, and
sulfur compounds). Many of these could be detected by FastGC only.
In other instances the same ion peak was detected in both analytical
modes, but the inspection of the chromatograms indicated that
oftentimes a deeper analytical insight and better performance were
granted by FastGC. This is graphically exemplified by Fig. 5: this
shows chromatograms obtained on ion peak m/z 83.086 Th
corresponding to sum formula C6H11

+, in wine possibly a carbonyl,
ester or alcohol fragment. The data obtained in direct injection
mode (Table S1) show for this mass concentrations of 0.1–0.2 ppbV
and no significant difference among the three grape varieties. The
corresponding chromatograms (Fig. 5) showed the presence of
three chormatographic peaks, with maximum concentrations
ranging from 0.8 to 1.2 ppbV. For two of these peaks significant
differences were present according to the grape variety (Fig. 5,
shaded area). Such a result, which was also confirmed on several
other masses (results not shown), exemplified how the use of
FastGC provided higher sensitivity due to the absence of a dilution
step and allowed for increased discrimination ability thanks to
chromatographic separation.

4. Conclusion

The present work presents for the first time the application of a
novel FastGC system coupled to PTR-ToF-MS. The same analytical

set-up allowed to perform the analysis of wine samples both with
and without chromatographic separation. FastGC, thanks to
reduced separation times, did not compromise the analytical
throughput of PTR-ToF-MS, at the same time extending its
analytical capabilities. The results appear promising in view of
the application of the technique to food analysis. This is of
particular relevance to wine and other alcoholic beverages: the
addition of a fast chromatographic separation step allowed to
eliminate the undesired effect of ethanol, while avoiding the
severe dilution of the sample and preserving the selective and
“soft” ionization conditions typical of PTR-MS.
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ANNEX	6	
 

Genome assembly statistics of all the O. oeni strains analysed during this 
project, calculated with N50 software
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