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TOMMASO JUCKER 1 , JOHN CASPERSEN 2 , 3 , J �ER ÔME CHAVE 4 , C �EC I LE ANT IN 5 , 6 , N ICOLAS

BARB I ER 5 , FRANS BONGERS 7 , M ICHELE DALPONTE 8 , KAR IN Y . VAN EWI JK 9 , DAV ID I .

FORRESTER 1 0 , MATTH IAS HAEN I 3 , S TEVEN I . H IGG INS 1 1 ,

ROBERT J . HOLDAWAY 1 2 , YOSH IKO I IDA 1 3 , CRA IG LOR IMER 1 4 , P ETER L . MARSHALL 1 5 ,

S T �EPHANE MOMO5 , 1 6 , GLENN R . MONCR IE FF 1 7 , P I ERRE PLOTON5 , LOURENS POORTER 7 ,

KASS IM ABD RAHMAN1 8 , M ICHAEL SCHLUND1 9 , BONAVENTURE SONK �E1 6 ,

F RANK J . S TERCK 7 , ANNA T . TRUGMAN2 0 , VLAD IM IR A . USOLTSEV 2 1 ,

MARK C . VANDERWEL 2 2 , P ETER WALDNER 3 , BEATR ICE M . M . WEDEUX 1 ,

CHR I ST IAN WIRTH2 3 , 2 4 , HANNS J €ORG W €OLL 2 5 , MURRAY WOODS 2 6 , WENHUA X IANG 2 7 ,

N IKLAUS E . Z IMMERMANN3 and DAVID A. COOMES1

1Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK, 2Faculty of

Forestry, University of Toronto, 33 Willcocks Street, Toronto, ON M5S 3B3, Canada, 3Swiss Federal Research Institute WSL,

Z€urcherstrasse 111, Birmensdorf 8903, Switzerland, 4Laboratoire Evolution et Diversit�e Biologique, UMR5174, CNRS/Universit�e

Paul Sabatier Bâtiment 4R1, 118 route de Narbonne, Toulouse F-31062, France, 5Institut de Recherche pour le D�eveloppement,

UMR AMAP, Montpellier, France, 6Institut Franc�ais de Pondich�ery, UMIFRE CNRS-MAE 21, Puducherry, India, 7Forest

Ecology and Forest Management Group, Wageningen University, PO Box 47, AA Wageningen 6700, the Netherlands,
8Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach

1, San Michele all’Adige 38010, Italy, 9Department of Geography and Planning, Queen’s University, Kingston, ON, Canada,
10Chair of Silviculture, Faculty of Environment and Natural Resources, Freiburg University, Tennenbacherstr. 4, Freiburg 79108,

Germany, 11Department of Botany, University of Otago, PO Box 56, Dunedin 9016, New Zealand, 12Landcare Research, PO

Box 69040, Lincoln 7640, New Zealand, 13Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto

860-0862, Japan, 14Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA,
15Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada, 16Laboratoire de

Botanique syst�ematique et d’Ecologie, D�epartement des Sciences Biologiques, Ecole Normale Sup�erieure, Universit�e de Yaound�e I,

Yaound�e, Cameroon, 17Fynbos Node, South African Environmental Observation Network (SAEON), Centre for Biodiversity

Conservation, Kirstenbosch Gardens, Private Bag X7, Rhodes Drive, Claremont, Cape Town 7735, South Africa, 18Forest Research

Institute of Malaysia, Kepong 52109, Selangor, Malaysia, 19Department of Earth Observation, Friedrich-Schiller University,

Loebdergraben 32, Jena 07743, Germany, 20Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ

08544, USA, 21Botanical Garden of the Russian Academy of Sciences (Ural branch), Russia and Ural State Forest Engineering

University, Yekaterinburg 620100, Russia, 22Department of Biology, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S

0A2, Canada, 23Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany,
24German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, 25Conservation and Natural

Resources Management, Sommersbergseestr. 291, Bad Aussee A-8990, Austria, 26Ontario Ministry of Natural Resources, North

Bay, ON P1A 4L7, Canada, 27Faculty of Life Science and Technology, Central South University of Forestry and Technology,

Changsha 410004, China

Abstract

Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able

– for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to

make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools

which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees

for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to mea-

sure aboveground biomass. Using this database, we develop general allometric models for estimating both the diame-

ter and aboveground biomass of trees from attributes which can be remotely sensed – specifically height and crown

diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees

and find that a single equation predicts stem diameter from these two variables across the world’s forests. These new
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allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring

programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.

Keywords: aboveground biomass, airborne laser scanning, carbon mapping, crown architecture, height–diameter allometry,

stem diameter distributions
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Introduction

Forests are a key component of the terrestrial carbon

cycle (Beer et al., 2010; Pan et al., 2011), making forest

conservation of critical importance for mitigating cli-

mate change (Agrawal et al., 2011). Yet effectively

managing forests as carbon sinks is predicated on the

assumption that carbon stocks can be quantified with

accuracy across extensive and often remote areas. Tra-

ditionally, forest carbon stocks have been assessed by

measuring the diameter (and sometimes height) of trees

in permanent field plots and then using allometric

equations to estimate biomass (Malhi et al., 2006; Pan

et al., 2011; Anderson-Teixeira et al., 2015). Recently,

however, we have begun to see a move towards remote

sensing as the primary tool for monitoring forest carbon

(Saatchi et al., 2011; Baccini et al., 2012; Avitabile et al.,

2016). Airborne laser scanning (ALS) is particularly

promising in this regard (Asner & Mascaro, 2014; Asner

et al., 2014), allowing the 3D structure of entire forest

landscapes to be reconstructed in detail using high-

frequency laser scanners mounted on airplanes or

unmanned aerial vehicles. Importantly, advances in

both sensor technology and computation mean we are

now able – for the first time – to reliably identify and

measure the crown dimensions of individual trees

using ALS (Yao et al., 2012; Duncanson et al., 2014;

Shendryk et al., 2016), marking a fundamental shift in

the way we census forests. To facilitate this transition,

we aim to develop allometric equations for estimating a

tree’s diameter and aboveground biomass based on

attributes which can be remotely sensed – namely tree

height and crown diameter – enabling airborne imagery

to be fully integrated into existing carbon monitoring

programmes (Fig. 1).

While ALS opens the door to rapidly and accu-

rately measuring the height and crown dimensions of

millions of trees (Duncanson et al., 2015), it also

poses the challenge of how best to use these data to

estimate aboveground biomass. Current allometries

rely on stem diameter as a key input for estimating

biomass (e.g. Chave et al., 2014). But because diame-

ters cannot be measured directly through ALS, new

approaches that have tree height and crown dimen-

sions at their centre are needed. We see two possible

solutions for integrating tree-level ALS data into bio-

mass monitoring programmes: the first is to use tree

height and crown dimensions to predict diameters,

allowing biomass to be estimated using existing allo-

metric equations (Dalponte & Coomes, 2016). The

second is to develop equations that estimate biomass

directly from tree height and crown size, thereby

bypassing diameter altogether.

Approach 1: estimating diameter

Theory based on the mechanical and hydraulic con-

straints to plant growth predicts that tree height (H, in

m) should scale with diameter (D, in cm) following a

power-law relationship with an invariant scaling expo-

nent of 2/3 (H / D2/3; West et al., 1999). This would

suggest that measuring tree height should be sufficient

for estimating diameter. However, growing evidence

indicates that this is unlikely to be the case (Muller-

Landau et al., 2006): not only do H–D allometries vary

considerably among and within species, as well as in

relation to climate and stand structure (Banin et al.,

2012; Lines et al., 2012; Hulshof et al., 2015; Jucker

et al., 2015), but power-law relationships also fail to

adequately capture the asymptotic nature of height

growth (Muller-Landau et al., 2006; Banin et al., 2012;

Feldpausch et al., 2012; Iida et al., 2012; Chave et al.,

2014). Trees typically invest heavily in height growth

when young to escape shaded understories – rapidly

approaching their maximum height – but then con-

tinue to grow in diameter throughout their lives (King,

2005). This makes estimating the diameter of large

trees challenging, as trees of similar height can have

very different diameters – which is problematic given

that large-diameter trees hold most of the biomass (Slik

et al., 2013; Bastin et al., 2015). In this context, informa-

tion on crown size may prove key to accurately esti-

mating a tree’s diameter. While height growth tends to

slow rapidly in large trees, lateral crown expansion

does not, requiring a continued investment in stem

growth on the tree’s part to ensure structural stability

and hydraulic function (Sterck & Bongers, 2001; King

& Clark, 2011; Iida et al., 2012). As a result, crown

width and stem diameter tend to be strongly coupled,

even in large trees (Hemery et al., 2005).
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Approach 2: estimating aboveground biomass

Estimating the diameter of individual trees from remo-

tely sensed data is an appealing prospect: not only

would it provide a way to quantify biomass stocks, but

would also allow other forest attributes of interest to be

reconstructed with ease (e.g. stem diameter distribu-

tions). However, it also presents a challenge from the

point of view of biomass estimation, as biomass allome-

tries typically have diameter as a squared term in the

equation (Zianis et al., 2005; Chave et al., 2014; Choj-

nacky et al., 2014), meaning that even small errors in

diameter predictions can strongly influence the

accuracy of biomass estimates. A better approach may

therefore be to estimate a tree’s aboveground biomass

directly from crown architectural properties which can

be measured from airborne imagery, without the need

to first predict diameter. Specifically, both tree height

(Hunter et al., 2013; Chave et al., 2014) and crown

dimensions (Henry et al., 2010; Goodman et al., 2014;

Ploton et al., 2016) are known to relate strongly to

aboveground biomass, although it remains to be tested

whether they can be used to accurately estimate bio-

mass without needing to also account for stem

diameter.

Fig. 1 Schematic diagram illustrating how airborne laser scanning (ALS) imagery can be integrated into forest inventory programmes.

State-of-the-art algorithms that detect and measure individual tree crowns from ALS point clouds are combined with existing field data

to estimate the diameter and aboveground biomass of remotely sensed trees.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 23, 177–190
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Here we compile a global data set consisting of

108753 trees for which stem diameter, height and crown

diameter have all been measured, including 2395 trees

which have been harvested to measure aboveground

biomass. The data set is representative of the world’s

major tree-dominated biomes and spans a huge gradi-

ent in tree size (Fig. 2). We use these data to develop

allometric equations that enable the precise and unbi-

ased estimation of a tree’s diameter and aboveground

biomass based on its height and horizontal crown

dimensions and use the following questions to guide

our processes: (i) Can a tree’s diameter be estimated

accurately based on its height alone, or do we also need

to account for its crown dimensions? (ii) Can a single

universal equation be used to model diameter, or do

different scaling relationships among forest types, bio-

geographic regions and tree functional types need to be

accommodated for? (iii) Can a tree’s aboveground

Fig. 2 Overview of the allometric database. Panel (a) shows the geographic coverage of the database in relation to the world’s biomes

(map adapted from Olson et al., 2001). Circle size reflects the number of trees measured at each location (on a logarithmic scale).

Panel (b) highlights differences in mean annual precipitation and temperature among forest types. Climate data were obtained from

the WorldClim database (Hijmans et al., 2005), which consists of gridded annual mean values covering the period between 1950 and

2000 (data available from: http://www.worldclim.org/current). In (c) violin plots show the size distribution – in terms of diameter and

aboveground biomass – of trees in the database. The number of records available for each forest type is displayed on the right.
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biomass be estimated directly from its height and

crown diameter, thereby eliminating the need to first

predict its diameter?

Materials and methods

Allometric database

We compiled a global database of trees for which stem diame-

ter (D, in cm), height (H, in m) and crown diameter (CD, in m)

were all measured. Trees were selected for inclusion in the

database based on the following criteria: (i) only trees with

D ≥ 1 cm and H ≥ 1.3 m were considered; (ii) trees from man-

aged plantations and agroforestry systems were excluded; (iii)

trees known or presumed to be severely damaged were

removed (e.g. broken stems or major branches; see Fig. S1);

(iv) only trees whose geographic location was recorded were

retained; and (v) from a taxonomic perspective trees had to, at

a minimum, be identifiable as either angiosperms or gym-

nosperms (note that tree ferns and palms were excluded from

the analysis). Our search yielded a total of 108753 trees which

met the above requirements. For 2395 of these, total oven-dry

aboveground biomass (AGB, in kg) was additionally mea-

sured by harvesting and weighing trees. The database spans a

large range of tree sizes (D: 1.0–293.0 cm; H: 1.3–72.5 m; CD:

0.1–41.0 m; AGB: 0.1–76063.5 kg), captures a wide spectrum of

tree forms and functional types (1492 tree species from 127

families) and covers the major forest types and climatic condi-

tions found in the world’s forests (see Fig. 2 for an overview

of the database). A full list of data sources and associated mea-

surement protocols is provided in Appendix S1 of Supporting

Information. The database is publicly available through fig-

share (https://dx.doi.org/10.6084/m9.figshare.3413539.v1),

with data from the Alberta Permanent Sample Plots (https://

www.agric.gov.ab.ca/app21/forestrypage) and the Interna-

tional Cooperative Programme on Air Pollution Effects on

Forests (http://icp-forests.net/page/data-requests) archived

separately and available upon request through the above

links.

Forest biome classification

Scaling relationships between D, H and CD are strongly influ-

enced by climate (Lines et al., 2012; Hulshof et al., 2015), as

well as varying among species (Poorter et al., 2006) and geo-

graphic regions (Banin et al., 2012). To capture this degree of

variation – which we expect to be of key importance to accu-

rately estimating both D and AGB – each tree in the database

was assigned to one of five biome types based on its geo-

graphic location: boreal forests, temperate coniferous forests,

temperate mixed forests, woodlands and savannas (which

combines temperate and tropical savannas, as well as Mediter-

ranean woodlands) or tropical and subtropical forests (biome

classification follows Olson et al., 2001). In the same way, trees

were also assigned to one of six biogeographic regions: Aus-

tralasia, Afrotropics, Nearctic, Indo-Malaya, Neotropics or

Palearctic. Transitions among forest biomes reflect strong cli-

matic gradients (Whittaker, 1975; Stephenson, 1998; Fig. 2b),

whereas biogeographic realms define regions which share a

common evolutionary history (Udvardy, 1975). Olson et al.’s

(2001) map of the world’s terrestrial ecoregions, which defines

the geographic distribution of the world’s major biome and

biogeographic regions, is available for download from http://

www.worldwildlife.org/publications/terrestrial-ecoregions-

of-the-world.

Approach 1: estimating diameter

Model development. To determine how to most accurately

estimate a tree’s diameter based on its crown architectural

properties, we compared a set of regression models in which

D was expressed as a function of either H, CD or the com-

pound variable H 9 CD (which tests whether both height and

crown size are needed to predict D). We chose to model the

combined effect of H and CD using a compound variable (as

opposed to including the two predictors separately in the

model) to avoid issues with collinearity resulting from the non-

independence of H and CD (Dormann et al., 2013). Further-

more, preliminary analyses revealed that H 9 CD was as good

(if not better) a predictor of D than a model with H and CD as

separate explanatory variables (Table S2).

Typically, allometric equations are derived by fitting a lin-

ear regression directly to raw data (which in most cases have

been log-transformed). Yet this approach will tend to underes-

timate the slope of a bivariate line when the independent vari-

able is measured with error (also known as regression dilution

bias; Fuller, 1987; Warton et al., 2006). In the case of forest

inventory data, this systematic bias is made worse by the

inherently unbalanced size distribution of trees, as small stems

– which vastly outnumber large ones – come to dominate the

signal of the regression (Duncanson et al., 2015). As a solution

to this problem, Duncanson et al. (2015) proposed fitting allo-

metric models to binned data as opposed to raw values.

Because this method reduces tree-level variation in allometric

attributes to a mean value, it has the drawback of inevitably

underestimating the true uncertainty of the model. However,

a preliminary analysis of the data revealed it to be the only

approach able to adequately capture underlying allometric

scaling relationships (see Appendix S2 for a detailed discus-

sion). As a compromise, we therefore chose to adopt Duncan-

son et al.’s (2015) binning method to estimate allometric

relationships, but also develop a framework for robustly quan-

tifying and propagating model uncertainty when working

with binned data (see ‘Model uncertainty and error propagation’

section below).

We calculated the mean H, CD and H 9 CD for each of 50

stem diameter logarithmic bins of constant width (logarithmic

binning was chosen to better capture the right-skewed distri-

bution of D). Linear log–log models were then fit to the binned

data using least-squares regression (as implemented in the R

statistical software; R Core Development Team, 2013):

ln Dð Þ ¼ aþ bln Hð Þ þ e ð1Þ

ln Dð Þ ¼ aþ bln CDð Þ þ e ð2Þ

ln Dð Þ ¼ aþ bln H � CDð Þ þ e ð3Þ
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where a and b are parameters to be estimated from the data

and e is an error term [which is assumed to be normally

distributed, with a mean of zero and a standard deviation r, N
(0, r2).

Models 1–3 can be thought of as global allometric equa-

tions, as they assume that scaling relationships between D, H

and CD are invariant across forest types, biogeographic

regions and tree functional groups (e.g. angiosperms and

gymnosperms). To determine the extent to which regional or

group-specific allometries improve the accuracy of D esti-

mates compared to those of a global model, we used mixed-

effects models to develop two further equations. First, the

relationship between D and the independent variable (e.g. H

9 CD) was allowed to vary among forest types nested within

biogeographic regions (i.e. random intercept and slope

model, where forest type and biogeographic region were trea-

ted as nested random effects). In the second model, the rela-

tionship between D and the independent variable was further

allowed to vary among angiosperm and gymnosperm trees

(i.e. separate a and b estimates were calculated for each func-

tional group/forest type/biogeographic region combination).

Note that to fit these models, the data binning processes was

repeated and separate mean values of H, CD and H 9 CD

were calculated for each combination of functional group,

forest type and biogeographic region.

Generating predictions. Allometric models, such as those

described above, can be used to estimate D for any tree whose

H and CD are known. Using Model 3 as an example, predicted

diameter values (Dpred) are obtained as follows: Dpred = exp[a
+ bln(H 9 CD) + ɛ]. Assuming e is normally distributed [i.e. N

(0, r2)], the mean of expðeÞ can be approximated by exp(r2/2),
where r2 is the mean square error of the regression (Basker-

ville, 1972). An unbiased estimate of D can therefore be calcu-

lated using the following equation:

Dpred ¼ exp½aþ blnðH � CDÞ� � exp½r2=2� ð4Þ

Model validation. To evaluate and compare the predictive

accuracy of the different D models, we: (i) divided the data-

base into a training set (90% of the data) and a validation

set (remaining 10% of the data, used exclusively to evaluate

model performance). Trees assigned to the validation data

set were selected following a size-stratified random sam-

pling approach which aimed to capture the full range of D

in the database; (ii) D models were fit to the training data

set using the binning approach described above; (iii) fitted

equations were used to predict D for all trees in the valida-

tion data set [as outlined in Eqn (4)]; and (iv) the predictive

error of each model was quantified by comparing predicted

and observed D values (Dpred and Dobs, respectively) of

trees in the validation data set (see below for a description

of the model performance metrics used). Steps (i–iv) were

repeated 100 times to avoid the randomization procedure in

step (i) having an undue effect on the model evaluation

process.

For each D model we calculated two measures of average

error: the root mean square error (RMSE, in cm) and the rela-

tive systematic error (or bias, in %).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Dobs �Dpred

� �2
vuut

Bias ¼ 1

N

XN
i¼1

Dobs �Dpred

Dobs

� �
� 100

Additionally, a third model performance statistic was

used to compare the predictive accuracy of the D models

across functional groups (angiosperms and gymnosperms),

forest types and biogeographic regions. Following the

approach of Chave et al. (2014), we calculated the tree-level

coefficient of variation (CV) in D for trees of functional

group i, growing in forest type j and in biogeographic

region k as follows:

CVijk ¼
RMSEijk

1
N

PN
i¼1 Dobsijk

where RMSEijk is the RMSE of trees belonging to functional

group i, growing in forest type j and in biogeographic region

k, whereas the denominator corresponds to the mean observed

D for this same group of trees. Standardizing the RMSE by the

mean D is a necessary step to compare model errors across

functional groups, forest types or biogeographic regions, as

errors in D are strongly dependent on tree size (Colgan et al.,

2013).

Model uncertainty and error propagation. As discussed

previously, while data binning is well suited to estimating

average allometric scaling relationships, it inevitably underes-

timates the true variability in these relationships among indi-

vidual trees. Specifically, the data binning approach will tend

to underestimate r – the residual standard deviation – which

makes quantifying and propagating uncertainty a challenge.

In a linear modelling framework r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðyi�ŷiÞ2
n�2

q
, where n is

the number of observations, yi is the ith observation of the

response variable, and ŷi is the corresponding predicted value

obtained from the model. The reason why data binning gener-

ally underestimates r is that the difference between observed

and predicted values (i.e. the residuals, yi � ŷi) is calculated

not for individual trees, but for mean values obtained by

averaging across multiple trees. However, using an indepen-

dent data set (the 10% of trees set aside for model validation),

we can compare predicted and observed estimates of D

generated for individual trees to get a much more realistic

estimate of the true value of r for a given model (which we

refer to as rv):

rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ln Dobsð Þ � ln Dpred

� �� �2
n� 2

s

Using this simple approach, we were able to generate realistic

estimates of the predictive uncertainty of models fit using the

data binning method (see Fig. S3). To enable users to robustly

propagate uncertainty when using the equations developed

here, we report rv values for all fitted models. Furthermore, in

Appendix S5 we provide R code for replicating the entire

analysis.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 23, 177–190
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Scaling-up from diameter to aboveground biomass.
Approach 1 aims to predict D from crown attributes, with

the idea that D estimates can then be fed into existing bio-

mass equations. To quantify the extent to which replacing

field-measured D values with predicted ones influences the

accuracy of AGB estimates, we used Chave et al.’s (2014)

general biomass equation as a baseline. In Chave et al.

(2014), AGB is expressed as the following function of D, H

and wood density [q, in g cm�3; which we obtained from

the global wood density database of Chave et al. (2009) and

Zanne et al. (2009)]: AGB = 0.0673 9 (D29H9q)0.976 9 exp

[0.3572/2]. Using this equation, we estimated AGB for trees

in the database with a known biomass (i.e. trees that had

been destructively harvested and weighed) using both field-

measured and predicted D values as inputs to the biomass

model. Only trees with D ≥ 5 cm were used for this pur-

pose (n = 1859 trees with field-measured AGB), as trees

smaller that this threshold contribute negligibly to forest

carbon stocks and were not used to calibrate Chave et al.’s

(2014) equation. By comparing observed AGB values with

those predicted using Chave et al.’s (2014) equation, we

were then able to determine whether the underlying D

models described previously can be used to generate accu-

rate biomass estimates. Additionally, this also allowed us to

compare the predictive accuracy of approaches 1 and 2 –
the latter of which aims to estimate AGB directly from H

and CD (see following section).

Approach 2: estimating aboveground biomass

Instead of estimating D first, a better approach to predicting

the biomass of individual trees from crown architectural attri-

butes might be to relate AGB directly to H and CD. To test this,

we used data for trees with measured AGB to explore a num-

ber of alternative models relating AGB to H and/or CD. Pre-

liminary analyses revealed the compound variable H 9 CD to

be a far superior predictor of AGB than either H or CD alone.

We therefore focus on the following log–log regression model

of AGB:

ln AGBð Þ ¼ aþ bln H � CDð Þ þ e ð5Þ

Model development and validation followed the same

steps described for Approach 1. As for previous equations,

the model was fit to binned mean values of H 9 CD (as

opposed to raw data). To allow a comparison with Approach

1, only trees with D ≥ 5 cm were used to develop the model.

We further tested whether modelling angiosperms (n = 1069)

and gymnosperms (n = 790) separately would improve

model accuracy, as these two functional groups differ

strongly in crown architecture (Poorter et al., 2012; Hulshof

et al., 2015) as well as wood density (Chave et al., 2009).

Given the relatively small number of trees with measured

AGB values, we did not explore the extent to which the rela-

tionship between AGB and H 9 CD varies among forest types

or biogeographic regions. The predictive accuracy of Eqn (5)

was compared against that of AGB models which include D

as a predictor (i.e. Approach 1) on the basis of RMSE and

bias.

Results

Approach 1: estimating diameter

Of the candidate models we tested for estimating D,

ones relying on H or CD alone as predictors of D

proved unsuitable. Despite exhibiting relatively low

RMSE (13.7 cm), a height-only model tended to system-

atically overestimate D (bias = 24.7%). This occurred

because D–H relationships were nonlinear on a log–log
scale, as H tended to asymptote in large trees. As a

result, a power-law tended to overestimate D for small

and medium-sized trees, while severely underestimat-

ing that of large ones (Fig. S4). Conversely, a model

with only CD as a predictor of D had higher RMSE

(16.6 cm), but showed lower overall systematic bias

(�4.5%). However, the average bias masks a tendency

of the crown diameter-only model to overestimate D

for large trees, while underpredicting the size of smal-

ler stems (Fig. S4). In contrast to the previous two mod-

els, H 9 CD proved a much better predictor of D

(Fig. 3). The best-fit global D model was

Dpred ¼ 0:557� H � CDð Þ0:809 � exp 0:0562=2
� � ð6Þ

Equation (6) had both lower RMSE (9.7 cm) and

average systematic bias (�1.2%) compared to models

based on H or CD alone. Importantly, the model

showed no evidence of over- or underpredicting D

across a wide range of tree sizes (Fig. 3b). Using the

independent validation data set, we estimated rv [i.e.

the standard deviation of ln(Dobs) – ln(Dpred)] of the

model to be 0.45.

While the global D model presented in Eqn (6) was

able to produce unbiased estimates of D across a wide

range of species, climate zones and tree sizes (Fig. 3),

scaling relationships between D and H 9 CD did vary

among both forest types and functional groups (Fig. 4).

Incorporating these differences in the modelling pro-

cesses further improved the precision of D estimates

(Fig. 5 and Table S2). In particular, accounting for the

different scaling relationships of angiosperms and gym-

nosperms reduced the RMSE of the model to 8.1 cm, the

average CV to 35.8% (from 43.3% in the global Dmodel),

and rv to 0.35 (Table S2). These gains in precision were

especially evident when attempting to predict D for

angiosperm trees in boreal and temperate coniferous for-

ests, which tend to be dominated by gymnosperms

(Fig. 5b). A full list of group-, forest type- and region-

specific D equations is provided in Appendix S4.

Approach 2: estimating aboveground biomass

AGB was strongly related to H 9 CD, with a linear log–
log relationship holding across more than six orders of
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magnitude variation in tree mass (Fig. 6). Scaling rela-

tionships between AGB and H 9 CD varied consistently

among functional groups, with gymnosperms exhibit-

ing higher scaling constants (a = 0.109 vs. 0.016) but

smaller scaling exponents (b = 1.790 vs. 2.013) com-

pared to angiosperm trees (Fig. 6). The best-fit AGB

model which accounted for different scaling relation-

ships among angiosperms and gymnosperms was

AGBpred ¼ ð0:016þ aGÞ � H � CDð Þð2:013þbGÞ

� exp½0:2042=2� ð7Þ
where aG and bG are functional group-dependent

parameters which represent the difference in the

scaling constant a and scaling exponent b between

angiosperm and gymnosperm trees. For gymnosperms,

aG = 0.093 and bG = �0.223, whereas for angiosperms

both parameters are set to zero. The estimated rv of the
model was 0.69.

Comparing approaches 1 and 2

AGB estimates obtained using Chave et al.’s (2014) bio-

mass equation and field-measured D values as inputs

showed a close agreement with observed AGB values

(RMSE = 0.86 Mg; Fig. 7a), but had a tendency to over-

estimate AGB (bias = 27.7%). As expected, replacing

field-measured D values with ones predicted using the

global D model [i.e. Eqn (6), corresponding to

Approach 1] increased the RMSE of the model predic-

tions to 1.78 Mg (Fig. 7b). However, the average sys-

tematic bias in the AGB predictions was little affected

(bias = 30.1%, the overestimation arising from the use

of the biomass function, not the global D model). This

suggests that diameter estimates obtained using the

global D model can be scaled up to biomass without

introducing a systematic bias. In contrast to Approach

1, using Eqn (7) to estimate AGB directly from H 9 CD

(i.e. Approach 2) resulted in substantially lower aver-

age bias in AGB estimates, regardless of tree mass

(bias = �4.3%; Fig. 7c). Furthermore, Approach 2 had

the advantage of reducing the RMSE of the model pre-

dictions to 1.70 Mg.

Discussion

We developed general allometric models for estimating

both the stem diameter and aboveground biomass of

trees based on crown architectural properties which

can be remotely sensed: tree height and crown diame-

ter. Here, we discuss how these allometric models can

be used to integrate remote sensing imagery – particu-

larly ALS data – into forest monitoring programmes,

allowing carbon stocks to be mapped with accuracy

across forest landscapes and shedding light on the

processes which govern the structure and dynamics of

forest ecosystems.

Stem diameter allometries for remote sensing imagery

We found that estimating stem diameter required

accounting for both height and crown size – the lat-

ter of which proved essential for differentiating

between trees of similar height but having substan-

tially different trunk sizes (King, 2005; King & Clark,

2011). Using a simple metric which combines these

two allometric dimensions – H 9 CD – we were able

to derive a global equation for estimating stem

Fig. 3 Goodness of fit for the global diameter model [i.e.

Eqn (6) in the main text], tested on an independent random

sample of the data corresponding to 10% of measured trees

(n = 10875). Panel (a) compares predicted and observed diame-

ter values, with the dashed line corresponding to a 1 : 1 rela-

tionship. The density of overlapping points is represented by a

colour gradient which ranges from blue (low point density) to

red (high point density). Panel (b) reports the mean relative

error (i.e. D = a(H 9 CD)b) for different diameter size classes,

with the bars delimiting the interquartile range (thick lines) and

95% limits (thin lines) of the errors.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 23, 177–190

184 T. JUCKER et al.



diameter which proved robust across a large range

of tree sizes, forest types and tree species (Fig. 3).

Our results highlight how allocation to height growth

and lateral crown expansion are strongly coordinated

in trees (Sterck & Bongers, 2001; King, 2005; Iida

et al., 2012) and illustrate how these developmental

constraints can be exploited for the purposes of esti-

mating stem diameter.

While we did find that a single allometric function

can be used to estimate diameter without introducing

systematic bias, incorporating different scaling relation-

ships among forest types, biogeographic regions and

functional groups into the models helped improve the

predictive accuracy of the allometric equations (Figs 4

and 5; Table S2). Particularly important in this respect

was accounting for differences between angiosperms

and gymnosperms (Fig. 5b). This is not surprising

given the contrasting crown architecture of these two

groups: gymnosperms generally exhibit strong apical

dominance and invest heavily in height growth,

whereas angiosperm trees have a greater ability to

plastically adapt the shape and size of their crown to

suit their competitive environment (Poorter et al., 2012;

Hulshof et al., 2015). These differences in crown archi-

tecture – coupled with clearly distinct leaf biochemical

profiles – also mean that angiosperm and gymnosperm

trees can be easily distinguished using a variety of

remote sensing products (e.g. aerial photographs,

hyperspectral sensors and ALS; Dalponte et al., 2012).

Consequently, we suggest that users select group-speci-

fic diameter equations (which we provide in

Appendix S4) wherever possible, as these can be

employed with little or no need for additional field

data. As our ability to remotely map tree species

improves (e.g. through the development of spectral

libraries derived from hyperspectral sensors; Asner,

2013), it is conceivable that species-specific diameter

equations could also be utilized in the future. Similarly,

other aspects known to influence crown architecture

(e.g. tree packing density; Jucker et al., 2015) could also

be incorporated to further refine the models we

develop here.

Fig. 4 Relationship between stem diameter and the product of tree height and crown diameter (H 9 CD). Panel (a) shows the distribu-

tion – on a logarithmic scale – of the raw data (in grey) and of the mean H 9 CD values in each diameter size class (black circles).

Panel (b) illustrates fitted relationships between diameter and H 9 CD for each forest type separately, while (c) reports the slopes of

these relationships (� 95% confidence intervals) for angiosperms and gymnosperms separately.
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The diameter allometries we develop here open the

door to a more general and robust framework for moni-

toring forest carbon stocks using ALS. Currently, the

standard approach for estimating carbon stocks from

ALS data involves calculating summary statistics from

ALS point clouds for a given pixel of land (e.g. top

canopy height) and relating these to carbon estimates

obtained from permanent field plots in a regression

framework (Asner & Mascaro, 2014; Asner et al., 2014).

Despite recent attempts to generalize this ‘area-based’

approach (e.g. Asner & Mascaro, 2014), most models

for estimating carbon stocks from ALS summary statis-

tics are highly site-specific and can only be applied

with confidence to the particular patch of forest they

were calibrated for. Working at tree-level provides an

intuitive solution to the issue of developing a general

approach for mapping forest carbon stocks and would

allow a direct comparison to field-based aboveground

carbon estimates. This ‘tree-centric’ approach is not

without its limitations, the biggest of which is the

implicit assumption that individual trees can be reliably

identified and measured from ALS point clouds (some-

thing which can be challenging in dense, multilayered

canopies). However, recent years have seen substantial

Fig. 5 Comparison of model performance between the global diameter model [i.e. Eqn (6) in the main text] and (a) a model that allows

scaling relationships to vary among forest types and biogeographic regions, and (b) one where angiosperms and gymnosperms are also

modelled separately. The coefficient of variation (CV) of the absolute errors (�95% range across 100 simulations) is reported for angios-

perms (open symbols) and gymnosperms (closed symbols) according to forest type and biogeographic region. Boxplots along each axis

capture the distribution of the model errors, while the dashed line indicates a 1 : 1 relationship.

Fig. 6 Relationship between aboveground biomass and the pro-

duct of tree height and crown diameter. Gymnosperm (filled cir-

cles; n = 1049) and angiosperm trees (empty circles; n = 1346)

are shown separately. For illustrative purposes, 536 trees with a

stem diameter of <5 cm are also shown.
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progress in this respect, as both ALS instruments and

the algorithms used to delineate trees from ALS data

have improved considerably (Popescu et al., 2003; Yao

et al., 2012; Duncanson et al., 2014; Paris et al., 2016;

Shendryk et al., 2016). For example, Paris et al. (2016)

recently developed a segmentation method which was

able to correctly delineate the crowns of 97% and 77%

of canopy dominant and understorey trees, respec-

tively, as well as accurately measuring the crown

dimensions of all segmented trees. Equally promising

is Shendryk et al.’s (2016) algorithm which segments

trees from the bottom up (mimicking the approach

used to process terrestrial laser scanning data; Calders

et al., 2015). As ALS technology continues to improve,

‘tree-centric’ carbon monitoring programmes are

becoming not only feasible, but oftentimes preferable to

traditional ‘area-based’ approaches (Duncanson et al.,

2015; Dalponte & Coomes, 2016).

Fig. 7 Aboveground biomass (AGB) estimation accuracy. Panels (a–c) show predicted vs. observed AGB values for trees >5 cm in

diameter (n = 1859). In panel (a), AGB was estimated using Chave et al.’s (2014) equation (where AGB is expressed as a function of

diameter, height and wood density). Panel (b) illustrates the predictive accuracy of Chave et al.’s (2014) equation when field-measured

diameters are replaced with ones predicted using the global diameter model (i.e. Approach 1). Panel (c) corresponds to a model in

which AGB is expressed directly as a function of tree height and crown diameter (i.e. Approach 2). For panels (a–c), the dashed line cor-

responds to a 1 : 1 relationship, while the solid line is a regression spline fit to the data points to highlight how predictive accuracy var-

ies with tree size. The RMSE and bias of each set of predictions is reported in the lower right-hand corner. Panel (d) shows the

probability density distribution of the absolute errors (i.e. AGBpred – AGBobs) for each AGB function.
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In addition to mapping carbon stocks, characterizing

the relationships between stem diameter and crown

dimensions also has important implications for advanc-

ing our understanding of forest dynamics. The most

obvious application of the diameter allometries devel-

oped here is for characterizing tree size distributions

from airborne imagery, something which has proved

challenging using traditional ‘area-based’ approaches

(Maltamo & Gobakken, 2014). Tree size distributions

are an emergent property of forest ecosystems – arising

from demographic processes and competition for space

among individual trees (Enquist et al., 2009; Kohyama

et al., 2015) – and are of key interest for understanding

forest dynamics, structure and responses to disturbance

(Coomes et al., 2003; Enquist et al., 2009). Intriguingly,

recent work suggests that scaling relationships between

diameter and crown size govern how trees utilize

canopy space and compete for light, thereby having a

direct influence on tree size distributions (Taubert et al.,

2015; Farrior et al., 2016). ALS data, coupled with allo-

metric equations for converting crown dimensions to

diameter distributions, would allow us to empirically

test this theory across large spatial scales and diverse

forest types. In a similar vein, diameter allometries pro-

vide a simple solution for integrating ALS data into

individual-based models of forest dynamics (e.g. Shu-

gart et al., 2015), allowing these models to be more

easily parameterized and validated.

Estimating aboveground biomass from crown dimensions

Using the subset of trees that were destructively har-

vested and weighed, we showed that AGB was

strongly related to tree height and crown size (Fig. 6).

These results give weight to recent reports which have

highlighted how accounting for crown size can sub-

stantially improve AGB estimation, especially in the

case of large trees where a considerable proportion of

the biomass is stored in large branches (Henry et al.,

2010; Goodman et al., 2014; Ploton et al., 2016). The

strong link between crown dimensions and AGB has

important implications for ‘tree-centric’ carbon map-

ping approaches, as it suggests that AGB can be esti-

mated directly from remotely sensed measurements of

tree height and crown width without needing to first

predict diameter (Fig. 7c). This is particularly appealing

as it reduces the number of steps in the AGB estimation

process (each of which carries a certain degree of error)

and also eliminates the need to select an equation from

the literature for scaling from diameter to AGB.

Our analysis revealed clear differences in the AGB

scaling relationships of angiosperms and gymnosperms

(Fig. 6), presumably reflecting differences in both

crown architecture and wood density among these two

groups (Chave et al., 2009; Poorter et al., 2012; Hulshof

et al., 2015). It may well be that AGB scaling relation-

ships also vary systematically among forest types or

biogeographic regions and that accounting for these

differences could further improve the predictive accu-

racy of the biomass allometries presented here. Unfor-

tunately, the relatively modest sample size of trees with

measured AGB at our disposal meant we were unable

to robustly test these assumptions. Despite recent

efforts to compile comprehensive allometric databases

(e.g. Chave et al., 2014; Falster et al., 2015), the number

of trees with measured AGB remains relatively small,

geographically biased and heavily skewed towards

smaller stems. This is even more so when attempting to

find trees that have been felled and weighed and whose

crown dimensions have also been recorded. Future

studies developing AGB equations should take care to

also record the crown dimensions of harvested trees

(e.g. Henry et al., 2010; Goodman et al., 2014; Ploton

et al., 2016). In this regard, perhaps the most promising

solution for bolstering existing allometric databases is

terrestrial laser scanning, which captures tree architec-

ture in exquisite detail and provides a nondestructive

method for accurately estimating AGB (Calders et al.,

2015). Most importantly, this would provide access to

biomass data for large trees (e.g. ≥10 Mg), which tend

to be disproportionately rare in allometric databases –
including the one we have assembled here (only 2.4%

of measured trees had a mass ≥10 Mg; see Fig. 2c).

Seeing the forest and the trees

Accurate assessments of forest carbon stocks are essen-

tial for initiatives to mitigate climate change – such as

the UN’s programme for reducing emissions from

deforestation and forest degradation (REDD+) – to be

implemented successfully (Agrawal et al., 2011). Yet

monitoring carbon stocks across large and sometimes

remote areas of forest poses a real challenge, particu-

larly in countries where national-scale forest inventory

programmes are not in place. In this context, remote

sensing technologies such as ALS promise to revolu-

tionize the way we census forests (Asner et al., 2014). It

is our hope that the allometric equations developed

here can help us move towards a more general and

robust approach for monitoring forests from the air.
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