
TN-Grid and gene@home project: Volunteer
Computing for Bioinformatics

Francesco Asnicar1, Nadir Sella1, Luca Masera1, Paolo Morettin1, Thomas
Tolio1, Stanislau Semeniuta1, Claudio Moser2, Enrico Blanzieri1, and Valter

Cavecchia3

DISI, University of Trento, Via Sommarive 9, Povo, Trento, Italy
f.asnicar@unitn.it,nadirsella@gmail.com,morettin.paolo@gmail.com,tolio.

thomas@gmail.com,stanislau.semeniuta@unitn.it,enrico.blanzieri@unitn.it

CRI, Fondazione Edmund Mach, S. Michele all’Adige, Italy
claudio.moser@fmach.it

CNR-IMEM, Via alla Cascata 56/C, Povo, Trento, Italy
valter.cavecchia@cnr.it

Abstract. The ability to reconstruct and find genes that belong or are
connected to a gene regulatory network is of essential importance in
biology, in order to understand how the biological processes of an organ-
ism work. The main limitation in performing gene network expansion
is related to the huge amount of computations needed to discover new
candidate genes. Given these premises we decided to adopt the BOINC
platform that allows us to use the very powerful computational resources
of the volunteers. We set up a BOINC server in which we developed
a specific work generator that implements our gene network expansion
algorithm. Furthermore, we developed an ad hoc version of the PC al-
gorithm (PC++) able to run in the BOINC environment, on the client
computers. We present and discuss some statistics and preliminary sci-
entific results of the gene@home BOINC project, the first one hosted by
the TN-Grid infrastructure.

Keywords: Volunteer Computing, BOINC, Bioinformatics, Distributed
Computing, Gene Network Expansion, System Biology, Computational
Biology

1 Introduction

TN-Grid1 has been thought and developed as a service platform, as a way to
give to local research groups, in search of powerful computing infrastructures,
a guided access to the power of the world-wide, volunteers based, distributed
BOINC computing network. The idea was to use TN-Grid for informing people
(researcher, technicians, and students) about BOINC, uncovering its strengths
and weaknesses, discussing about integrating their own algorithms and their
scientific pipelines into the BOINC framework, and eventually to help them

1 http://gene.disi.unitn.it/test/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Fondazione Edmund Mach

https://core.ac.uk/display/153394077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Asnicar et al.

doing this task. Providing access to such a big computational power may also
help scientists to broaden their investigation outlooks, going to areas that would
have been unfeasible to approach without it.

TN-Grid is the result of a joint effort made by two institutions of the Ital-
ian National Research Council (CNR), namely the Institute of Materials for
Electronics and Magnetism (IMEM) and the Institute of Cognitive Sciences and
Technologies (ISTC), both having local branches in Trento, Italy.

TN-Grid is a so-called umbrella project, which means that it is open to host
different scientific projects even belonging to distant scientific areas. The first
scientific project that we hosted is gene@home, that is a collaboration with Ed-
mund Mach Foundation (FEM) and the Department of Information Engineering
and Computer Science (DISI) of the University of Trento. We plan to add other
projects to the system in the near future.

At the time of writing TN-Grid is the only public, BOINC based, active
project in Italy.

2 Gene@home

The gene@home project is the first one hosted by the TN-Grid infrastructure.
The project was born in the fall of 2013 with the collaboration of the students
of the Laboratory of Biological Data Mining course. The gene@home project
is multi-disciplinary that spans different disciplines: Computer Science, Biology,
Statistics, and Data Analysis and can be also defined as a distributed computa-
tional biology project. The final goal is the creation of an automatic system for
performing Gene Network Expansion in such a way that could be easily used by
biologists through a web interface.

As described in the following Section 2.1, network expansion is a complex
task aimed to discover relations among genes involved in a particular biological
process. In our study, the task is performed by the PC-Iterative Method (PC-
IM), using the PC algorithm [14] for inferring causal relations among genes. The
biological species we studied so far are Arabidopsis thaliana and Escherichia coli,
and we expanded 2 different local gene networks for the former and 13 for the
latter.

2.1 Gene Network Expansion

Gene Network Expansion (GNE) is a research topic in Computational Systems
Biology that deals with the discovery of functional dependencies within genes
of a species, and genes that take part in the specific biological process to be
studied. In biological processes, genes can act as enhancers or inhibitors of the
activity of other genes, through a process named Regulation of Gene Expression.
Regulation processes are representated by Biological pathways. Nowadays, we
have an incomplete knowledge about pathways: discovering new genes is hence
important for completing biological pathways, and therefore for gene-specific
medical studies, fostering novel methods for pharmaceutical treatment [3].

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 3

Inputs of the network expansion algorithm are Omics data2. GNE differenti-
ates from the most commonly used Network Inference (NI). NI reconstructs the
complete set of gene interactions without the restriction of finding the ones that
take part in a specific process, but with a not completely satisfying accuracy and
sensitivity when analyzing single biological pathways. Our method for GNE, on
the other hand, improves NI’s results returning a ranked set of genes interacting
with the local gene network of interest.

2.2 PC Algorithm

The PC algorithm [14] is a causal structure discovery method, that can be ap-
plied to find causal relations among variables of a system, when an input quantity
data matrix representing the system entities is available. As scale-free networks,
biological networks are characterized by a power law function on the degree of
the nodes [1], and PC algorithm showed to be a valid method to test causal
relations in sparse networks, as the biological ones [10].

A pseudo-code of the essential part of the PC algorithm is reported in Al-
gorithm 1. At first, the PC algorithm creates a complete graph, assuming that
all the variables are correlated with each other. Nodes of the graph correspond
to data matrix variables, hence genes. Once created the complete graph, the
algorithm tests the direct correlation between each pair of variables, removing
non-correlating edges that do not present a statistically significant correlation,
computed using Pearson’s correlation coefficient. Then, the algortihm starts to
condition all couples of variables Xi, Xj , with i 6= j to all the sets S of neigh-
bors of Xi, such that S ∈ Neigh(Xi) and |S| = l, removing non-correlating
edges when conditioned to the set S. This part is inserted in a loop, where the
cardinality of S, called level l, increases at each cycle, up to |Neigh(Xi)|. This
conditioning cycle is the most computationally expensive part of the algorithm.
The number of sets of n elements, over a set of k elements (k-Subset) is given
by the binomial formula

(
n
k

)
, that gives a factorial complexity to the algorithm.

Because the removal of edges depends on both input data and variables
order (see Section 2.4), it is not possible to know in advance at which level the
algorithm will halt: this means that it is not possible to exactly predict the
execution time. In our experiments, however, it has never taken more than a few
hours run-time on an ordinary laptop.

2.3 PC-IM Algorithm

The PC algorithm is just the core part of the method we used to discover candi-
date genes for expanding a gene regulatory network. The GNE task is performed
by the PC-IM algorithm, which requires as input an already characterized Local

2 Omics refers to many fields in Biology: Genomics, Transcriptomics, Metagenomics,
Proteomics, Metabolomics. Omics aims at the collective characterization and quan-
tification of pools of biological molecules that translate into the structure, function,
and dynamics of an organism or organisms.

4 Asnicar et al.

Data: T, Set of transcripts, E expression data
Input: Significance level α
Result: An undirected graph with causal relationship between transcripts
Graph G← complete undirected graph with nodes in T;
l← −1;
while l < |G| do

l← l + 1;
foreach ∃u, v ∈ G s.t. |AdjG(u) \ {v}| ≥ l do // AdjG(u) adjacent nodes of
u in G

if v ∈ AdjG(u) then
foreach A ⊆ AdjG(u) \ {v} s.t. |A| = l do

if u, v are conditionally independent given A w.r.t. E with
significance level α then

remove edge {u, v} from G;
end

end

end

end

end
return G;

Algorithm 1: PC Algorithm: skeleton procedure [8].

Gene Network (LGN) and gene expression data [4]. The PC-IM algorithm is said
to be iterative because the analysis of the whole set of genes is computed multi-
ple times, a parameter that we refer to as iterations. Each iteration is performed
over a random permutation of the input variables, mitigating in this way the
order-dependency issue of the PC algorithm.

Given a LGN, an observation data set, and the size of the graphs into which
divide the set of genes of the organism, the PC-IM algorithm generates non-
overlapping blocks of extra-LGN genes. To each of these extra blocks, the LGN
genes are added. An additional extra block with partially overlapping genes may
be added in the case that the data set is not a multiple of graph size minus the
number of gene in the LGN. At this point, a single PC algorithm is executed
for each block. This process is repeated for the number of iterations. The final
output of this process is an ordered list of candidate genes found to be connected
with the input LGN.

2.4 PC* Algorithm

The PC algorithm analyzes pairs of variables following the arbitrary order of the
variables, in our case genes or microarray probes. If the variables are permuted,
the output will change because when an edge in the graph is removed, its absence
affects the future conditioning sets. In fact, when the execution removes an edge
with conditioning sets of dimension l, it cuts away some conditional dependency
to check with conditioning sets of the same dimension.

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 5

The PC* algorithm solves the order-dependent problem of the input, post-
poning the edge removal at the end of each loop, just before increasing the size
of the conditioning sets. In more detail, at each level l edges are not removed
from the graph, but instead they are marked as “to remove”. This allows the
algorithm to check a larger space of possible conditional dependencies for a given
size of the conditional set S. Since PC* algorithm checks many more conditions,
its execution time takes much longer than a single PC run. From the tests we
did, PC* returns a subset of the union set of outputs of multiple PCs.

3 BOINC

An execution of PC-IM requires, depending on the parameters, up to thousands
of runs of the PC algorithm on input data of relevant size. This setting is par-
ticularly suitable for a BOINC project, for this reason we decided to implement
the PC-IM method using the BOINC infrastructure [2].

3.1 PC++ Algorithm, BOINC Version

Starting from the R implementation of the PC algorithm, included in the “pcalg”
package [7, 9], we implemented a C++ version of the “skeleton” procedure of
the PC algorithm, since we did not need the final DAG (Direct Aciclic Graph)
estimation phase. We chose C++ because we needed high computational per-
formances.

Our implementation showed an impressive speed-up of 240 in execution time,
and conversly reducing the RAM consumption of about 10 times. We carefully
optimized the most CPU demanding subroutines, i.e. the creation of all the

(
n
k

)
subsets and the evolution of the causal dependency-testing formula, when the
conditioning set is big. To solve these problems, we used more efficient data
structures and switched from recursion to dynamic programming.

3.2 BOINC Server

The BOINC server is the part of the BOINC infrastructure that performs dis-
tribution management, data maintenance and project information visualization.
Our BOINC server is running on a Virtual machine with 2 GB of RAM and
two cores AMD Opteron™ Processor 6276. The basic components included in a
BOINC server are:

– a database server (MySQL);
– the BOINC daemons (to name few of them: scheduler, feeder, work generator,

transitioner, validator, assimilator, and file deleter);
– a web server (Apache).

The MySQL database stores the data related to the BOINC part of the
project (e.g. users, computers, workunits, statistics). We made use of MySQL
also to store the data regarding the dispatch and management of all PC-IM

6 Asnicar et al.

executions. This allows us to keep track of which workunits, input observation
data and relative output files are related to a specific GNE task. Among all the
BOINC daemons, the only one that we modified is the work generator. All the
other daemons that are running on our BOINC server have not been modified.

3.3 Work Generator

The work generator generates the workunits. To easily manage and keep track
of the PC-IM executions, we first designed and implemented a database (we
will refer to it from now on as the gene database) using the already running
MySQL daemon for BOINC. We also use the gene database to manage the input
data, users, notifications, and it will be also the middle layer between the work
generator and the future web-interface where biologists will schedule new PC-IM
executions.

The work generator was implemented using the Python programming lan-
guage, that allowed us a fast and high-level coding. We collected some measures
about the performance of the work generator, such as the single workunit cre-
ation time and the overall workunits creation time necessary to complete a single
PC-IM. Since we did not find any bottlenecks, we decided to not implement the
work generator using more efficient languages. The work generator exploits our
gene database to know and keep track of the work that will be generated or that
has been generated, as well as the possibility to notify the user that submits the
specific PC-IM when it is almost finished.

Since BOINC APIs are accessible only through C++ functions and not
Python scripts directly, we built two simple C++ programs that wrap all the
necessary BOINC functions for the work generator.

Since there is not a direct relation between the execution time of a single
PC and the dimension of the inpu, PC time execution can largely vary. So, it’s
hard for the work generator to exactly estimate a workunit time execution. To
overcome this issue, we are planning to build a complete benchmark machine
that will execute a few instances of PCs, eventually with different parameters,
and use it to estimate the running time of the workunits.

3.4 Post Processing

The processing of the partial results of a PC-IM in order to get the candidate
lists starts in the client application, as soon as a single workunit finishes. Indeed,
since each workunit cannot contain a PC execution of a different PC-IM, we were
able to insert a first partial counting of the arcs found by the PC executions of
that workunit, reducing also in this way the size of the output file that the
volunteers return back to the server.

The gene@home project has two issues that, in general, creates difficulties
related to the BOINC distribution of work. The size of our input data files is
generally in the order of one hundred MBs, and the size of our results averages
a dozen MBs. Thanks to the developers of BOINC we got an update of the

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 7

BOINC server that now implements the distribution and receiving of workunits
and results in a gzip compressed format.

Since a single run of PC-IM can produce a very large number of workunits,
we developed an ad hoc program that is in charge of moving the results of the
workunits of a PC-IM, when all of them are returned. The script that moves the
results exploits the gene database, where for every PC-IM executed by the work
generator, we store the number of workunits that has been produced.

On the server, a validation step of the returned workunits is performed, and
then the canonical result is moved on a dedicate server, that has a large store
capacity. Currently we are using a double validation method, that consists in
sending each workunit to two diverse volunteers in order to be able to validate
the results later. The returned results then must be equal bitwise. Because of
the nature of our project, we have not find a way to internally validate a result
of a single workunit, without requiring the double validation phase.

Externally to the TN-Grid infrastructure, we have a pipeline of Python pro-
grams that complete the processing of the partial results of each PC-IM.

4 Educational and Social Aspects

The gene@home project was born from a conversation between Prof. Enrico
Blanzieri (University of Trento), Dr. Valter Cavecchia (CNR), and Dr. Clau-
dio Moser (FEM). Its realization and running involved students and BOINC
volunteers.

4.1 Gene@home as a Course Project

In the first semester of academic year 2013-2014, the project was proposed to
the students of the Biological Data Mining Laboratory course held in the mas-
ter Computer Science program of the University of Trento. Claudio Moser and
his collaborators at Foundation Edmund Mach provided biological annotated
data and a preliminary version of the method implemented in R. Claudio Moser
also covered the relevant biological topics during the course. The initial ambi-
tious goal set was to systematically expand networks of interest of Arabidopsis
thaliana. The attendance of the course increased steadly and eventually 22 stu-
dents formed four groups devoted respectively to: 1) write the BOINC applica-
tion; 2) manage the BOINC server; 3) preprocess the input data and post-process
the results and 4) take care of communication and of the web site.

Students, now the first five authors of this paper, developed a C++ appli-
cation for directly communicating with the BOINC client through the provided
BOINC API. The executables were built for different operating systems and ar-
chitectures, Windows (both 32 and 64 bit), Linux (both 32 and 64 bit), and Mac
OS X. After having a first version of the server and the client applications, the
students tested the whole system, finally concluding the pre-alpha stage. The
same students continued, in the form of a Research Project the activity in the
second semester and gained extra academic credits.

8 Asnicar et al.

The continuation of the BOINC project was proposed also during the first
semester of the academic year 2014-2015 and one student, Stanislau Semeiuta,
with the CUDA implementation of PC* while others worked on the application
of gene@home to E. coli.

Overall, the class reached almost all the technical goals, with a large part
of the students really engaged and who expressed a positive evaluation of the
course with the exception of a small minority. Introducing BOINC in the teaching
activity involved the students on several topics of distributed systems and it
proved to be a good way of gaining technical and collaborative competences
in a medium-size software project. Moreover, the students shared the general
reasearch goals and many of them worked beyond expectation.

4.2 BOINC Community

We contacted the administrators of the largest Italian BOINC users community
(BOINC.Italy3) announcing the second, alpha phase of our project and asking
them and their users to join us using the BOINC invitation code mechanism.
This procedure implies registering the user on the projects web page before
attaching the client to the project, also passing through CAPTCHA verification.
This will filter the server from spammers and bots, minimizing the burden of
the maintenance tasks.

After some time, some of the most active users in the BOINC world contacted
us asking information about our project. We decided then to send the invitation
code to anyone interested, explicit allowing them to re-distribute the invitation
code to other people, but not to publishing it in public posts. Until today this
rule was fully respected. Some statistics sites, e.g., BOINCstats4 and Free-DC5

also requested permission to collect and manage statistics data from our server.
So, by providing a continuous flow of workunits, we started to see an increasing
number of participants (see Figure 1A).

The computational power provided by the volunteers increased, reaching a
peak of 1.5 gigaflops during December 2014 (see Figure 1B).

However, the credit per day, which is a good estimate of the “instant” power
of the system, is recently (at mid February 2015) decreasing (see Figure 1C).
From this chart, we may also notice that the average power (recent average
credit, averaged over a week period, RAC) is also decreasing. There are many
possible reasons for this:

– Most of the users are power users, that are users which provide high com-
putational power. However, power users also like to frequently switch their
computational power to different projects, pursuing their own interests, chal-
lenges, credit milestones, and badges. At the time of writing we count 175
registered users and 821 registered computers, with an average of 4.7 com-
puters per user, with powerful machines running 24/7;

3 http://www.boincitaly.org
4 http://boincstats.com
5 http://stats.free-dc.org

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 9

Fig. 1: Snapshots were taken on February 10th (source BOINCstats). (A) Total number
of users on gene@home during the last 60 days. (B) Total credit production (cumu-
lative) on gene@home during the last 60 days. The credit trend depicted above is
proportional to the flops values (1 gigaflop machine, running 24 hours a day, produces
200 units of credit in 1 day). (C) Amount of assigned credits per day on gene@home
during the last 60 days.

10 Asnicar et al.

– We were not very informative about the status of our project and also news
were issued rarely, losing our own appeal. Now, we need to keep the interest
high, providing more frequent status updates and general information about
our progresses.

In the forthcoming future, we will move to a new phase, switching to a semi-
public stage, posting the invitation code to the project’s home page. We are
also designing credit badges, that can attract volunteers interested in collecting
achievements.

5 Results

During the execution of the gene@home project we collected two types of data:
statistical data about the performance of the BOINC server and application,
and scientific results obtained after having analyzed the results of the workunits
computed by the volunteers.

5.1 BOINC Results

After running the server for some months, we were able to collect some statistics
about the reliability of the gene@home application, i.e. the ratio between valid
and invalid results. This impacts both the scientific quality and the user expe-
rience of our project. Users really dislike running an application who ends up
producing errors, thus not getting credits for the work done and wasting time
and electric power: they could leave the project.

Statistics are automatically prepared by the BOINC server every day (see
Figure 2), the data are taken as snapshots of the BOINC workunits database.
In the summary Table 1, errors count includes only the computational errors:
compute errors, validated errors, and invalid results. Results returned after the
deadline or aborted by users, or download errors were not considered as errors.

Table 1: BOINC statistics of the gene@home protject taken on four different days
during the year 2014 (reference period: the previous seven days). Total number
of returned results (#Over), successfully computed (Success), validated (Valid),
pending validation (#Initial), and faulty (#Errors).

Date #Over Success (%) Valid (%) #Initial #Errors

22 April 15543 15392 (99.0%) 15340 (98.7%) 19 85
20 May 69536 68621 (98.7%) 67096 (97.7%) 1450 89
16 December 33232 31798 (96.2%) 29525 (88.8%) 2147 38
24 December 91315 89536 (98.1%) 87584 (95.9%) 1716 61

Results presented in Table 1 prove that our application is very reliable, al-
though we still have some validation issues. We are still having, although rarely,

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 11

validation problems (see Figure 2). Computers running the same task may re-
turn different results due to incorrect client software configuration. Otherwise,
the problem could arise from a small bug inside the application checkpoint mech-
anism linked to a stop-and-restart after the very first seconds of running. We
still need to further investigate this issue.

We are distributing executables built for various operating systems and ar-
chitectures; namely Windows (both 32 and 64 bit), Linux (both 32 and 64 bit),
and Mac OSX. We need to build statically linked executable for Linux for users
running very old Linux kernels.

Handling of so-called leftovers. We distribute work in “batches”, i.e. sets
of workunits belonging to the same sub-problem (a single run of a PC-IM).
Sometimes it happens that almost all the workunits of the same set are returned
and very few of them are not processed and waiting for timeouts before being
re-distributed. We would like to find a way to compute this kind of workunits on
a dedicated server in order to reduce the time needed to complete a PC-IM. One
possible solution would be to use BOINC restrict wu to user() mechanism
to send all such workunits to a reliable, dedicated, and active user.

Fig. 2: Summary of the server statistics of the TN-Grid infrastructure running
the gene@home project. Seven days snapshot, taken December 24th, 2014.

5.2 Preliminary Report on the Scientific Results

The experiments in Figure 3 were conducted using the Flower Organ Specifica-
tion Gene Regulatory Network (FOS) of the model plant A. thaliana, composed
of 15 genes connected with 54 edges [6, 13]. The data is composed of gene expres-
sion values available in the PLEXdb database [5] and consists of 393 hybridiza-

12 Asnicar et al.

tions of 22,810 microarray probes6. Plots in Figure 3 represent the trend of the
precision of several PC-IM executions, ran with different values of tile size, and
α = 0.05. The precision is computed by comparison with a manually curated
classification of the probes of A. thaliana. The comparison between the two plots
permits to appreciate the change in precision by varying the iteration parameter
i. The two plots show also, as a comparison reference, the precision computed
on the results of the three major competitors: PC, PC*, and ARACNE [12, 11]
(using the default parameters), the complete scientific results are in the process
of being published.

10 20 30 40 50
Ranking

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

PC-IM tile=50
PC-IM tile=100
PC-IM tile=250
PC-IM tile=500
PC-IM tile=750
PC-IM tile=1000
PC-IM tile=1250
PC-IM tile=1500
PC-IM tile=1750
PC-IM tile=2000
PC*
ARACNE
PC

(a) i = 20

10 20 30 40 50
Ranking

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

PC-IM tile=50
PC-IM tile=100
PC-IM tile=250
PC-IM tile=500
PC-IM tile=750
PC-IM tile=1000
PC-IM tile=1250
PC-IM tile=1500
PC-IM tile=1750
PC-IM tile=2000
PC*
ARACNE
PC

(b) i = 2000

Fig. 3: Precision comparison of A. thaliana on FOS network. PC (average and
variance), PC*, ARACNE, and PC-IMs with different tile size with a fixed α =
0.05. We considered the first 55 genes of the result lists of each experiment and
for each result lists we computed 55 precision values by considering an increasing
list that initially contains the first gene found. All PC-IMs in Figure 3a have a
number of iterations i = 20, in Figure 3b the number of iterations i = 2000.

6 Ongoing Developments

PC-IM performs a lot of computation, and even if our C++ implementation of
the PC algorithm is really fast, we tried to achieve even better performances.
For this reason we tried also solutions exploiting multithreading and Graphics
processing unit (GPU) computing.

6 Probe is a general term for a piece of DNA or RNA that corresponds to a gene or a
sequence of interest that has been labelled by biologists.

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 13

6.1 From Multithreading to GPU Computing

One of the goals is the performance improvement of a single PC run: this would
help the PC-IM to be runnable on standard local machines. We opted for code
parallelization. After some analysis, we concluded that the skeleton procedure
is not trivially parallelizable, due to the edge removal-associated consequences
that require complicated synchronization strategies to create a parallel version
equivalent to the single threaded one. Instead, PC* is trivially parallelizable.

Initially, we introduced multithreaded processing using the Intel Threading
Blocks (TBB) library7 to parallelize PC*. In our implementation, we launch a
number of threads, each taking as input one gene and the separation set size,
that search among all genes for those ones that are conditionally independent
given a size-specific separation set. Once checked all the pairs for one gene, it
goes to the next unprocessed one. As edge removal is postponed, there is no
synchronization between processing parts of threads. The only place that needs
synchronization is the mutually exclusive list of unprocessed genes, whose access
time is negligible with respect to the time to process gene expression data.

Table 2: Time (reported in milliseconds) to process one level of PC*. Columns
marked with CPU report timings of 4-threads execution of the algorithm. Or-
ganisms: At stand for Arabidopsis thaliana and Ec for Escherichia coli, respec-
tively.

CPU GPU CPU GPU CPU GPU CPU GPU
Tile size 1000 1000 2000 2000 100 100 200 200
Organism At At At At Ec Ec Ec Ec
Separation
set size

0 47 5 200 9 <1 <1 <1 <1
1 2940 600 18000 1350 <1 <1 80 3
2 1180 3100 9000 8000 90 40 890 320
3 68 100 600 220 320 100 2950 980
4 10 44 100 90 580 190 5330 1630
5 15 44 15 100 500 220 5515 2380
6 10 44 15 74 490 290 4437 3170
7 10 74 390 390 3690 4975
8 10 74 230 490 2500 6630
9 93 430 1800 8380
10 650 7020
11 230 5840
12 80 3950
13 15 2260

7 https://www.threadingbuildingblocks.org

14 Asnicar et al.

The final implementation produces exactly the same results as the single
threaded PC*, but much faster. In our experiments, we have observed that it
take less time by a factor of T to get the results, where T is a number of processing
threads.

Then we decided to move to GPU computing, choosing to use NVIDIA CUDA
for its better development tools with respect to OpenCL. The algorithm is con-
ceptually the same as the TBB-based, but it has to take into account the need of
transfer data between CPU and GPU memories, the differences in computation
models of GPUs and CPUs, and the fact that single GPU threads are slower
than single CPU ones.

Our NVIDIA GPU-based implementation showed to be coherent with the
previous ones, so we evaluated its pros and cons. The most important timings
are presented in Table 2. It can be seen from both tables that the GPU version
significantly outperforms the CPU one on small sizes of separations sets. As we
were using the parallel implementation of PC* on a 4 core machine, that gives
approximately a speed-up of 50 for separation set size of 0 and 1 with respect
to the initial single core version. We also observe that the performance boost
depends on the nature of data being processed. Table 2 shows that, for this
particular data, it is beneficial to run the GPU version up to a separation set
size of 4-6, while it is not the case with the other data that we have tested.

7 Conclusion

The first project hosted on the TN-Grid infrastructure is gene@home that, in-
volving volunteer computing, implements a gene network expansion algorithm.
We presented our project from different points of view: the technical side in
which we described the implementation and setup of the BOINC platform, the
educational aspect that involved students of the University of Trento, and the so-
cial part that involves the relationship with the BOINC community of volunteers
participating in our project.

We gave some details of the way we setup our BOINC server, the server
software, and the features of the client application that we developed. The
gene@home project started during the Laboratory of Biological Data Mining
course in 2013-2014 at the University of Trento and engaged a group of students
to what is now a long-term project. The social aspect of the participation in the
gene@home project by BOINC users is important, and we discussed in particular
the trend of the points assigned to the volunteers. In fact, gene@home initially
was very attractive thanks also to the novelty of the problem, now we realized
that we need to communicate the results in a steadier way in the near future.

The empirical data on gene@home comprises both statistical results of the
BOINC performance that we obtained during the last year of executions, and
a preliminary report of the scientific result that shows the effectiveness of the
method.

TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 15

8 Acknowledgments

The authors wish to thank Giulia Malacarne and Emanuela Coller of Edmund
Mach Foundation, Daniele Campana, Giulia Corn, Laura Escobar, Ahmed Fad-
hil, Marco Giglio, Davide Giovannini, Bhuvan Hrestha, Erinda Jaupaj, Paolo
Leoni, Laura Malvaso, Trung Nguyen, Quiynh Nguyen, Eko Susilo, Daniele To-
vazzi, Chau Tran, and all the volunteers, in particular the BOINC Italy group.

References

1. R. Albert. Scale-free networks in cell biology. Journal of cell science, 118(21):4947–
4957, 2005.

2. D. P. Anderson. Boinc: A system for public-resource computing and storage. In
Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on,
pages 4–10. IEEE, 2004.

3. R. Arroyo, G. Suñé, A. Zanzoni, M. Duran-Frigola, V. Alcalde, T. H. Stracker,
M. Soler-López, and P. Aloy. Systematic identification of molecular links between
core and candidate genes in breast cancer. Journal of molecular biology, 2015.

4. E. Coller. Analysis of the PC algorithm as a tool for the inference of gene regulatory
networks: evaluation of the performance, modification and application to selected
case studies. PhD thesis, DISI, University of Trento, 4 2013.

5. S. Dash, J. Van Hemert, L. Hong, R. P. Wise, and J. A. Dickerson. PLEXdb:
gene expression resources for plants and plant pathogens. Nucleic Acids Res.,
40(Database issue):D1194–1201, Jan 2012.

6. C. Espinosa-Soto et al. A gene regulatory network model for cell-fate determina-
tion during Arabidopsis thaliana flower development that is robust and recovers
experimental gene expression profiles. Plant Cell, 16(11):2923–2939, Nov 2004.

7. A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning
Research, 13:2409–2464, 2012.

8. M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. J. Mach. Learn. Res., 8:613–636, May 2007.

9. M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann. Causal
inference using graphical models with the R package pcalg. Journal of Statistical
Software, 47(11):1–26, 2012.

10. M. H. Maathuis et al. Predicting causal effects in large-scale systems from obser-
vational data. Nat. Methods, 7(4):247–248, Apr 2010.

11. A. A. Margolin et al. ARACNE: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7
Suppl 1:S7, 2006.

12. A. A. Margolin et al. Reverse engineering cellular networks. Nat Protoc, 1(2):662–
671, 2006.

13. Y. E. Sanchez-Corrales et al. The Arabidopsis thaliana flower organ specification
gene regulatory network determines a robust differentiation process. J. Theor.
Biol., 264(3):971–983, Jun 2010.

14. P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search,
volume 81. MIT press, 2000.

