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Abstract
Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims
at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based
project that finds candidate genes that expand known local gene networks using NESRA. In this paper, we present
NES2RA, a novel approach that extends and improves NESRA by modeling, using a probability vector, the confidence of
the presence of the genes belonging to the local gene network. NES2RA adopts intensive variable-subsetting strategies,
enabled by the computational power provided by gene@home volunteers. In particular, we use the skeleton procedure
of the PC-algorithm to discover candidate causal relationships within each subset of variables. Finally, we use state-of-
the-art aggregators to combine the results into a single ranked candidate genes list. The resulting ranking guides the dis-
covery of unknown relations between genes and a priori known local gene networks. Our experimental results show
that NES2RA outperforms the PC-algorithm and its order-independent PC-stable version, ARACNE, and our previous
approach, NESRA. In this paper we extensively discuss the computational aspects of the NES2RA approach and we also
present and validate expansions performed on the model plant Arabidopsis thaliana and the model bacteria Escherichia
coli.
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1 Introduction

Biological processes are often regulated at the tran-
scriptional level, via gene regulatory networks (GRNs)
(Hasty et al., 2001) comprising regulatory genes, known
as transcription factors, and regulated genes. So far, in
most cases, only a small fraction of the genes involved
in a GRN are known, and usually collected in local
gene networks (LGNs) that are subsets of genes known
to be causally connected. These genes are discovered
through ad hoc experiments testing in vivo the hypoth-
esis that a given gene participates in a specific biological
process. Thus, there is an urgent need to fill this knowl-
edge gap in order to have a better picture of most biolo-
gical processes and translate biology into medical,
biotechnological, and agricultural applications. A
major contribution in this field has come from the new
sequencing technologies, which dramatically increased

the sequence output capacity and equally decreased the
cost per sequenced base.1

Nowadays, we are witnessing an exponential
increase of sequencing data and gene expression data in
public databases. The collection and integration of
these data sets has offered new opportunities and chal-
lenges to the field of computational biology. In particu-
lar, the analysis of the huge amount of available gene
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expression data can lead to the discovery of causal rela-
tionships between the genes of an organism and link
them to a specific biological process. However, to date
these causal relationships are not yet well known, even
when considering the most studied model organisms. It
is very common in biological research, when studying a
particular process, to start taking into account the prior
available knowledge such as the genes participating in
that process. In this scenario, methods that can suggest
new candidate genes, which are potentially playing a
role within a given gene network, are of essential
importance for biologists. In particular, the gene net-
work expansion (GNE) task starts with a LGN of an
organism and can be defined as: given a LGN, find
other candidate genes that regulate or are regulated by
genes belonging to the LGN.

The PC-algorithm (Spirtes and Glymour, 1991) dis-
covers causal relationships among variables by system-
atically testing the conditional independence of two
nodes given subsets of their adjacent nodes. The com-
putational cost of the PC-algorithm is exponential in
the number of nodes, but it behaves reasonably in the
case of sparse, scale-free networks (Maathuis et al.,
2010), like biological networks (Barabási, 2003). The
PC-algorithm has been comprehensively presented and
evaluated by Kalisch and Bühlmann (2007) and applied
to gene network reconstruction (Maathuis et al., 2010).
The PC-algorithm has also been successfully employed
in other network inference approaches (Tan et al.,
2008, 2011; Wang et al., 2010; Zhang et al., 2012). The
results of the PC-algorithm depend on the order of the
nodes in the input file; the order-independent version is
called PC-stable (Colombo and Maathuis, 2012).

At the time of writing, other popular methods for
network inference (NI) are the Bayesian Network
Inference with Java Objects (BANJO (Hartemink,
2005)), network inference by reverse-engineering (NIR
(Gardner et al., 2003)), and the Algorithm for the
Reconstruction of Accurate Cellular Networks
(ARACNE (Margolin et al., 2006a,b)). The last one
has been empirically proved to be the state of the art
NI method (Allen et al., 2012). The available recon-
struction methods applied to genome wide data are
computationally demanding due to the huge size of the
solution space (Kalisch and Bühlmann, 2007).
Moreover, as we will see here, these methods are not
accurate enough to use the results to perform a net-
work expansion (Marbach et al., 2012).

In this paper, we explicitly define the task of finding
candidates for gene network expansion. Then we pro-
pose a method called Network Expansion by Stratified
Subsetting and Ranking Aggregation (NES2RA ) to
solve it. NES2RA generalizes our previous proposal
NESRA (Asnicar et al., 2015a) with the main difference
being that it is now possible to model with a probability
the presence of the genes of the network to be expanded

in the subsets, namely the sampling is stratified. Both
NESRA and NES2RA are based on the PC-algorithm
that we run on our gene@home project (Asnicar et al.,
2015b), developed on the Berkeley Open Infrastructure
for Network Computing (BOINC) platform (Anderson,
2004). We evaluate NES2RA on real data on model
organisms (Arabidopsis thaliana and Escherichia coli),
and compare it against NESRA and ARACNE.

The paper is organized as follows. Section 2 intro-
duces and defines the task accomplished by NES2RA .
Section 3 presents the NES2RA algorithm. Section 4
details the development of NES2RA exploiting the gen-
e@home BOINC project, based on volunteer distribu-
ted computing. Section 5 presents an extensive
evaluation of NES2RA performed on two different
data sets. Finally, Section 6 draws some conclusions
providing future insights for the gene@home project
and the proposed methods.

2 Gene network expansion

In this paper, we consider the task of discovering candi-
date genes for the gene network expansion. We report
here the definition of the task, as already introduced by
Asnicar et al. (2015a). Given a set S of gene transcripts
whose level of expression has been measured p times in
different conditions, such that for each si 2 S there is a
vector xi 2 R

p of expression levels. Let us assume that
there exists a generally unknown ground-truth direct
graph G=(S,B) with B � S3S which represents the
real causal relationships between the gene transcripts.
The discovery of candidate genes for GNE is thus
defined as follows.

Definition 1.Given a graph G=(N ,B) where N � S and
B � N 3N , find a ranked list of elements of SnN such
that the elements of the list are connected or very near to
the elements of N in G.

The choice of facing the gene network expansion
task is motivated by the fact that the biological research
is often guided by incomplete prior knowledge about
the relevance of some genes, in particular biological
processes. Considering the current validation methods
that involve a complex mix of analytical and wet-lab
techniques, the ability to provide a high-quality list of
candidate genes is of essential importance for a biolo-
gist. The NES2RA approach is particularly suitable in
this context, since it introduces the possibility of model-
ing the confidence of biologists about each gene belong-
ing to the LGN.

NI methods can be used to solve the task of finding
candidates for GNE. Indeed, a perfect solution for the
NI task would also perfectly solve the GNE task and
consequently the task of finding candidate genes.
However, the considered NI methods are far from
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perfect and computationally very demanding due to the
enormous size of the solution space. For instance, in
the PC-algorithm the solution space is super-
exponential in the number of nodes (Kalisch and
Buhlmann, 2007). Even the task of finding candidates
for gene network expansion is computationally
demanding. Indeed, there exists jSnN j! possible ranked
expansion lists, where S usually contains thousands of
genes.

3 NES2RA

NES2RA is an improved and generalized version of
NESRA (Asnicar et al., 2015a), which considers as
input data the LGN and the probability of each gene of
the LGN to be included in the subsets, the set of para-
meters to be used, and the gene expression levels for the
considered organisms. The inclusion of the LGN in the
subsetting step improves the quality of the results (as
we will see in Section 5), because the composition of
each subset is influenced by the LGN nodes added. The
vector of probabilities is a representation of the knowl-
edge of the user (e.g. a biologist) about the presence of
specific genes in the network. Probability 1 means that
the gene is definitely in the network, whereas probabil-
ity 0 means that there is no knowledge about the pres-
ence of the gene in the network. Depending on the
probabilities, the genes will be included in the data for
the run of the PC-algorithm. If all the probabilities are
zero NES2RA coincides with its previous version
NESRA (Asnicar et al., 2015a). The high-level structure
of NES2RA is described in Figure 1 and Algorithm 1.

The ranking procedure (RP) presented in Algorithm 2
is composed of three main steps, which respectively: cre-
ate the subsets; execute several calls of the skeleton proce-
dure of the PC-algorithm (Algorithm 3); and compute
the transcripts frequency that defines the order of each
ranking.

The RP takes as parameters the number of iterations
i, the dimension of the subset d, the significance level a
for the skeleton, and the probability vector P for the
genes of the LGN. The output of the skeleton depends
on the order of the inputs. Hence iterating i times its
application mitigates this effect, reaching a more stable
solution. The RP returns a ranked list of k elements

Figure 1. NES2RA workflow.

Algorithm 1. Pseudo-code of NES2RA.

Data: S set of candidate transcripts, SLGN set of LGN
transcripts, E expression data, a vector
P=(p1, . . . ,pl, . . . ,pjSLGNj) of the probabilities of each
gl 2 SLGN to be in the LGN.

Input: I set of number of iterations, D set of the subset
dimensions, A set of the significance levels a, k maximum
length of the candidate gene lists

Result: ordered list of candidate transcripts
L ; //L set of ordered lists
foreach a 2 A do

foreach d 2 D do
foreach i 2 I do

L L[ RP(S, SLGN, E, P, i, d, a) //call Algorithm 2
L top(L, k) //cut each list in L to the first k elements
return Ranking_aggregation(L)

Algorithm 2. NES2RA ranking procedure (RP).

Data: S set of candidate transcripts, SLGN set of LGN
transcripts, E expression data,
P=(p1, . . . ,pl, . . . ,pjSLGNj) probability vector for each
gl 2 SLGN

Input: i � 1 number of iterations, d subset dimension, a
significance level

Result: l, ordered list of candidate transcripts
foreach g 2 S do

pg  0, fg  0
/*Step 1: Subsets creation */
foreach j, 1< j< i do

h 1, Stemp  SnSLGN
while Stemp 6¼ ; do
foreach gl 2 SLGN do

with probability pl: Th, j  Th, j [ fglg
Stemp  Stemp [ (SLGNnTh, j)
while jTh, jj\d do

uniformly random select g 2 Stemp

Th, j  Th, j [ fgg
Stemp  Stempnfgg
pg  pg + 1

if Stemp = ; and jTh, jj\d then
whilejTh, jj\t do

uniformly random select g 2 SnTh, j
Th, j  Th, j [ fgg
pg  pg + 1

h h+ 1
Nj  h

/*Step 2: skeleton */
foreach j, 1< j< i do

foreach h, 1< h<Nj do
Rh, j  skeleton(Th, j, E,a) //Algorithm 3 Asnicar et al.
(2015a)

/*Step 3: Frequency computations */
foreach g 2 S do

foreach q 2 SLGN do
foreach j, 1< j< i do

foreach h, 1< h<Nj do
if g 2 AdjRh, j (q) then
l l [ fgg //adjacent nodes of q in Rh, j
fg  fg + 1

f 0g  fg=(pg � jSLGNj) //Normalized frequency

return l ordered w.r.t. f 0g
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that is partially computed on the gene@home BOINC
project, while the frequencies calculation and the rank-
ings aggregation are executed off-line. The novelty of
NES2RA is in step 1 of the ranking procedure
(Algorithm 2), where we take into consideration
the knowledge of the LGN with its associated
probabilities.

NES2RA systematically and iteratively applies sub-
setting on the whole data set in order to randomly
select genes that will be processed with the skeleton pro-
cedure. The subsetting is controlled by the iterations i
and subset size d parameters. In NES2RA the subset-
ting is stratified, and the genes of the LGN can have an
increased probability of being in the subsets. In fact,
for a given pair of subset size d and iteration i, a first
selection, controlled by the probability vector P, speci-
fies which genes of the LGN are present in the subsets.
The genes of the LGN that are not selected in the first
selection are considered, together with the other candi-
date genes, for a second selection with uniform prob-
ability. Finally, a third selection restricted to the genes
not already present in the current subset, permits com-
pletion of the last subset whenever it is of the desired
dimension d. The overall effect of the vector P (ana-
lyzed in Appendix A) in the algorithm is such that its
lth component pl modulates the probability of the
presence of the lth gene (gl) in the subsets. When
pl = 1 then the gene gl is present in all the subsets. In
the case where pl = 0, the probability is the same of
the other genes. For each pair d, i, NES2RA executes a
number of skeleton procedures, given by equation (2)
(Appendix A). The results of these executions are com-
bined in a single list of genes, ranked by their number
of appearances. The skeleton procedure produces a
graph, providing the causal relationships between
nodes, but not their directions. The PC-algorithm esti-
mates the orientation of the edges after the skeleton
procedure, and the orientation steps do not remove or
add any edge. The execution of the skeleton procedure
indeed produces the most important information that
we want to exploit in NES2RA : the existence of an
edge between two nodes. Such an edge, in fact, repre-
sents the existence of a causal relationship between the
two nodes, even though we do not know its direction.

Finally, NES2RA produces the list of candidate
genes by applying different ranking aggregation meth-
ods on the ranked lists. These methods comprise a base
technique, i.e. the number of appearances, and more
sophisticated methods, namely Borda Count (Borda,
1781) and MC4 heuristic (Lin, 2010). The method we
considered as baseline is the number of appearances,
which counts how many rankings a certain gene has,
i.e. the more a gene is present, the higher its position in
the aggregated rank is. The Borda Count method con-
sists of constructing a matrix A(m, n) with m rows and n
columns, corresponding to the genes and the rankings,

respectively. The element aij is the rank of gene i on
ranking j, and a statistic for each gene is computed on
the rows of the matrix. The two statistics that we used
are the mean (BC-mean) and the minimum (BC-min) of
the elements. The MC4 heuristic is an aggregator based
on Markov chains. It consists of computing the transi-
tion matrix of the pairwise comparison of all the rank-
ings for each gene. A step in the Markov chain assigns
a higher probability to a gene q if rank(q)\rank(p) for
a majority of the lists that ranked both p and q (Dwork
et al., 2001). The steady state of the chain assigns higher
probability to the genes with higher ranks. To avoid a
non-unique stationary distribution, MC4 has as a para-
meter the significance level aMC4, for which we consid-
ered two values: 0.05 and 0.01.

Both NESRA and NES2RA exploit the gene@home
project for computing the first two steps of ranking
procedure.

4 NES2RA on the gene@home BOINC
project

Nowadays, the literature reports several successful
research projects that exploit the power of volunteer
grid computing in order to achieve their goals
(Anderson et al., 2002; Das et al., 2007). BOINC, for
instance, is an open-source framework particularly con-
venient for projects that require a large amount of com-
putation, but do not have access to suitable resources.
NES2RA requires OPC executions (see equation (2) in
Appendix A) that can be easily parallelized. Therefore,
we decided to exploit the gene@home (Asnicar et al.,
2015b) BOINC project, hosted by the TN-Grid plat-
form,2 to distribute the computation of the skeleton
procedure (Step 2 of Algorithm 2).

Every BOINC project is composed of several com-
ponents, such as the work generator and the validator.
The aim of the former is to create the workunits that
will be then distributed to the volunteers, while the lat-
ter validates the results of the finished workunits. The
validator performs a bitwise comparison of two worku-
nits that have been computed by two different
machines. This step is required to ensure the consis-
tency of the results. We designed and developed our
custom work generator using the Python language and
two C++ wrappers to interface the work generator
and the Python scripts with the BOINC framework.
The subsets creation (step 1 of Algorithm 2) is imple-
mented in the work generator. Each workunit corre-
sponds to many runs of the skeleton procedure (step 2
of Algorithm 2), and the duration is estimated in order
to inform the volunteers about execution times, a fun-
damental aspect in any BOINC project.

The core of gene@home is the client application. To
date, it is available for both 32 and 64 bit architectures,
for three operating systems: Linux, Windows, and Mac
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OS X. The original implementation of the skeleton pro-
cedure, present in the pcalg R package (Hauser and
Bühlmann, 2012; Kalisch et al., 2012), is not suitable
for high-performance volunteer-computing projects
due to both its software requirements, i.e. the R inter-
preter and numerous R packages, and its low speed
and high memory consumption. To the best of our
knowledge, no alternative open-source implementation
of the skeleton procedure is available, thus we imple-
mented our C++ version, namely PC++.3 The
PC++ implementation makes use of efficient data
structures and avoids the storing of the separation sets,
which are not needed in NES2RA, to reduce the mem-
ory usage. Moreover, the original recursive computa-
tion of the partial correlation (Proposition 2 (Kalisch
and Bühlmann, 2007)) between the ith and the jth node
given the separation set k has been replaced with an
iterative version based on a dynamic programming
technique (Cormen et al., 2001), shown in Algorithm 4.
This solution reduces the complexity of the computa-
tion from O(3l) to O(l3), where l corresponds to the size
of the separation sets. These optimizations and the pos-
sibility to natively integrate PC++ into the BOINC
client application drastically decreased the computa-
tional time and memory usage.

In Table 1 we report the detailed comparison
between the PC++ and the skeleton procedure of the
pcalg package, conducted on the E. coli data set. From

the results in Table 1 we can appreciate that the
PC++ implementation gained a speed-up of more
than 200 and decreased the memory usage by an order
of magnitude.4 For a fair comparison, we modified the
original skeleton procedure to avoid storing the separa-
tion sets. No data is available for the skeleton on subset
size d= 4065, because it reached the two weeks time
limit we imposed. We estimated the execution time of
skeleton for d= 4065 via a regression analysis on the
other subset sizes, in more than 200 days.

The post-processing phase in NES2RA consists of a
two-step pipeline. The workunits results are firstly com-
bined on the volunteers’ local machines by the client
applications, in order to reduce the size of the data to
be uploaded. Lastly, the partially aggregated results are
aggregated on the server.

5 Evaluation

In this section we report the results of three different
experiments that assess the performance of NES2RA .
The aim of the first experiment is to biologically evalu-
ate the results of NES2RA in comparison with
NESRA, ARACNE, and the PC-algorithm. The sec-
ond experiment has the goal of analyzing the impact of
the probability vector P on the final expansion list.
Finally, we analyze the computational aspects of
NES2RA executed by the gene@home project.

The data set considered in the first experiment is
composed of gene expression hybridizations for the A.
thaliana plant model organism, namely microarray
expression values publicly available in the Plex data-
base (Dash et al., 2012). The data set comprises 393
hybridization experiments of the GeneChip
Arabidopsis ATH1 Genome Array that encompass
22,810 probe sets. The LGN that we used for A. thali-
ana is the Flower Organ Specification Gene Regulatory
Network (FOS). The FOS gene network has been char-
acterized and validated in vivo by the use of specific
mutants (Espinosa-Soto et al., 2004), and is composed
of 15 genes connected by 54 causal relationships

Algorithm 3. Skeleton procedure of the PC-algorithm (Kalisch and Bühlmann, 2007).

Data: T, Set of transcripts, E expression data
Input: Significance level a
Result: An undirected graph with causal relationship between transcripts
Graph G complete undirected graph with nodes in T
l �1
while l\jGj do

l l+ 1
foreach 9u, v 2 G s.t. jAdjG(u)nfvgj � l do //AdjG(u) adjacent nodes of u in G
if v 2 AdjG(u) then

foreach k � AdjG(u)nfvg s.t. jkj= l do
if u, v are conditionally independent given k w.r.t. E with significance level a then
remove edge fu, vg from G

return G

Algorithm 4. Partial correlations function.

Input: i, j analyzed variables, k separation set
Result: ri, jjk
l jkj; M ½i, j, k1, . . . , kl�; d jMj
Initialize the d3d matrix r s.t. r½u�½v�  correlation(M½u�,M½v�)
for n= 1 to l do

for u= 0 to l � n do
for v= u+ 1 to d� n do

r½u�½v�  r½u�½v��r½u�½d�n��r½v�½d�n�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�r2½u�½d�n�)(1�r2½v�½d�n�)
p

return r½0�½1�
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(Sanchez-Corrales et al., 2010). In this case the presence
of the genes in the network is certain and so the vector
P of NES2RA has all its components set to 1.

The second experiment has been conducted on the
bacterial model organism E. coli. The data set contains
4065 genes for 2470 hybridizations and it is publicly
available in the COLOMBOS (Meysman et al., 2014)
database. The LGN considered is a transcription factor
network called gadW collected from the EcoCyc
(Keseler et al., 2013) database. The gadW LGN is com-
posed of 13 nodes connected by 12 edges, and it is
involved in the acid resistance system of E. coli. In this
experiment we compared the results of NES2RA using
two probability vectors: PH and PL. The former has
just the probability of the hub node, the gadW gene is
set to 1 while the probabilities of all other genes are set
to 0. The latter has all the entries set to 1. The same
experimental setup has been used to assess the compu-
tational aspects of NES2RA .

We assessed the biological validity of the results by
performing a bibliographic research, classifying genes
in four different classes, as follows.

Class 1 collects genes reported to be biologically or
functionally related to the genes in the LGN.
Class 2 contains genes not reported to be directly
related with the input network, but reported to be
related to genes of Class 1.
Class 3 comprises all the genes described in the litera-
ture that were reported not to be related with the input
network or with the genes of Class 1.
Class 4 are genes for which no description was found
in the available literature.

When we found a gene belonging to Class 1 or Class
2 we considered it to be a true positive, while a gene fall-
ing in Class 3 or Class 4 was considered a false positive.
The precision of the genes in the candidate output list is

Table 1. Comparison between skeleton and PC++ in terms of running time and memory usage on the E. coli data set using
different subset sizes.

d= 50 d= 100 d= 200 d= 500 d= 4065

skeleton time (s) 86.13 924.96 15470.62 169869.69 timed out
RAM (MB) 95.23 104.83 145.88 200.11

PC++ time (s) 0.36 3.82 69.59 716.88 94525.63
RAM (MB) 5.85 7.85 13.73 35.51 506.75

Table 2. Candidate genes list of the FOS LGN of A. thaliana produced by NES2RA .

Rank AffyID Gene Annotation Class

1 259089_at AT3G04960 Similar to unknown protein Class 1 (Lee et al., 2005)
2 248496_at AT5G50790 ATSWEET10 Class 3 (Chen et al., 2012)
3 265441_at AT2G20870 Cell wall protein precursor Class 1 (Cai et al., 2007)
4 255644_at AT4G00870 Basic helix-loop-helix (bHLH) family protein Class 2 (Hu et al., 2003)
5 261375_at AT1G53160 SPL4 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 4) Class 1 (Lal et al., 2011)
6 249939_at AT5G22430 Similar to unknown protein Class 1 (Zik and Irish, 2003)
7 255448_at AT4G02810 FAF1 (FANTASTIC FOUR 1) Class 1 (Wahl et al., 2010)
8 245842_at AT1G58430 RXF26 Class 1 (Shi et al., 2011)
9 256259_at AT3G12460 DEDDy 3’-5’ exonuclease domain-containing protein Class 4
10 260355_at AT1G69180 CRC (CRABS CLAW) Class 1 (Lee et al., 2005)

Table 3. NES2RA precisions using different aggregation methods.

Method k=5 k=10 k=20 k=55

NES2RA N of appearances 0.57 0.57 0.57 0.51
NES2RA BC-mean 0.80 0.90 0.75 0.51
NES2RA BC-min 0.80 0.88 0.80 0.51
NES2RA MC4 (aMC4 = 0:05) 0.80 0.90 0.75 0.51
NES2RA MC4 (aMC4 = 0:01) 0.80 0.90 0.75 0.51
NESRA BC-mean (Asnicar et al., 2015a) 0:9060:098 0:6560:049 0:6360:038 0:4360:016
ARACNE (Asnicar et al., 2015a) 0.20 0.30 0.35 0.45

Asnicar et al. 385



the ratio between the number of true positives and the
sum of true positives and false positives. Other mea-
sures, like F1 and Recall, can not be computed on real
organisms’ data sets because no complete ground truth
is available. We can only exploit the manually curated
classification that we have performed for the resulting
genes provided by the methods considered.

Table 2 reports an example of the candidate genes
list for the FOS LGN of A. thaliana, produced by
NES2RA . The list has a precision value of 80% and it
has been obtained by aggregating 60 different ranked
lists using the MC4 method with the parameter
aMC4= 0:01. The values considered for this run are:
I = f100, 250, 500, 1000, 1500, 2000g, D= f50, 100,
250, 500, 750, 1000, 1250, 1500, 1750, 2000g, and
A= 0:05f g. The gene AT3G12460, ranked in position
9, is considered as a false positive. However, only a bio-
logical wet-lab validation could rule out if it is actually
involved in the FOS LGN.

Table 3 shows the precision values of NES2RA using
the same set of experiments presented in Table 4 by
Asnicar et al. (2015a). Using the very same set of para-
meters for NES2RA we aggregated only the six rank-
ings that have the same values as in NESRA (Asnicar
et al., 2015a): iterations I = f100, 500, 2000g, subset
dimensions D= f1000, 2000g and A= f0:05g. It is pos-
sible to see that the best performances are obtained
with list lengths of k= 5, 10, and 20. In particular, if
we compare these results of NES2RA with the results
of NESRA (Table 3) we can see that NES2RA has bet-
ter precision when considering longer lists (k= 55).
Moreover, NES2RA proves to have better precision
when compared with ARACNE. NES2RA can be also
compared with the PC-algorithm and the PC-stable
using their precision values reported by Asnicar et al.
(2015a), which are 0:3960:03 and 0.43, respectively. It
can be seen that NES2RA outperforms both the PC-
algorithm and the PC-stable in the task of finding can-
didates for GNE.

Although the PC-algorithm, PC-stable, and
ARACNE are used for a NI task, here we compared
them to a GNE approach. In order to do such a com-
parison, we obtained a pseudo-expansion list by run-
ning each method on the whole data set of A. thaliana.
Their results were then filtered with respect to the FOS
LGN, selecting only the edges connected with at least a
node in the LGN. Then, when possible, the results were
sorted according to the p-value provided by the
methods.

Table 4 reports the results obtained with different
probability vectors to expand the gadW LGN of E. coli
with parameters A= f0:01, 0:05g, D= f100, 200g, and
I = f80, 100, 500, 1000, 1500, 2000g. Here NESRA can
also be interpreted as a special case of NES2RA where
the probability vector P is set to 0 for each gene in the
LGN. Additionally, we analyzed the results of T
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ARACNE on the same data set for the same LGN,
using the same analysis applied by Asnicar et al.
(2015a). Interestingly, both NESRA and NES2RA pro-
duce a higher quality expansion list, in particular, when
considering only the first five genes in the output lists.
We manually curated the classification of the genes
found, and report in bold the genes are classified as
either Class 1 or Class 2, and in italics the ones belong-
ing to either Class 3 or Class 4. It can be noticed that
the injection of prior knowledge in the form of presence
probability in the subsets, positively impacts the final
quality of the expansion list. Indeed, as we can see from
Table 4, the more prior knowledge is used, the more
precise the expansion lists are, reaching up to 90%
precision.

Figure 2 shows the trend of the computational
power expressed by the gene@home project in a time
span of 40 days. BOINC is a volunteer-based distribu-
ted computing system, and the statistics are computed
on the basis of the daily credits generated by the system
and assigned to the volunteers.5 Despite no guarantee
of a continuous influx of computational power, we can
notice that the overall throughput of the system is
always over the 500 GigaFLOPS with an average of
967.41 GigaFLOPS, shown with a dotted line in

Figure 2. This is the result of at least 80 active users
providing more than 400 active hosts.6

Tables 5 to 7 report the BOINC statistics regarding
the experiments conducted on the E. coli data set. The
FLOPs for the workunits have been computed on the
basis of the computation time and the FLOPS of the
hosts machines, determined by BOINC running a
Whetstone benchmark (Curnow and Wichmann, 1976).
In the gene@home project, each workunit is computed
twice in order to be able to validate the results, as
explained in Section 4. Thus, the actual FLOPs required
for a NES2RA experiment would be half of the ones
reported in Table 5. By comparing the average through-
put of gene@home and the FLOPs required for execut-
ing NES2RA we see that, by exploiting the volunteer
computational power, we could execute a NES2RA
experiment in about 2.5 days. The real execution time,
however, may vary depending on several factors, such
as the number of different experiments running at the
same time on gene@home. Moreover, the double vali-
dation required by the gene@home project can increase
the completion time of an experiment. Table 6 reports a
summary of the workunit computational costs for the
experiments conducted on E. coli. Table 7 presents the
details of the computational effort requested by a run

Figure 2. gene@home GigaFLOPS in the timespan of 40 days. The dotted line shows the average.

Table 5. Cumulative BOINC statistics for the E. coli experiments.

#RP runs Workunits Hosts Hosts GigaFLOPS Tot. PetaFLOP

NESRA 24 6424 141 2:7660:65 177.59
NES2RA PH 24 6528 138 2:9860:88 173.57
NES2RA PL 24 7150 151 2:8560:68 156.80

Table 6. Statistics of the workunits computational costs on the E. coli data set.

GigaFLOP per workunit

Min Max Avg 6 SD RSD

NESRA 0.04 186.65 13.67 6 19.03 1.39
NES2RA PH 1.00 134.57 13.21 6 16.90 1.28
NES2RA PL 0.04 228.68 10.86 6 15.17 1.40
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of NES2RA, for each combination of the parameters A,
D, and I. The number of the workunits is OPC 3 i

100

� �
were OPC is computed with equation (2), where the sec-
ond term is zero in this case. The computational effort
requested for each run of the RP function varies within
the same run, as it is apparent to consider the minimum
and the maximum GigaFLOP values. It is also worth
noting that the pair (a, d) determines the computational
cost required by a single PC++ execution.

6 Conclusions

We presented NES2RA, our novel approach for gener-
ating ranked candidate genes lists, which expands
known LGNs starting from gene expression data. It
exploits iterated variable subsetting and ranking aggre-
gation, as our previous proposal NESRA (Asnicar
et al., 2015a), allowing the user to integrate the avail-
able prior knowledge on the network that has to be
expanded. This makes it possible to model the biolo-
gists’ knowledge about the presence of certain genes in
the LGN that is translated into a higher probability of
presence of these genes in the variable subsets gener-
ated. The injection of such prior knowledge shows
encouraging results. NES2RA relies on the computa-
tional power provided by the gene@home BOINC
project, hosted by the TN-Grid platform (Asnicar

et al., 2015b). We exploit the gene@home project for
extensive executions of the PC++ algorithm, while all
the post-processing, ranking, and aggregation analyses
are performed off-line. The parallel nature of our
approach together with the efficient implementation of
the PC-algorithm (namely, PC++), allow us to easily
distribute the computational work using the gene@-
home project. We evaluated the performances of
NES2RA on the FOS LGN of the model plant A. thali-
ana. NES2RA outperforms both ARACNE, which has
been proven to be a state of the art NI method (Allen
et al., 2012), and our previous proposal NESRA
(Asnicar et al., 2015a). The runs on the gadW network
of E. coli confirmed the good results and permitted the
assessment of the computational load of our applica-
tion. Considering the performances of NES2RA, its
ability to scale with respect to the size of the input data,
and the quality of the results, we plan to perform an
extensive evaluation using different types of data that
encompass several organisms, which include the bacter-
ial model organism Escherichia coli and the eukaryote
organism Vitis vinifera.
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Table 7. Detailed BOINC statistics for NES2RA PL on the E. coli data set.

a d i Workunits GigaFLOP per workunit GigaFLOP
per PC++

Min Max Avg 6 SD RSD Sum

0.01 100 80 38 0.66 3.39 2.52 6 0.54 0.21 191.75 0.05
100 47 0.68 5.28 2.65 6 0.63 0.24 248.78 0.05
500 235 0.68 6.11 2.52 6 0.60 0.24 1186.04 0.05
1000 470 0.66 8.41 2.64 6 1.00 0.38 2493.82 0.05
1500 705 0.63 8.67 2.45 6 0.95 0.39 3461.11 0.05
2000 940 0.04 28.07 2.32 6 1.18 0.51 4492.96 0.05

200 80 18 3.17 14.93 11.51 6 2.54 0.22 414.29 0.24
100 22 6.13 18.32 12.05 6 3.00 0.25 530.25 0.24
500 110 3.17 18.13 9.92 6 2.82 0.28 2182.22 0.20
1000 220 3.11 24.72 10.38 6 3.10 0.30 4567.99 0.21
1500 330 2.91 40.92 10.64 6 6.14 0.58 7024.33 0.21
2000 440 1.18 40.47 9.96 6 4.44 0.45 8771.42 0.20

0.05 100 80 38 1.50 11.06 5.65 6 1.39 0.25 429.41 0.11
100 47 1.48 11.16 5.82 6 1.46 0.25 547.30 0.12
500 235 1.49 10.94 4.64 6 1.30 0.28 2180.19 0.09
1000 470 2.01 19.22 5.16 6 1.96 0.38 4863.63 0.10
1500 705 1.40 13.00 4.77 6 1.88 0.39 6719.52 0.10
2000 940 1.44 228.68 4.99 6 5.37 1.08 9403.84 0.10

200 80 18 14.49 115.36 46.83 6 17.49 0.37 1686.03 0.96
100 22 23.18 56.14 40.58 6 9.21 0.23 1785.45 0.81
500 110 12.21 88.43 38.44 6 10.90 0.28 8571.81 0.78
1000 220 12.19 98.01 38.79 6 13.43 0.35 17184.80 0.78
1500 330 12.02 93.27 41.20 6 15.54 0.38 27358.36 0.83
2000 440 5.45 134.84 43.28 6 14.84 0.34 40513.54 0.92
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Notes

1. Wetterstrand KA. DNA sequencing costs: Data from the
NHGRI genome sequencing program (GSP) Available at:
www.genome.gov/sequencingcosts (accessed 28 October
2015).

2. http://gene.disi.unitn.it/test/.
3. Publicly available at https://bitbucket.org/francesco-asni

car/pc-boinc.

4. The experiments were executed on an Intel� Core�
i5-4590 processor at 3.30 GHz, with 8 GB of RAM run-
ning a 64 bit Linux with the 3.19.0-32 kernel.

5. Data available at: http://boincstats.com/it/stats/150/proj
ect/detail/.

6. Data available at: http://boincstats.com/it/stats/150/proj
ect/detail/user and http://boincstats.com/it/stats/150/proj
ect/detail/host.
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Appendix

The overall effect of the probability vector P in
Algorithm 2 is such that the probability of a gene g to
be present in the hth subset of genes Th, i at the ith itera-
tion is given by

P(g 2 Th, i)=

pl +(1� pl)
d�
PjSLGN j

m= 1
pm

jSj�
PjSLGN j

m= 1
pm

, if g= gl 2 SLGN

d�
PjSLGN j

m= 1
pm

jSj�
PjSLGN j

m= 1
pm

, if g 2 SnSLGN

8>>><
>>>:

ð1Þ
where S is the set of candidate genes, SLGN is the set of
genes of the LGN, d with jSLGNj\d� jSj is the subset
dimension, pl is the lth component of P corresponding
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to the probability of the gl gene of the LGN to be
selected in the first selection, and

PjLGNj
m= 1 pm is the

expected number of LGN genes selected after the first
selection. The last subset of each iteration is a special
case: the third selection can intervene for its completion
and the formula above does not hold anymore in a
rigorous way. The exact correction of the fractional term
of equation (1) requires a more detailed analysis that is
beyond the current aim to illustrate the effect of P.

The probability of a gene gl 2 SLGN of being in a
subset is the convex combination of the probability of
being in the subset of a gene that is not in the LGN, con-
trolled by the parameter pl. For a gene gl of the LGN,
if pl = 1 then P(gl 2 Th, i)jpl = 1 = 1 and the lth gene is
present in all the subsets. Alternatively, if pl = 0 then

P(gl 2 Th, i)jpl = 0 =
d �PjSLGNj

m= 1 pm

jSj �PjSLGNj
m= 1 pm

namely the same probability of a gene that is not in the
LGN. The probability of equation (1) can be written as

P(gl 2 Th, i)=pl +(1� pl)P(gl 2 Th, i)jpl = 0)=

=pl(1� P(gl 2 Th, i)jpl = 0)+P(gl 2 Th, i)jpl = 0

Setting pl permits modulation of the probability of
the presence of each gene gl in the subsets. In the case
pl = 0 for all the genes of the LGN the probability
becomes P(g 2 Th, i)= d = jSj for each gene and
NES2RA corresponds to NESRA where the probabil-
ity of presence of the genes of the LGN in the subsets
is the same of the other genes.

The number of executions of the skeleton procedures
(Algorithm 3) that are generated in NES2RA by the
parameter d are

OPC =E # runs at iteration jð Þ=
jSj �PjSLGNj

m= 1 pm

d �PjSLGNj
m= 1 pm

& ’
3P

\
h

Th, jnSLGN 6¼ ;
 !

+

+
jSj �PjSLGNj

m= 1 pm

d �PjSLGNj
m= 1 pm

3P
\
h

Th, jnSLGN= ;
 !

ð2Þ
skeleton executions. Note that this formula is indepen-
dent from the specific iteration j.
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