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Abstract

The spread of tick-borne pathogens represents an important threat to human and animal health in many parts of Eurasia.
Here, we analysed a 9-year time series of Ixodes ricinus ticks feeding on Apodemus flavicollis mice (main reservoir-competent
host for tick-borne encephalitis, TBE) sampled in Trentino (Northern Italy). The tail of the distribution of the number of ticks
per host was fitted by three theoretical distributions: Negative Binomial (NB), Poisson-LogNormal (PoiLN), and Power-Law
(PL). The fit with theoretical distributions indicated that the tail of the tick infestation pattern on mice is better described by
the PL distribution. Moreover, we found that the tail of the distribution significantly changes with seasonal variations in host
abundance. In order to investigate the effect of different tails of tick distribution on the invasion of a non-systemically
transmitted pathogen, we simulated the transmission of a TBE-like virus between susceptible and infective ticks using a
stochastic model. Model simulations indicated different outcomes of disease spreading when considering different
distribution laws of ticks among hosts. Specifically, we found that the epidemic threshold and the prevalence equilibria
obtained in epidemiological simulations with PL distribution are a good approximation of those observed in simulations
feed by the empirical distribution. Moreover, we also found that the epidemic threshold for disease invasion was lower
when considering the seasonal variation of tick aggregation.
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Introduction

Several ecological studies have shown that the distribution of

ticks on their hosts is often highly aggregated, with a large number

of hosts harbouring few parasites and a small number harbouring

a large number of them ([1–5]; other interesting references could

be found in [6]). In addition, the distribution of tick development

stages is coincident, rather than independent [7]. Specifically,

those hosts feeding larval tick stages were simultaneously feeding

the greatest number of nymphs. As a result, about 20% of all hosts

feed 80% of both larvae and nymphs and the number of larvae

feeding alongside nymphs is twice as many as it would be if the

distributions were independent [7,8]. The aggregation of parasites

on hosts bears important implications for vector-borne disease

dynamics, since the small fraction of hosts supporting the bulk of

the vector population is also responsible for the majority of the

pathogen transmission [9].

The transmission of tick-borne diseases is characterised by an

intricate set of ecological and epidemiological relationships

between pathogen, tick vector, vertebrate hosts and humans that

largely determine their temporal and spatial dynamics [10]. Tick-

borne disease dynamics feature several complexities, due to the

presence of a number of heterogeneities in the system coupled with

non-linear phenomena operating in the transmission processes

between ticks, host and pathogen [11]. The transmission of

pathogens from one tick to another, a pre-requisite for the

establishment of cycles of infection, may occur via three different

pathways depending on the pathogen (see [12] for a comprehen-

sive review). First, adult female ticks may transmit the pathogen to

eggs trans-ovarially. Second, ticks may infect a host during their

blood meal, leading to a systemic infection in the host; ticks might

then acquire the infection by feeding on an infected host,

maintaining the infection trans-stadially. Third, ticks may become

infected by co-feeding with infected ticks on the same host. Co-

feeding transmission is also called non-systemic as it does not

require the host to have a systemic infection, since pathogens are

transmitted from one tick to another as they feed in close

proximity. Vertebrate hosts may vary in their competency to
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support systemic and co-feeding transmission [13]. Tick-borne

pathogens differ also for the mechanisms which they use to persist

in nature. For instance, Rickettsia spp., the pathogen agents

causing Rocky Mountain Spotted Fever, are maintained by

systemic and trans-ovarial transmission in Dermacentor variabili
and andersoni [14] while it has been observed that Borrelia
Burgdoferi s.l. spirochaetes persist in nature by taking advantage

of all three routes of transmission in I. ricinus, [13,15].

In the case of the tick-borne encephalitis virus (TBEv), which is

an increasing public health concern in Europe [16–18], trans-

ovarial transmission seems to be relatively rare and its contribution

is generally thought to be negligible [19]. On the other hand, both

systemic and non-systemic transmission can take place on

reservoir-competent rodent hosts. However, due to the very short

duration of the TBEv infection in rodents, [20], the systemic route

would only allow infection of a very limited number of ticks.

Indeed, non-systemic transmission through co-feeding ticks is a

more efficient transmission route for TBE [8,20]. Different studies

have shown that TBEv would not become established in

competent hosts, such as rodents, without the amplification of

the overall transmission efficiency provided by co-feeding trans-

mission (see for instance [20–23]). The aggregation pattern of ticks

on hosts therefore plays a more important role in the transmission

of TBEv than in other tick-borne pathogens, such as Borrelia
burgdorferi sensu lato and Anaplasma phagocytophilum, where

other efficient routes of transmission have been observed.

Tick aggregation on hosts and correlation of tick stages facilitate

co-feeding transmission and thus significantly increase the basic

reproductive number, R0, of the pathogen, with direct implica-

tions for its persistence [23,24]. Using different levels of

aggregation (from independent to coincident aggregated distribu-

tion), Harrison and collaborators [23] showed that values of R0

increase with progressive levels of aggregation, making it more

likely for tick-borne pathogens to become established and persist.

In addition, the authors of the cited works evinced that when ticks

followed a coincident aggregated distribution, the increase of R0

was greater than in the case of independent aggregated

distributions.

The degree of aggregation of ticks can be measured in a number

of ways. Since the appearance of influential works by Randolph

[25] and Shaw et al. ([6] and [26]) the negative binomial (NB)

distribution has been extensively used to describe tick aggregation

on hosts (see e.g. [23,27,28]). Alternatively, other works suggested

that different distributions characterised by larger tails than NB

(i.e., predicting more rodents with very large tick burden than

expected with NB), can be effective in describing tick aggregations.

Specifically, a Poisson-LogNormal (PoiLN) mixed model has been

successfully used to describe tick distribution on red grouse chicks

[29], while Bisanzio and collaborators [30] showed the first

evidence that the distribution heterogeneity of ticks on hosts

seemed to be better described by a power-law (PL) than a negative

binomial distribution. A suitable description of the distribution tail

might have important consequences on the dynamics of the

pathogen spreading process. Modelling the spread of vector-borne

diseases through bipartite networks [30] showed that the extreme

aggregation of ticks on hosts has dramatic consequences on the

behaviour of the epidemic threshold.

In the current study we used an extensive data set of Ixodes
ricinus ticks feeding on mice (a total of 4722 parasitised hosts

collected in 9 years) to detect the best fit for the distribution of tick

burden on mice by testing the performance of NB and PoiLN

versus PL distribution, with particular interest in the shape of the

distribution tail which is crucial to suitably describe the fraction of

co-feeding ticks necessary for TBEv transmission. Then, we used a

stochastic model to simulate the effect of fitting different tick

distributions on the infection dynamics of a tick-borne pathogen.

Specifically, we investigated the spread of a non-systemically

transmitted pathogen (e.g. TBEv) by modelling the pathogen

transmission between susceptible and infective ticks, considering

only co-feeding transmission and distributing ticks on mice under

the hypotheses of NB, PoiLN, and PL distributions. Finally, we

investigated the seasonal variations in the pattern of tick burden

distribution on mice and its implication on TBE-like infection

dynamics.

Materials and Methods

Ethics Statement
All animal handling procedures and ethical issues were

approved by the Provincial Wildlife Management Committee

(renewed authorisation n. 595 issued on 04.05.2011)

Tick Burden Data
Rodent tick burden data was collected by trapping mice using

capture-marking-recapture techniques during 2000–2008. The

study area was a mixed broadleaf woodland [7,21], located in

Valle dei Laghi within the Autonomous Province of Trento, in the

north-eastern Italian Alps (grid reference 1652050E 5093750N,

altitude 750–800 m a.s.l.). In the year 2000, mice were monitored

in nine selected areas through placement of 868 trapping grids

with a 15-m inter-trap interval. In 2001 and 2002 the number of

trapping grids was reduced to eight, while from 2003 onward their

number was further reduced to four.

In summary, the trapping effort consisted of 129 twice-daily

trap sessions with at least one capture, resulting in a total number

of 4722 Apodemus flavicollis captured with at least one tick

attached. For each captured rodent the number and life stage of

feeding ticks was carefully assessed and registered, without removal

[7,21]. A total number of 55411 ticks were counted of which

98:64% were larvae, 1:30% were nymphs, and 0:04% were adults.

The number of ticks [nymphs] per rodent was between 1 [0] and

111 [15] with a median number of ticks per rodent equals to 8.

Author Summary

Our work analyses a 9-year time series of tick co-feeding
patterns on Yellow-necked mice. Our data shows a strong
heterogeneity, where most mice are parasitised by a small
number of ticks while few host a much larger number. We
describe the number of ticks per host by the commonly
used Negative Binomial model, by the Poisson-LogNormal
model, and we propose the Power Law model as an
alternative. In our data, the last model seems to better
describe the strong heterogeneity. In order to understand
the epidemiological consequences, we use a computa-
tional model to reproduce a peculiar way of transmission,
observed in some cases in nature, where uninfected ticks
acquire an infection by feeding on a host where infected
ticks are present, without any remarkable epidemiological
involvement of the host itself. In particular, we are
interested in determining the conditions leading to
pathogen spread. We observe that the effective transmis-
sion of this infection in nature is highly dependent on the
capability of the implemented model to describe the tick
burden. In addition, we also consider seasonal changes in
tick aggregation on mice, showing its influence on the
spread of the infection.

Pattern of Tick Aggregation on Mice
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Detailed data, on a yearly scale, are reported in Table 1, while the

fraction of nymphs observed in different year and grids is reported

in Table 2. In Figure 1 the number of captured Apodemus
flavicollis per trapping session is shown for the whole nine year

period and for different grids (from A to I).

Data Analysis
Tick burden distribution. Ticks patterns have usually been

described as highly aggregated. Therefore, since the seminal works

by Crofton [2], Plowright et al. [3], and those by Anderson and

May [4] and [5], the negative binomial (NB) probability

distribution,

q(k)~
kzr{1

k

� �
(1{p)rpk, k~0,1,2, . . . ð1Þ

has been considered suitable for describing macroparasite

distribution on hosts. Here we used a maximum-likelihood-

estimation (MLE) method to estimate the parameters p and r of

the probability distribution of the tick burden on the entire

dataset obtained by aggregating capture sessions and grids. In

addition, we considered subsets of the original dataset composed

by mice with large numbers of feeding ticks to evaluate the

capability of the NB distribution to fit the tail of the parasite

distribution. In particular, we estimated the parameters of the NB

distribution on data characterised by k§kmin, where kmin

represents the threshold value of ticks per host above which the

distribution is fitted. To evaluate the performance of the obtained

fits we used Kolmogorov-Smirnov (KS) statistics. The goodness of

each fit (GOF) was also evaluated through a bootstrap resampling

procedure, generating 103 synthetic data sets. The obtained p-

value is defined as the relative number of times that the KS

statistic of the fitted distributions on synthetic data exceeds that

measured on real data. Therefore, the larger the p-value, the

lower our confidence in rejecting the fit. We considered the

conservative value 0:1 as our threshold value, as suggested by

Clauset and collaborators [31].

As a first alternative to the NB distribution, we considered a

power-law probability distribution (PL), in its discrete version

q(k)~Ak{a, k~kmin, kminz1, kminz2, . . . ð2Þ

since it may represent a good candidate to describe the tail of the

distribution [30]. We recall that A{1~
X?

n~0

1

kminznð Þa repre-

sents the normalising factor of the probability distribution [31]. To

estimate the scaling parameter a of the distribution in such a way

that the PL fits the data for k§kmin, we followed the algorithm

proposed by Clauset et al. [31]. In short, the fitting procedure

provides the best estimate for the parameters kmin (called kPL
min) and

a by means of MLE and minimisation of KS statistics.

Furthermore, bootstrap techniques were used to assess parameter

standard deviations (std). We generated synthetic data and

obtained a p-value through KS statistics to indicate the goodness

of the fit, as for the NB distribution [31].

Another aggregated distribution used for describe pattern of

macroparasites [29] is the Poisson-LogNormal (PoiLN) distribution,

q(k)~
2psð Þ{

1
2

k!

ð?
0

lk{1e{le
{ log(l{m)2ð Þ

2s dl, k~0,1,2, . . .ð3Þ

firstly introduced by Bulmer [32] and used in several fields for its

capability in describing aggregated data, e.g. [33–35]. As for the NB

distribution, we used a MLE method to estimate parameters m and s
on the entire data set. Uncertainty on the parameter estimation was

assessed by bootstrap techniques. Moreover, in line with analysis

performed for the NB distribution, we also explored the capability of

the PoiLN distribution to describe a tick burden larger than a

certain threshold kmin by coupling KS statistics and bootstrap

procedures.

Table 1. Basic descriptive statistics for empirical data.

2000 2001 2002 2003 2004 2005 2006 2007 2008

# of grids 9 8 8 4 4 4 4 4 4

# of sessions 16 15 15 13 10 15 15 16 14

# of mice 1207 356 434 137 187 854 327 897 323

sum of feeding ticks 14376 7073 6550 2426 3063 7361 4077 5821 4685

median of ticks per rodent 9 14 11 14 11 6 8 4 10

ranges of ticks per rodent (1,103) (1,102) (1,78) (3,88) (1,95) (1,111) (1,93) (1,85) (1,77)

nymphs fraction 0:5% 2:2% 2:7% 1:1% 3:0% 0:8% 2:0% 0:7% 1:0%

Number of trapping grids, trapping sessions, total number of A. flavicollis captures for different years, sum of feeding ticks, median and ranges of the number of ticks
per rodent, and mean number of nymphs fraction among feeding ticks.
doi:10.1371/journal.pcbi.1003931.t001

Table 2. Nymphs to total ticks ratio for observed feeding
ticks on mice.

2000 2001 2002 2003 2004 2005 2006 2007 2008

A 1:1 1:0 4:0 0:3 2:0 1:1 1:8 0:6 1:6

B 0:5 1:6 0:7 1:0 4:6 0:6 1:8 0:7 0:1

C 0:4 1:2 2:8 1:3 1:7 0:4 3:1 1:2 1:4

D 0:2 1:8 3:6 1:0 3:9 0:9 1:4 0:5 0:5

E 0:4 4:4 1:6 - - - - - -

F 0:9 2:8 2:2 - - - - - -

G 0:3 - - - - - - - -

H 1:1 1:5 3:0 - - - - - -

I 0:7 10:4 3:3 - - - - - -

Percentage of feeding nymphs on the total feeding ticks observed on mice in
different years (2000–2008) and grids (A-I).
doi:10.1371/journal.pcbi.1003931.t002

Pattern of Tick Aggregation on Mice
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Finally, we compared the PL hypothesis in fitting the tail of the

real data distribution with the two alternatives NB and PoiLN by a

log-likelihood ratio (LLR) test for different values of kmin. In

particular, since the distribution models are non-nested, we used

the method proposed by Vuong [36] to understand whether the

sign of such test was statistically significant or not.

Beyond the estimate of the ticks-per-host distribution, we also

investigated how the tick burden distributions vary over time and

whether a significant difference was observed when different time

periods were considered. In particular, we investigated the tick

aggregation patterns during periods characterised by low and high

A. flavicollis abundance. To achieve this goal we smoothed the

time series of captured mice with a quadratic polynomial curve.

The parabola describing the mice abudance in a specific year and

grid was normalised between 0 and 1 before isolating the time

window where this normalised parabola was higher than a

threshold value h [ ½0,1�, thus identifying the peak time of mice

abundance, as reported in Figure 2. The distribution of ticks

feeding on mice has been evaluated and compared considering in-

and out-of-peak time periods for different values of h. We

calculated the KS statistic between the in- (high abundance) and

out-of- (low abundance) peak time distributions of tick burden, and

we then compared the value observed in real data to a

bootstrapped data set in order to establish whether this measure

was statistically significant. For this purpose we generated 105

synthetic in-and out-of- peak samples having the same size as the

observed ones. As a test of soundness, we then calculated the

fraction of the KS statistic that is larger in synthetic data than on

real data.

Larval and nymphal aggregations patterns on mice. A

necessary condition for an effective non-systemic transmission of a

pathogen is the coincidence of the larval and nymphal aggregation

distributions on hosts [8]. Therefore, our first step was to examine

the association between the number of larvae and that of nymphs

on each host using Spearman’s rank-correlation coefficient [37]. In

particular, we preferred a non-parametric method rather than the

more commonly used Pearson’s correlation coefficient since tick

distributions are aggregated (i.e. deviate from normal distribution)

and we were more interested in any monotonic relations of our

variables than in the linear relation depicted by the Pearson’s

coefficient. More in detail, a positive [negative] Spearman’s

coefficient would indicate that an increase in the number of

nymphs per mouse is associated with an increase [decrease] of the

number of larvae per mouse. Therefore, a positive Spearman’s

correlation coefficient could be interpreted as an indicator of the

coincidence of the distributions, a zero coefficient could suggest

the independence of the two distributions, and a negative

coefficient, an uncommon result, would be an indicator of having

two unimodal distributions with two asynchronous peaks. More-

over, to evaluate the significance of Spearman’s coefficient (i.e. the

probability that the same coefficient could be obtained by chance)

we implemented a permutation test. In particular, we compared

the evaluations on synthetic datasets with a reshuffled number of

nymphs and on the original data and counted the number of times

that the absolute value of Spearman’s coefficient was larger than

Figure 1. Temporal variation of A. flavicollis mice abundance recorded in different grids (labelled in different colours from A to I).
doi:10.1371/journal.pcbi.1003931.g001

Figure 2. Detection of seasonal abundance time-windows. The
time series of captured mice has been interpolated by a quadratic
polynomial curve. By normalising the obtained parabola to unity and
setting a threshold h (~0:5 in the example), we identify mice captured
in high abundance season, those above the threshold h (triangles), and
mice captured in low abundance period, those below the threshold
(circles).
doi:10.1371/journal.pcbi.1003931.g002

Pattern of Tick Aggregation on Mice
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for the original data. The lower the sum, the higher our confidence

in interpreting the association as significant.

To further evaluate the coincidence of tick stage distributions

and the consequences on the non-systemic transmission of a

pathogen, following Randolph et al. [8], we evaluated the mean

number of larvae cofeeding with a nymph on a host. In fact, the

larger the mean, the larger the number of larvae that can

potentially be infected via non-systemic transmission. After

obtaining this empirical datum, we calculated the mean value

for 103 synthetic datasets where the number of nymphs was

reshuffled, simulating independent distributions in order to have a

more robust interpretation. After comparison of empirical and

synthetic datasets, a significantly larger empirical mean number of

larvae per nymphs gives evidences of coincident distributions, [8].

Simulations of Tick-Borne Disease Spreading via
Non-systemic Transmission

In order to explore the impact of different parasite aggregation

distributions on the spread of a TBEv-like pathogen where the

main transmission route is through co-feeding, we performed

extensive numerical simulations informed by the data about tick

aggregation on mice. In this setting, tick larvae were not infective

(transovaric transmission has been indicated as negligible [38]),

adults only rarely feed on mice (on our data set adults ticks are

about 0:05% of the total number of ticks feeding on mice), and the

only transmission link that we considered was the co-feeding

between infective nymphs and larvae. Therefore, the only actors in

our model were nymphs and larvae feeding on hosts. Moreover,

Rosà and collaborators suggested in a recent work devoted to the

same geographical area [21] that the larvae that feed in one year

generally quest and feed as nymphs in the following year.

Therefore, by adapting the Susceptible-Infected-Susceptible (SIS)

model [39] to our purpose we assumed that nymphs are

categorised as infective or not, that feeding larvae are susceptible

and that some of them could eventually be infected by co-feeding

with infective nymphs before moulting (thus becoming infective

nymphs at time t+1). At each iteration t, with t being a discrete

number between t0 and tmax and Dt~1 year, we assigned a

number of ticks to each of the Nh mice by drawing a sample from

the considered distribution q. Then, on each mouse we said that of

k ticks feeding on it, kf were nymphs and the other larvae (with

0vf v1). These nymphs were larvae in the previous year and

were possibly infected. Then, defining as pL(t{1) the prevalence

among larvae after feeding at time t{1, we assumed that the

prevalence at time t among nymphs was pN (t)~pL(t{1). Thus,

the number of infective nymphs on a mouse that at time t was

parasitised by k ticks was kf pN (t). Then, on each of the Nh mice

the co-feeding transmission between larvae and infective nymphs

could occur with probability b and we updated pL(t) accordingly

to the fraction of larvae infected (i.e. the fraction of infective

nymphs at next time step). The following meta-code summarises

the epidemiological dynamic

1. for t between t0 and tmax:

(a) for each mouse i, with i between 1 and Nh

N k(i) is the number of ticks it feeds, being k(i) a number drawn

from the probability distribution q

N of the k(i) ticks, fk(i) are nymphs and the remaining larvae

N of the fk(i) nymphs, a fraction pL(t{1)fk(i) are infective, the

others are susceptible

N non-systemic transmission between infective nymphs and

larvae on the same host occurs with probability b

(b) pL(t) is updated as the fraction of larvae infected

(c) if pL(t) is equal to zero we stop the loop

It is worth stressing that in the previous meta-code we did not

consider ticks recovering from the infection, since we assumed that

a feeding infective nymph at time t will exit the infectious

dynamics by moulting to the adult stage or dying.

We also modified the previous dynamics to deal with different

distributions in tick aggregation as a function of seasonality. At

each year t, we classified mice as observed during the mice peak

activity ( = cNh mice, with 0vcv1) and observed out of the peak

(~(1{c)Nh). Therefore, we assigned the number of ticks feeding

on mice according to the respectively aggregated distributions qIN

and qOUT. Moreover, since the larvae obtaining a blood meal at

year t will be nymphs at year tz1 without any other involvement

in the epidemic spreading at year t, [21], these modifications to the

meta-code are sufficient to suitably describe the seasonal variation

in the epidemic process. More explicitly, the epidemic dynamic in

the presence of seasonality in tick aggregation may be described by

the following meta-code:

1. for t between t0 and tmax:

(a) a fraction c of the Nh mice are labelled as observed during

mice peak activity (the remaining ~(1{c)Nh as observed

out of the peak window)

(b) for each mouse i, with i between 1 and Nh

N k(i) is the number of ticks it feeds, being k(i) a number

drawn from the probability distribution qIN, if the mouse was

labelled as observed during the mice peak activity, or qOUT,

if not

N of the k(i) ticks, fk(i) are nymphs, the remaining larvae

N of the fk(i) nymphs, a fraction pL(t{1)fk(i) are infective,

the other susceptible

N non-systemic transmission between infective nymphs and

larvae on the same host occurs with probability b

(c) pL(t) is updated as the fraction of larvae infected

(d) if pL(t) is equal to zero we stop the loop

Results

Ticks Burdens
The probability distribution of tick burden on mice was skewed

and showed a heavy tail. The best fit of the NB distribution was

obtained on the largest available subsets of data, i.e. with

kmin~kNB
min~1, see left panel of Figure 3. In this setting, the

MLE method estimated r~1:30 (95% confidence intervals (CI)

~1:25,1:35) and p~0:10 (95%CI = 0:09,0:10). However, the

GOF of the NB distribution was very low (pv10{3) for any value

of kmin, see central panel of Figure 3, thus giving evidence for

rejecting the hypothesis of the NB functional form. Similarly, the

best fit of PoiLN distribution was achieved on the largest subsets of

data, (kmin~kPoiLN
min ~1, see left panel of Figure 3). In this case the

estimated parameters were m~1:96 (95%CI = 1:92,1:99) and

s~0:99 (95%CI = 0:96,1:02). The GOF of the PoiLN, central

panel of Figure 3, suggested that PoiLN was acceptable only for

kminw38. However, for kminw38, the KS statistic displayed values

that were too large to consider the PoiLN distribution appropriate

for describing real data.

On the other hand, by fitting the tail of the distribution to a PL

distribution, we found that the best fit was obtained for

kmin~kPL
min~38 (with a standard deviation of 5.83), see left panel

of Figure 3. This kmin value is matched with an estimated scaling

Pattern of Tick Aggregation on Mice
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parameter a~4:27 (with standard deviation = 0.41). The GOF test

(p-value larger than 0.1) suggested that the optimum PL fit on the

tail of the distribution should not be ruled out, and that the result

holds for every PL fit with kminw35 see center panel of Figure 3.

Finally, the LLR test highlighted that the PL fitting is to be

preferred (pv10{3) to the NB in describing the tail of the

distribution for a large range of lower bounds, kmin[½8,44�, see

right panel of Figure 3. Similarly, the PL is to be preferred to the

PoiLN for kmin [ ½5,54�. Moreover, it is worth to stress that for

values above 44 (55) the sign of the LLR test still indicates the PL

fit as the preferred one compared to the NB (and PoiLN), although

the indication loses statistical significance due to the scarcity of

available data.

In Figure 4 we show the complementary cumulative proba-

bility distribution of the best fits resulting from kNB
min~kPoiLN

min ~1

for NB and PoiLN distributions and kPL
min~38 for PL distribu-

tion against field data of the number of ticks per mouse. From

this plot we noticed that above a certain number of ticks per

mouse NB [PoiLN] under-estimates [over-estimates] the tail of

the distribution (indeed both fits were statistically evaluated

as very poor). At the same time, in agreement with statistical

results summarised in Figure 3, we noticed that the PL fit in

Figure 4 more appropriately describes the right tail of the data

distribution.

The number of mice captured in different years and grids

showed strong seasonal patterns as reported in Figure 1. For each

grid and each year we defined two separate periods depending on

the mice abundance as defined in section ‘‘Data Analysis’’ and

sketched in Figure 2. Imposing a threshold h, for each year and

grid we identified a time window of high mice abundance. With

h~0:5 we found significant evidence that the distribution of ticks

on mice within the abundance peak was different from that

observed outside. Indeed, the fraction of the KS measures

calculated on the synthetic samples lower than the real-data KS

statistic was almost 98%, thus indicating very low confidence in

obtaining the same measurement by chance. The same statistical

evidence was also obtained by using different time window

thresholds (such as, h~0:4 and 0.6).

On the data sets classified as inside (IN) and outside (OUT) the

time window of mice abundance peak, we fitted for different time-

window lengths (h~0:4,0:5,0:6) the parameters r and p for NB

distribution (Figure 5, left panels) and a and kmin for PL

distribution (Figure 5, right panels). We observed a larger PL

scaling parameter a inside the mice abundance peak than outside

(two-sample t-test output: for h~0:5 t-statistic = {74:95,

df~1931, pv10{3) indicating a larger heterogeneity in tick

burden outside the abundance peak time. Moreover the GOF test

indicated a rejection of the NB fit in both sets (IN and OUT) with

h~0:5. On the other hand, the GOF test with h~0:5 showed that

the PL model cannot be ruled out in both sets (p-value.0.1) and

the LLR test indicated that the PL fitting outperforms the NB

model (p-value,0.05) in the estimates both inside and outside the

peak time window.

The distribution of larvae and nymphs on mice are coincident

rather than independent, and indeed the same 20% most infested

hosts feed both 55% of the nymphs and 54% of the larvae.

Moreover, Spearman’s correlation coefficient measured on the

number of larvae and nymphs on mice was positive (0.24) and the

probability that this coefficient was detected by chance was very

low (the empirical value was the largest if compared to those

evaluated in 103 reshuffled samples). In addition, the mean

number of larvae co-feeding with a nymph is about 23 which is

almost double the value that would be seen if the distributions

were independent (mean equal to 12).

Figure 3. Comparison among fittings of distributions of ticks per host with different functions. Left: Kolmogorov-Smirnov statistic
between subsets of data above kmin and the fitting models on these subsets. Vertical dotted lines represent the optimum value of kmin for different

models (NB: magenta; PoiLN: green; PL: cyan). For the NB and PoiLN models the optimum is observed for kNB
min~kPoiLN

min ~1, i.e. on the entire data set,

while for the PL model the optimum is reached for kPL
min~38. Center: goodness-of-fit p-value of fitting models on data larger than or equal to kmin. As

suggested by Clauset and collaborators [31] for p-value greater than 0.1 (horizontal line) the fitting model is a good description of the data. For NB
the GOF is low (p,1023), suggesting the inappropriateness of the NB model in describing the data. The GOF of the PoiLN indicates that the model is
appropriate only for large value of kmin, thus simultaneously with large values of KS and therefore pointing out the low performance of the model.
The PL fits should not be rejected for values of kmin larger than 35 concurrently with the lowest value of KS. Right: Log-likelihood Ratio (LLR) test with
Vuong’s sign interpretation. Negative (positive) values suggest the alternative model NB (red) or PoiLN (blue) distributions are (are not) favoured in
describing values larger than kmin when compared to PL. The horizontal line shows the sign threshold. Full marks show statistically significant tests
(p,0.05) while empty marks refer to non significant tests (p.0.05).
doi:10.1371/journal.pcbi.1003931.g003
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Non-systemic Disease Spreading Simulations
To start, we simulated the non-systemic disease spreading of a

TBE-like pathogen with a fraction f of nymphs among ticks equals

to 2%, close to the one observed in our real data (cfr. Table 2), 5%,

and 10%, as in literature [8,40]. We consider the empirical

distribution observed on the entire data set. We fixed the number

of hosts to Nh~104 which, together with the considered distribution,

resulted in a number of vectors pairs equal to NV*105. In our

simulations, we explored the effects of b, the infection probability, on

the observed prevalence at the final time step, pL(tmax), with

tmax~1000. (We observed that tmax~1000 was larger enough to

allow the prevalence to converge toward an endemic pseudo-

equilibrium or the disease-free equilibrium). For each b we allowed

200 simulations to run starting from an initial prevalence of

pN (t0)~1%. In Figure 6 we plotted the prevalences (median value,

interquartile intervals and the 95%CI) observed at equilibrium as a

function of the transmission probabilities, b. Results showed that the

larger the fraction of nymphs among ticks feeding on mice, the larger

the probability of pathogen invasion and the infection prevalence.

Then, we explored the effects of different tick burden distribu-

tions on the spread of infection. To this end we considered four

distributions: PL, NB, PoiLN, and the empirical distribution on the

entire data set (aggregated on capture sessions and grids). For

synthetic distributions we considered the actual observed distribu-

tion below the estimated kmin, while we used the best fit of synthetic

distributions to describe values greater than kmin. Again, we fixed

the number of hosts to Nh~104. It is worth stressing that in the

synthetic samples generated from these distributions we observed

some features similar to those observed in real-data. For instance,

the number of nymphs was positively associated with that of larvae

and more particularly a nymph co-fed with a mean number of

larvae similar to that observed in reality (for PL the mean number

was 23, for NB 20, and for PoiLN 27).

Results, plotted in Figure 7 for f ~2% and in Text S2 for

f ~5% and f ~10%, corroborated the hypothesis that the

transmission probability needed for the pathogen to become

endemic is driven by the shape of the tail of the distributions. In

particular, we noticed that for the PoiLN distribution (the one with

larger fitted tail) the epidemic threshold is the lowest, while for the

NB distribution (the one with smaller fitted tail) the infection

probability needed for invasion is the highest. Not surprisingly, the

PL, which has the best performances in fitting the tail of the

empirical distribution, is the one for which the prevalences at

equilibria better resemble those observed in simulations using the

empirical distribution. We also performed some sensitivity analysis

on parameter distributions, further highlighting that the larger the

tail of the distribution, the lower the epidemic threshold (see Text

S1). In addition, sensitivity analysis on the fraction of nymphs (f)
showed that f does not qualitatively influence the epidemic

behaviour (see Text S2).

Furthermore, we investigated the effect of differences in the

distribution of the tick burden as a function of the abundance of

mice on the spreading of a non-systemic infectious disease. To this

end, we fixed c~0:89, as measured in the dataset, and as qIN we

considered a PL with exponent aIN~4:39 as estimated with

h~0:5. In a similar way, we assumed as qOUT a PL distribution

with exponent aIN~3:48. For both qIN and qOUT we further set

kmin~5,10,15. Results are summarised in Figure 8, from which it

could be inferred that the epidemic outcome was strongly

influenced by the different distributions of feeding ticks according

to mice abundance. We consistently observed that the transmission

probability needed for the pathogen to effectively spread was

smaller when the time windows identified by mice abundance are

considered.

Discussion

Tick aggregation on hosts is the result of several complex

interactions of biotic and abiotic factors, such as host exposure and

susceptibility to ticks, ticks’ phenology and host behaviour,

Figure 4. Complementary cumulative functions of number of ticks per host (real-data) with the best power-law (PL), negative
binomial (NB), and Poisson LogNormal (PoiLN) fit. The PL fitting model shows high proximity to the tail of the real data distribution while the
NB and the PoiLN fits appropriately describe the initial part of the distribution they describe the tail improperly.
doi:10.1371/journal.pcbi.1003931.g004
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environmental factors, availability of resources, and others [27,41].

Historically, the NB distribution has been preferred to the Poisson

distribution to describe parasite heterogeneity across hosts because

it suitably reproduces overdispersed observations. It has also been

widely used in empirical [6,25,26,28] and theoretical studies

[23,24,42]. However, fat tailed distributions other than the NB

Figure 5. Estimated parameters of different distributions (NB on left and PL on right) obtained inside (blue) and outside (red) of the
mice peak abundance time window. Time windows are defined by h~0:4,0:5,0:6 (from left to right for each subsets). Vertical bars indicate best
model fits (central horizontal lines) with their uncertainties that are 95% confidence interval for NB models while standard deviations for PL models.
doi:10.1371/journal.pcbi.1003931.g005

Figure 6. Median (line), interquartile (darker area) and 95% confidence intervals (lighter area) of the final prevalence as a function
of the transmission probability, for different values of f ( = 2%, 5%, 10%), fraction of nymphs among ticks on a mouse, and by
describing the ticks aggregation with the empirical distribution. Other parameters are Nh~104 , tmax~103 .
doi:10.1371/journal.pcbi.1003931.g006
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one can also adequately reproduce tick aggregation, as shown by

Elston et al. [29] and Bisanzio and collaborators [30].

Through the use of an extensive data set of feeding Ixodes
ricinus ticks on mice, we showed that a PL distribution is better

able to describe the right tail of the tick distribution on hosts than a

NB or a PoiLN distribution (see Figure 3 and 4). This finding may

have relevant epidemiological consequences, since it is well

documented that the heterogeneity of contact distributions among

individuals has large impacts on pathogen spread and persistence

[43–49]. In fact, it has been demonstrated [50] that the minimum

transmission probability for a pathogen to spread on a network,

the so-called epidemic threshold, is driven by the first and the

second moment of this distribution. In particular, Pastor-Satorras

et al. [50] demonstrated that the larger the heterogeneity, the

Figure 7. Median (line), interquartile (darker area) and 95% confidence intervals (lighter area) of the final prevalence as a function of
the transmission probability, for different fitting distributions (PL, NB and PoiLN). Other parameters are Nh~104 , tmax~103 , and f ~2%.
doi:10.1371/journal.pcbi.1003931.g007

Figure 8. Median of the final prevalence as a function of the transmission probability. A PL distribution of vectors-per-host has been
considered in all scenarios. Simulations that consider different aggregation behaviours according to the temporal window of mice abundance (red)
are compared with others with a fixed distribution (blue). Other parameters are Nh~104 , tmax~103 , and f ~10%.
doi:10.1371/journal.pcbi.1003931.g008
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lower the epidemic threshold for the pathogen to spread, with an

interesting behaviour in infinite size network showing a zero

epidemic threshold [46]. Thus, the epidemiological inferences on

the spread of a pathogen are highly influenced by the character-

isation of the connectivity distribution and in particular by the

distribution tail (i.e. the heterogeneity). Our results corroborate

those findings and generalise them in a different framework and

for more complex transmission routes, i.e. a vector-host network

for non-systemically transmitted diseases. In particular, we found

that the tail of the distribution of the number of ticks per rodent

highly influences pathogen spreading (see Figure 7 and Text S1).

Furthermore, it is worth remarking that although the tail of the

distribution as defined here represents about 5% of the entire data

set, our simulation findings suggest that this small part of the

distribution is crucial for pathogen invasion.

We also confirm that the probability of pathogen invasion and

the infection prevalence are strongly influenced by the fraction f of

nymphs on the total feeding ticks on mice (Figure 6 and Text S2).

The co-occurrence of larvae and nymphs on competent hosts is in

fact essential for the horizontal transmission of non-systemic

transmitted tick-borne pathogens, such as TBE, and it has been

documented, both empirically and theoretically, that it could be a

key factor in creating TBE hotspots, [51,52].

Our conclusions confirm previous findings showing that the

distribution of ticks on rodents may significantly affect the spread

of infections [27,30,53], especially for non-viraemic transmitted

diseases such as TBE [7,23,24]. Under the hypothesis of a NB

distribution of ticks across hosts, both Rosà et al. [24] and

Harrison and collaborators [23] showed that highly coincident and

aggregated distributions favour the establishment of TBEv.

However, highly heterogeneous degree distributions do not

necessary imply a higher spread of disease. Indeed, Piccardi et al.

[54] showed that scale-free networks can be much less efficient

than homogeneous networks in favouring the disease spread in the

case of a nonlinear force of infection.

The correct description of tick aggregation on hosts could

dramatically affect disease control strategies: for instance, Perkins

[7] emphasised that an optimised control effort targeted on highly

parasitised mice, also identified as sexually mature males of high

body mass, could significantly lower the transmission potential. On

the other hand, Brunner and colleagues [27] observed that the

identification of individuals which fed a disproportionate number

of ticks (and that can therefore act as superspreaders) can be

challenging, since simple covariates such as sex, age or mass do not

entirely explain the differences in parasite burden.

In order to fully understand the different tick attachment

behaviours on hosts, we identified different time windows related

to rodent seasonal dynamics. Using this approach we found that

the distribution of ticks on mice may vary across the season, with

higher aggregation heterogeneity in periods of low rodent

abundance and lower aggregation heterogeneity during the peak

of host abundance (see Figure 5). We also showed that seasonal

aggregation patterns, characterised by larger tails in time periods

of low host abundance, enhance the spread of non-viraemic

transmitted diseases (see Figure 8). Shaw and collaborators [26]

observed significant variations in the degree of aggregation

between host subsets – stratified by sex, age, space or time of

sampling – in several host-parasite systems. In agreement with our

results (lower aggregation in period of high mice abundances as

shown by estimated exponents of PL), they found that aggregation

in copepod (Lepeophtheirus pectoralis) infesting plaice (Pleuronec-
tus platessa) decreases during summer months. They mainly

ascribed the observed variation to significant differences in mean

parasite burden among months. On the other hand, we did not

find significant differences in tick burden inside and outside the

window of high rodent abundance. Specifically, in the case of

h~0:4,0:5,0:6, the average number of ticks per host were

11:96,11:96,11:84 inside the window of high rodent abundance

and 12:34,12:23,12:78 outside and the differences between inside

and outside are not statistically significant (permutation tests, p.

0.05). However, the second moment of the number of ticks per

host drastically changed between high and low abundance

periods, driving the difference in the aggregation distributions

observed in the two time windows. Seasonal variations in

resource availability and host abundance can have a significant

effect on the space used by mice. Males and females tend to

respond to these changes in different ways, since space use for

females is driven largely by food availability, whereas the

distribution of males is related primarily to mating opportunities.

Yellow-necked mouse (A. flavicollis) females exhibited reduced

spatial exclusivity and larger home ranges during lower food

availability while males varied their spatial distribution accord-

ingly by also expanding their home ranges [55]. An inverse

relationship between population density and home range sizes has

also been observed in wood mice (Apodemus sylvaticus) [56].

Consequently, in periods of low rodent abundance more mobile

rodents, especially males, are more likely to hit a patch of larval

ticks. As a result, these individuals would harbour a large amount

of ticks and increase the aggregation of tick distribution among

the rodent population. On the other hand, tick density is usually

lower in periods of low rodent abundance, and the average tick

burden would decrease for the rest of the population, especially

females, balancing the overall tick burden. On the contrary,

during times of high abundance mice move less and ticks would

be distributed more evenly among the rodent population resulting

in the observation of a lower aggregation in tick distribution

during the peak of rodent abundance.

Our primary goal was to help understand the role of tick

aggregation across mice on the spread of non-viraemic transmitted

diseases through a simple and general transmission model. Other

works – such as [24,42,52,57] – described in very fine detail the

transmission of vector-borne diseases, introducing different trans-

mission routes, tick stages and alternative hosts in the epidemic

model. For instance, Norman and colleagues [57] demonstrated

through an epidemiological model that non-viraemic transmission

could have non-negligible effects on the persistence of a disease

like the Louping ill. Here, considering the non-systemic transmis-

sion only, we explored the effect of using different theoretical

functional forms to describe the tick burden on hosts. By

estimating parameters of the burden distributions on a very

detailed data set, we defined a simple and transparent transmission

model that explicitly takes into account the real contact pattern of

vectors and hosts in the description of a non-systematically

transmitted vector-borne disease. In this way we were able to

emphasise that, while the NB and PoiLN models can sufficiently fit

the whole real distribution, the PL model represents a better fit for

the distribution tail. Furthermore, the vector perspective approach

used in our model gives better insights into the dynamics of non-

systemic transmitted pathogens respect to host perspective models

that were more commonly and widely used in this context

[24,42,52,57]. In addition, epidemiological simulations parame-

terised by the fitted tick burden distributions highlighted the

epidemiological consequences of describing tick aggregation on

hosts trough distributions with different tails, showing that the

shape of the tail distribution has a non-negligible influence on

pathogen persistence. Future works will be devoted to extend the

present findings to more complex transmission dynamics (e.g.

including viraemic or transovaric transmission), in order to assess
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the effect of a PL decay of the distribution for a wider range of

vector-borne diseases.
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