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Abstract

Gross primary productivity (GPP) is the largest and most variable component of the
global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP
is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Re-
mote sensing provides high frequency observations of terrestrial ecosystems and is5

widely used to monitor and model spatiotemporal variability in ecosystem properties
and processes that affect terrestrial GPP. We used data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and FLUXNET to assess how well four metrics
derived from remotely sensed vegetation indices (hereafter referred to as proxies) and
six remote sensing-based models capture spatial and temporal variations in annual10

GPP. Specifically, we used the FLUXNET “La Thuile” data set, which includes sev-
eral times more sites (144) and site years (422) than previous efforts have used. Our
results show that remotely sensed proxies and modeled GPP are able to capture sta-
tistically significant amounts of spatial variation in mean annual GPP in every biome
except croplands, but that the total variance explained differed substantially across15

biomes (R2 ≈ 0.1−0.8). The ability of remotely sensed proxies and models to explain
interannual variability GPP was even more limited. Remotely sensed proxies explained
40–60 % of interannual variance in annual GPP in moisture-limited biomes including
grasslands and shrublands. However, none of the models or remotely sensed proxies
explained statistically significant amounts of interannual variation in GPP in croplands,20

evergreen needleleaf forests, and deciduous broadleaf forests. Because important fac-
tors that affect year-to-year variation in GPP are not explicitly captured or included in
the remote sensing proxies and models we examined (e.g., interactions between biotic
and abiotic conditions, and lagged ecosystems responses to environmental process),
our results are not surprising. Nevertheless, robust and repeatable characterization of25

interannual variability in carbon budgets is critically important and the carbon cycle sci-
ence community is increasingly relying on remotely sensing data. As larger and more
comprehensive data sets derived from the FLUXNET community become available,
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additional systematic assessment and refinement of remote sensing-based methods
for monitoring annual GPP is warranted.

1 Introduction

Terrestrial ecosystems sequester about 25 % (≈2–2.5 PgCyr−1) of the carbon emitted
by human activities each year (Canadell et al., 2007). By comparison, terrestrial gross5

primary productivity (GPP) is roughly 120 PgCyr−1 and is the largest component flux
of the global carbon cycle (Beer et al., 2010). Thus, even small fluctuations in GPP can
cause large changes in the airborne fraction of anthropogenic carbon dioxide (Rau-
pach et al., 2008). Terrestrial GPP also provides important societal services through
provision of food, fiber and energy. Methods for quantifying dynamics in terrestrial GPP10

are therefore required to improve climate forecasts and ensure long-term security in
services provided by terrestrial ecosystems (Bunn and Goetz, 2006; Schimel, 2007).

Two main approaches have been used to estimate spatial and temporal variability
in GPP from remotely sensed data. In the first approach, spatiotemporal patterns in
vegetation indices (VIs) are assumed to reflect spatial and temporal variation in GPP15

(Goward et al., 1985; Myneni et al., 1998; Zhou et al., 2001; Goetz et al., 2005; Bunn
and Goetz, 2006). These studies do not estimate carbon fluxes (but see Jung et al.,
2008). We refer to these metrics as remotely sensed “proxies” of GPP in this study.
In the second approach, remote sensing data is used as input to models of GPP that
fall into one of three basic groups: (i) light-use efficiency models (e.g., Potter et al.,20

1993; Prince and Goward, 1995; Running et al., 2004; Mahadevan et al., 2008); (ii)
empirical models that use remotely sensed data calibrated to in-situ eddy covariance
measurements (e.g., Sims et al., 2008; Ueyama et al., 2010); and (iii) machine learning
algorithms, which are also calibrated to in-situ measurements (Yang et al., 2007; Xiao
et al., 2010). A large number of studies have compared results derived from remote25

sensing-based models with in situ measurements (e.g., Turner et al., 2006; Heinsch
et al., 2006; Yuan et al., 2007; Yang et al., 2007; Sims et al., 2008; Mahadevan et al.,
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2008; Xiao et al., 2010). However, all of these studies are based on relatively small in-
situ data sets and none have explicitly examined both spatial and temporal variations
in remotely sensed proxies (e.g., Hashimoto et al., 2012) and modeled estimates with
corresponding variations in in-situ measurements of GPP.

In this study, we use data from NASA’s Moderate Resolution Imaging Spectrora-5

diometer (MODIS) to evaluate how well 10 different remote sensing models and proxies
are able to explain geographic and interannual variation in annual GPP. Our analysis
builds upon and extends previous efforts in three important ways. First, we examine
spatial (across sites) and temporal (across years) variation separately, focusing on
GPP at annual scale. Distinguishing between spatial and interannual variation is im-10

portant because the drivers and magnitudes of geographic and interannual variation in
GPP are different (Burke et al., 1997; Richardson et al., 2010a). Second, previous stud-
ies have examined results from only one or two models. The analysis we present here
encompasses 10 different proxies and models that have not previously been system-
atically assessed and compared. Third, we use a dataset that encompasses a much15

larger number of sites and site-years than previous studies. Our analysis is therefore
much more comprehensive than previous studies.

The selected proxies and models make very different assumptions about the under-
lying mechanisms and drivers of GPP (Table 1). A key goal of the work reported here
is to assess how different assumptions and inputs influence remote sensing results. To20

accomplish this, our analysis addresses three questions:

1. How well do the selected remote sensing-based methods capture geographic
(across sites) and interannual variation (across years) in annual GPP?

2. How does the performance of different methods vary across biomes?

3. Are methods that use daily or 8 day input data better at charactering annual GPP25

relative to methods that use annual inputs?

By comparing results from the remote sensing-based methods against in-situ measure-
ments from field sites that encompass a wide range of biomes and climate regimes,
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our study not only aims to address the questions identified above, but also attempts
to improve understanding of the processes and factors that control geographic and
interannual variation in annual GPP.

2 Data and methods

2.1 FLUXNET data5

Our analysis is based on measurements included in the FLUXNET “La Thuile” dataset.
(http://www.fluxdata.org/SitePages/AboutFLUXNET.aspx). This dataset contains daily
GPP values estimated from eddy covariance measurements using a community stan-
dard method (Reichstein et al., 2005), includes near surface meteorology and flux data
for about 247 sites, and encompasses approximately 850 site-years of data since 2000.10

For this analysis we identified a subset of 176 sites with 515 site-years of data where
each site-year satisfied two conditions: (i) more than 95 % of the days had daily GPP
data, and (ii) the mean daily quality flag was more than 0.75 (Richardson et al., 2010a).
Using the land cover information we also excluded sites where fewer than 20 % of pix-
els in 10.6 km2 windows (7×7 500 m MODIS pixels) centered over the site belonged15

to the same land cover type as the tower site. The final dataset included 144 sites
(Table S1 in the Supplement) and 422 site-years of data, spanned all of the major
biome and climate types, and included a range in annual GPP that varied from 200 to
4000 gCm−2 yr−1 (Table 2; Fig. 1).

2.2 MODIS data products20

MODIS collection 5 land products are available from the Land Processes DAAC
(https://lpdaac.usgs.gov) at 250 m, 500 m, and 1000 m spatial resolution, depending on
the product (Justice et al., 2002). We computed the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI), and the land surface water index
(LSWI) using nadir bidirectional reflectance distribution function adjusted reflectance25
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(NBAR) data at 500 m spatial resolution and 8 day time steps (Schaaf et al., 2002).
Information related to land cover and the timing and duration of the growing season
at each 500 m pixel was obtained from the MODIS Land Cover Type and Land Cover
Dynamics Products (Friedl et al., 2010; Zhang et al., 2006). We also used MODIS GPP
(MOD17; Running et al., 2004), MODIS fraction of absorbed photosynthetically active5

radiation (FPAR) (MOD15; Myneni et al., 2002), and MODIS day and night land sur-
face temperature (LST; Wan et al., 2002) data, which are all produced at 1000 m spatial
resolution.

Following the approach used in previous studies (Heinsch et al., 2006; Sims et al.,
2008; Xiao et al., 2010), we extracted 500 m and 1000 m MODIS products for 7 by10

7 and 3 by 3 pixel windows (respectively) centered on each site using the MODIS
subsetting tool available at the ORNL DAAC for Biogeochemical Dynamics (http://daac.
ornl.gov). We then selected the center pixel and all other pixels in the window with
land cover labels equivalent to the land cover type at each flux tower. Figure 2 shows
boxplots for the number of pixels retained at each flux tower site in each biome. MODIS15

data were then averaged over the selected pixels to produce a single value for each
MODIS product at each site at each time step. By using 3 by 3 km windows, we ensure
that the tower is located in the window. More importantly, spatial averaging over pixels
with similar land cover minimizes random variation in MODIS data and reduces errors
associated with gridding artifacts (e.g., Tan et al., 2006) and land cover types that are20

different from the tower site (Garrity et al., 2011).

2.3 MODIS proxies of GPP

Remotely sensed data such as the growing season mean and integral of NDVI have
been used as proxies for GPP in several previous studies (Tucker et al., 1981, 2001;
Myneni et al., 1998; Zhou et al., 2001). In this work we examined four different MODIS-25

based proxies of GPP (Table 1): (i) the growing period length (GPL), (ii) the growing
season integral of EVI (EVI-area), (iii) the growing season mean NDVI, and (iv) the
growing season mean EVI. GPL and EVI-area were obtained from the MODIS Collec-
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tion 5 Land Cover Dynamics product (Ganguly et al., 2010). We included the GPL in
our analysis because several studies have suggested that GPL is an important con-
trol on annual GPP (White et al., 1999; Barr et al., 2004; Churkina et al., 2005). GPL
and EVI-area estimates were not extracted for evergreen broadleaf forest (EBF) sites
because we assume that GPL is not a significant control on annual GPP in this biome.5

2.4 GPP models based on MODIS data

We examined six remote sensing-based models in this study (Table 1): the MODIS
GPP product (MOD17; Running et al., 2004), the temperature and greenness (TG)
model (Sims et al., 2008), the vegetation photosynthesis and respiration model (VPRM)
(Mahadevan et al., 2008), a non-parametric neural network model (e.g. Beer et al.,10

2010; Moffat et al., 2010), the MOD17 algorithm calibrated to tower GPP (e.g., Heinsch
et al., 2006; hereafter referred to as “MOD17-Tower”), and regression models that use
one of the four proxies and mean annual temperature or mean annual precipitation as
predictors. Below we provide a brief description of each model (also see Table 1).

(i) MOD17: We obtained modeled 8 day estimates of GPP at each of the selected15

FLUXNET sites for the MODIS GPP product (MOD17A2; Running et al., 2004). The
algorithm used to generate this product is based on light use efficiency and com-
bines 8 day MODIS FPAR data with daily coarse resolution meteorological data and
five biome-specific parameters to produce daily GPP estimates at 1 km spatial resolu-
tion (Table 1).20

(ii) MOD17-Tower: Heinsch et al. (2006) demonstrated that the MOD17 product is
sensitive to errors introduced from coarse resolution meteorological forcing data. To
address this, we calibrated the MOD17 algorithm using FLUXNET GPP and meteo-
rological data by using the same approach that was used by Heinsch et al. (2006),
by minimizing the sum of squared differences between daily tower measurements and25

modeled GPP. Following the same procedure that is used by the operational MOD17
algorithm, we replaced all MODIS FPAR values that were not retrieved by the main

11634

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/11627/2013/bgd-10-11627-2013-print.pdf
http://www.biogeosciences-discuss.net/10/11627/2013/bgd-10-11627-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 11627–11669, 2013

Remote sensing of
annual GPP

M. Verma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

MOD15 algorithm (i.e., missing values and those produced by the “backup” algorithm)
by linear interpolation using adjacent good quality FPAR values.

(iii) VPRM: VPRM is based on light use efficiency, but has significant differences
from the MOD17 algorithm (Xiao et al., 2004). Following Mahadevan et al. (2008) we
prescribed maximum, minimum and optimum temperatures in each biome. We then5

treated the half saturation point (PAR0) and maximum light use efficiency (εmax) as
biome-specific parameters, and optimized them for each biome by minimizing the sum
of the squared errors between daily modeled and observed GPP:

SSE(εmax,PAR0) =
∑

(GPPVPRM −GPPTOWER)2 (1)

where GPPVPRM is daily modeled GPP and GPPTOWER corresponds to measured GPP.10

We then randomly sampled the parameter space 1000 times and used the “trust-
region” algorithm in MATLAB (MathWorks, 2009b) to find the vector [εmax, PAR0] that
minimized the cost function. To account for noise and missing data, we used quality
assurance flags from the MODIS NBAR product to remove poor quality EVI and LSWI
data. Following Mahadevan et al. (2008), we used a locally weighted least squares15

algorithm to smooth the data.
(iv) Temperature and Greenness (TG): Sims et al. (2008) developed the TG model

using MODIS data at 16 day time steps. In systems that exhibit rapid development
and senescence such as croplands, grasslands, savannas, and deciduous broadleaf
forests this relatively coarse temporal resolution reduces the TG model’s ability to cap-20

ture sharp transitions in phenology. We therefore used MODIS 8 day EVI and LST data
to calculate GPP at 8 day resolution. Optimization of TG model parameters using tower
GPP did not produce any significant differences in predicted GPP relative to the orig-
inal model, and so we used the model as originally described by Sims et al. (2008).
Evergreen broadleaf sites were excluded because the TG model was not designed for25

this biome.
(v) Neural network model: Machine learning models that use meteorological and re-

mote sensing data to predict carbon fluxes have been used in many recent studies
11635
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(e.g., Xiao et al., 2010; Moffat et al., 2010). These models include no explicit biophys-
ical structure, but are based on the assumption that functional relationships exist be-
tween the response (i.e., GPP) and predictor variables. We used a feed-forward neural
network model with a single hidden layer and a sigmoid transfer function (MATLAB,
2009a). The model was estimated by minimizing the difference between predicted and5

observed GPP at daily time steps using the same variables that were used to calibrate
the MOD17-Tower model.

(vi) Regression models combining remote sensing proxies and climate predictors:
We estimated regression models at annual time steps for each biome using two pre-
dictors: (1) a remotely sensed proxy, and (2) mean annual temperature or precipitation10

(Garbulsky et al., 2010). The final model for each biome was based on the remotely
sensed proxy and climate variable that explained the most variance in annual GPP in
each biome. This model is referred as “Proxy+Met.” Table 3 lists the predictors used
in the regression models for each biome.

2.5 Analysis15

Our analysis uses measurements of annual GPP from the La Thuile database. Despite
the size of this database, five biomes had fewer than 10 tower sites (savannas, woody
savannas, open shrublands, closed shrublands, and mixed forest); we therefore pooled
these into one group, labeled as SSMF. Savannas, woody savannas, open shrublands,
and closed shrublands are all arid or semi-arid, where precipitation is a dominant con-20

trol on primary productivity. Our analysis revealed that annual GPP at the mixed forests
sites was more highly correlated with annual precipitation than with temperature. Thus,
while the SSMF group includes site with different plant functional types, variability in
GPP at all of the sites in this group is largely controlled by water.

Our analysis explores both spatial and interannual covariance between in-situ mea-25

surements and remotely sensed proxies and model-based estimates of annual GPP. To
perform this analysis, it was important to distinguish random variability from ecologically
meaningful variation in annual GPP data at each site. Daily GPP derived from eddy-
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covariance measurements are generally assumed to include uncertainty on the order
of 15–20 % (Falge et al., 2002; Hagen et al., 2006). However, summing daily GPP can-
cels random errors and reduces uncertainty in estimates of annual GPP relative to daily
values (Falge et al., 2002; Hagen et al., 2006; Lasslop et al., 2010). Desai et al. (2008)
report the interquartile range of annual GPP to be less than 10 % of the mean and5

Richardson (unpublished) estimates the uncertainty in annual GPP derived from eddy-
covariance to be 5 %. To be conservative, here we assume that uncertainty in annual
GPP is ±5 % (±1 standard deviation). Also, to avoid spurious result from over-fitting,
all reported statistics for the models calibrated to tower GPP (VPRM, MOD17-Tower,
neural network and “Proxy+Met”) are based on leave-one-site-out (“jackknifed”) cross-10

validation.
The first part of our analysis examines spatial covariance between remote sensed

estimates (or proxies) and in-situ measurements of annual GPP. To this end, we first
quantified the magnitude of spatial variance in annual tower GPP within each biome,
and used this information to assess whether within-biome variance was sufficiently15

large relative to the uncertainty to provide meaningful information related to spatial
variability in annual GPP. We then assessed the power of each remotely sensed proxy
and model to explain spatial variation in annual tower GPP within each biome. Specifi-
cally, we compared variation in mean annual GPP across sites with the corresponding
variation in each of the four remotely sensed proxies and mean annual GPP predicted20

by each of the models described in Sect. 2.4.
To analyze interannual variation, we excluded sites with less than 3 yr of GPP data.

This resulted in a final dataset composed of 302 site-years derived from 67 sites (Ta-
ble 2). Also, because the magnitude of annual site anomalies tends to vary proportion-
ally with the magnitude of mean annual GPP, we used relative annual anomalies for our25

analysis, which removes this effect. Specifically, the percent relative annual anomaly
was calculated as:

RAAk(s,t) =
Ak(s,t)−MAk(s)

MAk(s)
·100 (2)
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where RAAk(s,t) is the percent relative annual anomaly at site s in year t, Ak(s,t) is
the value of the variable k (in this case annual GPP), and MAk(s) is the annual mean
of the variable k. Hereafter we refer to RAAk(s,t) as the relative annual anomaly.

Relative annual anomalies in tower GPP were compared with corresponding varia-
tions in the four remotely sensed proxies and annual GPP predicted from the five mod-5

els described in Sect. 2.4. Note that we did not include results for the “Proxy+Met”
model because interannual anomalies in annual temperature and precipitation were
not significantly correlated with interannual anomalies in tower GPP. Finally, since large
anomalies have high signal-to-noise ratios and are the main source of variance in in-
terannual tower GPP, they provide a robust basis for assessing remote sensing proxies10

and models. To exploit this we separately analyzed large anomalies, which we define
here as those that exceeded ±10 % of mean annual GPP at each site.

3 Results

3.1 Spatial variation in mean annual GPP across sites

(i) Baseline characterization of spatial variability in tower GPP. Mean annual GPP var-15

ied from 1023–2240 gCm−2 yr−1 across biomes. DBF had the lowest (321 gCm−2 yr−1)
and EBF had the highest standard deviation (913 gCm−2 yr−1) in mean annual site
GPP (Table 4). Among the four other biomes (CRO, ENF, GRA and SSMF), the stan-
dard deviation ranged between 400 and 600 gCm−2 yr−1 (Table 4). DBF also had the
lowest coefficient of variation (0.24), which was roughly half the magnitude observed in20

ENF (0.47), GRA (0.47) and SSMF (0.51). More importantly, spatial variation in mean
annual site GPP in all biomes was significantly greater than average uncertainty (nom-
inally ∼ 5 %; Table 4). The ratio of the standard deviation in annual GPP to average
uncertainty was lowest (∼ 5) for DBF and highest for SSMF (∼ 10).

(ii) Spatial covariance between remotely sensed proxies and tower GPP. Remotely25

sensed proxies of GPP showed widely different ability to capture spatial variance in
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mean annual tower GPP, both within and between biomes. In CRO and DBF, only one
of the four proxies (EVI-area and GPL, respectively) was significantly correlated with
annual tower GPP. However, EVI-area was significantly correlated with annual tower
GPP in five biomes, mean NDVI and EVI was significantly correlated in four biomes
(ENF, EBF, GRA and SSMF), and GPL was significantly correlated with annual tower5

GPP in two biomes (DBF and ENF). One or more proxies captured more than half the
total variance in annual tower GPP in all biomes except CRO (Fig. 3). Figure 4 shows
scatter plots of the most highly correlated proxy with mean annual GPP in each biome.
Growing period length (GPL) was most highly correlated with annual tower GPP in one
biome (DBF), EVI-area was most highly correlated in two biomes (CRO and ENF), and10

mean EVI was most highly correlated in three biomes (EBF, GRA, and SSMF).
(iii) Spatial covariance between remote sensing-based models and tower GPP. The

ability of the remote sensing-based models to capture spatial variation in annual GPP
varied substantially within and between biomes. Overall, the “Proxy+Met” model pro-
vided the best overall prediction of mean annual tower GPP; mean annual site GPP pre-15

dicted using this approach was significantly correlated with tower GPP in all six biomes
(p < 0.05), and explained substantial variance in CRO (R2 = 0.38), DBF (R2 = 0.47),
GRA (R2 = 0.85) and SSMF (R2 = 0.70; Fig. 5). In ENF and EBF, tower GPP was most
highly correlated with GPP predicted by the neural network model (R2 = 0.68 and 0.85
in ENF and EBF, respectively; Fig. 5), but GPP predicted by the “Proxy+Met” model20

captured nearly the same amount of variance (R2 = 0.63 and 0.82 in ENF and EBF,
respectively); the RMSE and MBE for GPP modeled by the “Proxy+Met” model were
among the lowest for all six biomes (Figs. 5 and 6). Modeled GPP from the VPRM
and neural network models also had low mean bias errors in one or more biomes, but
the slope for least squares fits between modeled and tower GPP varied substantially25

across biomes for both of these models.

11639

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/11627/2013/bgd-10-11627-2013-print.pdf
http://www.biogeosciences-discuss.net/10/11627/2013/bgd-10-11627-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 11627–11669, 2013

Remote sensing of
annual GPP

M. Verma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2 Temporal variation in annual site GPP across years

(i) Baseline characterization of interannual variation in tower GPP. Total interannual
variance in GPP was dominated by years with large anomalies (Table 5). Average
relative absolute anomalies were largest in GRA (17.5 %), followed by CRO (16.5 %)
and SSMF (11.6 %). In the remaining three biomes (DBF, ENF and EBF), average5

relative absolute annual anomalies were less than 10 % and were lowest (8 %) in EBF
(Table 5). The proportion of large anomalies was highest in CRO (67 %) and lowest in
SSMF (26 %). Of the remaining four biomes, the proportion of year with large anomalies
was 51 % in GRA, but less than one third of relative absolute annual anomalies were
greater than 10 % in DBF, ENF and EBF (Table 5).10

(ii) Covariance between interannual anomalies in remotely sensed proxies and tower
GPP. Figure 8 shows scatter plots of relative annual anomalies in mean growing sea-
son EVI versus corresponding anomalies in tower GPP. Agreement is especially poor
in CRO, DBF and ENF, even for some large anomalies. Relative annual anomalies in
growing season EVI and NDVI were significantly correlated with corresponding anoma-15

lies in tower GPP in EBF, GRA and SSMF (Fig. 7). Relative annual anomalies in grow-
ing season EVI showed marginally higher correlations with corresponding GPP anoma-
lies in EBF (R2 = 0.52) and GRA (R2 = 0.64), and GPP anomalies in SSMF were most
highly correlated with relative anomalies in NDVI (R2 = 0.42; Fig. 7). No other proxies
showed significant correlation with interannual anomalies in tower GPP.20

(iii) Covariance between interannual anomalies in remotely sensed model predic-
tions and tower GPP. In GRA, relative annual anomalies in GPP estimated by the
TG, MOD17-Tower and neural network models explained substantial variance in cor-
responding tower GPP anomalies (R2 ∼= 0.6). In SSMF, relative annual anomalies in
tower GPP were best explained by the neural network model (R2 ∼= 0.7). In CRO, DBF,25

ENF and EBF, however, none of the models estimated relative anomalies in annual
GPP that were significantly correlated with relative anomalies in tower GPP (Figs. 9
and 10).
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4 Discussion

4.1 Spatial variation in annual GPP

The results from this study show that remotely sensed proxies can successfully cap-
ture statistically significant and meaningful within-biome variation in GPP, but that the
strength of the relationship is highly variable and depends on the biome and remotely5

sensed proxy. However, with the exception of ENF and GRA, proxies explained less
than 50 % of the spatial variance in annual GPP. Thus, inferences regarding spatial
patterns in GPP based on patterns observed in remotely sensed proxies should be
made with caution.

Spatial covariance between remote sensing model predictions and tower-based an-10

nual GPP were similarly inconsistent; the majority of models explained less than 50 %
of spatial variance in annual GPP. With the exception of croplands, the “Proxy+Met”
model showed the best agreement with tower GPP. This result is consistent with the hy-
pothesis that spatial variation in terrestrial GPP over large areas reflects an equilibrium
response to climate (Burke et al., 1997; Richardson et al., 2010a).15

The remote sensing methods tested here did not effectively explain spatial variation
in annual GPP in crops, probably because agricultural practices that are not captured
by remote sensing exert significant control on GPP in croplands. Specifically, applica-
tion of fertilizers (Eugster et al., 2010), variation in crop varieties (Moors et al., 2010),
irrigation, and harvest practices significantly modify productivity in croplands (Suyker20

et al., 2004; Verma et al., 2005). These practices are not directly observable from re-
mote sensing, and as a result, variation in productivity arising from these practices are
not well-reproduced by remote sensing-based models (Zhang et al., 2008; Chen et al.,
2011).

Surprisingly, the LUE-based models were not particularly effective in capturing spa-25

tial variation in annual GPP. At instantaneous time scales absorbed PAR, temperature,
and vapor pressure deficit control leaf level photosynthesis (Farquhar et al., 1980).
The LUE models we examined use daily (or 8 day) inputs and assume that leaf-level
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mechanisms hold at daily (or longer) time scales and are uniform over large areas.
However, whether and how leaf level processes scale to daily and longer time scales
is an open question (Beer et al., 2010; Horn and Schulz, 2012), and some studies
have observed that daily temperature and vapor pressure deficit exert only modest
control on daily GPP (Gebremichael and Barros, 2006; Jenkins et al., 2007; Garbulsky5

et al., 2010). Other studies have shown that the influence of environmental variables
on GPP becomes progressively weaker as the temporal scale increases (Richardson
et al., 2007; Yadav et al., 2010). Our results appear to support this conclusion, sug-
gesting that LUE-based remote sensing approaches need to incorporate processes
occurring at sub-diurnal time scales. Recent studies have also suggested that light use10

efficiency model parameters should be tuned to different climate types within biomes,
thereby capturing spatial variation in ecosystem properties and processes (King et al.,
2011). Our results would appear to support this approach, and refined treatments that
account for both temporal (interannual) and spatial (within-biome) variation in model
parameters may help to resolve this issue.15

4.2 Interannual variation in GPP

Results from this work suggest that the ability of widely used remote sensing meth-
ods to explain interannual variation in GPP is relatively modest and varies significantly
across biomes. In CRO, DBF, and ENF, relative annual anomalies in tower GPP were
not significantly correlated with corresponding anomalies in remote sensing proxies20

and model predictions, even when anomalies less than ±10 % were excluded. This re-
sult suggests that important environmental drivers, biotic factors, and other unknown
controls that influence interannual variability in GPP were not captured by the remote
sensing proxies and models in these biomes. For example, moisture in the root zone is
especially important and can affect annual GPP in both crops and seasonally dormant25

forests (Irvine et al., 2004; Zhang et al., 2006). Similarly, anomalies in spring phenol-
ogy can have carry-over effects that influence GPP anomalies (e.g., Richardson et al.,
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2010b). Neither of these controls is directly observed or represented in the remote
sensing proxies or models that we tested.

On a more positive note, interannual anomalies in mean growing season greenness
(EVI, NDVI) and annual GPP were highly correlated in EBF. This result is important
because several recent studies have documented large anomalies in greenness asso-5

ciated with drought in Amazon forests (Saleska et al., 2007; Samanta et al., 2010; Xu
et al., 2011), which may significantly affect regional-to-global carbon budgets (Brando
et al., 2010). At the same time, relative annual anomalies in GPP predicted by the re-
mote sensing models did not show comparable explanatory power at EBF sites. Thus,
the additional complexity provided by the models not only failed to improve their perfor-10

mance, but seemed to effectively cancel information provided by remote sensing.
Anomalies in mean growing season EVI and NDVI explained ∼40–60 % of annual

GPP anomalies in GRA and SSMF. In GRA, correlations between anomalies in mean
EVI (and NDVI) and anomalies in GPP suggest that interannual variability in GPP in
grasslands is tightly coupled to leaf area and supports the hypothesis that grasslands15

use LAI regulation to avoid moisture stress (Jenerette et al., 2009). Our results suggest
that mean EVI and NDVI successfully capture the effect of moisture variability on GPP
at GRA and SSMF sites, including moderate drought conditions when GPP can actually
increase because of increases in LAI (Nagy et al., 2007; Mirzaei et al., 2008; Aires
et al., 2008).20

Finally, all the models included in this study assume that parameters such as light
use efficiency are biome-specific and constant over time. VPRM and MOD17 specifi-
cally assume that variation in GPP can be explained by variation in FPAR and a small
set of easily observable environmental variables (Table 1). Our results indicate that
this assumption is not very robust, and that spatial and temporal variation (both within25

and across years) in key parameters may explain a significant portion of year-to-year
variance in GPP. For example, high frequency variation in meteorological forcing has
been shown to produce variation in GPP that accumulates over time and affects annual
productivity (Medvigy et al., 2010). Models that use static and biome-specific param-
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eters will not capture these dynamics (Polley et al., 2008; Stoy et al., 2009; Keenan
et al., 2011) and therefore are not able to capture important sources of spatio-temporal
variation in GPP. Moving forward, it may be possible to refine this weakness of re-
mote sensing-based LUE models using complementary remote sensing metrics such
as fluorescence or physiologically-based reflectance indices that measure physiologi-5

cal properties of vegetation canopies that control photosynthesis (e.g., Guanter et al.,
2012; Gamon et al., 1992).

5 Conclusions

We draw two main conclusions from this work. First, the remote sensing models and
proxies that we examined provide statistically significant and useful information related10

to spatial variation in annual GPP. Second, the remotely sensed proxies and modeled
estimates of annual GPP only explained relatively modest amounts of variance in an-
nual GPP across years.

These conclusions are important for two main reasons. First, no previous study has
explored these issues using a database as large and comprehensive as the La Thuile15

dataset. Second, and more importantly, a large number of recent studies have used
remote sensing to infer regional-to-global changes in GPP or net primary productivity.
Many of these papers justify their conclusions based on previous studies that use mod-
els or proxies to explain spatial variance in annual GPP (or NPP) across large spatial
scales or at seasonal time scales. The results from this study suggest the ability of re-20

mote sensing methods to explain spatial variance in annual GPP across widely different
biomes should not be used to assume that remote sensing methods accurately capture
spatial variation in annual GPP within biomes, even when the range in GPP is large.
Similarly, the ability of remote sensing to capture seasonal variation in GPP should
not be used to assume that remote sensing methods successfully captures variation in25

annual GPP across years. In both cases, the magnitude of variance is generally much
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larger in the former case (across biomes or within seasons) than it is in the latter case
(within biomes or across years).

An additional important result from this work is that greater model complexity and
higher temporal resolution did not improve the ability of models to explain spatial or
temporal variance in annual GPP. Indeed, the simplest model “Proxy+Met”) explained5

the most spatial variance in annual tower GPP. Similarly, interannual variation in re-
motely sensed proxies explained as much or more interannual variance in GPP than
any of the models. Spatial and temporal correlation between annual GPP and remote
sensing proxies of total greenness (e.g., as measured by mean growing season EVI)
was highest in moisture-limited biomes. In temperature-limited systems such as DBF10

and ENF, on the other hand, remotely sensed proxies showed statistically significant
correlations with spatial variation in annual GPP, but almost no ability to explain inter-
annual variation in GPP.

Finally, landscape heterogeneity is widely viewed to be an important factor that com-
plicates interpretation of results from studies that couple flux data with remote sensing.15

In this study, we accounted for landscape heterogeneity around tower sites using the
MODIS Land Cover Product. However, sub-pixel heterogeneity in land cover may still
be a source of disagreement between observed and modeled fluxes. Further, in biomes
with strongly seasonal climates, sub-pixel heterogeneity can produce significant errors
in remotely sensed phenology, which influences both observed and modeled primary20

productivity in many ecosystems. Moving forward, emerging datasets and methods for
mapping both land cover and phenology (e.g., Melaas et al., 2012) at finer spatial res-
olution should provide an improved basis for this type of analysis.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/10/11627/2013/25

bgd-10-11627-2013-supplement.pdf.
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Table 1. Summary of the remote sensing proxies and models investigated in this study.

Proxy/Model Underlying hypotheses
regarding controls on
ecosystem level GPP

Assumptions regarding un-
represented processes

Input data Number of parameters and
assumptions regarding pa-
rameter variability

29 
 

7. Tables  769 

Table 1.  Summary of the remote sensing proxies and models investigated in this study. 770 

 771 
 Proxy/Model Underlying Hypotheses 

Regarding Controls on  
Ecosystem Level GPP 

Assumptions 
Regarding 
Unrepresented 
Processes 

Input Data Number of Parameters 
and Assumptions 
Regarding Parameter 
Variability 

 Proxies 

Mean 
NDVI/EVI 

Amount of green leaf area 
controls GPP. 

Other variables known 
to affect 
photosynthesis either 
co-vary with the 
selected variable or 
become insignificant 
at coarse temporal and 
spatial resolution. 

8-day 
NDVI/EVI 

No parameters. 
 
It is assumed that proxies 
are highly correlated with 
GPP and thus variations in 
proxies indicate relative 
variations in GPP. 
 

GPL Growing period length 
controls GPP 

8-day EVI 

EVI-area Variations in GPP are 
controlled by total leaf area 
and GPL. 

8-day EVI 

Models 

Proxy+Met 
(analysis of 
spatial  
variability 
only.) 

GPP is controlled by one of 
the above three proxies and 
mean annual precipitation 
or temperature. 

Short term 
fluctuations in GPP do 
not contribute to 
spatial variation in 
annual GPP. 
 

One of the 
three proxies 
and mean 
annual 
temperature 
or 
precipitation 
(see Table 3). 

3 for each biome. 
Parameters remain 
constant over time and 
space. 

TG Variations in GPP are 
controlled by greenness 
modulated by temperature. 

Other meteorological 
variables such as PAR 
and VPD are not 
important at 8-day 
time scale. 

8-day EVI, 
day and 
night land 
surface 
temperature 

2 each for deciduous and 
evergreen biomes. 
Model parameters vary 
across space (but not time) 
and depend on mean 
annual nighttime land 
surface temperature. 

VPRM Ecosystem level GPP at daily 
time scale is controlled by 
the same physiological 
processes as instantaneous 
leaf or canopy level GPP. 
Leaf age affects GPP in 
deciduous biomes. 
 

Effect of soil moisture 
is captured by LSWI. 

8-day EVI, 
LSWI, daily 
PAR, air 
temperature. 

2 biome specific 
parameters that remain 
constant over space and 
time. 

MOD17 
(MOD17-
Tower) 

Ecosystem level GPP at daily 
time scale is controlled by 
the same physiological 
processes as instantaneous 
leaf or canopy level GPP. 
. 

VPD scalar captures 
the effects of moisture 
stress. 
Leaf age has no effect. 

8-day FPAR.  
Daily PAR, 
VPD and air 
temperature. 

5 biome specific 
parameters that remain 
constant over space and 
time. 

Neural 
Network 

Ecosystem level GPP is 
controlled by the same 
variables that are used in 
MOD17, but they interact in 
a complex, nonlinear way. 

VPD captures soil 
moisture effects. 
 
Unlike VPRM, leaf age 
has no effect. 

8-day FPAR, 
daily PAR, 
VPD and air 
temperature 

No constrain on spatial and 
temporal variability is 
imposed on weights and 
biases. 
 

 772 
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Proxies

Mean NDVI/EVI Amount of green leaf area
controls GPP.

Other variables known to
affect photosynthesis

8 day NDVI/EVI No parameters.
It is assumed that proxies

GPL Growing period length con-
trols GPP.

either co-vary with the se-
lected variable

8 day EVI are highly correlated with
GPP and thus variations

EVI-area Variations in GPP are con-
trolled by total leaf area and
GPL.

or become insignificant at
coarse temporal and spa-
tial resolution.

8 day EVI in proxies indicate relative
variations in GPP.

Models

“Proxy+Met”
(analysis of spatial variabil-
ity only.)

GPP is controlled by one
of the above three proxies
and mean annual precipita-
tion or temperature.

Short term fluctuations in
GPP do not contribute to
spatial variation in annual
GPP.

One of the three proxies
and mean annual temper-
ature or precipitation (see
Table 3).

3 for each biome.
Parameters remain con-
stant over time and space.

TG Variations in GPP are con-
trolled by greenness modu-
lated by temperature.

Other meteorological vari-
ables such as PAR and
VPD are not important at 8-
day time scale.

8 day EVI, day and night
land surface temperature.

2 each for deciduous and
evergreen biomes.
Model parameters vary
across space (but not time)
and depend on mean an-
nual nighttime land surface
temperature.

VPRM Ecosystem level GPP at
daily time scale is con-
trolled by the same phys-
iological processes as in-
stantaneous leaf or canopy
level GPP.
Leaf age affects GPP in de-
ciduous biomes.

Effect of soil moisture is
captured by LSWI.

8 day EVI, LSWI, daily
PAR, air temperature.

2 biome specific parame-
ters that remain constant
over space and time.

MOD17
(MOD17-Tower)

Ecosystem level GPP at
daily time scale is con-
trolled by the same phys-
iological processes as in-
stantaneous leaf or canopy
level GPP.

VPD scalar captures the ef-
fects of moisture stress.
Leaf age has no effect.

8 day FPAR. Daily PAR,
VPD and air temperature.

5 biome specific parame-
ters that remain constant
over space and time.

Neural Network Ecosystem level GPP is
controlled by the same vari-
ables that are used in
MOD17, but they interact in
a complex, nonlinear way.

VPD captures soil moisture
effects.
Unlike VPRM, leaf age has
no effect.

8 day FPAR, daily PAR,
VPD and air temperature.

No constrain on spatial and
temporal variability is im-
posed on weights and bi-
ases.
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Table 2. Total number of sites and site-years used in this study from the La Thuile dataset.
CRO, DBF, EBF, ENF and GRA are cropland, deciduous broadleaf forest, evergreen broadleaf
forest, evergreen needleleaf forest and grassland, respectively. The category SSMF includes
open and closed shrubland, savannas, woody savannas and mixed forest sites.

Biome

CRO DBF ENF EBF GRA SSMF TOTAL

Spatial Analysis
No. of sites 21 20 43 16 23 21 144
No. of site-years 43 66 151 43 70 49 422
Temporal Analysis
No. of sites 5 10 25 7 12 8 67
No. of site-years 18 52 122 28 51 31 302
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Table 3. Best predictors (one remotely sensed proxy and mean annual temperature or precip-
itation) used in the “Proxy+Met” model in each biome. CRO, DBF, EBF, ENF and GRA are
cropland, deciduous broadleaf forest, evergreen broadleaf forest, evergreenneedleleaf forest
and grassland, respectively. The category SSMF includes open and closed shrubland, savan-
nas, woody savannas and mixed forest sites.

Biome Remote Sensing Proxy Climatic Covariate

CRO EVI-area Mean annual day time temperature
DBF and ENF GPL Mean annual day time temperature
EBF, GRA and SSMF Mean growing season EVI Mean annual precipitation
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Table 4. Baseline statistics for annual tower GPP across sites in different biomes.

Biome Mean annual site GPP Standard deviation (Std) Coefficient Measurement Std/
(gCm−2 yr−1) of annual site GPP of variation uncertainty at 5 % uncertainty

(gCm−2 yr−1) of mean annual GPP
(gCm−2 yr−1)

CRO 1225 400 0.32 61 6.5
DBF 1333 321 0.24 66 4.8
ENF 1242 592 0.47 62 9.5
EBF 2240 913 0.40 112 8.1
GRA 1137 544 0.47 56 9.7
SSMF 1023 523 0.51 51 10.2
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Table 5. Relative annual anomalies in annual GPP in different biomes from FLUXNET data.

Biome Mean annual Percentage of Total Percentage of
relative absolute anomalies greater variance total variance
anomaly than 10 % due to large anomalies

CRO 16.5 67 405 96
DBF 8.8 29 122 79
ENF 9.7 29 194 88
EBF 7.8 29 112 88
GRA 17.5 51 642 97
SSMF 11.6 26 319 92
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Fig. 1. Location of 144 sites used in this study from the “La Thuile” dataset.
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Fig. 2. Boxplots showing the number of pixels in 7 by 7 pixel windows centered at each tower
site whose land cover class matched the land cover corresponding to the tower sites (maximum
agreement= 49). The pixel land cover classes were obtained from the MODIS Land Cover
Dynamics Product and land cover at each tower site was obtained from the information provided
in the La Thuile dataset.
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Fig. 3. R2 between mean annual tower GPP and corresponding values from the four different
remotely sensed proxies of GPP. GPL and EVI-area were not used in EBF.
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Fig. 4. Scatter plots showing the across–site relationship between mean annual tower GPP
and the most highly correlated MODIS proxy of GPP in six different biomes: (a) CRO; (b) DBF;
(c) ENF; (d) EBF; (e) GRA; and (f) SSMF.
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Fig. 5. R2, RMSE, MBE, and slope between modeled and measured mean annual GPP pre-
dicted from six models. TG model was not evaluated in EBF.
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Fig. 6. Scatter plots showing within–biome relationships between mean annual site GPP from
tower measurements and corresponding GPP predicted by the “Proxy+Met” model in six dif-
ferent biomes: (a) CRO; (b) DBF; (c) ENF; (d) EBF; (e) GRA and (f) SSMF.
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Fig. 7. R2 between relative interannual anomalies in tower GPP and the four proxies. GPL and
EVI-area were not evaluated in EBF.
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Fig. 8. Scatter plots showing relationships between relative interannual anomalies in mean
growing season EVI and annual tower GPP for: (a) CRO; (b) DBF; (c) ENF; (d) EBF; (e) GRA
and (f) SSMF.
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Fig. 9. R2 and regression slopes between relative interannual anomalies of GPP from tower
and the five models.
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Fig. 10. Scatterplots showing relationship between relative interannual anomalies in tower GPP
and GPP predicted by the neural network model for: (a) CRO; (b) DBF; (c) ENF; (d) EBF; (e)
GRA and (f) SSMF.

11669

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/11627/2013/bgd-10-11627-2013-print.pdf
http://www.biogeosciences-discuss.net/10/11627/2013/bgd-10-11627-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

