
Journal of Food Composition and Analysis 31 (2013) 31–40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Fondazione Edmund Mach
Original Research Article

Phenolic profile and effect of regular consumption of Brazilian red wines on
in vivo antioxidant activity

E.F. Gris a,d,*, F. Mattivi e, E.A. Ferreira b,d, U. Vrhovsek e, D.W. Filho c, R.C. Pedrosa b, M.T. Bordignon-Luiz a

a Departamento de Ciência e Tecnologia de Alimentos CAL, Universidade Federal de Santa Catarina, Brazil
b Departamento de Bioquı́mica, BQA, Universidade Federal de Santa Catarina, Brazil
c Departamento de Ecologia e Zoologia Bioquı́mica, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, Brazil
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A B S T R A C T

In this study, Vitis vinifera L wines cv. Cabernet Franc, Merlot, Sangiovese and Syrah, 2006 and 2007

vintages, produced in São Joaquim, a new wine-producing region in southern Brazil, were evaluated. As

phenolic compound content is one of the most important parameters in assessing wine quality and is

possibly partially responsible for the beneficial health properties of wines, in this paper the levels of the

main anthocyanins, flavonols, hydroxycinnamic acid and hydroxybenzoic acid (HPLC-DAD and HPLC-

DAD–MS analysis) and the in vivo antioxidant activity in mice are reported. The antioxidant capacity of

plasma was assessed through the reduction of ferric iron (FRAP). Lipid peroxidation (TBARS), carbonyl

protein (CP), reduced glutathione (GSH) levels and the catalase (CAT), superoxide dismutase (SOD) and

glutathione peroxidase (GPx) activity were determined in livers of the test animals. The results for the

phenolic compounds content of the wine samples were considered appropriate for quality red wines,

and the wine consumption promoted a significant increase in FRAP and decreases in the TBARS and CP

levels and in the CAT, SOD and GPx activity. Moreover, the phenolic content of the wines was positively

correlated with the in vivo antioxidant capacity promoted by regular wine consumption.

� 2013 Elsevier Inc. All rights reserved.
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1. Introduction

A number of epidemiological studies have demonstrated the
correlation between an unbalanced diet and coronary heart
diseases, some types of cancer and diabetes. Epidemiologists have
observed that a diet rich in polyphenolic compounds may provide a
positive effect due to antioxidant properties (Renauld and Lorgeril,
1992; Frankel et al., 1995). Wine is an important component in
Mediterranean dietary traditions, and it is rich in antioxidant
compounds. These compounds have a functional role, acting
against free radicals, as well as a physiological role; in fact, they can
increase the antioxidant capacity of the human body following red
wine consumption (Renauld and Lorgeril, 1992). Furthermore,
* Corresponding author at: Universidade de Brası́lia, Faculdade de Ceilândia, QNN

14, Area Especial, Ceilândia, Brası́lia, DF, CEP: 72220 140, Brazil.

Tel.: +55 061 3107 8418; fax: +55 061 3107 8420.

E-mail addresses: elianagris@unb.br, bordign@cca.ufsc.br,

elianagris@gmail.com (E.F. Gris).

0889-1575/$ – see front matter � 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jfca.2013.03.002
phenolic compounds constitute one of the most important wine
quality parameters since they contribute to the organoleptic
characteristics, particularly color, astringency and taste (Vrhovsek,
1998).

The flavonoid composition of red wines includes anthocyanins,
catechins, and flavonols. The main flavonols are myricetin,
quercetin, kaempferol, syringetin and laricitrin (Mattivi et al.,
2006). Anthocyanins are the main phenolic compounds associated
with the color of red wines and are antioxidants (Rice-Evans et al.,
1996; Rossetto et al., 2004). These compounds are present in Vitis

vinifera grapes as glycosylated anthocyanidins with glucose
attached to the 3-hydroxyl position, which can be esterified by
different organic acids (Mazza, 1995; Rice-Evans et al., 1996).

The main non-flavonoid compounds in wine are the phenolic
acids (various benzoic and cinnamic acid derivatives). They play a
primary role in defining the sensorial characteristics of wines,
giving the ‘‘oak wood’’ taste typical of long-aged products, besides
being largely responsible for the astringency and bitterness of
young wines (Somers et al., 1987; Vrhovsek, 1998; Monagas et al.,
2005). Hydroxycinnamic acids and their tartaric esters are the

https://core.ac.uk/display/153393255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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main class of non-flavonoid phenolics in red wines. They are
involved in the browning reactions of must and wine and are
precursors of volatile phenols (Vrhovsek, 1998). Gallic acid is the
main hydroxybenzoic acid in red wine, which is formed mainly
through the hydrolysis of flavonoid gallate esters. Wines matured
in oak present high levels of hydroxybenzoic acid derivatives,
mainly ellagic acid.

The chemical characterization of wine phenolics is currently an
issue for several reasons: it can aid the evaluation of the
authenticity of regional products and the prediction of the sensory
properties and oxidative stability of wine (Lopes et al., 2006).
Moreover, phenolics are used as markers of the wine processing
technology or wine aging (Ribéreau-Gayon et al., 1998; Vrhovsek,
1998).

São Joaquim is a recent wine-making region in southern Brazil.
This region is situated in the high plains of Santa Catarina State and
is known as the coldest place in the country, at altitudes ranging
from 1200 to 1400 m. Recent papers have reported interesting
results that support the potential of the region to produce high
quality wines. Falcão et al. (2008a,b) reported important results
regarding the sensory profile and the main aroma-impact
components of Cabernet Sauvignon wines from this region. These
authors established a positive relationship between vineyard
altitude and pyrazine content. Gris et al. (2011a) verified that
flavan-3-ol and proanthocyanidin concentrations were in line with
those reported in the literature for wine from the most renowned
production regions. Moreover, the results presented by Gris et al.
(2011b) showed that some wines from this region have an
unusually high content of stilbenes. Furthermore, the consumption
of these wines by laboratory animals submitted to a hypercholes-
terolemic diet reduced significantly the hypercholesterolemia and
hypertriglyceridemia, and also decreased the atherogenic level and
increased significantly the HDL level.

However, data on the detailed phenolic composition and in vivo

antioxidant capacity (in Swiss mice) have not previously been
reported. The aim of this study was therefore to evaluate the
association between in vivo antioxidant capacity and phenolic
contents. To this end the concentration of the main flavonoid and
non-flavonoid compounds and their contribution to the antioxi-
dant activity in Cabernet Franc, Merlot, Sangiovese and Syrah
wines, of the 2006 and 2007 vintages, produced in São Joaquim,
Santa Catarina State, southern Brazil were investigated.

2. Materials and methods

2.1. Standards and reagents

All chromatographic solvents were HLPC grade and were
purchased from Carlo Erba (Rodano, Italy). Pure, HPLC grade
myricetin, quercetin, laricitrin, kaempferol, isorhamnetin, syrin-
getin and malvidin 3-glucoside chloride, were purchased from
Extrasynthèse (Genay, France); ellagic acid, gallic acid, proto-
catechuic acid, p-hydroxybenzoic acid, syringic acid, caffeic acid
and trans-p-coumaric acid were purchased from Sigma Chemical Co.
(Steinheim, Germany); trans-caftaric acid, trans-coutaric acid and
trans-fertaric acid were isolated from Grenache grapes as described
by Meyer et al. (1998); 2,5 dihydroxybenzoic acid, vanillic acid, and
ferulic acid were purchased from Fluka (Steinheim, Germany);
trichloroacetic acid, 2,4-dinitrophenylhydrazine (DNPH), 2-thio-
barbituric acid (TBA), 5,50-dithiobis (2-nitrobenzoic acid) (DTNB),
butylated hydroxytoluene (BHT), epinephrine, hydrogen peroxide,
tert-butyl hydroperoxide, 2,4,6-tripyridyl-s-triazina (TPTZ), TRO-
LOX (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), b-
nicotinamide adenine dinucleotide phosphate (NADPH), glutathi-
one reductase (GR) and reduced glutathione (GSH) were purchased
from Sigma–Aldrich Co.
2.2. Characterization of the wine-growing region

São Joaquim is located in the high plains of Santa Catarina State
at altitudes ranging from 1200 to 1400 m, and is the viticulture
region situated at the highest altitude in Brazil. The soil of this
region is of the type Inceptisol according to U.S.D.A. classifications
and the climate of the São Joaquim region is ‘‘Cool, Cool nights and
Humid’’ according to the Geoviticulture Multicriteria Climatic
Classification System, and as ‘‘Region I’’ (<1389 GDD), a ‘‘cold
region’’, in terms of the Winkler Regions (Gris et al., 2011a,b).

2.3. Samples

2.3.1. Grapes

The wines were produced from Cabernet Franc, Merlot,
Sangiovese and Syrah grapes, 2006 and 2007 vintages, from young
commercial vineyards in São Joaquim, Santa Catarina State, Brazil.
These vineyards are located at an altitude of 1290 m, latitude of 288
150 and longitude of 498 500. The vines investigated in this study
were planted in 2003 and the clones used were 986, 181, VCR23
and VCR1, respectively. The rootstock was Paulsen 1103 (Vitis

berlandieri Planch � Vitis rupestris Scheele), the vertical shoot
positioning trellis system was used, the row and vine spacing
were 3.0 and 1.2 m, respectively, and the vineyard yield was
between 6 and 7 t/ha. The grapes were harvested at the stage of
technical maturity and had sugar readings of 19.1–24.28Brix, 0.57–
0.81 mg L�1 titratable acidity and pH values between 3.31 and
3.58.

2.3.2. Wine samples

The wines were all produced under the same conditions in a
commercial winery in São Joaquim as described by Gris et al.
(2011a,b). The wine samples from the 2007 and 2006 vintages
were analyzed after one and two years of aging in the bottle,
respectively. The wines were stored at 10 8C prior to analysis.

2.4. Determination of phenolic compounds

2.4.1. Spectrophotometric analysis of total phenols (TP)

Total phenols (TP) were directly measured using the Folin-
Ciocalteu reagent method (Singleton and Rossi, 1965) and
concentrations were determined by means of a calibration curve
as mg gallic acid/L of wine.

2.4.2. Flavonols content

The flavonols (myricetin, quercetin, laricitrin, kaempferol,
isorhamnetin and syringetin) contents of the wine samples were
determined by HPLC after acid hydrolytic cleavage of the flavonol
conjugates (Mattivi et al., 2006). HPLC separation and quantifica-
tion of flavonols was carried out according to Mattivi et al. (2006)
using a Waters 2695 HPLC system equipped with a Waters 2996
DAD (Waters, Milford, MA), using a Purospher RP18 reversed-
phase column of 250 mm � 4 mm (5 mm), with a precolumn
(Merck, Germany). The following solvents were used: (A) 0.3%
HClO4 in water; (B) methanol. The linear gradient was from 40 to
90% B in 30 min and the flow rate was 0.45 mL/min. The column
equilibration time was 5 min and the injection volume was 5 mL.
The presence of flavonol aglycons was confirmed by co-injection
with the corresponding standards. Each flavonol was quantified at
370 nm and expressed as mg mL�1 of wine by means of calibration
with external standards.

2.4.3. Free anthocyanins content

The sample preparation for the determination of the main free
anthocyanins in the wine samples was carried out according to
Rossetto et al. (2004). Based on Mattivi et al. (2006), the samples
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were filtered through 0.22 mm, 13 mm PTFE syringe tip filters
(Millipore) into LC vials and immediately injected employing the
same system, column and eluents used for the HPLC-DAD analysis
of flavonols. Separation of the 15 main free anthocyanins was
obtained at 40 8C with a flow rate of 0.45 mL/min. The binary
gradient was applied as follows: from 27 to 44.5% of B in 32 min,
then to 67.5% of B in 13 min, to 100% B in 2 min, isocratic 100% B for
3 min; total analysis time, 50 min. Delphinidin 3-glucoside,
cyanidin 3-glucoside, petunidin 3-glucoside, peonidin 3-glucoside,
malvidin 3-glucoside, and their relevant acetic acid and p-
coumaric acid esters were identified according to Castia et al.
(1993) and quantified at 520 nm using a calibration curve with
malvidin 3-glucoside chloride.

2.4.4. Hydroxycinnamic acids (HCAs)

Sample preparation and HPLC separation and quantification of
HCAs (with modifications) were performed according to Vrhovsek
et al. (2004). The same system and column used for the flavonols
were used for the determination of HCAs. The following solvents
were used: (A) 0.5% formic acid in water and (B) 2% formic acid in
methanol. The gradients were as follows: from 16% to 19% B in
7 min, from 19% to 53% B in 12 min, from 53% to 100% B in 0.1 min,
100% B for 5 min, back to 16% B in 0.1 min. The column was
equilibrated for 7 min prior to each analysis. The flow rate was
0.4 mL/min and the injection volume 10 mL. The detection of HCAs
was carried out at 320 nm. Each compound was quantified as
mg mL�1 of wine by means of calibration with an external
standard. The %RSD values obtained experimentally from six
consecutive determinations of the same wine were as follows: cis-
caftaric acid, 0.89%; trans-caftaric acid, 0.64%; cis-cutaric acid,
0.57%; trans-cutaric acid, 0.32%; fertaric acid, 0.43%; trans-caffeic
acid, 0.64%; trans-p-coumaric acid, 0.53%; and trans-ferulic acid,
0.82%.

2.4.5. Hydroxybenzoic acids

Sample preparation for p-hydroxybenzoic, syringic and vanillic
acids was carried out as follows: 10 mL of wine and 1.0 mL of
internal standard (2,5-dihydroxybenzoic acid, 100 mg L�1) were
concentrated to approximately 7 mL using rotary evaporation and
reduced pressure at 35 8C. After concentration, the sample pH was
adjusted to 8.0 with NaOH and the sample was made up to the
initial volume (10 mL) with distilled water. An aliquot of 5 mL was
added to a C18-SPE cartridge (1 g, Waters), previously activated
with methanol (5 mL) and water (10 mL). The eluate was collected,
its pH value was adjusted to 2.7 with formic acid and the volume
was completed to 10 mL with distilled water. The final sample was
filtered through 0.22 mm, 13 mm PTFE syringe tip filters (Millipore,
Bedford, MA) into LC vials and immediately injected into the HPLC-
DAD.

2.4.6. HPLC-DAD analysis of p-hydroxybenzoic, syringic and vanillic

acids

The HPLC system consisted of a Waters 2695 HPLC system
equipped with a Waters 2996 DAD (Waters, Milford, MA).
Chromatographic separations were performed on a Gemini RP18
(Phenomenex) column (250 mm � 2.0 mm, 5 mm), protected by
a precolumn. Solvent A was 1% formic acid in water and solvent
B was acetonitrile. The linear gradient was as follows: from 0 to
20% B in 40 min, 20 to 100% B in 0.10 min, 100% B for 2 min,
back to 0% B in 0.1 min. The column equilibration time was
5 min, the injection volume was 10 mL and the temperature was
40 8C. The compounds detected were identified at 280 nm by
comparing their retention times with those of pure standards
and quantified by means of the external standard method
(results were corrected on the basis of recovery of the internal
standard).
2.4.7. HPLC-DAD–MS analysis of ellagic, gallic and protocatechuic

acids

The wine samples, without prior preparation, were filtered
through PTFE syringe tip filters (0.22 mm pore size, 13 mm;
Millipore, Bedford, MA) prior to injection into the Waters 2690
HPLC system (Waters, Milford, MA, USA) equipped with a Waters
996 DAD and Micromass ZQ electrospray ionization-mass spec-
trometer. The UV–VIS spectra were recorded from 210 to 400 nm,
with detection at 280 nm. The MS detector operated at a capillary
voltage of 3000 V, extractor voltage of 3 V, source temperature of
105 8C, desolvation temperature of 200 8C, cone gas flow (N2) of
61 L h�1 and desolvation gas flow (N2) of 460 L h�1. Electrospray
ionization-mass spectrometry (ESI-MS) was carried out from m/z
100 to 1500 with a residence time of 0.1 s.

The same chromatographic separation conditions used for p-
hydroxybenzoic, syringic and vanilic acids were applied in the
determination of ellagic, gallic and protocatechuic acids. The
identification was performed on the basis of their retention time,
molecular ion and main fragment by MS through comparison with
the values for the pure standards. The optimal coefficient of
variation (CV) for all ions was 20. The molecular ions (M�H)� for
ellagic acid (m/z 301.19) and gallic acid (m/z 169.12) as well as the
(M+H)+ for protocatechuic acid (m/z 153.12) were used for the
quantification based on external standard calibration curves.

2.4.8. Method repeatability

Method repeatability was based on six consecutive determina-
tions (ellagic, gallic and protocatechuic acids) by six SPE
purifications (p-hydroxybenzoic, syringic and vanillic acids)
applied to the same wine. The %RSD values obtained were the
following: ellagic acid 6.75%; gallic acid 1.26%; protocatechuic acid
1.61%; p-hydroxybenzoic acid 4.32%; syringic acid 3.23%; and
vanillic acid 4.76%.

2.4.9. Detection and quantification limits (phenolic acids)

The experimental limit of detection (LOD) and limit of
quantification (LOQ) for the HPLC-DAD–MS method were estimated
at a signal-to-noise ratio of 3 and 10, respectively, and the values
obtained were as follows: ellagic acid 0.031 and 0.098 mg L�1

(R2 = 0.9956); gallic acid 0.172 and 0.568 mg L�1 (R2 = 0.9945);
protocatechuic acid 0.148 and 0.490 mg L�1 (R2 = 0.9953); p-
hydroxybenzoic acid 0.039 and 0.130 mg L�1 (R2 = 0.9993); syringic
acid 0.027 and 0.084 mg L�1 (R2 = 0.9989); and vanillic acid 0.034
and 0.113 mg L�1 (R2 = 0.9986), respectively. All results were
considered acceptable for research purposes.

2.5. In vivo antioxidant activity

2.5.1. Animals

All animal used in this study received humane care in
accordance with the principles of the legal requirements appro-
priate for the species (Guiding Principles for the Care and Use of
Laboratory Animals, NIH publication #85.23, revised in 1985) and
with the approval of Institutional Ethics Committee of University
of Santa Catarina (PP005422010/CEUA/UFSC). Male Swiss mice
weighing 22 � 2 g were housed under controlled conditions (12-h
light–dark cycle, 22 � 2 8C, 60% air humidity) and had free access to
standard laboratory chow and water.

Mice were randomly divided into 10 groups (n = 6 each group)
as detailed below: one control group, treated with water daily; one
control ethanol group, treated with vehicle (hydroalcoholic
solution 12%) daily and eight test groups, treated with one of
the 8 wine samples daily. The treatment (7.0 mL kg�1,
�20 mg kg�1 day�1 total polyphenols) was performed by gavage
for 30 days and on the 31st day the animals were euthanized by
cervical dislocation.



E.F. Gris et al. / Journal of Food Composition and Analysis 31 (2013) 31–4034
2.5.2. Oxidative stress biomarkers – in vivo antioxidant activity

The total antioxidant capacity (FRAP) of the animals plasma was
determined and liver samples were analyzed to evaluate the
endogenous lipid peroxidation (TBARS), oxidative damage to
proteins by carbonylation (PC) and catalase activity (CAT) as well
as the reduced glutathione (GSH), superoxide dismutase (SOD) and
glutathione peroxidase (GPx) content.

The total antioxidant capacity (FRAP) was determined using the
animals plasma according to Benzie and Strain (1996). In this
analysis the antioxidant present in the sample reduces Fe2+ to Fe3+

which is chelated by 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ) and the
blue color is monitored at 593 nm. Peroxidation of hepatic tissue
lipids, in vivo, was measured by the method described by Ohkawa
et al. (1979). The amount of thiobarbituric acid-reactive substances
(TBARS) was expressed as nmoles of TBARS formed per mg of
protein, using a molar coefficient (e) of 153 mmol L�1 cm�1.
Oxidative damage of proteins was quantified as carbonyl protein
content (CP) according to Levine et al. (1990). This method is based
on spectrophotometric detection of the end product of the reaction
of 2,4-dinitrophenylhydrazine with carbonyl protein to form
protein hydrazones detected at 370 nm. The results were
expressed as nmoles of carbonyl group per mg of protein, using
e = 22 mmol L�1 cm�1. Liver GSH levels were measured by a
spectrophotometric method (Anderson, 1985), in acid hepatic
homogenates combined with a disodium hydrogen phosphate and
DTNB solution, and the yellow chromophore formed was detected
and quantified at 412 nm using a molar coefficient (e) of
14.1 mmol L�1 cm�1. The results were expressed in mmol mg�1

of protein. CAT activity was determined by measuring, at 240 nm,
the decrease in H2O2 in a freshly prepared 10 mM hydrogen
peroxide solution and expressed in mmol min�1 mg protein�1 and
e = 40 mmol L�1 cm�1 (Aebi, 1984). SOD activity in homogenates
was determined by measuring the inhibition of the rate of
autocatalytic adrenochrome formation and expressed in U SOD mg
protein�1 (Misra and Fridovich, 1972). GPx activity was quantified
by a coupled assay with glutathione reductase (GR)-catalyzed
oxidation of NADPH. Measurements were taken at 340 nm and
expressed in mmol min�1 mg protein�1 (Flohé and Gunzler, 1984).
Protein was measured by the method of Lowry et al. (1993) using
bovine serum albumin as the standard.

2.6. Statistical analysis

Analysis of variance (ANOVA), Tukey HSD Test and principal
components analysis (PCA) were carried out using Statistica 7
(2001) (StatSoft Inc., Tulsa, OK, USA). Values of p � 0.05 were
considered statistically significant.

3. Results and discussion

3.1. Chemical analysis

3.1.1. Flavonoid phenolic compounds

Table 1 shows the results for the flavonol contents of the wine
samples. The six flavonols determined in the present study, after
acid hydrolysis, included all aglycons expected on the basis of the
diagram for the biosynthesis of grape flavonols proposed by
Mattivi et al. (2006). In general, the main flavonols in these wine
samples were quercetin and myricetin. These compounds were
especially high in Sangiovese 2007 (quercetin) and Syrah 2007
(myricetin). Lower concentrations of laricitrin, kaempferol, iso-
rhamnetin and syringetin were found. However, despite their low
concentrations, the identification and quantification of such
compounds is important since they allow a better characterization
for this family of compounds. Moreover, according to Mattivi et al.
(2006) all of these flavonols are required for a more detailed
classification of red and white grape varieties on the basis of their
flavonol profile. The concentrations of total flavonols (sum of the
individual contents) in the wine samples ranged from 20.81 to
46.79 mg L�1, and are similar to those reported for regions
renowned for wine production (Simonetti et al., 1997; Monagas
et al., 2005).

The levels of delphinidin-3-glucoside, cyanidin-3-glucoside,
petunidin-3-glucoside, peonidin-3-glucoside, malvidin-3-gluco-
side and their respective derivatives (esters of acetic and p-
coumaric acids) in the wine samples are presented in Table 2. The
mean total anthocyanins content (sum of the individual contents)
was 47.43 mg L�1, and ranged from 12.94 to 125.60 mg L�1. Of the
anthocyanins evaluated, malvidin-3-glucoside presented the
highest concentrations (as expected since this is the main
anthocyanin in grapes and wines) and the relative amount of this
anthocyanin in the cultivars studied ranged from 33.4% (Cabernet
Franc, 2006 vintage) to more than 47% (Syrah, 2007 vintage). In
general, acetylated anthocyanins were the derivatives found in
highest concentrations in both vintages, with relative amounts
ranging from 17% to 25% of the total anthocyanins. The highest
values were found for Cabernet Franc 2007 (22.83 mg L�1). The p-
coumarated anthocyanin content corresponded to 4.3–11% of the
total anthocyanins.

Two-way ANOVA analysis revealed that the total contents of
flavonols and anthocyanins were influenced by two factors: variety
and vintage (p < 0.05). It is known that the biosynthetic pathways
involved in flavonoids production in plant tissues are greatly
influenced by many climatic factors including sunlight exposure,
temperature and UV exposure. Thus, in this study, the differences
found between the two vintages were to be expected since
significant differences were observed between climates in which
they were grown (Gris et al., 2010). However, an alternative
hypothesis to explain the differences observed in the phenolic
compounds content of the two vintages is the time of wine aging.
Since wine composition is in constant evolution, the aging in
bottles also seems to contribute to changes in the flavonols
content, through the interaction of flavonols with other constitu-
ents (Ribéreau-Gayon et al., 1998).

It was found that the effect of vintage was significantly more
pronounced on the anthocyanins than on the flavonols, the
anthocyanins concentration in the 2006 vintage being significantly
lower for all varieties when compared to the later vintage
(p < 0.05). This can be explained by the fact that, although
weather conditions have a strong influence on the anthocyanins
concentration, according to Monagas et al. (2005) these are one of
the groups of phenolic compounds that present major losses
during wine aging in the bottle. This is attributed to their
participation in numerous chemical reactions which, in general,
lead to the disappearance of monomeric anthocyanins and the
formation to more stable oligomeric and polymeric pigments.
Moreover, Rossetto et al. (2004) also affirm that the polymerization
process which occurs during wine aging causes the disappearance
of the free form of anthocyanins. Once a wine is bottled, changes
are determined mainly by non-oxidative reactions (Ribéreau-
Gayon et al., 1998). However, recent studies indicate that wines are
also subjected to oxidative reactions (Lopes et al., 2006).
Considering the non-oxidative conditions present in the bottle,
the direct condensation reaction of anthocyanins with other
phenolic compounds, and hydrolytic and degradative reactions
(Somers and Evans, 1986) are most probably responsible for the
decrease in the monomeric anthocyanins concentration during
aging in the bottle. Thus, a combination of these factors can
influence the phenolic composition of wine and, consequently, the
levels of anthocyanins and flavonols.

Regarding the significant differences observed in the contents
of flavonoid phenolic compounds of the different varieties, it is



Table 1
Content of main flavonols and total phenols (TP) in wine samples.

Vintage 2006 2007

Cabernet Franc Merlot Sangiovese Syrah Cabernet Franc Merlot Sangiovese Syrah

Myricetin 14.49 � 0.18 11.59 � 0.23 9.33 � 0.13 10.42 � 0.06 13.83 � 0.13 14.04 � 0.10 11.83 � 0.21 16.47 � 0.14

Quercetin 22.59 � 0.23 19.01 � 0.23 7.49 � 0.20 14.82 � 0.19 17.80 � 0.17 20.50 � 0.23 27.44 � 0.22 13.88 � 0.16

Laricitrin 3.39 � 0.14 2.40 � 0.12 1.47 � 0.12 2.32 � 0.10 2.86 � 0.11 2.50 � 0.09 1.67 � 0.08 3.41 � 0.13

Kaempferol 1.65 � 0.08 1.25 � 0.06 0.23 � 0.05 0.43 � 0.05 0.38 � 0.08 0.76 � 0.04 0.74 � 0.07 0.69 � 0.05

Isorhamnetin 2.72 � 0.04 2.02 � 0.06 0.74 � 0.02 2.12 � 0.07 2.00 � 0.08 2.00 � 0.07 0.48 � 0.08 3.28 � 0.10

Syringetin 1.94 � 0.08 2.06 � 0.04 1.57 � 0.09 1.73 � 0.04 2.29 � 0.09 1.99 � 0.06 0.60 � 0.05 2.21 � 0.08

Total flavonols 46.79 � 0.9a 38.32 � 1.4b 20.81 � 0.7d 31.85 � 0.3e 39.15 � 0.2b 41.79 � 0.3b,c 42.76 � 0.4a.c 39.93 � 0.3b,c

Total phenols 2680.4 � 12.4a 2692.1 � 40.3a 2287.6 � 31.1b 2732.2 � 37.2a 2691.4 � 26.2a 2813.7 � 16.2c 2732.1 � 27.9a 2790.5 � 34.2a

Values in units of mg L�1� standard deviation over three replications in one wine sample. Different letters (total contents) within each row are significantly different (Tukey’s test,

p � 0.05).
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known that, although the environmental conditions where the
fruit is grown influence greatly the synthesis of phenolic
compounds, their nature and different relative amounts are
consequences of a genetic determinant, specific for each variety
(Mazza, 1995).

3.1.2. Non-flavonoid phenolic compounds

The results for the determination of hydroxycinnamic and
hydroxybenzoic acids in the wine samples are presented in Table 3.
In wines, the most abundant hydroxycinnamic acids are present in
the conjugated form (tartaric esters; hydroxycinnamates), as
found in this study (Table 3). The presence of free forms of these
acids in wines, since they are not present in grapes (Vrhovsek,
1998), according to Somers et al. (1987), is due to the hydrolysis of
hydroxycinnamates by cinnamoyl esterases.

A two-way ANOVA carried out considering two factors, variety
and vintage, revealed that these factors influence the total content
of hydroxycinnamic acids (p < 0.05). Regarding the varieties,
Cabernet Franc presented the highest content of hydroxycinnamic
acid in both vintages analyzed (p < 0.05). It was verified that the
total hydroxycinnamic acid content was higher for the 2007
vintage (p < 0.05).

It was found that the values for trans-caftaric and cis and trans-
coutaric acids in the wines of the 2006 vintage were lower than
those found for the 2007 vintage, with the opposite being
observed for the trans-caffeic and trans-p-coumaric acids. One
hypothesis which may explain this observation is the constant
Table 2
Content of main anthocyanins and derivatives (esters of acetic and p-coumaric acids) i

Vintage 2006 

Cabernet Franc Merlot Sangiovese 

Delphinidin-3-glucoside 1.77 � 0.07 2.16 � 0.06 1.50 � 0.06 

Cyanidin-3-glucoside 0.49 � 0.07 0.69 � 0.05 0.46 � 0.05 

Petunidin-3-glucoside 1.48 � 0.05 1.74 � 0.06 1.24 � 0.05 

Peonidin-3-glucoside 1.32 � 0.03 1.49 � 0.08 1.12 � 0.08 

Malvidin-3-glucoside 5.58 � 0.06 6.02 � 0.08 4.53 � 0.07 

Delphinidin-3-glucoside-acetate 0.38 � 0.04 0.34 � 0.04 0.16 � 0.02 

Cyanidin-3-glucoside-acetate 0.12 � 0.03 0.17 � 0.06 0.07 � 0.014

Petunidin-3-glucoside-acetate 0.17 � 0.06 0.35 � 0.03 0.17 � 0.03 

Peonidin-3-glucoside-acetate 0.74 � 0.03 0.72 � 0.03 0.47 � 0.03 

Malvidin-3-glucoside-acetate 2.82 � 0.05 2.37 � 0.06 1.89 � 0.10 

Delphinidin-3-glucoside-cumarate 0.19 � 0.03 0.06 � 0.02 0.17 � 0.04 

Cyanidin-3-glucoside-cumarate 0.42 � 0.03 0.27 � 0.04 0.20 � 0.04 

Petunidin-3-glucoside-cumarate 0.06 � 0.02 0.05 � 0.01 0.04 � 0.01 

Peonidin-3-glucoside-cumarate 0.32 � 0.02 0.29 � 0.04 0.23 � 0.05 

Malvidin 3-glucoside-cumarate 0.85 � 0.07 0.85 � 0.06 0.68 � 0.05 

Total glucoside 10.65 � 0.3a 12.09 � 0.3a 8.85 � 0.3a

Total acetylated anthocyanins 4.23 � 0.08a 3.96 � 0.06a 2.76 � 0.1a

Total p-coumarated Anthocyanins 1.83 � 0.03a 1.51 � 0.02a 1.33 � 0.05a

Total anthocyanins 16.71 � 0.5a,b 17.56 � 0.9a,b 12.94 � 0.2b

Values in units of mg L�1� standard deviation over three replications in one wine sample. D

p � 0.05). LOD of cyanidin-3-glucoside-cumarate = 0.09 mg L�1.
evolution of the wine composition and the several reactions that
occur during wine production, storage in barrels and aging in
bottles. This trend was also verified by Monagas et al. (2005) who
noted that the increase in free acids in wines may originate not
only from the hydrolysis of the respective tartaric esters (Somers
et al., 1987), but also from the hydrolysis of p-coumaroyl-acylated
anthocyanins during aging in the bottle and that the disappear-
ance of acylated anthocyanins during wine aging is, in part, due to
the hydrolysis of the acylated group. This explanation is also
consistent with the lower concentrations of these anthocyanic
derivatives verified in the 2006 compared with the 2007 vintage
(Table 2).

The results for the hydroxybenzoic acids concentrations are
presented in Table 3. Of these acids, gallic acid was predominant,
representing, on average, 76% of all hydroxybenzoic acids. The
presence of high amounts of gallic acid in red wines is to be
expected since it is formed mainly through the hydrolysis of
flavonoid gallate esters. The variety and vintage influenced the
total hydroxybenzoic acids as determined by two-way ANOVA
(p < 0.05). The total hydroxybenzoic acids content (sum of the
individual contents) of the 2007 vintage was higher than that of
the 2006 vintage (p < 0.05) for all varieties, except for Syrah
2007. The individual analysis of hydroxybenzoic acids showed
that the contents varied among vintages and varieties (p < 0.05).
The evolution of such acids during aging in bottles is very
variable. According to Monagas et al. (2005), although hydro-
xybenzoic acids are susceptible to changes during enological
n wine samples.

2007

Syrah Cabernet Franc Merlot Sangiovese Syrah

2.01 � 0.06 14.83 � 0.34 11.23 � 0.29 2.69 � 0.16 7.51 � 0.06

0.55 � 0.03 2.74 � 0.05 2.72 � 0.04 2.76 � 0.03 1.07 � 0.06

1.94 � 0.03 13.26 � 0.25 8.49 � 0.18 3.30 � 0.08 9.52 � 0.25

1.71 � 0.06 10.50 � 0.10 6.61 � 0.08 2.58 � 0.06 6.91 � 0.06

7.62 � 0.08 53.48 � 1.01 25.25 � 0.78 8.45 � 0.47 41.54 � 1.02

0.34 � 0.01 2.39 � 0.05 2.07 � 0.06 0.21 � 0.03 1.35 � 0.05

 0.09 � 0.02 0.84 � 0.03 0.74 � 0.03 0.16 � 0.03 0.26 � 0.04

0.22 � 0.02 2.52 � 0.13 1.48 � 0.08 0.22 � 0.03 1.40 � 0.03

0.58 � 0.06 3.39 � 0.09 1.52 � 0.04 1.78 � 0.08 2.20 � 0.03

2.73 � 0.07 13.68 � 0.49 6.27 � 0.18 4.62 � 0.21 9.74 � 0.24

0.16 � 0.03 0.68 � 0.06 0.41 � 0.03 0.35 � 0.05 0.51 � 0.06

0.37 � 0.06 1.07 � 0.08 0.73 � 0.05 n.d. 0.97 � 0.06

0.11 � 0.02 0.46 � 0.03 0.33 � 0.03 0.07 � 0.01 0.38 � 0.04

0.29 � 0.03 1.57 � 0.06 0.31 � 0.03 0.30 � 0.02 1.81 � 0.06

1.01 � 0.08 4.17 � 0.12 2.41 � 0.06 0.46 � 0.06 3.18 � 0.03

13.84 � 0.3a 94.81 � 0.5b 54.31 � 1.2c 19.78 � 0.8d 66.54 � 1.3e

3.97 � 0.9a 22.83 � 0.1b 12.09 � 0.6c 6.99 � 0.07d 14.95 � 0.7e

1.94 � 0.04a 7.96 � 0.07b 4.19 � 0.06c 1.19 � 0.09a 6.86 � 0.05d

19.75 � 0.9a 125.60 � 2.1c 70.58 � 1.8d 27.96 � 1.4e 88.35 � 2.3f

ifferent letters (total contents) within each row are significantly different (Tukey’s test,



Table 3
Content of main hydroxycinnamic and hydroxybenzoic acids in wine samples.

Vintage 2006 2007

Cabernet Franc Merlot Sangiovese Syrah Cabernet Franc Merlot Sangiovese Syrah

cis-Caftaric acid 2.00 � 0.03 2.37 � 0.01 1.84 � 0.02 2.05 � 0.01 2.14 � 0.01 2.36 � 0.02 1.41 � 0.021 2.80 � 0.01

trans-Caftaric acid 92.16 � 3.17 73.59 � 3.20 68.68 � 1.48 73.82 � 2.19 150.97 � 4.79 92.30 � 2.97 99.85 � 3.61 69.76 � 3.11

cis-Coutaric acid 4.21 � 0.18 3.61 � 0.29 3.61 � 0.23 4.54 � 0.21 6.61 � 0.23 5.79 � 0.14 17.89 � 1.50 11.67 � 1.04

trans-Coutaric acid 20.94 � 1.87 17.58 � 0.95 14.69 � 1.01 19.11 � 0.90 32.49 � 1.80 18.66 � 0.93 35.28 � 1.51 27.49 � 1.49

Fertaric acid 3.39 � 0.11 3.09 � 0.15 2.97 � 0.09 3.03 � 0.12 5.21 � 0.15 3.61 � 0.13 4.04 � 0.10 1.46 � 0.10

trans-Caffeic acid 9.47 � 0.32 8.55 � 0.30 8.09 � 0.25 9.20 � 0.23 8.66 � 0.13 9.16 � 0.21 4.32 � 0.12 10.48 � 0.12

trans-p-Coumaric acid 6.61 � 0.11 7.73 � 0.23 6.54 � 0.11 6.30 � 0.20 5.59 � 0.13 5.31 � 0.12 2.73 � 0.06 5.86 � 0.19

trans-Ferulic acid 2.60 � 0.03 2.78 � 0.11 2.32 � 0.07 2.61 � 0.10 2.75 � 0.11 2.96 � 0.08 2.06 � 0.08 2.39 � 0.09

Gallic acid 40.48 � 1.31 41.60 � 1.61 34.53 � 0.49 39.94 � 0.54 45.03 � 1.41 54.44 � 1.19 32.85 � 0.83 39.33 � 0.79

Protocatechuic acid 0.87 � 0.08 1.43 � 0.08 1.91 � 0.06 2.92 � 0.09 9.73 � 0.22 5.74 � 0.17 12.66 � 0.13 10.12 � 0.25

p-Hydroxybenzoic acid n.d. 1.26 � 0.06 0.59 � 0.08 0.86 � 0.09 n.d. n.d. 1.71 � 0.08 2.10 � 0.11

Vanillic acid 3.48 � 0.070 2.13 � 0.04 1.66 � 0.08 3.67 � 0.05 3.50 � 0.11 3.78 � 0.10 2.98 � 0.07 3.22 � 0.08

Syringic acid 1.48 � 0.06 1.23 � 0.08 1.15 � 0.05 3.53 � 0.08 4.11 � 0.08 0.99 � 0.17 1.56 � 0.09 4.22 � 0.11

Ellagic acid 0.93 � 0.08 0.89 � 0.07 0.76 � 0.09 0.50 � 0.08 3.19 � 0.06 0.13 � 0.04 3.86 � 0.07 0.11 � 0.02

Total hydroxycinnamic acids 141.40 � 4.7a 119.32 � 4.3b,c 108.78 � 3.8b 120.63 � 3.4b,c 214.48 � 7.9e 140.27 � 4.8a,d 167.57 � 6.2f 131.86 � 3.7a,c,d

Total hydroxybenzoic acids 47.23 � 2.2a 48.55 � 2.7a 40.59 � 1.7b 51.41 � 1.6a 65.56 � 2.2c,d 65.08 � 1.8c 55.62 � 1.6a 50.10 � 2.1d

Values in units of mg L�1� standard deviation over three replications in one wine sample. Different letters (total contents) within each row are significantly different (Tukey’s test,

p � 0.05). n.d. = not detected. LOD of p-hydroxybenzoic acid = 0.039 mg L�1.
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practices, it seems that their evolution profile during wine aging
in the bottle does not change significantly.

3.2. Antioxidant activity

The results for the in vivo study on the antioxidant activity of
wine samples are presented in Fig. 1. It was found that the
ethanol control group did not differ significantly from the water
control group, indicating that the consumption of ethanol did
not modify the parameters of the in vivo antioxidant activity.
The effect of ethanol on an organism is still very controversial.
Epidemiological evidence suggests that moderate consumption
of alcoholic beverages (20–30 g alcohol per day), such as wine, is
associated with a reduced risk of death from cardiovascular
disease (Renauld and Lorgeril, 1992). However, the results of
some studies suggest that ethanol consumption promotes
toxic effects such as the generation of damaging free radical
species in various tissues (Mantle and Preedy, 1999) and an
increased activity of CAT and SOD enzymes (Rodrigo et al.,
2002).

The levels of plasma antioxidant capacity (FRAP) are presented
in Fig. 1. When compared to the control groups, the FRAP increased
with administration of red wine samples, with the exception of the
group treated with the Sangiovese 2006 wine (p < 0.05). Increases
in the plasma antioxidant activity ranged from 17.8% to 70.7% with
significant differences found only among varieties and not among
vintages (two-way ANOVA; p < 0.05). Increases in plasma
antioxidant capacity due to wine consumption have been reported
in several studies (Gris et al., 2011a,b; Rodrigo et al., 2005). In this
regard, it should be noted that the FRAP indicates the reducing
ability of the plasma, but it is not exactly equivalent to the whole
antioxidant effect of plasma, since in the method the chelating
ability is not measured.

Wine consumption promoted a significant decreasing in the
TBARS and CP levels when compared to the control groups
(p < 0.05), demonstrating the protective effect of wine consump-
tion against lipoperoxidation and proteic carbonylation. It was also
observed that the variety and vintage influenced both the TBARS
and the CP values (two-way ANOVA; p < 0.05). In the case of the
TBARS levels, the most significant decreases were found for Syrah
(43.2%) and Merlot (27.6%) from the 2007 vintage. Cabernet Franc
and Syrah varieties presented the highest CP decreases for both
vintages evaluated, causing an inhibition that ranged from 30.5 to
42.9%.
The increase in FRAP probably occurred due the absorption of
wine phenolic compounds, which are known to have reducing
power (Burin et al., 2011; Baroni et al., 2012). Another possibility is
that the wine consumption promoted an increase in the levels of
urates in the plasma, one of the most abundant free radical
scavengers in humans, and this could lead to protective antioxi-
dant effects and an increased antioxidant potential of the plasma
(Modun et al., 2008). Rodrigo et al. (2005) suggested that wine-
induced increases in the antioxidant capacity of plasma contribute
to the enhancement of the antioxidant defense systems of organs
like the kidneys, liver and lungs, due to their well-known high
perfusion rate. It has been postulated that the increase in plasma
antioxidant capacity and inhibition of lipoperoxidation and proteic
carbonylation, as observed in the present study, promoted by wine
ingestion is due to the high capacity of phenolic compounds to
offer protection against free radicals (Frankel et al., 1995). The
phenolic compounds can act as metal chelants which, theoretical-
ly, prevent iron-dependent lipid peroxidation in membranes by
rendering iron inactive and by scavenging chain-initiating peroxyl
radicals at the liquid-aqueous interface.

In this study, a significant difference in hepatic GSH levels of the
different experimental groups (p < 0.05) was not observed,
suggesting that wine ingestion did not affect the homeostasis of
the animal organism. This is an interesting result since an increase
in GSH levels may suggest an antioxidant response to an increase
in stressing agents. Similar results have been reported by other
authors (Gris et al., 2011a,b; Ferreira et al., 2010).

In relation to the activity of SOD, CAT and GPx enzymes (Fig. 1),
it was found in this study that wine ingestion decreased
significantly the expression of scavenger enzymes when compared
to control groups (p < 0.05). Statistical analysis (two-way ANOVA)
revealed that the vintage influenced the SOD and CAT activity, but
presented no significant effect for GPx (p < 0.05). However,
conversely, GPx was influenced by the variety, while the other
enzymes (CAT and SOD) did not present a significant association
with this factor (p < 0.05).

The SOD activity decreased by around 15% in the wines of the
2006 vintage, particularly for Syrah (p < 0.05). This decrease was
more pronounced for the wines of the 2007 vintage (43%), with no
significant difference among varieties (p < 0.05). Wine consump-
tion caused a decrease in CAT activity ranging from 12.1 to 36% for
Merlot 2006 and 2007, respectively. Cabernet Franc and Merlot
wines of the 2007 vintage were more effective at decreasing the
CAT activity when compared to wines of the 2006 vintage



Fig. 1. Values for total antioxidant capacity of mice plasma (A – FRAP, TEAC mM), lipid peroxidation (B – TBARS, nmol mg protein�1), carbonyl protein (C – CP, nmol mg

protein�1), hepatic GSH (D – nmol mg protein�1) and catalase (E – CAT, mmol min�1 mg protein�1), superoxide dismutase (F – SOD, SOD U mg protein�1) and glutathione

peroxidase (G – GPx; mmol min�1 mg protein�1) activity in mice liver. Control groups – C: water; Cet: 12% hydroalcoholic solution. Test groups: CF06: Cabernet Franc 2006

wine; M06: Merlot 2006 wine; Sa06: Sangiovese 2006 wine; Sy06: Syrah 2006 wine; CF07: Cabernet Franc 2007 wine; M07: Merlot 2007 wine; Sa07: Sangiovese 2007 wine;

Sy07: Syrah 2007 wine. ANOVA to compare data; values with different letters within each column are significantly different (Tukey test, p � 0.05).
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(p < 0.05). The opposite effect was observed for the Syrah variety
(p < 0.05). Suppression of GPx activity ranged from 34.7 to 65.4%.
Syrah (2006 and 2007) and Sangiovese (2007) presented the most
significant decrease in GPx activity (62.4 and 65.4%, respectively).

These observations are of great interest since the main
enzymatic antioxidant defense system is composed of the cellular
enzymes superoxide dismutase (SOD), catalase (CAT) and gluta-
thione peroxidase (GPx). This represents the first line of defense in
the neutralization of endogenous ROS, through which the cells
attempt to maintain lower quantities of O2

�� and H2O2 and thus
avoid the formation of �OH which, although short-lived even in
very low concentrations, is extremely reactive and damaging to
cells (Halliwell and Gutteridge, 1999).

CAT and GPx are the two enzymes that have the ability to
convert cell H2O2 to H2O and O2 (Halliwell and Gutteridge, 1999).
Since CAT and GPx are also involved in the elimination of
hydroperoxides, the decline in TBARS levels observed in this study
might be related to the observed decrease in CAT and GPx activity.
The decrease in the activity of these enzymes is probably due to
suppression of the ROS mediated trigger of antioxidant enzymes at
the transcriptome level, due to the presence of wine phenolic
compounds.

3.3. Association between antioxidant activity and concentration of

phenolic compounds

Under physiological conditions, ROS are eliminated by enzy-
matic and nonenzymatic antioxidant defense systems. The
scavenging of ROS, binding of metal ions and degradation of
peroxides are common mechanisms to prevent ROS-induced
damage propagation. An increase in ROS production and a
deficient antioxidant status may cause severe oxidative stress
in cells, leading to several diseases and toxicity. In this context,
ingestion of red wine has been the target of several studies and
represents an area of intensive research in preventing disorders
related to oxidative stress. In this study it was verified that wine
consumption increased the plasma antioxidant capacity and
decreased the TBARS and CP levels. A reduction in the antioxidant
activities of the enzymes CAT, SOD and GPx was also observed.
Thus, the influence of the main phenolic compounds on the in vitro

antioxidant activity of the wine samples studied was assessed by
principal components analysis (Fig. 2), since it is believed that the
antioxidant potential of red wine is related to its phenolic
compounds content.

The first three principal components explained 83.27% of the
total variance (Fig. 2). Factor 1 was negatively influenced by the
main chemical and antioxidant analysis. GSH, GPx, kaempferol and
trans-p-coumaric and p-hydroxybenzoic acids positively influ-
enced Factor 1. Factor 2 was negatively influenced by CAT and SOD
antioxidant activity, and by total hydroxycinnamic acid (THCA),
total hydroxybenzoic acid (THBA) and total flavonols (TFLA). Some
hydroxycinnamic and hydroxybenzoic acids, cyanidin and quer-
cetin also negatively influenced Factor 2.

Fig. 2 shows that increases in the total antioxidant capacity
(FRAP) and inhibition of lipid peroxidation (TBARS) were
associated with many of the phenolic compounds evaluated, such
as TP, TFLA, THBA, vanillic acid, myricetin and the majority of
anthocyanins. The inhibition of proteic carbonylation (CP) was
associated with t-ferulic, trans-caftaric, syringic and gallic acids as
well as isohramnetin, laricitrin, myricetin and TP.

With regard to the antioxidant enzymes, Fig. 2 shows that a
decrease in the SOD activity was associated with THCA, THBA,
TFLA, trans-caftaric acid, protocatechuic acid and the main
anthocyanins. A decrease in the CAT activity was associated with
fertaric, protocatechuic, cis-cutaric, trans-caftaric and elagic acids,
cyanidin, quercetin and THCA.
In general, the association between phenolic compounds and in

vivo antioxidant activity found in this study was to be expected
since these compounds are mainly responsible for the antioxidant
activity in red wine. However, the mechanism of action of these
compounds in the organism is still not fully understood requires
further study.

The correlation/association between antioxidant activity and
phenolic compounds has been verified by many authors (Gris et al.,
2011a,b; Ferreira et al., 2010; Alén-Ruiz et al., 2009; Di Majo et al.,
2008). The antioxidant properties of phenolic compounds are
probably due to the structure of these compounds. In vitro, the
degree and position of hydroxyl and methyl groups in the B ring of
the flavonoids affect their stability and reactivity. In general, higher
antioxidant capacity is observed in compounds presenting the
ortho-dihydroxy structure in the B ring, with these compounds
being effective hydrogen donors. The antioxidant activity of
phenolic acids and their esters is dependent on the number of
hydroxyl groups in the molecule that would be strengthened by
steric hindrance. The electron-withdrawing properties of the
carboxylate group in benzoic acids have a negative influence on the
H-donating abilities of the hydroxy benzoates, thus, theoretically,
hydroxylated cinnamates are more effective antioxidants than
benzoate (Rice-Evans et al., 1996).

The beneficial effects of the ingestion of phenolic compounds,
especially in wines, have frequently been reported. However, data
concerning the absorption mechanism and bioavailability of
polyphenols in organisms are scarce, since the issue of the
biological destination of flavonoids or their dietary glycoside forms
is highly complex and dependent on a large number of processes.
Phenolic compounds, such as some hydroxycinnamic and hydro-
xybenzoic acids, quercetin, kaempferol and malvidin-3-glucoside,
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have been detected and quantified in human biological fluids after
both acute and sustained wine ingestion (Pignatelli et al., 2006;
Nardini et al., 2009). It appears that after wine ingestion
polyphenols undergo a rapid and extensive metabolism resulting
in trace amounts of unchanged phenols in the circulatory system.
The majority of polyphenols absorbed are present in plasma and
urine in conjugated forms (methylated, glucuronated and
sulfated) indicating an extensive first-pass intestinal/hepatic
metabolism of the ingested primary phenolic compound forms.
Thus, the biological activity of polyphenols can be attributed to
their metabolites (Pignatelli et al., 2006; Vanzo et al., 2007;
Nardini et al., 2009; Garcia-Alonso et al., 2009; Sancho and
Pastore, 2012).

Initially, it was considered that only free flavonoids without a
sugar molecule (aglycones) were able to pass through the intestine
wall and be absorbed (Griffiths, 1982). However, more recent
studies contest this assumption. Apparently, quercetin glucosides
from the diet are mostly hydrolyzed to their aglycones, followed by
conjugation to glucuronides and/or sulfates (Garcia-Alonso et al.,
2009; Wu et al., 2011). Chang et al. (2005) found that quercetin-3-
O-glucoside could be rapidly absorbed and transformed into
glucuronidated quercetin. According to reports in the literature,
anthocyanins are absorbed in the glycosylated form after oral
ingestion (Nielsen et al., 2003; Garcia-Alonso et al., 2009), and the
stomach seems to be the site of absorption for these compounds
(Passamonti et al., 2003). A recent study demonstrated that
hydroxycinnamic acids in white wine are absorbed in the
gastrointestinal tract and circulate in the blood after being largely
metabolized to glucuronide and sulfate conjugates in humans
(Nardini et al., 2009).

It should be noted that although the antioxidant activity of wine
is accepted as one of the main biological mechanisms related to red
wine-derived phenolic compounds, many others have been
proposed including nitric oxide-mediated vasorelaxation (Diebolt
et al., 2001; Dell’Agli et al., 2005), estrogenic activity (Klinge et al.,
2003; Varadinova et al., 2009), inhibition of platelet aggregation
(Corder, 2008) and modulation of lipid metabolism (Frankel et al.,
1993; Rouanet et al., 2010).

4. Conclusions

The results of this study showed that the wines under study had
adequate phenolic content and composition, demonstrating the
potential of this region of southern Brazil to produce high quality
wines. Significant in vivo antioxidant activity was also verified after
wine ingestion, through increased FRAP and decreased TBARS and
PC levels, and the suppression of CAT, SOD and GPx enzymes. In
general, the antioxidant activity promoted by wine ingestion was
associated with the main phenolic compounds quantified,
suggesting the possible involvement of these compounds, or their
metabolites, in the mechanism of action. Therefore, the data
presented in this study provide evidence that red wine ingestion
contributes to increasing the in vivo antioxidant activity, and
suggest that this effect can be attributed to the phenolic
composition of the wine. Our results would thus seem to support
the recommendation that moderate wine consumption may be
beneficial for health.
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