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Abstract

The aim of this work (from the FP6 project TRACExsmo develop methods based on the use of
geochemical markers for the authentication of theggaphical origin of cereal samples in Europe
(cf. EC regulations 2081/92 and 1898/06). For irst fime the potential usefulness of combining
n’srnmh®sr) andsc, 5N, §'®%0 and 5**S isotopic signatures, alone or with key element
concentrations ([Na], [K], [Ca], [Cu] and [Rb], mneessively identified out of 31 sets of results),
was investigated through multiple step multivariatatistics for more than 500 cereal samples
collected over 2 years from 17 sampling sites acksrope representing an extensive range of
geographical and environmental characteristics.

Both models compared involved three sample clasgiin categories (north/south; proximity to
the Atlantic Ocean/to the Mediterranean Sea/to ;elsed rock geologies). The first two
categorisations were the most efficient, partidularhen using the ten variables selected together
(with, in some instances, element concentrationsimgaa greater impact than the isotopic tracers).
Validation of models included external predicti@sts on 20% of the data randomly selected and,
rarely done, a study on the robustness of thesdivaidte data treatments to uncertainties on
measurement results. With the models tested it pessible to individualise 15 of the sampling

sites.
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|. Introduction

In Europe, guaranteeing the geographical origia édod product (cf. EC regulations 2081/92 and
1898/06) is regarded as an assurance of qualitysafedy. The FP6 project TRACE funded by the
European Commission was launched in 2005, aimindetiver tools “that will enhance consumer
confidence in the authenticity of food” (FP6-TRA@Ebject-website, ® April 2010). An important
component of this project was to study how geochamnarkers and the relationships between
these markers could be used for the charactenmsafidhe region of origin of food products. For
instance, it was shown that variations in H, C, N & isotopic composition and element
concentrations are useful for the differentiatiogtween samples coming from some different
regions in Europe in the case of lamb meat, homay @ive oils (Camin et al., 2007, 2010;
Schellenberg et al., 2010). The present studyraisorts research findings from the TRACE project
but on a broader scope level and with regards teatvliFor the first time the potential usefulness of
C, N, O, S and Sr isotopic signatures combined utiivalement profiles was investigated for over
500 samples originating from sites in Europe regméeg an extensive range of geographical and
environmental characteristics (climate, distances@/'ocean, geology).

The §*°C values of plant compounds depend on photosyntpethways (discrimination between
C3 and C4 plants), the plant age and level of nasitur (Farquhar et al., 2003; Smith and Epstein,
1971).5%C is also affected, although to a lesser extentseweral environmental factors such as
relative humidity, temperature, amount of precijita and water stress (O'Leary, 1995)°N
values depend on the botanical type of the plandt @m the bacterial activity associated to its
growth (Farquhar et al., 2003), and can also bectdtl by temperature and agricultural practices
(e.g. type of fertilizers used) (Bateman et al.Q®20Martin and Martin, 2003). Th&®0 of plant
material reflects the water taken up (linked topenature, latitude, elevation, distance from tree se
and amount of precipitation) and exchanged (evadperand diffusion effects during transpiration),
and also biosynthetic pathways including the ismt@xchange between organic molecules and
plant water (Bréas et al., 1998). Variations ingf& ratio in plants have been reported to be linked
with the soil geology (Thode, 1991), the distarmoenf the sea and proximity to industrial activities
(Camin et al., 2007). Tha(®’Sr)h(®®Sr) ratio in soils may vary depending on the [RBil[
concentration ratio in (and age of) the surroundimgk or mineral and, thus, has the potential to
reflect the nature of the underground geology (Capoal., 1998). It is expected that the
n’Sr)h(®sr) in plants should also be a good indicator efridtks and soil conditions during plant
growth. Similarly, it is expected that element camications in food commodities such as olive oils
(Camin et al., 2010), potatoes (Anderson et. 809}, garlic(Smith, 2005)prangegjuice (Simpkins

et al. 2000) and coffee (Anderson et. al., 2003 arainly related to the geological and
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pedoclimatic characteristics of the site of growaiid plant farming practices. A discussion on
reasons why the elemental composition in plant prayide unique markers of the geographical
origin can be found in Kelly et. al. (2005).

The way these tracers could be used to enableutihergication of provenance of cereal samples
was investigated through multiple steps multivariatatistical analysis. The method validation
scheme we designed included a study on the rolssstolethese multivariate data treatments to

uncertainties in measurement results.

Il. Experimental

The measurands in cereal samples are hereby feerrasvariables They consist of Sr isotope
ratios (notech(®’Sr)n(®°Sr)) and 31 element concentrations (noted [E]him bulk, as well as-
scale values for the CNOS group (nod&tC, 5'°N, §*20 ands®**S) in the defatted fraction.

§1C, 8N, 8*0 ands*'S measurements were carried out in seven labazat(Eurofins Scientific
Analytics, Nantes, France; FERA, York, UK; AIT, Bersdorf, Austria; LGL, Oberschleil3heim,
Germany; Isolab, Schweitenkirchen, Germany; IASM8an Michele all'Adige, Italy; IFR,
Norwich, UK).n(®’Sr)h(®°Sr) measurements were carried out in four labcedEC-JRC-IRMM,
Geel, Belgium; FERA; BSPG, Minchen, Germany; UEAnMch, UK). Element concentration
measurements were carried out in four laborat¢Besbersdorf Labor GmbH, Seibersdorf, Austria;
FERA; IASMA; UEA). The scientists responsible foroducing these experimental data are co-

authoring this paper.

a) Sampling strategy and sample collection

Cereal samples were collected from multiple farmdogal producers in 19 sampling sites in
Europe between summer 2005 and summer 2007. Thesnana average geographical coordinates
of these sampling sites are provided in Table 1.

Although wheat (of different varieties, includinginter wheat, Durum wheat, Emmer wheat,
Epeautre and Spring wheat) was the main targelg\pawe, triticale, oat (all C3 plants) and four
corn (C4 plant) samples were also collected froemasrwhere wheat was not produced. The
sampling plan was to collect four samples from fiNigerent producers or fields within each of the
predefined sampling sites per year, and this wpsated for a second year around the same time.
The ideal scheme of 40 cereal samples per samgi@gould not always be strictly followed, due
to practical limitations, and a total of 557 cereamples were obtained, as shown in Table 1.

Algarve and Barcelona samples (incl. the four comere excluded for this study because they



125 were purchased on markets and their claimed odgird not be verified. Samples from Galicia
126 were collected for one season only, and only teeemples could be obtained from Iceland.

127

128 b) Sample preparation, spectrometric measurements and validation of measurement methods

129 i) For 6 °C, 6 ™N, 6 *%0 ands **S results

130 8%, "N ands'®0 were measured using a range of Isotope Ratio Mpsst®meters (Delta Plus
131 XL, Delta Plus XP, Delta V, Delta S, ThermoFinnigd8remen, Germany; Isoprime, AP2003,
132 Optima, GV Instruments Ltd., Manchester, UK), IRM®hey were connected to pyrolisers
133 (TC/EA, ThermoFinnigan; PyrOH and EA3000, Eurovect®V Instruments Ltd.) fof®0/*°0 or
134 an elemental analysers (Flash EA 1112, 1110, 11@8roFinnigan; Costech ECS4010; NA2100
135 Proteins, Carloerba, Milan, Italy; Vario EL lll, &hentar Analysensysteme GmbH, Hanau,
136 Germany) for*C/*°C and*N/*N. Samples contained very low amounts of sulphsudlly less
137 than 0.1 % according to Sieper et al., 2006) &ft$ valueswere obtained from only one
138 instrument (Vario EL Ill, Elementar Analysensyste@mbH). IRMS instrumental conditions for
139 each isotope ratio were reported by the same authar previous paper (Camin et al., 2007).

140 The isotopic values were expressedds versus V-PDB (Vienna - Pee Dee Belemnite)&0cC,
141 versus AIR for8™N, versus V-SMOW (Vienna — Standard Mean Ocean Wdte 50O, and
142  versus V-CDT (Vienna Canyon-Diablo-Troilite) f6#*S according to the following formula:Ré
143  Rsig)/Rstd X 1000, whereRs is the isotope ratio measured for the sampleRyads the isotope ratio
144  of the international standard. The values wereutaled against in-house standards, which were
145 themselves calibrated against international referenaterials: fuel oil NBS-22 (IAEA) and sugar
146 IAEA-CH-6 (IAEA) for *C/*°C, USGS-40 and IAEA-N-1 (IAEA) for®N/*N, Benzoic Acid
147 1AEA-601 (IAEA) and IAEA-CH-6 (IAEA) for*?0/*°0 and IAEA-S-1 for*SF?s.

148 The measurement repeatability wa®.2%o for 5*°C, < 0.5%. for §'%0, < 0.1 %o for™N and<
149  0.3%o for 5**S. An inter comparison was organized between therséaboratories in charge of
150 IRMS measurements for validation purposes. Therederial for the comparison (wheat flour)
151 was also used periodically in each laboratory adityucontrol, to monitor deviations over time.
152 The dispersions of results between laboratorielygithe comparison were 0.2%o f61°C, 0.9%o
153 for §'%0, 0.8%. ford™°N and 1.2%o. fo6>’S.

154 i) For n(¢’Sr)/nSr) results

155 The instrumentation and laboratories involved ia 8r isotopic measurements were the same as
156 those of the study on mineral water samples puddistecently (Voerkelius et al., 2010). There
157 were one Multi Collector Thermal lonisation Masse&pometer (MC-TIMS — MAT 261/262,
158 Thermo Finnigan) and three Multi Collector Indueli Coupled Plasma Mass Spectrometers (MC-
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ICPMS — Nu Plasma, Nu Instruments; Axiom, ex- VGttaments; Isoprobe, ex-Micromass). MC-
TIMS measurements were carried out on tungsteresfilgments. For MC-ICPMS measurements,
typically, the instrumentation was equipped witmanicyclonic jacketed cinnabar spray chamber
or a porous membrane based desolvation unit, mDr&in™ microconcentric nebuliser and Ni or Pt
sampler and skimmer cones.
Sample uptake was 0.1 - 0.3 g for MC-TIMS measurdgsjeand 0.4 - 1 g for MC-ICPMS
measurements. Samples were dry-ashed for MC-TIM@suortements, or acid digested in a
microwave oven for MC-ICPMS measurements. Residwale dissolved in concentrated HNO
allow separation of Sr from other elements suclCasBa or Rb by ion chromatography on a Sr
specific crown ether resin (Sr-spec®). After sepamathe Sr concentration in solution was 10-500
ng g' in about 2.5 g of 2-3% HND
The same standard operating procedure (SOP, dildét report of FP6-TRACE Deliverable
D15.9, 2009) applied to all laboratories to allaw ¢omparison of measurement results. This SOP
included recommendations on Rb/Sr separationseciions for procedural blanks, the prescription
of the n(®°sn(®sr) andn(®’Rb)h(**Rb) reference values used for corrections (0.11%%and
0.38565 + 0.00030, respectively). It also requimedhning regularly (every 1 to 4 samples
maximum) experiments on the NIST-987 Sr isotopidMC#®r the purpose of contributing to the
validation of each methods developed. The relatigpersion of results between laboratories for
identical cereal test materials during four comgxams was up to approximately 0.9%. depending on
physical (flour/coarse grains, grains with or withdwusk etc.) and chemical ([Rb] and [Sr]/[Rb]
concentration ratio) characteristics of samples.

iii) For [E] results
Measurements of element concentrations were peeirom four quadrupole ICP-MS instruments
(two Agilent 7500ce, Tokyo, Japan; one Elan 6100 ane Elan 6000, Perkin Elmer Sciex,
Toronto, Canada). The first two were fitted witmcentric Micromist nebulisers (Glass Expansion,
Melbourne, Australia) and water-cooled Scott dotgaes spray chambers, the third with a cross-
flow nebuliser and the fourth with a concentric umeler and a cyclonic water-cooled spray-
chamber. In all cases peristaltic pumps were useddulate sample flow rates. RF power settings
ranged from 1100 to 1500W on the four instrumePtcones were used on the Elan 6000, while Ni
cones were used on the other instruments.
Microwave digestion was employed by three of tHmfatories, digesting between 0.3 and 0.5 g
cereal with distilled nitric acid, either with oritiwout addition of ultrapure hydrochloric acid. The
fourth laboratory used ultraviolet digestion of @.5Sample material with 4 ml nitric acid and 1 ml
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distilled hydrochloric acid. All labware involvedas cleaned beforehand with solutions of between
5% and 10% nitric acid. Results were correcteccéeal moisture content.

NIST1567a Wheat Flour was used for method validaparposes and measured with all sample
batches. There was agreement within uncertaintydaies with certified values for all elements

of interest in this study.

c) Data set description and the multivariate data analysis tools applied

In our study then(®’Sr)in(®°Sr) and the CNOS isotopic signatures were treatedeaand in
combination with [E] results. In the first casenvias necessary to exclude an additional 13 samples
(of 32) from Jura Krakowska and 2 samples (of emfrdylland for which four out of five of the
isotopic data were not reported. Thus, the overxkal data set consisted of 512 samples from 17
sampling sites. When isotopic and [E] results wammbined all 527 samples could be considered
(e.g. including the 15 samples excluded in theiptes/case).

Prior to the application of multivariate statisticalculations some data pre-treatment was required
(Eriksson et al., 2001; Esbensen, 2006). For eaghhle unit variance scaling and mean-centering
of data was applied (division by the standard deafollowed by subtraction of the mean value).
In addition, [Na] and [Rb] data required log-traovshation in order to normalise the distributions.

In this studyPrincipal Component Analys{®CA) andPartial Least Square Discriminant Analysis
(PLS-DA) modelling tools were used. PCA provideas@e comprehensive overview of all data by
producing a few orthogonal (uncorrelatga)ncipal componentfPCs) which extract the main
information about the data set (Eriksson et alQ12@Esbensen, 2006). PCA is normally applied at
early stage of multivariate data analysis as “epgitry tool”. PLS-DA modelling is more suitable
for smaller numbers of defined classes and maxsrtise separation between them.

PCA and PLS-DA offer a number of useful parameserd diagnostic tools expressed graphically
and numerically. These include PC-score plots, R@X), R2Y(cum), Q2Y(cum) and VIP
(Variable Importance in the ProjectipnThe R2 parameters are a quantitative measurtheof
“goodness of fitof a given model (R2X for the “predictors”, and2R for the “responses”),
whereas the Q2 parameters indicate theotiness of prediction(predictive ability) of a given
model. There exist some rules to help identifyimg best balance between the predictive power and
a reasonable level of fitness of the model. Acaagdb Eriksson et al. (2001) “generally, a Q2 >
0.5 is regarded as good and a Q2 > 0.9 as excebahtthese guidelines are of course heavily
application dependent”, and “differences between &@ Q2 larger than 0.2-0.3 indicate the
presence of many irrelevant model terms or fewymdl data points”. For PLS-DA the relative

importance of variables is illustrated by VIP plot&ariables with a VIP value greater than unity
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play the most important roles for the discriminatiof the classes. For more elaborated
explanations and mathematical expressions relatéltese diagnostic tools and parameters readers
are referred to Eriksson et al. (2001).

In this work, all the multivariate computations werarried out using SIMCA-P Ver. 12 (Umetrics
AB, Sweden) software. The Statistica Ver. 7 (Statsw., USA) software was used to produce the
box-whisker plots for the variables.

Our validation scheme includedxternal predictiontests on 20% of the data assigned as
independent data sets (randomly selected). Thete wlare compared (on class membership)
against prediction results obtained from PLS-DA eiseduilt with the remaining 80% of the data

set. Models were considered satisfactory when eatgrediction rates were 70%.

Il Results and discussion

To have an overview of all 527 samples from 17ssuéth 36 descriptor variables, a PCA was
applied to the data set (see Figure ES1 providedeasronic supplementary material).

There were no clear trends or patterns to distsigsamples of different sampling sites. Thus we
decided to apply PLS-DA, based on supervised ¢ieason, and to compare two models, using
the five isotopic variables alone and in combinatiath [E] results.

The classification categories we chose (Table Iewaecording tdatitude (two classes: north and
south of Europe), proximityo a marine environmer{three classes: Atlantic, Mediterranean and
Inland) andgeology of the underlying bed rofflour classes: Shale, Acid magmatic, Limestone and
Basaltic). The way we established these classificatategories and the results obtained are
discussed in the subsequent sections.

The five isotopic variablesn(®’Sr)n(®®sr), §°C, 6N, "0 and §*'S) were systematically
considered as they were found alternately sigmticepending on the classes considered for the
data, as shown later. Preliminary investigatione¢essive PLS-DA and VIP plots) were carried
out to evaluate the significance of the 31 elenwemicentration variables available. From the first
list of nine apparently influential concentratioariables identified, four ([Co], [Ga], [Cd] and [[Fs
were further eliminated due to low concentrationthe majority of the samples and rather poor
analytical figures of merit (measurement reprodilitjtamongst the laboratories for cereal samples
was, from the TRACE quality assurance report (20090% for [Cd], 20% to 50% for [Co] and
over 50% for [Ga] and [Cs]). That left only [NaK][ [Ca], [Cu] and [Rb]. Hereafter, the two
methods of modelling will be referred to as tHevariable' and “10-variabl€ (the 5 isotopic
markers and [Na], [K], [Ca], [Cu] and [Rb]) modetespectively.
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a) PLS discriminant analysis models

i) Classification according to latitude (north asduth classes)
The motivation was the assumption of a relationsleipveen climatic conditions and the latitudinal
geographic position of each site where the ceraalptes were harvested. After several model
refining attempts, the optimal boundary line foe thiscrimination between north and south samples
was found to be around latitude line 47° N througantral” Europe. In both cases PLS-DA
computations with this classification resulted wotoptimal significant PCs, and relatively high
values ofgoodness of predictio@2(cum) (figures not between brackets in TableA)shown in
the score plots for PC1 and PC2 (Figure 1), thedlasses were well sorted mainly in the direction
of PC1. The dashed line was added to delineatevihgroups visually.
It can be seen on VIP plots (see Figure ES2 provageelectronic supplementary material) that the
first two most influential variables for a northigh differentiation weré**C ands*®0, which is
coherent with both being potential indicators afeltic conditions (Heaton et al., 2008; Kelly et
al., 2002, 2005; Rossmann et al., 2000; Suzukil.et2808). More remarkably [Cu] played a
significant discriminatory role in the case of th@-variablesmodel. As shown by box-whisker
plots (see Figure ES3 provided as electronic supgheary material) [Cu] was rather higher for
samples collected in the south than in the notths reasonable to assume that the amount of
copper in a cereal plant is proportional to the amiaf Cu available from the soil where it was
grown. What we observed for our cereal data mighéxplained by the highest Cu concentrations
in topsoil and subsoil in Europe reported by Foreggps (Salminen, 2005) for southern regions,
around the Mediterranean basin and within the #imepeninsula, and along the west coasts of
France, UK and Norway. The distribution of coppersubsoil is mainly related to regional and
local geology, and to mineralisation. AccordingSalminen (2005) the distribution of copper in
topsoil may also be influenced by anthropogenictammation (pollution by agricultural sewage
enriched in Cu or the use of copper sulphate asgidide in fruit cultivation and vineyards).
PLS-DA model fittings for external prediction testhowed satisfactory results with Q2(cum)
values similar to those of PLS-DA models generatethg the entire data set. The external
prediction rates described in column 3 and 4 ofl@&b(figures not between brackets, on 103 and
106 samples, respectively) were 100 % for 9-100but7 sampling sites. The inclusion of [E] data
did not make a significant difference overall: rthevere improvements for samples from
Fraenkische Alb, Allgaeu, Chalkidiki, and Galiceand degradations for samples from Muehlviertel,
Limousin, Firenze, Jura Krakowska and Cornwall. Exéernal prediction rates were less than 70
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% only for Galicia, Chalkidiki (theéb-variablesmodel only) and Firenze (both models). These
results indicate that both models proposed arestédiable for the north/south discrimination.

i) Classification according to proximity to a mae environment (Atlantic,
Mediterranean and Inland classes)
We then examined whether the proximity to oceaea&/sonditions (via sea-spray deposition,
unusual historical sedimentation conditions, andrgjocould be characterised.
Three classes of samples were considered: “Atlaatid “Mediterranean” for sampling sites less
than 100 km away from the respective coasts, amdritl” for the remaining samples (cf. Table 1).
PLS-DA with the5- and 10-variablesmodels resulted in three and four PCs, respectivisy
illustrated in Figure 2 (score plots with the fitsto PCs) the choice of these three classes
(delineated with dotted lines) for sorting sampleas relevant. There was also a significant
improvement of the modelisation when incorporating five [E] variables, as confirmed by the
increase of Q2(cum) values in Table 2 (from 0.40.66).
VIP values for both models are presented in Fige&. 5*'S, §'%0 and 5'°C were the most
discriminatory isotopic variables but, with th@-variablesmodel, only after [Na] and just before
[K].
Furthermore, box-whisker plots in Figure ES3 shbat t‘Atlantic” class cereal samples can be
distinguished from others as they exhibit, glohafigher values of [Na}**S and [K] (associated
with the emission of sea-spray and the depositibrsea-salt). Cereal samples close to the
Mediterranean Sea can also be discriminated buwngally on the basis of tracers of climatic
conditions (highesi**C and5*°0 values, globally), thus in this case a northisassue in line with
conclusions from the previous discussion.
External prediction tests were run in the same asmgescribed before, and the new PLS-DA model
parameters (PCs, R2, Q2) were almost identicdlgmtiginal ones (Table 2).
The results in column 5 and 6 in Table 3 (figures Ibetween brackets), with tie or the 10-
variablesmodels respectively, indicate 100% success rat® fand 9 sampling sites, and < 70%
success rate for 4 sampling sites in both caseslyland, Galway and Iceland though, the number
of samples available for the external predictistgavas scarce and the results obtained (100% or
0%) must be interpreted cautiously. When considesampling sites witk 70% success rate (and
apart from the 3 sites witk 3 samples), the number of samples predicted dbyrec either
identical for both modelling approaches (for 7 sjter better by 11% to 29% with ti€-variables
modelling (for Marchfeld, Gaeuboden, Allgaeu andaJkirakowska). Therefore it was possible to
conclude, first, that the proximity (or not) to anme environment could be correctly predicted for

a very large majority of cereal samples and, sectivat the combination with [E] variables (and

10
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particularly [Na] and [K]) significantly improvechis prediction ability as compared to the use of
isotopic variables alone. The sites with < 70% sasaates to the external prediction tests for both
types of models (also apart from the 3 sites withsamples) were Chalkidiki, Firenze and Galicia,
similarly to what had been observed previously witle “Latitude” classification 5-variables
model only).

iii) Classification according to bedrock geologidfd Magmatic, Shale, Limestone
and Basaltic classes)
For the third test we sorted cereal samples into fdasses (“Shale/mudstone/clay/loess” incl.
sandstones and other clastic sediments, “Acid MaégimdlLimestone” and “Basaltic”) according
to the bedrock geology of their respective sampdiibgs, described in Table 1.
Application of PLS-DA to these four classes prodltteee and five PCs when using §teand10-
variables models, respectively. Q2(cum) values (Table 2)datid that the predictive ability of
these models had deteriorated in comparison t@téeious two classifications. Score plots with
the first two PCs are shown in Figure 3. The “Abdgmatic” class was consistently better sorted
than the other 3 classes for both modelling apprescWith only 3 samples the “Basaltic” class
was not discriminated at all, although there wadight difference whether thgvariablesor the
10-variablesmodel was considered.
VIP plots for the PLS-DA on bed rock geology claségigure ES2) show [Rbiy®’Sryn(®®Sr) and
8N as being the most influential variables. Sinae P score of [Ca] and*'S were> 1 within
confidence intervals, these variables may also diesidered relevant for this classification. As
explained earlien(®’Sr)n(®°Sr) values change depending on the [Rb]/[Sr] comatan ratio in the
surrounding geological structure. Thus the majde mlayed by [Rb] and(®’Sr)n(°Sr) in this
classification is logical. Box-whisker plots in kig ES3 show that with higher values globally for
both variables the “Acid Magmatic” class differetés from the other two major classes. The fact
that [Rb] was significantly more influential tha®’Sr)h(®®Sr) is noteworthy. Furthermoré™N
values were the highest globally for the “Shale/stade/clay/loess” class*°N values may change
depending on mineral origin (from -6 % +6 %o ) or organic origin (from +1 %o to 37 Y&f the
fertilisers (Bateman and Kelly, 2007). The treng@tved here might indicate agricultural practices
specific to farming territories associated withstlgeological class, although this statement is
speculative since its verification was beyond ttegpg of this study.
As expected, PLS-DA computations for external peains tests showed no improvements of the
Q2(cum) values. According to results in column d @in Table 3 the origin of samples was
predicted 100% correctly only for Marchfeld (botloaels), for Limousin%-variablesmodel) and

for Orkney and Carpentra&(-variablesmodel). External prediction rates for Sicily (batiodels),
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Firenze b-variablesmodel) and Allgaeul(0-variablesmodel) were also satisfactory 70%), and

5 of these correctly predicted sites belonged te tBhale/mudstone/clay/loess” class. The
capability to identify correctly samples from Firenwas also a positive result (not the case with
previous two classifications). Globally, externaégiction rates were again slightly better when
taking into account the five [E] variables thantwiihe five isotopic variables alone.

Overall, samples from Galicia and Chalkidiki wehe nly ones (also with those from Firenze in
the case of thelO-variablesapproach) that could not be identified with the bamation of
classification categories investigated. The outcdarethe “Bed rock geology” sorting was less
useful than for the “Latitude” and “Marine/InlandSorting. Several possible reasons can be
envisaged to explain this difference. Geologicatkgaounds are often not homogeneous (for
Galicia and Chalkidiki in particular it is more atphwork than a uniform system, as visible from
maps by Asch, 2005). Besides, there is not nedgssastraightforward relationship between bed
rock geologies and the compositions of the minéadtions available for collection by plants
growing on the soil surface. Understanding themate interactions between soil and plants was
outside the scope of TRACE but this supplementanedsion could be a meaningful inclusion in a

follow-up project.

b) Robustness to uncertainties on measurement results as additional model validation

The validation approach described in the previoastiens for our models was based on the
calculation of Q2(cum) values and the run of exdeprediction tests. We also investigated a much
more unusual way of validating these models by ex@ug their robustness to inter-comparison
variability. PLS-DA based models assume exactnéfiseanput data and these mathematical tools
are not designed to handle measurement uncertiftle introduced changes to our data set based
on the maximum dispersions of resuls dbserved during our inter-comparisons (0.2%o §5\C,
0.9%o for 520, 0.8%. ford™N, 1.2%. for&3*S and, in relative terms, 0.9%er n(®3’Sr)n(®®sr) and
40% for [E]). A componentc’ was added to all original observations correspogdo the product

of ‘d’ and a randomly generated fanging from -1 to +1 (equ. 1).

Equation 1 c=r*d

A new series of PLS-DA models for each classifaaitategory were produced from the simulated
data set. The new prediction results (values betvieackets in Tables 2 and 3) showed that such
combinations of multivariate analysis were globalbpbust to the fluctuations imposed to the

original data set although some degradation wasrebd. Q2(cum) values decreased by no more
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than 0.05. Trends for the external prediction ra&esained also quite similar. Transition fram
70% to < 70% was observed with thé-variables“Latitude” model for Chalkidiki and Galicia,
with the 10-variables*Marine/Inland” model for Jura Krakowska, with tlevariables“bed rock
geology” model for Firenze and Sicily and for the-variables“bed rock geology” model for
Algaeu and Carpentras. Transition from < 70% t60% was observed with tfevariables“bed
rock geology” model for Carpentras, with thé-variables“bed rock geology” model for Firenze
and Gauboden. Overall, external prediction redoltall the 10- and 5- variablesmodels differed
for not more than 11 samples (over 103 or 106s@siples) compared to results from tests with the
original data.

These simulations with these dispersion rangestilite the potential sensitivity of the prediction
tools investigated to the quality of the experina¢otata, and provide an indication of what could
be the maximum experimental uncertainty tolerabtetie models proposed to work.

IV Conclusions

The sequential approach described in this study wascessful. Grouping sampling sites
successively according to thatitude (north and south classes) and fhreximity to a marine
environment(Atlantic, Mediterranean and Inland classes) wastiqularly efficient, using ten
carefully chosen variables (five isotopic tracemnbined with [Na], [K], [Ca], [Cu] and [RD]
concentrations). Grouping sampling sites accordmghe geology of the underlying bed rock
(Shale, Acid magmatic, Limestone and Basaltic elgssvas less useful, probably due to the
simplicity of the classification used and the fdwt bed rock geologies alone may not be adequate
to predict soil chemistry. Moreover, this combipatiof classification categories allowed the
identification of 12 unique and generic ‘identitiésolumn 6 in Table 1), thus providing multiple
ways of describing geographical locations basedasy to use principles.

Another important lesson learned was that in soma@ances element concentrations made a greater
impact as variables than the five isotopic tracgMa] versus®'S as a proxy to a marine
environment and to the Atlantic ocean in particu[&b] versusn(*®sr)h(®®sr) as a proxy to a
certain bed rock geology).

Although our validation scheme was quite extensivés natural to examine the question of the
domains of applicability. Clearly, it cannot beintad that the models proposed will always be able
to predict/identify correctly the geographical amigof all possible cereal sample collected in
Europe. The 17 sampling sites chosen do not cdi/éneavariability on this continent in term of

geological backgrounds, soil characteristics andatic conditions. However, a study like this one,
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because of its unique size (number of samplingssiteimber of samples per site, number of
variables assessed per sample), allows the designtanl applicable to a much wider range of
cereal samples in Europe than any previous comjgastibdies, and proposes a proof of concept
applicable to other types of grains and food présititan only cereals.

Our results also demonstrate the feasibility, tbeeptial interest and also the limitations of sach
large size study at the scale of a continent. Gienvariety of parameters investigated and the
great number of samples involved, this kind of @cojrequires the collaboration of many
organisations. A tight coordination between pagnéncluding vast efforts in the field of data
guality assurance, is mandatory. The quality ofeexpental data used for modelling purposes
cannot be considered better than the differencedmet measurement results (on similar samples)
observed for the different project partners. And simulations have shown that these multivariate

data treatments are not insensitive to such |efalscertainties.
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Tables

Table 1
) Average GPS )
Site Name _ . ) Bed rock | Combined
coordinates samples | Latitude | Marine/Inland _ _
(country code) ) geology ‘identity’
(deg., min. and sec.)
Marchfeld (AT) N48 1343 E16 49 30 41 N I
Gauboden (DE) N48 49 05 E12 34 19 34 N I 1
Allgaeu (DE) N48 03 37 E10 36 07 38 N I
Jylland (DK) N56 18 43 E09 59 01 719* N A Sh 2
Orkney (GB) N58 58 07 W02 56 14 24 N A
Firenze (IT) N43 5729 E111858 46 S M 3
Sicily (IT) N37 4514 E14 36 00 40 S M
Muehlviertel (AT) N48 27 54 E14 04 29 25 N I 4
Limousin (FR) N4559 01 EO02 12 56 40 S I 5
Cornwall (GB) N50 04 33 W05 40 3P 40 N A AM 6
Galicia (ES) N43 03 34 W08 04 44 20 S A 7
Chalkidiki (GR) N40 22 27 E23 36 41 40 S M
Fraenkische Alb (DE} N4957 04 E11 06 85 40 N I
Jura Krakowska (PL) N501000 E1945p3  19/3p* N I L
Galway (IE) N53 09 06 W08 56 5p 15 N A 10
Carpentras (FR) N44 12 00 EO05 19 R0 40 S M 11
Iceland (IS) N63 32 24 W19 39 31 3 N A B 12

* Only with the 10-variables model
Table 1. Sampling sites, average GPS coordinateaper of samples per site and classification categjoLatitude (North N, and SouthS),

Marine/Inland (Inland]; Atlantic, A; and Mediterraneariyl) and Bed rock geology (Shale/mudstone/clay/loass sandstone and other clastic

sedimentsSh; Acid MagmaticAM ; Limestonel ; and BasalticB)

Table 2

Classification ~ Models PCs R2X(cum) R2Y(cum) Q2(dum R2Y(cum)-Q2(cum)

Latitude 5V 2-(2) 052-(0.51) 0.59-(0.57) 0.58 — (0.57) .000(0.01)

1oV 2—(2) 0.33-(0.32) 0.62—(0.60) 0.62 — (0.59) .01000.01)

Marine/Inland 5V 3-(3) 0.72-(0.71) 0.50-(0.46) 0.49 — (0.45) .000(0.00)

1oV 4—(4) 0.66-(0.60) 0.67—(0.65) 0.66 — (0.64) .01000.01)

Bed rock geology 5V 3-(3) 0.73-(0.73) 0.27-(0.24) 0.26 — (0.23) .01Q00.01)

10V 5-(4) 0.77-(0.56) 0.37—(0.33) 0.35 - (0.30) 0.024D.0

Table 2. Main PLS-DA parameters estimated for Sheariablesmodel (5V) and thdO-variablesmodel (10V). PCs is the number of principal

components Figures between brackets corresponestats obtained for the simulated data set (additmo all original data of component

corresponding to twice the value of the stateddstethuncertainties multiplied by a randomly geretatumber ranging from -1 to +1)
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540 Table 3

Sample site
Marchfeld
Muehlviertel
Fraenkische Alb
Gauboden
Allgaeu

Jylland
Carpentras
Limousin
Chalkidiki
Galway

Firenze

Sicily

Jura Krakowska
Galicia
Cornwall
Orkney

Iceland

541
542
543
544

545

O WOWWOWOWWWERF 0W~NWOUI S

\‘
*
-

= 010 &~

* Only with thel0-variablesmodel

N

Latitude

Marine/Inland

5-variables 10-variables 5-variables

model model

model

100 - (100) 100 - (100) 88 - (100)

100 - (100) 80 - (80)
75-(75) 100 - (88)

100 - (100) 100 - (100)
88 - (88) 100 - (100)

100 - (100) 100 - (100) 100 - (100)
100 - (100) 100 - (100) 100 - (100)

100 - (100) 88 - (88)
63-(50) 75 - (63)
100 - (100) 100 - (100)
56 - (56) 44 - (44)
88 - (100) 88 -(88)
75-(75) 71-(71)
50 - (50) 75 - (50)
100 - (100) 75 - (75)

100 - (100) 100 - (100) 100 - (100)

100 - (100) 100 - (100)

the impact of measurement uncertainty in these teode

100 - (100)

75 - (75)
71 - (86)
75 - (75)

88 - (88)
25 - (38)
0-(0)
44 - (44)
88 - (75)
75 - (75)
0 - (0)
100 - (88)

0 - (0)

10-variables
model
100 - (100)
100 - (100)
75 - (88)
100 - (100)
100 - (88)
0-(0)
100 - (100)
88 - (88)
13 - (25)
100 - (100)
44 - (44)
88 - (88)
86 - (57)
50 - (25)
100 - (100)
100 - (100)
100 - (100)

Bed rock geology

5-variables
model
100 - (88)
40 - (20)
0-(0)
14 - (0)
38-(38)
0-(0)
63 - (75)
100 - (100)
50 - (38)
0-(0)
78 - (67)
75 - (63)
0-(0)
0-(0)
25 - (25)
80 - (80)
0-(0)

10-variables

model
100 - (100)

60 - (40)
13 - (13)
57 - (71)

88 - (63)
0-(0)
100 - (63)
88 - (88)
50 - (50)
0-(0)
56 - (78)
88 - (75)
29 - (29)
50 - (25)
63 - (63)
100 - (100)
0-(0)

Table 3. External prediction results (%) for “Latie”, “Marine/Inland” and “Bed rock geology” claisation categories using 103 or 106 samples

(for 5- and10-variablesmodels, respectively) as test data sets. Extemediqtion results between brackere for the data set simulated to estimate
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Figures

Figure 1
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(b) 10-variablesmodel (=527)

Figure 1. “Latitude” classification (classes Noathd South) PLS-DA score plots for thevariables(a) and thel0-variables(b) models
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Figure 2
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Figure 2. “Marine/Inland” classification (classedand, Atlantic and Mediterranean) PLS-DA scoretplfor the5-variables(a) and thelO-

variables(b) models

21



577

578

Figure 3
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Figure 3.“Bed rock geology” classification (classes Shalejd®agmatic, Limestone and Basaltic) PLS-DA sqolats for the5-variables(a)

and thel0-variables(b) models
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