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Abstract 39 

The aim of this work (from the FP6 project TRACE) was to develop methods based on the use of 40 

geochemical markers for the authentication of the geographical origin of cereal samples in Europe 41 

(cf. EC regulations 2081/92 and 1898/06). For the first time the potential usefulness of combining 42 

n(87Sr)/n(86Sr) and δ13C, δ15N, δ18O and δ34S isotopic signatures, alone or with key element 43 

concentrations ([Na], [K], [Ca], [Cu] and [Rb], progressively identified out of 31 sets of results), 44 

was investigated through multiple step multivariate statistics for more than 500 cereal samples 45 

collected over 2 years from 17 sampling sites across Europe representing an extensive range of 46 

geographical and environmental characteristics. 47 

Both models compared involved three sample classification categories (north/south; proximity to 48 

the Atlantic Ocean/to the Mediterranean Sea/to else; bed rock geologies). The first two 49 

categorisations were the most efficient, particularly when using the ten variables selected together 50 

(with, in some instances, element concentrations making a greater impact than the isotopic tracers). 51 

Validation of models included external prediction tests on 20% of the data randomly selected and, 52 

rarely done, a study on the robustness of these multivariate data treatments to uncertainties on 53 

measurement results. With the models tested it was possible to individualise 15 of the sampling 54 

sites. 55 

 56 
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I. Introduction  57 

In Europe, guaranteeing the geographical origin of a food product (cf. EC regulations 2081/92 and 58 

1898/06) is regarded as an assurance of quality and safety. The FP6 project TRACE funded by the 59 

European Commission was launched in 2005, aiming to deliver tools “that will enhance consumer 60 

confidence in the authenticity of food” (FP6-TRACE project-website, 9th April 2010). An important 61 

component of this project was to study how geochemical markers and the relationships between 62 

these markers could be used for the characterisation of the region of origin of food products. For 63 

instance, it was shown that variations in H, C, N and S isotopic composition and element 64 

concentrations are useful for the differentiation between samples coming from some different 65 

regions in Europe in the case of lamb meat, honey and olive oils (Camin et al., 2007, 2010; 66 

Schellenberg et al., 2010). The present study also reports research findings from the TRACE project 67 

but on a broader scope level and with regards to wheat. For the first time the potential usefulness of 68 

C, N, O, S and Sr isotopic signatures combined to multi-element profiles was investigated for over 69 

500 samples originating from sites in Europe representing an extensive range of geographical and 70 

environmental characteristics (climate, distance to sea/ocean, geology). 71 

The δ13C values of plant compounds depend on photosynthetic pathways (discrimination between 72 

C3 and C4 plants), the plant age and level of maturation (Farquhar et al., 2003; Smith and Epstein, 73 

1971). δ13C is also affected, although to a lesser extent, by several environmental factors such as 74 

relative humidity, temperature, amount of precipitation and water stress (O'Leary, 1995). δ
15N 75 

values depend on the botanical type of the plant and on the bacterial activity associated to its 76 

growth (Farquhar et al., 2003), and can also be affected by temperature and agricultural practices 77 

(e.g. type of fertilizers used) (Bateman et al., 2005; Martin and Martin, 2003). The δ18O of plant 78 

material reflects the water taken up (linked to temperature, latitude, elevation, distance from the sea 79 

and amount of precipitation) and exchanged (evaporative and diffusion effects during transpiration), 80 

and also biosynthetic pathways including the isotopic exchange between organic molecules and 81 

plant water (Bréas et al., 1998). Variations in the δ34S ratio in plants have been reported to be linked 82 

with the soil geology (Thode, 1991), the distance from the sea and proximity to industrial activities 83 

(Camin et al., 2007). The n(87Sr)/n(86Sr) ratio in soils may vary depending on the [Rb]/[Sr] 84 

concentration ratio in (and age of) the surrounding rock or mineral and, thus, has the potential to 85 

reflect the nature of the underground geology (Capo et al., 1998). It is expected that the 86 

n(87Sr)/n(86Sr) in plants should also be a good indicator of the rocks and soil conditions during plant 87 

growth. Similarly, it is expected that element concentrations in food commodities such as olive oils 88 

(Camin et al., 2010), potatoes (Anderson et. al., 1999), garlic (Smith, 2005), orange juice (Simpkins 89 

et al. 2000) and coffee (Anderson et. al., 2002) are mainly related to the geological and 90 
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pedoclimatic characteristics of the site of growth and plant farming practices. A discussion on 91 

reasons why the elemental composition in plant may provide unique markers of the geographical 92 

origin can be found in Kelly et. al. (2005). 93 

The way these tracers could be used to enable the authentication of provenance of cereal samples 94 

was investigated through multiple steps multivariate statistical analysis. The method validation 95 

scheme we designed included a study on the robustness of these multivariate data treatments to 96 

uncertainties in measurement results. 97 

 98 

 99 

II. Experimental  100 

The measurands in cereal samples are hereby referred to as variables. They consist of Sr isotope 101 

ratios (noted n(87Sr)/n(86Sr)) and 31 element concentrations (noted [E]) in the bulk, as well as δ-102 

scale values for the CNOS group (noted δ
13C, δ15N, δ18O and δ34S) in the defatted fraction. 103 

δ
13C, δ15N, δ18O and δ34S measurements were carried out in seven laboratories (Eurofins Scientific 104 

Analytics, Nantes, France; FERA, York, UK; AIT, Seibersdorf, Austria; LGL, Oberschleißheim, 105 

Germany; Isolab, Schweitenkirchen, Germany; IASMA, San Michele all'Adige, Italy; IFR, 106 

Norwich, UK). n(87Sr)/n(86Sr) measurements were carried out in four laboratories (EC-JRC-IRMM, 107 

Geel, Belgium; FERA; BSPG, München, Germany; UEA, Norwich, UK). Element concentration 108 

measurements were carried out in four laboratories (Seibersdorf Labor GmbH, Seibersdorf, Austria; 109 

FERA; IASMA; UEA). The scientists responsible for producing these experimental data are co-110 

authoring this paper. 111 

 112 

a) Sampling strategy and sample collection   113 

Cereal samples were collected from multiple farms or local producers in 19 sampling sites in 114 

Europe between summer 2005 and summer 2007. The names and average geographical coordinates 115 

of these sampling sites are provided in Table 1. 116 

Although wheat (of different varieties, including winter wheat, Durum wheat, Emmer wheat, 117 

Epeautre and Spring wheat) was the main target, barley, rye, triticale, oat (all C3 plants) and four 118 

corn (C4 plant) samples were also collected from areas where wheat was not produced. The 119 

sampling plan was to collect four samples from five different producers or fields within each of the 120 

predefined sampling sites per year, and this was repeated for a second year around the same time. 121 

The ideal scheme of 40 cereal samples per sampling site could not always be strictly followed, due 122 

to practical limitations, and a total of 557 cereal samples were obtained, as shown in Table 1. 123 

Algarve and Barcelona samples (incl. the four corns) were excluded for this study because they 124 
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were purchased on markets and their claimed origin could not be verified. Samples from Galicia 125 

were collected for one season only, and only three samples could be obtained from Iceland. 126 

 127 

b) Sample preparation, spectrometric measurements and validation of measurement methods 128 

 i) For δ 13C, δ 15N, δ 18O and δ 34S results 129 

δ
13C, δ15N and δ18O were measured using a range of Isotope Ratio Mass Spectrometers (Delta Plus 130 

XL, Delta Plus XP, Delta V, Delta S, ThermoFinnigan, Bremen, Germany; Isoprime, AP2003, 131 

Optima, GV Instruments Ltd., Manchester, UK), IRMS. They were connected to pyrolisers 132 

(TC/EA, ThermoFinnigan; PyrOH and EA3000, Eurovector, GV Instruments Ltd.) for 18O/16O or 133 

an elemental analysers (Flash EA 1112, 1110, 1108 ThermoFinnigan; Costech ECS4010; NA2100 134 

Proteins, Carloerba, Milan, Italy; Vario EL III, Elementar Analysensysteme GmbH, Hanau, 135 

Germany) for 13C/12C and 15N/14N. Samples contained very low amounts of sulphur (usually less 136 

than 0.1 % according to Sieper et al., 2006) and δ
34S values were obtained from only one 137 

instrument (Vario EL III, Elementar Analysensysteme GmbH). IRMS instrumental conditions for 138 

each isotope ratio were reported by the same authors in a previous paper (Camin et al., 2007). 139 

The isotopic values were expressed in δ‰ versus V-PDB (Vienna - Pee Dee Belemnite) for δ
13C, 140 

versus AIR for δ15N, versus V-SMOW (Vienna – Standard Mean Ocean Water) for δ18O, and 141 

versus V-CDT (Vienna Canyon-Diablo-Troilite) for δ34S according to the following formula: [(Rs-142 

Rstd)/Rstd] x 1000, where Rs is the isotope ratio measured for the sample and Rstd is the isotope ratio 143 

of the international standard. The values were calculated against in-house standards, which were 144 

themselves calibrated against international reference materials: fuel oil NBS-22 (IAEA) and sugar 145 

IAEA-CH-6 (IAEA) for 13C/12C, USGS-40 and IAEA-N-1 (IAEA) for 15N/14N, Benzoic Acid 146 

IAEA-601 (IAEA) and IAEA-CH-6 (IAEA) for 18O/16O and IAEA-S-1 for 34S/32S. 147 

The measurement repeatability was ≤ 0.2‰ for δ13C, ≤ 0.5‰ for δ18O, ≤ 0.1 ‰ for δ15N and ≤ 148 

0.3‰ for δ34S. An inter comparison was organized between the seven laboratories in charge of 149 

IRMS measurements for validation purposes. The test material for the comparison (wheat flour) 150 

was also used periodically in each laboratory as quality control, to monitor deviations over time. 151 

The dispersions of results between laboratories during the comparison were 0.2‰ for δ13C, 0.9‰ 152 

for δ18O, 0.8‰ for δ15N and 1.2‰ for δ34S. 153 

 ii) For n(87Sr)/n(86Sr) results 154 

The instrumentation and laboratories involved in the Sr isotopic measurements were the same as 155 

those of the study on mineral water samples published recently (Voerkelius et al., 2010). There 156 

were one Multi Collector Thermal Ionisation Mass Spectrometer (MC-TIMS – MAT 261/262, 157 

Thermo Finnigan) and three Multi Collector Inductively Coupled Plasma Mass Spectrometers (MC-158 
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ICPMS – Nu Plasma, Nu Instruments; Axiom, ex- VG Instruments; Isoprobe, ex-Micromass). MC-159 

TIMS measurements were carried out on tungsten single filaments. For MC-ICPMS measurements, 160 

typically, the instrumentation was equipped with a minicyclonic jacketed cinnabar spray chamber 161 

or a porous membrane based desolvation unit, a 0.2 ml min-1 microconcentric nebuliser and Ni or Pt 162 

sampler and skimmer cones. 163 

Sample uptake was 0.1 - 0.3 g for MC-TIMS measurements, and 0.4 - 1 g for MC-ICPMS 164 

measurements. Samples were dry-ashed for MC-TIMS measurements, or acid digested in a 165 

microwave oven for MC-ICPMS measurements. Residuals were dissolved in concentrated HNO3 to 166 

allow separation of Sr from other elements such as Ca, Ba or Rb by ion chromatography on a Sr 167 

specific crown ether resin (Sr-spec®). After separation the Sr concentration in solution was 10-500 168 

ng g-1 in about 2.5 g of 2-3% HNO3. 169 

The same standard operating procedure (SOP, cf. details in report of FP6-TRACE Deliverable 170 

D15.9, 2009) applied to all laboratories to allow for comparison of measurement results. This SOP 171 

included recommendations on Rb/Sr separations, corrections for procedural blanks, the prescription 172 

of the n(86Sr)/n(88Sr) and n(87Rb)/n(85Rb) reference values used for corrections (0.1194 ± 0 and 173 

0.38565 ± 0.00030, respectively). It also required running regularly (every 1 to 4 samples 174 

maximum) experiments on the NIST-987 Sr isotopic CRM for the purpose of contributing to the 175 

validation of each methods developed. The relative dispersion of results between laboratories for 176 

identical cereal test materials during four comparisons was up to approximately 0.9‰ depending on 177 

physical (flour/coarse grains, grains with or without husk etc.) and chemical ([Rb] and [Sr]/[Rb] 178 

concentration ratio) characteristics of samples. 179 

 iii) For [E] results 180 

Measurements of element concentrations were performed on four quadrupole ICP-MS instruments 181 

(two Agilent 7500ce, Tokyo, Japan; one Elan 6100 and one Elan 6000, Perkin Elmer Sciex, 182 

Toronto, Canada). The first two were fitted with concentric Micromist nebulisers (Glass Expansion, 183 

Melbourne, Australia) and water-cooled Scott double-pass spray chambers, the third with a cross-184 

flow nebuliser and the fourth with a concentric nebuliser and a cyclonic water-cooled spray-185 

chamber. In all cases peristaltic pumps were used to regulate sample flow rates. RF power settings 186 

ranged from 1100 to 1500W on the four instruments. Pt cones were used on the Elan 6000, while Ni 187 

cones were used on the other instruments.  188 

Microwave digestion was employed by three of the laboratories, digesting between 0.3 and 0.5 g 189 

cereal with distilled nitric acid, either with or without addition of ultrapure hydrochloric acid. The 190 

fourth laboratory used ultraviolet digestion of 0.5 g sample material with 4 ml nitric acid and 1 ml 191 
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distilled hydrochloric acid. All labware involved was cleaned beforehand with solutions of between 192 

5% and 10% nitric acid. Results were corrected for cereal moisture content. 193 

NIST1567a Wheat Flour was used for method validation purposes and measured with all sample 194 

batches. There was agreement within uncertainty boundaries with certified values for all elements 195 

of interest in this study. 196 

 197 

c) Data set description and the multivariate data analysis tools applied 198 

In our study the n(87Sr)/n(86Sr) and the CNOS isotopic signatures were treated alone and in 199 

combination with [E] results. In the first case it was necessary to exclude an additional 13 samples 200 

(of 32) from Jura Krakowska and 2 samples (of 9) from Jylland for which four out of five of the 201 

isotopic data were not reported. Thus, the overall cereal data set consisted of 512 samples from 17 202 

sampling sites. When isotopic and [E] results were combined all 527 samples could be considered 203 

(e.g. including the 15 samples excluded in the previous case).  204 

Prior to the application of multivariate statistical calculations some data pre-treatment was required 205 

(Eriksson et al., 2001; Esbensen, 2006). For each variable unit variance scaling and mean-centering 206 

of data was applied (division by the standard deviation followed by subtraction of the mean value). 207 

In addition, [Na] and [Rb] data required log-transformation in order to normalise the distributions. 208 

In this study Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis 209 

(PLS-DA) modelling tools were used. PCA provides a more comprehensive overview of all data by 210 

producing a few orthogonal (uncorrelated) principal components (PCs) which extract the main 211 

information about the data set (Eriksson et al., 2001; Esbensen, 2006). PCA is normally applied at 212 

early stage of multivariate data analysis as “exploratory tool”. PLS-DA modelling is more suitable 213 

for smaller numbers of defined classes and maximises the separation between them.  214 

PCA and PLS-DA offer a number of useful parameters and diagnostic tools expressed graphically 215 

and numerically. These include PC-score plots, R2X(cum), R2Y(cum), Q2Y(cum) and VIP 216 

(Variable Importance in the Projection). The R2 parameters are a quantitative measure of the 217 

“goodness of fit” of a given model (R2X for the “predictors”, and R2Y for the “responses”), 218 

whereas the Q2 parameters indicate the “goodness of prediction” (predictive ability) of a given 219 

model. There exist some rules to help identifying the best balance between the predictive power and 220 

a reasonable level of fitness of the model. According to Eriksson et al. (2001) “generally, a Q2 > 221 

0.5 is regarded as good and a Q2 > 0.9 as excellent, but these guidelines are of course heavily 222 

application dependent”, and “differences between R2 and Q2 larger than 0.2-0.3 indicate the 223 

presence of many irrelevant model terms or few outlying data points”. For PLS-DA the relative 224 

importance of variables is illustrated by VIP plots. Variables with a VIP value greater than unity 225 
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play the most important roles for the discrimination of the classes. For more elaborated 226 

explanations and mathematical expressions related to these diagnostic tools and parameters readers 227 

are referred to Eriksson et al. (2001). 228 

In this work, all the multivariate computations were carried out using SIMCA-P Ver. 12 (Umetrics 229 

AB, Sweden) software. The Statistica Ver. 7 (Statsoft Inc., USA) software was used to produce the 230 

box-whisker plots for the variables. 231 

Our validation scheme included external prediction tests on 20% of the data assigned as 232 

independent data sets (randomly selected). These data were compared (on class membership) 233 

against prediction results obtained from PLS-DA models built with the remaining 80% of the data 234 

set. Models were considered satisfactory when external prediction rates were ≥ 70%. 235 

 236 

 237 

III Results and discussion 238 

To have an overview of all 527 samples from 17 sites with 36 descriptor variables, a PCA was 239 

applied to the data set (see Figure ES1 provided as electronic supplementary material). 240 

There were no clear trends or patterns to distinguish samples of different sampling sites. Thus we 241 

decided to apply PLS-DA, based on supervised classification, and to compare two models, using 242 

the five isotopic variables alone and in combination with [E] results. 243 

The classification categories we chose (Table 1) were according to latitude (two classes: north and 244 

south of Europe), proximity to a marine environment (three classes: Atlantic, Mediterranean and 245 

Inland) and geology of the underlying bed rock (four classes: Shale, Acid magmatic, Limestone and 246 

Basaltic). The way we established these classification categories and the results obtained are 247 

discussed in the subsequent sections. 248 

The five isotopic variables (n(87Sr)/n(86Sr), δ13C, δ15N, δ18O and δ34S) were systematically 249 

considered as they were found alternately significant depending on the classes considered for the 250 

data, as shown later. Preliminary investigations (successive PLS-DA and VIP plots) were carried 251 

out to evaluate the significance of the 31 element concentration variables available. From the first 252 

list of nine apparently influential concentration variables identified, four ([Co], [Ga], [Cd] and [Cs]) 253 

were further eliminated due to low concentration in the majority of the samples and rather poor 254 

analytical figures of merit (measurement reproducibility amongst the laboratories for cereal samples 255 

was, from the TRACE quality assurance report (2009), ≤ 20% for [Cd], 20% to 50% for [Co] and 256 

over 50% for [Ga] and [Cs]). That left only [Na], [K], [Ca], [Cu] and [Rb]. Hereafter, the two 257 

methods of modelling will be referred to as the “5-variable” and “10-variable” (the 5 isotopic 258 

markers and [Na], [K], [Ca], [Cu] and [Rb]) models, respectively. 259 
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 260 

a) PLS discriminant analysis models 261 

 i) Classification according to latitude (north and south classes)  262 

The motivation was the assumption of a relationship between climatic conditions and the latitudinal 263 

geographic position of each site where the cereal samples were harvested. After several model 264 

refining attempts, the optimal boundary line for the discrimination between north and south samples 265 

was found to be around latitude line 47° N through “central” Europe. In both cases PLS-DA 266 

computations with this classification resulted in two optimal significant PCs, and relatively high 267 

values of goodness of prediction Q2(cum) (figures not between brackets in Table 2). As shown in 268 

the score plots for PC1 and PC2 (Figure 1), the two classes were well sorted mainly in the direction 269 

of PC1. The dashed line was added to delineate the two groups visually. 270 

It can be seen on VIP plots (see Figure ES2 provided as electronic supplementary material) that the 271 

first two most influential variables for a north/south differentiation were δ13C and δ18O, which is 272 

coherent with both being potential indicators of climatic conditions (Heaton et al., 2008; Kelly et 273 

al., 2002, 2005; Rossmann et al., 2000; Suzuki et al., 2008). More remarkably [Cu] played a 274 

significant discriminatory role in the case of the 10-variables model. As shown by box-whisker 275 

plots (see Figure ES3 provided as electronic supplementary material) [Cu] was rather higher for 276 

samples collected in the south than in the north. It is reasonable to assume that the amount of 277 

copper in a cereal plant is proportional to the amount of Cu available from the soil where it was 278 

grown. What we observed for our cereal data might be explained by the highest Cu concentrations 279 

in topsoil and subsoil in Europe reported by Foregs maps (Salminen, 2005) for southern regions, 280 

around the Mediterranean basin and within the Iberian peninsula, and along the west coasts of 281 

France, UK and Norway. The distribution of copper in subsoil is mainly related to regional and 282 

local geology, and to mineralisation. According to Salminen (2005) the distribution of copper in 283 

topsoil may also be influenced by anthropogenic contamination (pollution by agricultural sewage 284 

enriched in Cu or the use of copper sulphate as a fungicide in fruit cultivation and vineyards). 285 

PLS-DA model fittings for external prediction tests showed satisfactory results with Q2(cum) 286 

values similar to those of PLS-DA models generated using the entire data set. The external 287 

prediction rates described in column 3 and 4 of Table 3 (figures not between brackets, on 103 and 288 

106 samples, respectively) were 100 % for 9-10 out of 17 sampling sites. The inclusion of [E] data 289 

did not make a significant difference overall:  there were improvements for samples from 290 

Fraenkische Alb, Allgaeu, Chalkidiki, and Galicia, and degradations for samples from Muehlviertel, 291 

Limousin, Firenze, Jura Krakowska and Cornwall. The external prediction rates were less than 70 292 
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% only for Galicia, Chalkidiki (the 5-variables model only) and Firenze (both models). These 293 

results indicate that both models proposed are robust/stable for the north/south discrimination. 294 

 ii) Classification according to proximity to a marine environment (Atlantic, 295 

Mediterranean and Inland classes) 296 

We then examined whether the proximity to oceanic/sea conditions (via sea-spray deposition, 297 

unusual historical sedimentation conditions, and so on) could be characterised.  298 

Three classes of samples were considered: “Atlantic” and “Mediterranean” for sampling sites less 299 

than 100 km away from the respective coasts, and “Inland” for the remaining samples (cf. Table 1). 300 

PLS-DA with the 5- and 10-variables models resulted in three and four PCs, respectively. As 301 

illustrated in Figure 2 (score plots with the first two PCs) the choice of these three classes 302 

(delineated with dotted lines) for sorting samples was relevant. There was also a significant 303 

improvement of the modelisation when incorporating the five [E] variables, as confirmed by the 304 

increase of Q2(cum) values in Table 2 (from 0.49 to 0.66). 305 

VIP values for both models are presented in Figure ES2. δ34S, δ18O and δ13C were the most 306 

discriminatory isotopic variables but, with the 10-variables model, only after [Na] and just before 307 

[K]. 308 

Furthermore, box-whisker plots in Figure ES3 show that “Atlantic” class cereal samples can be 309 

distinguished from others as they exhibit, globally, higher values of [Na], δ34S and [K] (associated 310 

with the emission of sea-spray and the deposition of sea-salt). Cereal samples close to the 311 

Mediterranean Sea can also be discriminated but essentially on the basis of tracers of climatic 312 

conditions (highest δ13C and δ18O values, globally), thus in this case a north/south issue in line with 313 

conclusions from the previous discussion. 314 

External prediction tests were run in the same way as described before, and the new PLS-DA model 315 

parameters (PCs, R2, Q2) were almost identical to the original ones (Table 2). 316 

The results in column 5 and 6 in Table 3 (figures not between brackets), with the 5- or the 10-317 

variables models respectively, indicate 100% success rate for 5 and 9 sampling sites, and < 70% 318 

success rate for 4 sampling sites in both cases. For Jylland, Galway and Iceland though, the number 319 

of samples available for the external prediction tests was scarce and the results obtained (100% or 320 

0%) must be interpreted cautiously. When considering sampling sites with ≥ 70% success rate (and 321 

apart from the 3 sites with ≤ 3 samples), the number of samples predicted correctly is either 322 

identical for both modelling approaches (for 7 sites) or better by 11% to 29% with the 10-variables 323 

modelling (for Marchfeld, Gaeuboden, Allgaeu and Jura Krakowska). Therefore it was possible to 324 

conclude, first, that the proximity (or not) to a marine environment could be correctly predicted for 325 

a very large majority of cereal samples and, second, that the combination with [E] variables (and 326 
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particularly [Na] and [K]) significantly improved this prediction ability as compared to the use of 327 

isotopic variables alone. The sites with < 70% success rates to the external prediction tests for both 328 

types of models (also apart from the 3 sites with ≤ 3 samples) were Chalkidiki, Firenze and Galicia, 329 

similarly to what had been observed previously with the “Latitude” classification (5-variables 330 

model only). 331 

 iii) Classification according to bedrock geology (Acid Magmatic, Shale, Limestone 332 

and Basaltic classes) 333 

For the third test we sorted cereal samples into four classes (“Shale/mudstone/clay/loess” incl. 334 

sandstones and other clastic sediments, “Acid Magmatic”, “Limestone” and “Basaltic”) according 335 

to the bedrock geology of their respective sampling sites, described in Table 1.   336 

Application of PLS-DA to these four classes produced three and five PCs when using the 5- and 10-337 

variables models, respectively. Q2(cum) values (Table 2) indicated that the predictive ability of 338 

these models had deteriorated in comparison to the previous two classifications. Score plots with 339 

the first two PCs are shown in Figure 3. The “Acid Magmatic” class was consistently better sorted 340 

than the other 3 classes for both modelling approaches. With only 3 samples the “Basaltic” class 341 

was not discriminated at all, although there was a slight difference whether the 5-variables or the 342 

10-variables model was considered. 343 

VIP plots for the PLS-DA on bed rock geology classes (Figure ES2) show [Rb], n(87Sr)/n(86Sr) and 344 

δ
15N as being the most influential variables. Since the VIP score of [Ca] and δ34S were ≥ 1 within 345 

confidence intervals, these variables may also be considered relevant for this classification. As 346 

explained earlier n(87Sr)/n(86Sr) values change depending on the [Rb]/[Sr] concentration ratio in the 347 

surrounding geological structure. Thus the major role played by [Rb] and n(87Sr)/n(86Sr) in this 348 

classification is logical. Box-whisker plots in Figure ES3 show that with higher values globally for 349 

both variables the “Acid Magmatic” class differentiates from the other two major classes. The fact 350 

that [Rb] was significantly more influential than n(87Sr)/n(86Sr) is noteworthy. Furthermore, δ15N 351 

values were the highest globally for the “Shale/mudstone/clay/loess” class. δ15N values may change 352 

depending on mineral origin (from -6 ‰ to +6 ‰ ) or organic origin (from +1 ‰ to 37 ‰) of the 353 

fertilisers (Bateman and Kelly, 2007). The trend observed here might indicate agricultural practices 354 

specific to farming territories associated with this geological class, although this statement is 355 

speculative since its verification was beyond the scope of this study. 356 

As expected, PLS-DA computations for external predictions tests showed no improvements of the 357 

Q2(cum) values. According to results in column 7 and 8 in Table 3 the origin of samples was 358 

predicted 100% correctly only for Marchfeld (both models), for Limousin (5-variables model) and 359 

for Orkney and Carpentras (10-variables model). External prediction rates for Sicily (both models), 360 
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Firenze (5-variables model) and Allgaeu (10-variables model) were also satisfactory (≥ 70%), and 361 

5 of these correctly predicted sites belonged to the “Shale/mudstone/clay/loess” class. The 362 

capability to identify correctly samples from Firenze was also a positive result (not the case with 363 

previous two classifications). Globally, external prediction rates were again slightly better when 364 

taking into account the five [E] variables than with the five isotopic variables alone. 365 

Overall, samples from Galicia and Chalkidiki were the only ones (also with those from Firenze in 366 

the case of the 10-variables approach) that could not be identified with the combination of 367 

classification categories investigated. The outcome for the “Bed rock geology” sorting was less 368 

useful than for the “Latitude” and “Marine/Inland” sorting. Several possible reasons can be 369 

envisaged to explain this difference. Geological backgrounds are often not homogeneous (for 370 

Galicia and Chalkidiki in particular it is more a patchwork than a uniform system, as visible from 371 

maps by Asch, 2005). Besides, there is not necessarily a straightforward relationship between bed 372 

rock geologies and the compositions of the mineral fractions available for collection by plants 373 

growing on the soil surface. Understanding the intimate interactions between soil and plants was 374 

outside the scope of TRACE but this supplementary dimension could be a meaningful inclusion in a 375 

follow-up project. 376 

 377 

b) Robustness to uncertainties on measurement results as additional model validation 378 

The validation approach described in the previous sections for our models was based on the 379 

calculation of Q2(cum) values and the run of external prediction tests. We also investigated a much 380 

more unusual way of validating these models by examining their robustness to inter-comparison 381 

variability. PLS-DA based models assume exactness of the input data and these mathematical tools 382 

are not designed to handle measurement uncertainties. We introduced changes to our data set based 383 

on the maximum dispersions of results ‘d’ observed during our inter-comparisons (0.2‰ for δ
13C, 384 

0.9‰ for δ18O, 0.8‰ for δ15N, 1.2‰ for δ34S and, in relative terms, 0.9‰ for n(87Sr)/n(86Sr) and 385 

40% for [E]). A component ‘c’ was added to all original observations corresponding to the product 386 

of ‘d’ and a randomly generated ‘r’ ranging from -1 to +1 (equ. 1).   387 

 388 

Equation 1              c = r*d      389 

 390 

A new series of PLS-DA models for each classification category were produced from the simulated 391 

data set. The new prediction results (values between brackets in Tables 2 and 3) showed that such 392 

combinations of multivariate analysis were globally robust to the fluctuations imposed to the 393 

original data set although some degradation was observed. Q2(cum) values decreased by no more 394 



 13 

than 0.05. Trends for the external prediction rates remained also quite similar. Transition from ≥ 395 

70% to < 70% was observed with the 10-variables “Latitude” model for Chalkidiki and Galicia, 396 

with the 10-variables “Marine/Inland” model for Jura Krakowska, with the 5-variables “bed rock 397 

geology” model for Firenze and Sicily and for the 10-variables “bed rock geology” model for 398 

Algaeu and Carpentras. Transition from < 70% to ≥ 70% was observed with the 5-variables “bed 399 

rock geology” model for Carpentras, with the 10-variables “bed rock geology” model for Firenze 400 

and Gauboden. Overall, external prediction results for all the 10- and 5- variables models differed 401 

for not more than 11 samples (over 103 or 106 test samples) compared to results from tests with the 402 

original data. 403 

These simulations with these dispersion ranges illustrate the potential sensitivity of the prediction 404 

tools investigated to the quality of the experimental data, and provide an indication of what could 405 

be the maximum experimental uncertainty tolerable for the models proposed to work. 406 

 407 

 408 

IV Conclusions 409 

The sequential approach described in this study was successful. Grouping sampling sites 410 

successively according to the latitude (north and south classes) and the proximity to a marine 411 

environment (Atlantic, Mediterranean and Inland classes) was particularly efficient, using ten 412 

carefully chosen variables (five isotopic tracers combined with [Na], [K], [Ca], [Cu] and [Rb] 413 

concentrations). Grouping sampling sites according to the geology of the underlying bed rock 414 

(Shale, Acid magmatic, Limestone and Basaltic classes) was less useful, probably due to the 415 

simplicity of the classification used and the fact that bed rock geologies alone may not be adequate 416 

to predict soil chemistry. Moreover, this combination of classification categories allowed the 417 

identification of 12 unique and generic ‘identities’ (column 6 in Table 1), thus providing multiple 418 

ways of describing geographical locations based on easy to use principles. 419 

Another important lesson learned was that in some instances element concentrations made a greater 420 

impact as variables than the five isotopic tracers ([Na] versus δ34S as a proxy to a marine 421 

environment and to the Atlantic ocean in particular; [Rb] versus n(86Sr)/n(88Sr) as a proxy to a 422 

certain bed rock geology). 423 

Although our validation scheme was quite extensive, it is natural to examine the question of the 424 

domains of applicability. Clearly, it cannot be claimed that the models proposed will always be able 425 

to predict/identify correctly the geographical origin of all possible cereal sample collected in 426 

Europe. The 17 sampling sites chosen do not cover all the variability on this continent in term of 427 

geological backgrounds, soil characteristics and climatic conditions. However, a study like this one, 428 
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because of its unique size (number of sampling sites, number of samples per site, number of 429 

variables assessed per sample), allows the design of a tool applicable to a much wider range of 430 

cereal samples in Europe than any previous comparable studies, and proposes a proof of concept 431 

applicable to other types of grains and food products than only cereals. 432 

Our results also demonstrate the feasibility, the potential interest and also the limitations of such a 433 

large size study at the scale of a continent. Given the variety of parameters investigated and the 434 

great number of samples involved, this kind of project requires the collaboration of many 435 

organisations. A tight coordination between partners, including vast efforts in the field of data 436 

quality assurance, is mandatory. The quality of experimental data used for modelling purposes 437 

cannot be considered better than the difference between measurement results (on similar samples) 438 

observed for the different project partners. And our simulations have shown that these multivariate 439 

data treatments are not insensitive to such levels of uncertainties.  440 

 441 
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Tables 522 

 523 

Table 1 524 

Site Name 

(country code) 

Average GPS 

coordinates 

(deg., min. and sec.) 

samples Latitude  Marine/Inland  
Bed rock 

geology 

Combined 

‘identity’  

Marchfeld (AT) N48 13 43 E16 49 30 41 N I 
Gauboden (DE) N48 49 05 E12 34 19 34 N I
Allgaeu (DE) N48 03 37 E10 36 07 38 N I 

1 

Jylland (DK) N56 18 43 E09 59 01 7/9* N A 
Orkney (GB) N58 58 07 W02 56 14 24 N A 

2 

Firenze (IT) N43 57 29 E11 18 58 46 S M 
Sicily (IT) N37 45 14 E14 36 00 40 S M 

Sh 

3 

Muehlviertel (AT) N48 27 54 E14 04 29 25 N I 4 
Limousin (FR) N45 59 01 E02 12 56 40 S I 5 
Cornwall (GB) N50 04 33 W05 40 32 40 N A 6 
Galicia (ES) N43 03 34 W08 04 44 20 S A 7 

Chalkidiki (GR) N40 22 27 E23 36 41 40 S M 

AM  

8 
Fraenkische Alb (DE) N49 57 04 E11 06 35 40 N I 
Jura Krakowska (PL) N50 10 00 E19 45 03 19/32* N I 

9 

Galway (IE) N53 09 06 W08 56 52 15 N A 10 
Carpentras (FR) N44 12 00 E05 19 20 40 S M 

L 

11 
Iceland (IS) N63 32 24 W19 39 31 3 N A B 12 

    * Only with the 10-variables model. 525 
Table 1. Sampling sites, average GPS coordinates, number of samples per site and classification categories: Latitude (North , N, and South, S), 526 
Marine/Inland (Inland, I ; Atlantic, A; and Mediterranean, M ) and Bed rock geology (Shale/mudstone/clay/loess incl. sandstone and other clastic 527 
sediments, Sh;  Acid Magmatic, AM ; Limestone, L ; and Basaltic, B) 528 

 529 

Table 2 530 

 Classification Models PCs R2X(cum) R2Y(cum) Q2(cum) R2Y(cum)-Q2(cum) 

5V 2 – (2) 0.52 – (0.51) 0.59 – (0.57) 0.58 – (0.57) 0.00 (0.01) Latitude 
10V 2 – (2) 0.33 – (0.32) 0.62 – (0.60) 0.62 – (0.59) 0.01 (0.01) 

5V 3 – (3) 0.72 – (0.71) 0.50 – (0.46) 0.49 – (0.45) 0.00 (0.00) Marine/Inland 
10V 4 – (4) 0.66 – (0.60) 0.67 – (0.65) 0.66 – (0.64) 0.01 (0.01) 

5V 3 – (3) 0.73 – (0.73) 0.27 – (0.24) 0.26 – (0.23) 0.01 (0.01) Bed rock geology 
10V 5 – (4) 0.77 – (0.56) 0.37 – (0.33) 0.35 – (0.30) 0.02 (0.04) 

Table 2. Main PLS-DA parameters estimated for the 5-variables model (5V) and the 10-variables model (10V). PCs is the number of principal 531 
components Figures between brackets correspond to results obtained for the simulated data set (addition to all original data of component 532 
corresponding to twice the value of the stated standard uncertainties multiplied by a randomly generated number ranging from -1 to +1) 533 

 534 

 535 

 536 

 537 

 538 

 539 
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Table 3 540 

  
  

Latitude  Marine/Inland  Bed rock geology 

Sample site n 
5-variables 

model 
10-variables 

model 
5-variables 

model 
10-variables 

model 
5-variables 

model 
10-variables 

model 
Marchfeld 
Muehlviertel 
Fraenkische Alb 
Gauboden 
Allgaeu 
Jylland 
Carpentras 
Limousin 
Chalkidiki 
Galway 
Firenze 
Sicily 
Jura Krakowska 
Galicia 
Cornwall 
Orkney 
Iceland 

8 
5 
8 
7 
8 
1 
8 
8 
8 
3 
9 
8 

7* / 4 
4 
8 
5 
1 

100 - (100) 
100 - (100) 
75 - (75) 

100 - (100) 
88 - (88) 

100 - (100) 
100 - (100) 
100 - (100) 
63 - (50) 

100 - (100) 
56 - (56) 
88 - (100) 
75 - (75) 
50 - (50) 

100 - (100) 
100 - (100) 
100 - (100) 

100 - (100) 
80 - (80) 
100 - (88) 
100 - (100) 
100 - (100) 
100 - (100) 
100 - (100) 
88 - (88) 
75 - (63) 

100 - (100) 
44 - (44) 
88 - (88) 
71 - (71) 
75 - (50) 
75 - (75) 

100 - (100) 
100 - (100) 

88 - (100) 
100 - (100) 
75 - (75) 
71 - (86) 
75 - (75) 

100 - (100) 
100 - (100) 
88 - (88) 
25 - (38) 
0 - (0) 

44 - (44) 
88 - (75) 
75 - (75) 
0 - (0) 

100 - (88) 
100 - (100) 

0 - (0) 

100 - (100) 
100 - (100) 
75 - (88) 

100 - (100) 
100 - (88) 

0 - (0) 
100 - (100) 
88 - (88) 
13 - (25) 

100 - (100) 
44 - (44) 
88 - (88) 
86 - (57) 
50 - (25) 

100 - (100) 
100 - (100) 
100 - (100) 

100 - (88) 
40 - (20) 
0 - (0) 
14 - (0) 
38 - (38) 
0 - (0) 

63 - (75) 
100 - (100) 
50 - (38) 
0 - (0) 

78 - (67) 
75 - (63) 
0 - (0) 
0 - (0) 

25 - (25) 
80 - (80) 
0 - (0) 

100 - (100) 
60 - (40) 
13 - (13) 
57 - (71) 

88 - (63) 
0 - (0) 

100 - (63) 
88 - (88) 
50 - (50) 
0 - (0) 

56 - (78) 
88 - (75) 
29 - (29) 
50 - (25) 
63 - (63) 

100 - (100) 
0 - (0) 

  * Only with the 10-variables model                  541 
Table 3. External prediction results (%) for “Latitude”, “Marine/Inland” and “Bed rock geology” classification categories using 103 or 106 samples 542 
(for 5- and 10-variables models, respectively) as test data sets. External prediction results between brackets are for the data set simulated to estimate 543 
the impact of measurement uncertainty in these models.  544 

 545 
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Figures 546 

 547 

Figure 1 548 
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(a) 5-variables model (n=512) 
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(b) 10-variables model (n=527) 

Figure 1. “Latitude” classification (classes North and South) PLS-DA score plots for the 5-variables (a) and the 10-variables (b) models 
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Figure 2 562 
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(a) 5-variables model (n=512) 
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(b) 10-variables model (n=527) 

Figure 2. “Marine/Inland” classification (classes Inland, Atlantic and Mediterranean) PLS-DA score plots for the 5-variables (a) and the 10-

variables (b) models 
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Figure 3 577 
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(a) 5-variables model (n=512) 
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(b) 10-variables model (n=527) 

Figure 3. “Bed rock geology” classification (classes Shale, Acid Magmatic, Limestone and Basaltic) PLS-DA score plots for the 5-variables (a) 

and the 10-variables (b) models  
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