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Magnetic Field Continuity Conditions in Finite-Element Analysis

Y. Lefevre , C. Henaux, and J. F. Llibre

LAPLACE, University of Toulouse—CNRS, Toulouse, 31071 France

This paper deals with the magnetic field continuity conditions in finite-element analysis. Our study is based on numerical and
analytical models. Different known finite-element codes, based on 2-D nodal finite element or 3-D edge element, are used to analyze
the magnetic field in a linear motor-like device. The use of an analytical model gives interesting insight on interface errors problems
in finite-element analysis.

Index Terms— Analytical model, edge element, magnetic devices, magnetic fields, nodal finite element.

I. INTRODUCTION

T
HE normal component of the magnetic flux density B and
the tangential component of the magnetic field strength

H satisfy the field continuity conditions at the interface of
two media of different permeability values. It has been known
that in finite-element method (FEM) there are interface error
problems due to the fact that only one continuity condition
is imposed strongly by FEM [1], [2]. This paper analyses
in a simple device these interface error problems. As most
of applications required only a 2-D numerical calculation,
we will use first 2-D nodal FEM. In some applications,
as in axial flux motor, 3-D numerical calculation is needed.
The 3-D edge FEM will be used. Edge elements have been
developed to overcome some drawbacks of 3-D nodal finite
element [3]. First, the studied device is presented. Then the
study of the interface error problems on our simple device
is performed with different numerical models. Eventually,
analytical model is used to theoretically analyze the results
obtained.

II. STUDIED SLOTLESS DEVICE AND FEM
COMPUTATIONS

A. Slotless Device

In order to quantify interface errors, the distribution of
magnetic field inside a permanent magnet linear motor-like
device is analyzed. The geometry of the motor is very simple.
Fig. 1 shows a pole pitch of this device. It is easy to see where
the permanent magnet and airgap are.
Above the airgap is the upper plate made of iron and under

the permanent magnet is the bottom plate made also of iron.
Above the upper plate and under the bottom plates there is air.
The permanent magnet is polarized in the vertical axis (Oy).
The axis (Ox) is horizontal. A slotless motor-like device is
chosen in order to avoid corner effects that may affect the
analyses.
Table I gives the geometric and physical parameters.

Color versions of one or more of the figures in this paper are available
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Fig. 1. Studied device: in red iron, in dark blue the permanent magnet
polarized parallel to the vertical axis (Oy) and in light blue the air region.

TABLE I

PARAMETERS OF THE LINEARMOTOR LIKE DEVICE

B. Study Domain

The geometry of the pole pitch is supposed to be repeated
alternately in the horizontal direction (Ox). The pole pitch is
composed of six isotropic and homogeneous regions (Fig. 1).
The regions are numbered consecutively along the vertical
axis (Oy): the lowest and mots upper are named as Region I
and Region VI. Each region k is bounded by two planes with
y constant (yk−1, yk). The regions numbered I and VI are air
regions and they span to infinity in the vertical direction (Oy):
y0 tends to minus infinity and y6 to infinity. Regions num-
bered II and V are iron regions. Region III corresponds to
the magnet region and region IV is the airgap. Tangential
magnetic field is imposed on the bottom and upper lines and
the magnetic field is anti-cyclic along Ox .



Fig. 2. FEMM 2-D mesh with first-order triangular element.

Fig. 3. ANSYS Emag 2-D mesh with quadrangular elements.

C. Meshes Used for 2-D Nodal FEM and 3-D Edge FEM

Two different FEM software have been used. The first
one is finite element method magnetics (FEMM) which is a
software package that can be downloaded from internet [4].
Fig. 2 shows a 2-D mesh with a first-order triangular element
with 14557 elements and 7377 nodes obtained from FEMM.
It can be seen the mesh in the airgap is very fine.
The second software is ANSYS Emag [5], [6]. Two different

2-D meshes with 3420 quadrangular elements have been
performed.
The mesh with first-order element has 3565 nodes and the

one with second-order element 10549 nodes (Fig. 3). The
last mesh obtained with ANSYS Emag is a 3-D mesh with
62016 hexahedral edge elements (Fig. 4).

D. Distribution of Ht Along the Interface Iron Side

In 2-D, a nodal vector potential formulation is used and in
3-D, an edge element vector potential [3]–[6]. In both cases,
the continuity of Ht is not imposed. The theory guarantees that
if the number of nodes increases the gap between the values
of Ht at each side of the interface decreases [1]–[3]. As the
continuity of Bn is guaranteed, only the continuity of Ht is
studied here. The distribution of Ht along the interface has

Fig. 4. ANSYS Emag 3-D mesh with hexahedral egde element.

Fig. 5. Distribution of Ht , along the interface (y = y4) and in the plane
parallel to (x Oy) on the middle of the z-axis, calculated iron side.

been calculated by different finite-element codes with different
meshes. Only some results are shown here.
The results obtained using the nodes and elements of the

iron side do not change with the type of element, 2-D or 3-D,
triangular or quadrangular, nor the order of approximation,
first order or second order (Fig. 5).

E. Distribution of Ht Along the Interface Airgap Side

The distribution of Ht airgap side, calculated from nodes
and elements of the airgap, with 2-D first-order element is
very different from the distribution calculated in the iron
side. It does not change very much with the type of ele-
ment, triangular, or quadrangular (Fig. 6). A huge gap is
observed between the two distributions of Ht along the
interface (Figs. 5 and 6).
The distribution of Ht on the interface has been also

calculated by means of a 3-D edge element model. It is quite
similar that one on Fig. 6.
The Ht distribution in the airgap side obtained from

second-order element is not very different from the distribution
calculated in the iron side (Fig. 7). The gap of Ht on both
sides is very much reduced but it is worth to recall that the
second-order mesh has threefold of nodes (10549 nodes) than



Fig. 6. Distribution of Ht , along the interface (y = y4) and in the plane
parallel to (x Oy) on the middle of the z-axis, calculated airgap side.

Fig. 7. Distributions of Ht , along the interface (y = y4) and in the plane
parallel to (x Oy) on the middle of the z-axis, calculated in the airgap and
iron sides with 2-D second-order quadrangular elements.

the first-order mesh (3565 nodes) which is already a very dense
mesh.
We can notice ripples on the distribution calculated by

second-order element. This result confirms that the gap
between the two values of Ht on both side decreases when
the number of nodes increases.
Furthermore, if the distribution in airgap side is not calcu-

lated exactly on the interface but, for instance, at a distance
of about one-tenth of the thickness of the airgap (see Table I),
the distribution shown in Fig. 6 is obtained again. In the same
way, the distribution observed in Fig. 5 does not change at all
in the iron.

III. ANALYTICAL MODEL OF SLOTLESS DEVICE

The geometry of this device, shown in Fig. 1, is very simple
and a 2-D analytical model of the field distribution can be
developed. Generally in such analytical models the magnetic
core is assumed to have infinite permeability and only the
regions having the permeability of air are considered [7].
Nevertheless, in this paper the continuity conditions between
two regions of different permeabilities are taken into account
and then the assumption of infinite permeability is not made.

In each region, the magnetic field density B and magnetic
field intensity H are linked (2)

B =µH + JP (1)

where JP is the magnetic polarization and µ is the permeability
of the material. JP is null vector except in the magnet and has
only one component along the vertical (Oy) axis.
As the problem can be assumed to be invariant along

the (Oz) axis, the vector potential A has only one non-null
component along this axis. The vector potential is governed
by a Poisson’s equation

∂2A

∂x2
+

∂2A

∂y2
= −

∂JP

∂x
. (2)

Considering the symmetry of the device, the non-null com-
ponent JP of the polarization of magnet varies only in the
horizontal direction (Ox) and can be expressed as a Fourier
series [8]















JP(x, y) =

∞
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π
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.

(3)

In (3), wp and wa are, respectively, the width of the pole
pitch and the width of the magnet in (Ox) direction. In each
region k, the solution of Laplace or Poisson’s equation (6) can
be expressed in Fourier series [7]
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In (6), J
(k)
n is null in all regions except region III. The

constants C
(k)
n and D

(k)
n are determined by boundary conditions

and continuity conditions at each interface. When y tends
to minus infinity or to infinity the vector potential is null
so coefficientsD(1)

n and C
(6)
n are equal to zero. For each

harmonic n, the ten left constants are determined by the
continuity conditions on each interface yk , k = 1, 2, . . . , 5.
The continuity of Bn and Ht on these interfaces give the ten
equations
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(5)

The distributions of Ht along lines parallel to (Ox) have been
calculated by means of the proposed analytical model. Four
lines in the airgap and four in region V iron have been defined
in order to show how the Ht distributions along lines parallel
to (Ox) vary. These lines L i are defined as follows:

L i : y = y4−2(i − 1)δy. (6)

For the lines in the airgap, δy is chosen equal to the thick-
ness of airgap (1 mm) divided by 1000. For the lines in
region V, δy is negative and is equal to the thickness of the
“stator” (6 mm) divided by 20. So in the airgap the four lines



Fig. 8. Distributions of Ht along lines L1, L2, L3, and L4 in the airgap
(δy = 1 µm).

Fig. 9. Distributions of Ht along lines L1, L2, L3, and L4 in iron
(δy = 300 µm).

are very close to each other compared to the four lines in
region V. The first of these lines L1 is, in each case, the
interface between airgap and region V.
In Figs. 8 and 9, the origin of x-axis is on the middle of

the interface. In Figs. 5 to 7 the origin of x-axis is at the left
side of the study domain (Fig. 1)
The distributions of Ht along lines in the airgap are shown

in Fig. 8. Knowing that the lines are very close, Fig. 8 shows
that Ht varies strongly in function of the vertical coordinate y.
Note that the distribution on L1 has the lowest variation.
The distributions of Ht along lines in iron are shown

in Fig. 9. In this case, the distance between lines is much
greater than the distance between lines in the airgap. Fig. 9
shows that Ht varies slowly in function of y in region V. The
distribution on L1 is the highest one.
It is important to note that the distributions of Ht just on the

interface, line L1, in Figs. 8 and 9 are the same. This result

was expected because the analytical model imposes, by (7),
the continuity of Ht on interface.
The results obtained from the analytical model show first

that the variation of Ht as a function of y in the airgap is
very strong and almost exponential according to (6). This
variation is hardly described by FEM if first-order elements are
used. It can explain why the computation of electromagnetic
forces and torques regularly leads to uncertain results that are
strongly dependent on the applied mesh [8], [9]. It is also
worth noting that the distribution calculated analytically on
the interface (L1) is the distribution calculated iron side by
finite-element analysis (Fig. 5).

IV. CONCLUSION

Theoretical considerations on FEM lead to the conclusion
that interface errors are inherent to the weak formulation used
in FEM. Gaps on interface are observed with 2-D nodal first-
order finite element and 3-D edge element. An analytical
model of the magnetic field shows that the variation of the tan-
gential component of magnetic field strength with the distance
from the iron-airgap interface is so strong that first-order finite
element may hardly succeed to account of it. Better results are
obtained with second-order 2-D nodal finite element. For this
simple example without corners, the distribution calculated by
finite-element iron side gives always the distribution on the
interface calculated analytically.
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