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Experimental characterization of the 3D dynamics of a laminar
shallow vortex dipole

Laurent Lacaze Æ Pierre Brancher Æ
Olivier Eiff Æ Ludovic Labat

Abstract Experimental results on the dynamics of a
vortex dipole evolving in a shallow fluid layer are pre-

sented. In particular, the generation of a spanwise vortex at

the front of the dipole is observed in agreement with pre-
vious experiments at larger Reynolds numbers. The results

show that this secondary vortex is of comparable strength

to the dipole. The present physical analysis suggests that
the origin of this structure involves the stretching induced

by the dipole of the boundary-layer vorticity generated by

the dipole’s advection over the no-slip bottom.

1 Introduction

Vortex dipoles are hydrodynamic structures composed of

two aggregated counter-rotating vortices that are observed

in geophysical flows such as tidal estuaries (Fujiwara et al.
1994; Wells and van Heijst 2003) or rip currents (Smith

and Largier 1995; Peregrine 1998). The transport of pol-

lutants or sediments by such structures is a critical envi-
ronmental issue in these configurations as vortex dipoles

are expected to transport mass (and momentum) over
long distances. In the case of rip currents for instance, this

mass transport can lead to the deformation of the sand

bed and ultimately to a modification of the sea-floor bed
topography.

Many laboratory experiments have shown that quasi-
two-dimensional vortex dipoles are generically produced

by the collapse of initially three-dimensional turbulent jet-

like flows when submitted to specific constraints such as a
density stratification (Voropayev et al. 1991; Flór et al.

1995) or a small fluid-layer thickness (Sous et al. 2004;

Voropayev et al. 2007). In Voropayev et al. (2007) and
Sous et al. (2004), an impulsive jet in a shallow layer of

water is used to mimic the aforementioned geophysical

flow configurations. The quasi two-dimensional decay of
the initially turbulent flow is observed together with the

generation of vertical motions at the front of the dipole.

More specifically the experimental observations suggest
the presence of a horizontal spanwise vortex, a feature

contradicting the quasi-two-dimensional hypothesis clas-

sically put forward for the description of such shallow
flows. Such a spanwise vortex is expected to dramatically

affect the dissipation rate as well as the mixing and

transport properties of the overall structure. Lin et al.
(2003) have carried out experiments on the three-dimen-

sional dynamics of vortex dipoles directly generated by a
piston in a shallow layer of fluid. They uncovered intricate

three-dimensional vortex structures whose complexity

presumably originates from transition and separation
mechanisms activated at the relatively large Reynolds

numbers investigated in their study. More recently,

Akkermans et al. (2008a, b) have performed similar
experiments in which the vortex dipole was created using

amagnetic source, as in Afanasyev andKorabel (2006).More

precisely, these studies focused on the three-dimensional
flow taking place within the core of the counter-rotating

vortices forming the dipole.

In that context, we have started an experimental inves-
tigation of the three-dimensional dynamics of a laminar

vortex dipole evolving in a shallow layer of water on a
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rigid, flat, and smooth surface. The present study aims at

clarifying the role of the boundary layer associated with the
no-slip condition at the solid bottom—and the subsequent

vertical shear—in the development of the three-dimen-

sional motions observed in Lin et al. (2003) and Sous et al.
(2004).

2 Experimental setup

Figure 1 shows a sketch of the experimental setup.

Experiments have been performed in a rectangular tank

(L 9 W = 2 m 9 1 m) filled with water at rest. The depth
of the water layer is H = 2.5 cm for all the experiments

presented here. The dipole is generated directly by the

rotation of two vertical flaps. The same technique has been
used in several experiments of columnar vortex pairs (Leweke

and Williamson 1998; Meunier and Leweke 2005): two

vertical plates, initially parallel, are put into rotation along a
vertical axis with a linearly decreasing rotation rate and a

closing angle as described in Billant and Chomaz (2000) in

order to minimize the influence of the small stopping vortices
created at the end of the flaps’ motion. Moreover the gap

between the rotating flaps and the bottom has been carefully

bridged by a foam rubber to avoid the generation of secondary
flows that could have perturbed the dipole formation and

altered its subsequent evolution.

For a fixed closing angle and initial flap distance, the
generation procedure is parameterized by the closing-time

T which was chosen long enough to prevent any unwanted

source of asymmetry, turbulent or not, that would inevi-
tably occur at high rotation speed. For closing-times T
between 10 and 15 s presented here, the roll-up of the shear

layer at the moving edge of the flaps produces laminar

vortex dipoles with typical size D * 8 cm and velocity

U * 3 mm/s (Fig. 1).
The present flow has three characteristic length scales:

the dipole diameter D, the water layer depth H and the

boundary layer thickness d. Therefore, several Reynolds
numbers can be defined. With an exhaustive parametric

study still lacking, it is not obvious to know a priori which

definition is the most relevant. In that context, the different
Reynolds numbers are given in the following for the sake

of completeness. The ratio between the (vertical) viscous
diffusion time H2/m and the (horizontal) advection time

U/D defines a Reynolds number for our experiments as

Re = gReH = g2ReD, where g = H/D is the height-to-width
aspect ratio of the dipole, ReH = UH/m is the (vertical)

Reynolds number based on the thickness of the fluid layer

of viscosity m, and ReD = UD/m is the (horizontal) Reynolds
number associated with the horizontal diffusion of the

quasi-two-dimensional dipolar structure. In the present

experiments, typical values of g, ReH, ReD, and Re are,
respectively, 0.3, 75, 240 and 20. Note that these Reynolds

numbers are an order of magnitude lower than in the

experimental study of Lin et al. (2003). We therefore
expect the dynamics to be relatively simpler in the present

case. More particularly, the self-induced propagation at

velocity U of a vortex dipole of characteristic length D
generates a boundary layer whose thickness d can be

roughly estimated via a balance between the vertical dif-

fusion and the horizontal advection times of the momen-
tum, i.e., d2/m = D/U. The boundary layer thickness is then

d ¼ H=
ffiffiffiffiffiffi
Re

p
with a typical value of d*5 mm for the

experiments presented here. This corresponds to a bound-
ary layer Reynolds number Red = Ud/m of about 15, which
suggests that the boundary layer is stable and laminar. In

all the experiments reported here, we observed symmetric
vortex dipoles with rectilinear trajectories aligned with the

x-direction of the vertical symmetry plane (Fig. 1). Such

controlled laminar experiments are reproducible and allow
different measurements to be compared at the same refer-

ence times even if not performed simultaneously.

Flow visualizations and Particle Imaging Velocimetry
(PIV) measurements have been performed in horizontal

and vertical planes with a pulsed laser (30 mJ) and digital

camera (12 bit, 1,280 9 1,024 pixels). The horizontal plane
is set at height z = 2.2 cm close to the free surface

(H = 2.5 cm). The vertical plane at y = 0 coincides with

the vertical plane of symmetry (Fig. 1). The flow is visu-
alized by planar laser induced fluorescence. Fluorescent

dye is directly injected in the bulk of the water layer in the

vicinity of the flaps and in front, about two minutes before
the start of the experiments. Painting the dye directly on the

flaps only visualizes the two primary vortices of the dipole.

Injecting the dye in the bulk of the fluid and downstream
from the flaps, on the other hand, allowed the other flow

Fig. 1 Experimental setup: top (a) and side (b) views. The sketch is
not to scale



structures also to be captured. Figure 2a, b show typical

visualizations with such a technique in both the horizontal

and vertical planes. For the PIV technique, the flow was
seeded with neutrally buoyant, small spherical glass par-

ticles whose displacement was analyzed using the corre-

lation image velocimetry technique of Fincham and
Spedding (1997). In the following, the initial time t = 0 s

corresponds to the start of the flaps’ rotation, which ends at

the closing time t = T.

3 Results

Figure 2 shows the structure of the flow at t = 20 s for a

closing time T = 10 s. The main features of the overall
flow can be identified from the dye visualizations. The

vortex dipole is clearly visible in the horizontal plane

(Fig. 2a). This observation is consistent with the horizontal
velocity and vertical vorticity fields obtained from the PIV

measurements shown in Fig. 2c, e which reveal a pair of

counter-rotating horizontal vortices. As suggested by Sous
et al. (2004), the dye visualization in the vertical plane of

symmetry does indeed reveal the presence of a spanwise

vortex located at the front of the dipole (Fig. 2b). Though
vortex identification by dye visualization can be misleading

for three-dimensional flows, evidence of this spanwise

vortex is confirmed by the horizontal vorticity field dis-
played in Fig. 2f. This demonstrates that such a vortex can

be generated in a laminar dipole, in contrast with the

experiments of Sous et al. (2004), in which turbulence was
suspected to play a role in the formation of the spanwise

vortex. The essential features of the dipole and the span-

wise vortex have been characterized by Lin et al. (2003).
For the case of a sufficiently thin fluid layer, the pattern of

vorticity in Fig. 2f is strikingly similar to that shown in

their Figs. 12 and 13. It is noteworthy that the spanwise

vortex persists as the dominant structure in the case of

deeper fluid layers, for which Lin et al. (2003) observed a
hierarchy of horizontally oriented, azimuthal secondary

vortices wrapping around the core of the primary votices.

The flow generated by the self-induced translation of the
dipole over the bottom surface produces a boundary layer

that can be observed behind the spanwise vortex (Fig. 2f).

At this time, the spanwise vortex lies approximately at
mid-plane H/2 and it is distinct from the boundary-layer

vorticity. Moreover, the vorticity field in the horizontal

plane in Fig. 2e shows two secondary regions of vertical
vorticity around the front of the dipole. This feature can be

interpreted as the signature of the spanwise vortex whose

side arms seem to be oriented upwards. Such a conjecture
has to be confirmed by further experiments. Nevertheless,

it suggests that the three-dimensional structure of the

spanwise vortex is quite intricate and therefore needs fur-
ther investigation in order to quantify its influence on the

dynamics of the two main vortices that compose the dipole.

The dynamics of the overall structure can be quantified
by analyzing the displacement of the dipole as a function of

time (Fig. 3). The displacement of the dipole has been

measured by following the location of the maximum vor-
ticity in the horizontal plane for two closing times T = 10

and 15 s. As in Billant and Chomaz (2000), the curves have

been fitted by an exponentially decaying function from
which the translation speed of the dipole can be deduced

for t[ T as follows1

UðtÞ ¼ U0 e
%ðt%TÞ=s ð1Þ

Fig. 2 Horizontal (top) and vertical (bottom) cross-sections of the
flow at t = 20 s: dye visualizations (a, b), PIV-generated velocity
field (c, d) and associated vorticity field (e, f). The dipole propagates
from left to right, at a speed of about 3 mm/s. H = 2.5 cm. T = 10 s.

The grayscale color bar gives the norm of the vorticity in s-1. The
positive vorticity is shown by solid lines, and negative vorticity by
dashed lines

1 Note that such an exponential decay can be theoretically derived
(Flór et al. 1995) when considering the diffusion of the classical two-
dimensional Lamb–Chaplygin dipole (Meleshko and van Heijst
1994).



where s corresponds to a decay time of the structure and U0

denotes the starting velocity of the dipole at the end of the

flaps’ rotation. These two quantities are computed via a

least-square approximation of the experimental data by the
exponential law (1). Though the shallow dipole has a non-

trivial three-dimensional dynamics, we found that Eq. 1

holds for the present experiments and the exponential fit
describes adequately the translation of the dipole as shown

in Fig. 3.

As expected, the initial velocity U0 of the dipole
increases as the closing time T is decreased, i.e., when the

flaps are closed faster. More precisely U0 is inversely

proportional to the closing time T, in excellent quantitative
agreement with Billant and Chomaz (2000) who use the

same dipole generating apparatus and predict propagation

speeds U0 of about 4.1 mm/s and 2.7 mm/s for T = 10 s
and 15 s respectively (extrapolation of their Fig. 4a). Note

that these values have been obtained by Billant and

Chomaz (2000) for much larger height-to-width aspect
ratios, thus suggesting that friction on the no-slip bottom

plays a minor role on the dipole starting velocity. The

starting velocity seems to be mainly controlled by the flaps

geometry and closing time T, at least for the present set of
parameters.

On the other hand, the decay time does not vary with T.
The measured value of s*52 s in both cases (T = 10 s and

T = 15 s) is smaller than previous values obtained for
large aspect ratios g[ 1, for which the solid bottom has a

negligible influence on the dipole dynamics. For example,

Billant and Chomaz (2000) measured a decay time of about
90 s. In the present experiments, the boundary layer is

expected to significantly enhance the viscous dissipation of

the overall structure, hence we expect a relative reduction
of the decay time s. The influence of the spanwise vortex

on the time evolution of the dipole propagation speed is

difficult to delimit. Nevertheless, as mentioned by one
reviewer, it can be noticed that the turned-up side arms of

the spanwise vortex, visible on Fig. 2e, induce a velocity

field that tends to bring the dipole vortices closer and also
to promote their propagation speed. It is not clear however

to what extent this effect quantitatively impedes the

resisting influence of friction. An exhaustive parametric
study including different depths experiments and 3D PIV

measurements is planned in order to address this issue.
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Fig. 3 Displacement of the dipole as a function of time for two
closing times (dashed lines) T = 10 s (a) and T = 15 s (b). The solid
line is an exponential fit for t[T. H = 2.5 cm
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Fig. 4 Time evolution of the maximum vertical (xz) and horizontal
(xy) vorticity (a). Vertical kinetic energy in the vertical plane of
symmetry (b). H = 2.5 cm, T = 10 s



A quantitative analysis of the spanwise vortex is pro-

posed in Fig. 4 for T = 10 s. Figure 4a compares the
temporal evolution of the maxima of the vertical vorticity

xz and of the horizontal vorticity xy. The vertical xz

vorticity measured in the horizontal plane is a direct
measure of the counter-rotating vortices that compose the

dipole. This quantity monotonically decreases with time

due to viscous diffusion. As suggested by one reviewer, we
have checked that the time evolution of the vertical vor-

ticity component closely follows the ‘‘universal’’ decay of
vorticity in dipoles discussed by Voropayev et al. (2008).

These authors present experiments of dipoles in a decaying

stratified turbulence and their measurements confirm that
the dipole vorticity decays with time as t-1 irrespective of

the turbulence intensity, a result that can be deduced from

dimensional arguments. It is noteworthy that our present
results show a good agreement with this prediction, even

though the dipolar flow evolves in a completely different

environment. Such a decaying law may arise similarly in
both studies because the characteristic vertical lengthscale

of the flow is fixed in both cases.

The horizontal vorticity xy measured in the vertical
plane of symmetry (Fig 4a) does not distinguish between

the boundary-layer vorticity at the bottom wall and the

vorticity associated with the spanwise vortex. The former
dominates just after closing time, while decreasing due to

the dissipation of the overall structure. The latter stands out

in turn after t*12 s as the spanwise vortex grows, reaching
a maximum at t *20 s before eventually decreasing. It is

noteworthy that the vorticity within the spanwise vortex

reaches values as high as twice the vertical vorticity
associated with the dipole. This suggests that the presence

of the spanwise vortex cannot be reduced to a mere per-

turbation of an otherwise quasi-two-dimensional vortex
dipole: it alters the structure and dynamics of the flow at

leading order and cannot be neglected. Finally such relative

levels of horizontal and vertical vorticity have also been
measured for the main azimuthal vortex in the experiments

of Lin et al. (2003), an additional evidence that this latter

structure is possibly related to the present spanwise vortex.
The horizontal vorticity xy in the vertical plane of

symmetry mixes both the boundary layer vorticity, with

which a quasi-2D approximation of the flow is consistent,
and the spanwise vortex, whose formation clearly contra-

dicts the quasi-two-dimensional hypothesis. One way of

discriminating between these two sources of horizontal
vorticity is to analyze the vertical kinetic energy E = $uz

2 dS
computed over the whole velocity field in the vertical plane

of symmetry (Fig. 4b). This global quantity directly
quantifies the vertical motions of fluid, with which the

boundary layer is not directly associated. Therefore, it

allows the spanwise vortex to be quantitatively identified
while providing with a relatively unbiased measure of the

departure from the quasi-two-dimensional approximation

classically used for such shallow flows. Confirming the
analysis of the previous observations, this quantity

increases as the spanwise vortex matures until time

t*23 s, before decreasing due to the decay of the spanwise
vortex and the overall dissipation.

As shown in Fig. 4a, b, the intensity of the spanwise

vortex has decreased by at least a factor 2 at time
t *35 s, with a trend that suggests that its dynamics is

mainly controlled at that time by the viscous decay of the
global structure. Therefore, the present experiments

allowed the main stages of the spanwise vortex deve-

lopment to be covered. By the end of the experiments,
this structure is expected to have reached a final decaying,

diffusing state.

4 Discussion

The generation process of the spanwise vortex can be

dissected qualitatively by invoking basic mechanisms of

vorticity dynamics. The first ingredient lies in the specific
strain induced by the vortex dipole. It is characterized by a

horizontal spanwise stretching field ouy=oy with a wide

region of large positive values at the front of the dipole
(Fig. 5a). In particular, it can be seen that this spanwise

stretching is maximal in the vertical plane of symmetry

y = 0. The second ingredient is directly associated with the
no-slip condition at the bottom and the subsequent

boundary layer generated by the translation of the dipole.

As shown in Fig. 5b, this boundary layer is a source of
horizontal spanwise vorticity xy that is constantly sub-

jected to the strain field of the vortex dipole. Under such

conditions, the magnitude of the spanwise vorticity xy is
likely to be intensified by the positive stretching

ouy=oy[ 0 at the front of the dipole. The dipole intensity

and the associated stretching increase as one moves away
from the bottom. Therefore, the vorticity is differentially

intensified, with larger amplifications for higher fluid lay-

ers. Thus, the spanwise vorticity maximum, initially asso-
ciated to the boundary layer and therefore lying at the

bottom, is expected to depart from the wall and move

upwards. This vorticity stretching eventually concentrates
the boundary-layer vorticity in the form of a distinct

spanwise vortex. Such an evolution of the spanwise vor-

ticity xy is clearly visible in the time sequence displayed in
Fig. 5b, where a spanwise vortex forms from the upper part

of the boundary layer. Note that this process is potentially

coupled with and promoted by a boundary layer separation
at the front of the dipole. Indeed the dipole that translates in

a quiet fluid induces an adverse pressure gradient ahead of

the boundary layer generated under the propagating struc-
ture. Such a configuration is favorable to the separation of



the boundary layer, a phenomenon that could accompany

the spanwise vortex formation process by stretching.
Finally, the characteristic radius a of the spanwise vor-

tex can be classically evaluated from a balance between

viscous diffusion and strain c*U/D, i.e., a&
ffiffiffiffiffiffiffiffi
m=c:

p
This

corresponds to the same scaling as the boundary layer

thickness d, a&H=
ffiffiffiffiffiffi
Re

p
with a typical value of about

5 mm in adequate agreement with the experimental
observations (Fig. 2f).

5 Conclusion

Laboratory experiments have been conducted to study the
evolution of shallow vortex dipoles. Laminar dipoles were

generated by the controlled rotation of vertical flaps in a

thin layer of water. Flow visualizations and Particle
Imaging Velocimetry measurements have been performed

in horizontal and vertical planes. Both techniques allowed

a spanwise vortex structure to be identified and quantita-
tively characterized. This spanwise vortex lies in front of

the dipole, between the two primary vortices, in radical

contradiction with the quasi-two-dimensional hypothesis
classically used for such shallow flows. The present study

focused on the formation and maturation of the spanwise
vortex in order to provide with a tentative explanation of its

physical origin. The analysis suggests that the spanwise

vortex is generated via a differential vortex stretching
mechanism triggered by the horizontal strain field of the

dipole. The strain field at the front of the dipole stretches

the horizontal vorticity associated with the boundary layer
generated at the no-slip bottom under the propagating

dipole. Such a stretching intensifies the horizontal vorticity

and eventually leads to the formation of a distinct spanwise
vortex. This phenomenon is potentially accompanied by a

boundary-layer separation process due to the adverse

pressure gradient induced at the front of the dipole by its
propagation in a quiet fluid. We conjecture that such a

basic mechanism is not restricted to shallow vortex dipoles,

but is potentially active whenever vorticity is available to
be stretched by a dipolar structure such as dipoles in

Couette flow, or pancake dipoles in a stratified fluid.

Vortex dipoles are recurrent features of natural shallow
water flows, such as estuaries or rip currents. Replications

of exact oceanic or coastal conditions were not attempted

here, as in typical laboratory modeling of geophysical
phenomena. We rather focused on the basic processes in

the laminar, controlled case. Indeed, as classically put

forward, any insight gained into the dynamics of laminar
flows can prove useful for improving the comprehension of

the behavior of the large-scale coherent structures when

considering their turbulent counterpart. Thus, the study of
the laminar dynamics can reveal generic mechanisms (such

as vortex stretching here) that might also be active on the

large-scale structures of the flow even in the presence of
turbulence. Moreover, direct quantitative comparisons with

the natural, turbulent cases are delicate, even through the

use of an eddy viscosity, because the data, such as height-
to-width aspect ratios H/D, are not easily available. Nev-

ertheless, these natural dipoles are expected to have aspect

ratios less than unity, suggesting that the vertical confine-
ment has a major influence on or even controls the

dynamics of the large-scale structures of the flow. In that

context, the present experiments are at least qualitatively
relevant since they have been designed to include this

fundamental characteristic feature.

Future experiments will focus on the influence of the
spanwise vortex on the propagation, dissipation rate and

Fig. 5 Contours of the stretching field ouy=oy induced by the dipolar
structure in a horizontal plane at t = 12 s (a). Black and white areas
correspond to positive (max. 0.2 s-1) and negative (min. -0.5 s-1)
values, respectively. Horizontal vorticity xy in the vertical plane of
symmetry at the early stages of the spanwise vortex formation (b)
(black: 1.4 s-1, white: 0 s-1). H = 2.5 cm, T = 10 s



mixing and transport properties of the shallow vortex

dipole. The long-time behavior of the flow, and of the
spanwise vortex in particular, is also an interesting issue,

that ought to be addressed by further studies. Finally, the

intricate details of the topology of the overall structure will
be investigated in the near future through the development

of a three-dimensional PIV technique.
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