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Monitoring pilot’s mental states is a relevant approach to mitigate human error and

enhance human machine interaction. A promising brain imaging technique to perform

such a continuousmeasure of humanmental state under ecological settings is Functional

Near-InfraRed Spectroscopy (fNIRS). However, to our knowledge no study has yet

assessed the potential of fNIRS connectivity metrics as long as passive Brain Computer

Interfaces (BCI) are concerned. Therefore, we designed an experimental scenario in a

realistic simulator in which 12 pilots had to perform landings under two contrasted levels

of engagement (manual vs. automated). The collected data were used to benchmark the

performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness,

Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance,

Pearson’s, and Spearman’s Correlation, Spectral Coherence, andWavelet Coherence) to

discriminate these two landing conditions. Classification performance was obtained by

using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation

using each feature alone or by combining them. Our findings disclosed that the

connectivity features performed significantly better than the classical concentration

metrics with a higher accuracy for the wavelet coherence (average: 65.3/59.9 %, min:

45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively). A maximum

classification performance was obtained by combining the area under the curve with the

wavelet coherence (average: 66.9/61.6 %, min: 57.3/44.8, max: 80.0/81.3 computed for

HbO/HbR signals respectively). In a general manner all connectivity measures allowed an

efficient classification when computed over HbO signals. Those promising results provide

methodological cues for further implementation of fNIRS-based passive BCIs.

Keywords: fNIRS, passive brain-computer-interface, classification, functional connectivity, wavelet coherence,

engagement

1. INTRODUCTION

It is largely admitted that pilot error represents a major cause of aircraft crashes (Li et al., 2001),
being more frequently cited than mechanical failure. Safety statistics show that the progressive
introduction of automation in the cockpit since the 1960’s has improved safety, with modern
“computerized” cockpits taking pride in an accident rate half that of the previous generation of
aircraft. However, it appears that such technologies have created a new category of potentially
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deadly incidents whereby crews are unable to comprehend the
situation presented before them, and persevere in erroneous
decision-making (Dehais et al., 2010, 2015). This is especially
true for the final approach and landing phases that represent
almost half the on-board accidents and fatal accidents (Myers and
Arnold, 2016).

Without question the development of automation has
dramatically changed the role of the crew from “direct
(manual) controllers” to “system supervisors/decision makers.”
Both increased trust in automation and complexity of these
computerized systems (Sarter et al., 1997; Dehais et al., 2012;
Tessier and Dehais, 2012) reduce crew’s basic flying abilities,
and leave them ill equipped to cope with emergency situations
when automation fails (Mumaw et al., 2001). Another drawback
of automation is that it imposes long periods of inactivity
and thus dramatically decreases pilot’s vigilance (Wright and
McGown, 2001). For instance, some recent surveys disclosed that
56% of British Airways pilots experienced sleep while on duty
(Steptoe and Bostock, 2012; Reis et al., 2013). These operational
situations show that automation can vary pilot’s engagement
from a very low engagement state (disengagement) that induces
states of low vigilance and mind wandering, to a very high
engagement state (over-engagement) yielding to perseveration
and attentional tunneling (Wickens and Alexander, 2009). These
extreme cognitive states may jeopardize safety and advocate for
the introduction of monitoring solutions.

The idea of introducing physiological data into Human
Machine Interface, called “Physiological Computing”
(Fairclough, 2008) could allow the system to take the operator’s
states into account. Brain monitoring techniques such as passive
Brain Computer Interfaces (pBCI) have shown their ability to
detect and characterize several operator’s mental state such as
workload, fatigue or more generally engagement (Zander et al.,
2010; Zander and Kothe, 2011; Khan and Hong, 2015; Roy and
Frey, 2016). Building a system capable of doing a continuous
monitoring or detecting some operator’s degraded states would
potentially permit it to adapt to this change to optimize both
safety and performance. Such kinds of closed-looped systems are
the ultimate goal for neuroadaptative technology.

While the real-time identification of these degraded mental
states still remains a challenge, a first reasonable step is to
characterize the brain activity when flying with and without the
use of automation. One possible solution to meet this goal is
to consider the use of functional near infra-red spectroscopy
(fNIRS). Less popular in the BCI community than electro-
encephalography (Cutini and Brigadoi, 2014), mainly due to its
low temporal resolution, this brain imaging technique presents
several advantages for ecological settings as its signal is less
affected by electrical and motion artifacts. Moreover, its high
spatial resolution allows to give a direct access to specific brain
structures without additional computational costs as long as
cortical areas are concerned. Thus, several studies have shown the
potential of fNIRS to infer several mental states under laboratory
settings or ecological settings such as flight simulators (Ayaz et al.,
2012; Gateau et al., 2015).

Classically, the authors used the relative variation of local
HbO and HbR concentration and related features (e.g., slope,

area under the curve, skewness) to relate cerebral activation to
specific cognitive tasks (Tai and Chau, 2009; Durantin et al.,
2015; Gateau et al., 2015). Yet the goal is always to improve the
estimation, especially in critical settings. A solution proposed
by some authors is to use connectivity measures (Borghini
et al., 2014) to account for brain dynamics (for a review on
functional connectivity see Bastos and Schoffelen, 2015). Indeed,
cognition cannot be reduced to activation of specialized brain
areas but should rather been seen as the cooperation among large
scale distributed neural networks (Siegel et al., 2012; Hutchison
et al., 2013; van den Heuvel and Sporns, 2013). In other words,
examining spontaneous hemodynamic fluctuations can provide
us a great picture of the functional architecture of the brain (Fox
and Raichle, 2007)

Moreover, connectivity features have been used with success
to estimate various mental states based on EEG data (Roy and
Frey, 2016) in laboratory settings as well as in ecological settings.
For instance, a recent study combined EEG connectivity analysis
and crew monitoring in simulator and showed differences in
connectivity patterns during different flight phases (Toppi et al.,
2016). A few studies combined optical brain imaging like fNIRS
with connectivity analysis (Lu et al., 2010; Funane et al., 2011;
Cui et al., 2012; Molavi et al., 2012; İşbilir et al., 2016) either to
identify brain dynamics or brain-to-brain relationship yet they
did not performmental state estimation. Hence, the contribution
of connectivity measures for fNIRS based on mental state
estimation is yet to be assessed.

Classical correlation/covariance measures were successfully
used in EEG (Gevins et al., 1987), however some spontaneous
oscillation observed in blood-related imaging (fNIRS and fMRI)
seems to be frequency specific, especially Low Frequency
Oscillation (LFO) around 0.1 Hz (Obrig et al., 2000; Tong and
Frederick, 2010). Knowing this, frequency specific connectivity
metrics such as coherence and also wavelet coherence were used,
which has gained some momentum in fNIRS signal analysis
(Rowley et al., 2006; Cui et al., 2012; Holper et al., 2012;Mirelman
et al., 2014).

The objectives of the present study are : (i) to evaluate
the feasibility to estimate the pilot’s engagement using fNIRS
connectivity measures in an ecological setting such as a flight
simulator. Secondly : (ii) to assess the potential of connectivity
measures to better characterize engagement than classical
measures.

To meet these goals, a simplified task was designed
whereby pilots had to perform different manual and automated
landings. Parieto-occipital areas were targeted as they play
a key role for visual attention, particularly involved while
flying (Dehais et al., 2016). Prefrontal cortex activity was also
measured as its activation reflects mental demands (Gateau
et al., 2015; Moro et al., 2016) and top down regulation.
Off-line classification was performed over different classical
metrics (average, peak, variance, skewness, kurtosis, area under
curve and slope) and connectivity metrics to identify the
most predictive ones. Regarding connectivity features, classical
dependency measures such as : Covariance, Pearson’s correlation
(Greenblatt et al., 2012), Spearman’s correlation (Spearman,
1904) and some spectral measures : magnitude squared
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coherence (Mandel and Wolf, 1976) and the wavelet coherence
(Torrence and Compo, 1998; Lachaux et al., 2002; Grinsted et al.,
2004) were compared (for review on connectivity metrics see
Lachaux et al., 2002; Greenblatt et al., 2012).

2. MATERIALS AND METHODS

2.1. Participants
Twelve visual flight rules (VFR) pilots (11 males, mean group
age 24 ± 3) completed the experiment. Pilots had normal or
corrected-to-normal vision, normal hearing, and no psychiatric
disorders. They all had medical clearance to fly. After providing
written informed consent, they were instructed to complete a 5-
min task training. Typical total duration of a subject’s session
(informed consent approval, practice task and real task) was
about 1 h. This work was approved by the local ISAE-SUPAERO
committee (Approval Number: CERNI-Université fédérale de
Toulouse-2017-057).

2.2. Experimental Design
The protocol consisted in 8 scenarios in a flight simulator : 4 in
manual landing and 4 in automated landing. The Airbus A320
full motion simulator at ISAE-SUPAERO (French Aeronautical
Engineering School in Toulouse) was used to conduct the
experiment in ecological conditions. It simulates a twin-engine
aircraft flight mode. The user interface is composed of a
Primary Flight Display (PFD), a Navigation Display and an
upper Electronic Central Aircraft Monitoring Display page. The
pilot also had a Flight Control Unit (FCU) to interact with the
autopilot (Figure 1).

The scenarios were divided into 3 phases: a rest phase, a cruise
phase and lastly a landing phase, which were performed either
in manual mode (i.e., hard condition) in which they control the
aircraft speed and trajectory, or with the autopilot engaged (easy
condition; Figure 2). Landing conditions (Auto vs. Manual) were
pseudo-randomly distributed.

During the cruise phase, the autopilot was engaged and the
pilots were asked to relax. This phase was mostly set to serve
as a baseline. When approaching the ILS (Instrument Landing
System) range (approximately 2 min) they were asked either to
let the autoflight system perform the landing or to disengage
the automation to manually land the aircraft. Autopilot and
auto throttle deactivation was done by pushing a red button
on the flight stick and the throttle respectively. Participants did
not know in advance whether the landing would be automated
or manually executed. Considering the whole spectrum of the
landing task, our experimental conditions were designed to be
contrasted in terms of mental demands. The landing phase ended
10 s after the pilots touched down on the landing ground. Before
starting the experiment, the participants performed a 30-min
training session to familiarize themselves with the simulator
environment.

2.3. Data Acquisition
2.3.1. Subjective Workload Assessment
After the end of the experiment, the pilots were asked to complete
a commonly used subjective workload level questionnaire, the

NASA-TLX (Hart and Staveland, 1988) in order to compare
the two conditions. This questionnaire combines 6 factors, i.e.,
mental demand, physical demand, temporal demand, overall
performance, frustration level, and effort.

2.3.2. fNIRS Recording
Two NIRSport acquisition devices (NIRx Medical Technologies)
were used in tandem mode to increase the number of sensors.
Each system has 8 sources and 8 detectors receiving wavelength
at 760 and 850 nm recorded at 7.8125 Hz. By using 2 systems,
Frontal and Occipital areas were both covered with 8 sources and
8 detectors constrained mechanically by a plastic spacer at the
appropriate distance (3 cmmaximum), resulting in 42 optodes or
channels. The probabilistic path of photon through cortex were
estimated using the Monte-Carlo transport software tMCimg via
the Atlas Viewer from Homer2 (Boas et al., 2002; Aasted et al.,
2015). The optodes placement and the results of the simulation
are shown Figure 3. Before starting the experiment a calibration
was performed in order to check each optode’s signal quality.

2.4. Data Analysis
2.4.1. Pre-processing
FNIRS data were analyzed using Matlab R2015b with several
functions from the Homer2 software package (Dubb and Boas,
2016). The overall analysis pipeline is described in Figure 4. The
landing phase was divided into epochs of 200 samples (∼25 s)
overlapping by 60 samples (∼7.5 s). As the landing duration (152
± 22 s) could slightly differ among participants depending on
their performance, the fixed number of extracted epochs was
based on the shortest landing in duration, resulting in 12 epochs
per landing and per subject.

Each epoch was processed independently in order to
potentially extend our method to online processing. Raw data
were converted to optical densities; an artifact removal algorithm
and a band pass filter were applied on each epoch separately. A
wavelet interpolation method was used for the artifact correction
(Molavi and Dumont, 2012). This method has been shown to
have the greatest signal to noise ratio among the current artifact
removal methods available (Brigadoi et al., 2014). A butterworth
high pass filter (cutoff: 0.01 Hz - order 3) and a low pass filter
(cutoff: 0.5 Hz - order 5) were applied for the band pass filtering
step.

The filtered and artifact free data were then converted to oxy-
hemoglobin [HbO] and deoxy-hemoglobin [HbR] concentration
variations.

For further analysis, only the 80 centered samples (∼10 s) of
each epochwere kept by applying a boxcar function. This window
was applied to avoid spectral leakage, specifically from the wavelet
transform, and to obtain a 10 s window without overlap. At the
end of this processing stage, for each landing (trial) we had 12
non-overlapping, filtered and artifact free epochs of 80 samples.

2.4.2. Oxygenation Measures
Oxygenationmeasures were computed using both the [HbO] and
[HbR] signals on each epoch separately, where x represents either
the [HbO] and [HbR] signal for one epoch (80 samples) and
one optode. Seven oxygenation measures were computed (Peak,
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FIGURE 1 | Airbus A320 twin-engine simulator at ISAE-SUPAERO. Pictures used with written consent.

FIGURE 2 | Structure of the experimental session. (A) Overall Flow of the experiment with the 8 scenarios. (B) Detailed trial for the cruise and landing phases. (C)

Upper view of the plane trajectory. The starting position was pseudo randomly placed on the blue arc. The blackline delimited the cruise from the landing phase where

the pilot deactivate or not the autopilot regarding the condition.

Mean, Variance, Kurtosis, Skewness, Area Under the Curve, and
Slope).

The peak (maximum) and the 4th moment (average, variance,
skewness, and kurtosis) were computed as follows:

Average(x) = E(x) Var(x) = E[(x− E(x))2] (1)

Skew(x) =
E[(x− E(x))3]

(E[(x− E(x))2]3/2)
Kurt(x) =

E[(x− E(x))4]

(E[(x− E(x))2]2)
(2)

The Area Under the Curve (AUC) was calculated by summing
the absolute values of the signal.

AUC =
∑

|x| (3)

The slope was computed using the least-squared linear regression
with the polyfit matlab function.

2.4.3. Connectivity Measures
Connectivity measures were computed, as previously, using both
the [HbO] and [HbR] signals on each epoch separately, where x
and y represents two signals from two different channels. Five
oxygenation measures were computed (Covariance, Pearson’s
correlation, Spearman’s correlation, Coherence, and Wavelet
Coherence).

Covariance of two signals x and y can be described as a
“measure of joint variability”:

COV(x, y) = E(x− E(x))× E(y− E(y)) (4)

Where E represents the expected value. Intuitively, covariance
characterizes the simultaneous variations of two signals.
Covariance will be positive when the differences between the
signals and their averages tend to be of the same sign and tend
to be negative in the opposite case.
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FIGURE 3 | Results of the Monte-Carlo simulation over (A) the frontal cortex, (B) the occipital cortex and (C) both cortices from a lateral view. Red dots represent the

LED emitters, blue dots the photoreceptors and green lines the channels. The colorbar unit represents the spatial sensitivity of the fNIRS measurements. It is

expressed in mm−1 and values range from 0.01 to 1 in log10 units : −2 to 0.

Pearson’s correlation coefficient is the covariance of two
signals normalized by the product of their standard deviation
(std). It represents the linear correlation between two signals,
its values ranges from −1 to +1 meaning respectively a linear
negative and positive correlation and 0 corresponding to no
correlation at all.

Pearson(x, y) =
COV(x, y)

std(x)× std(y)
(5)

Spearman rank correlation coefficient is “defined as the Pearson
correlation coefficient between the ranked variable” (Myers and
Arnold, 2003).

Spearman(x, y) =
COV(rgx, rgY )

std(rgx)× std(rgy)
(6)

Where rgx and rgy are the ranked variable (of x and y
respectively). Using the rank instead of the values allows
describing monotonic non-linear relationship between signals
where the Pearson’s coefficient only characterizes linear
relationship.

Spectral CoherenceCxy(f ) orMagnitude squared Coherence is
defined as the absolute squared value of the cross-spectral density
of two signals (x and y) for a frequency f, normalized by the

product of their auto-spectral density:

Cxy(f ) =
|Gxy(f )|

2

Gxx(f )× Gyy(f )
(7)

Where Gxy(f ) represents the cross spectral density (being the
spectrum of the cross correlation function) for a frequency
f . Gxx(f ) and Gyy(f ) being the auto spectral density (i.e., the
spectrum of the auto correlation function) respectively for x and
y. Spectral coherence can be seen as a correlation coefficient in
the frequency domain.

For the last one, a coherence measure based on the wavelet
transform was used (Torrence and Compo, 1998): the wavelet
coherence. The wavelet coherence power R2n(s) can be defined as:

R2n(s) =
|S(s−1W

xy
n (s)|2

S
(

s−1|Wx
n(s)|

2
)

S
(

s−1|W
y
n(s)|2

) (8)

Where Wx
n(s) and W

y
n(s) represent respectively the wavelet

transform of x and y at the n time point for a wavelet scale s.
W

xy
n (s) is the cross wavelet transform of x and y (being the wavelet

transform of the cross correlation function). S is a smoothing
operator (for more detail see Torrence and Compo, 1998).

This measure can be seen as “a localized correlation coefficient
in time frequency space” (Grinsted et al., 2004). Coherence values
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FIGURE 4 | Pilot’s engagement classification pipeline.

range from 0 to 1, 1 meaning there is a perfectly phase-locked
oscillations at a given frequency for the two analyzed signals.

Connectivity measures were computed on each epoch
separately and for each couple of channels namely C

(n
k

)

= 861

couples (k = 2, n = 42). At this step, we had 42 measures for
each oxygenation feature and 861 measures for each connectivity
feature per epoch and per subject.

2.5. Data Classification
2.5.1. Feature Extraction

2.5.1.1. Region of interest
In order to reduce the amount of data and the dimensionality, the
42 different channels were combined into 6 regions of interest
(ROI): Frontal-Left and Right, Fronto-Central; Occipital-Left
and Right and Occipito-Central.

For the oxygenation features, it was done by averaging all the
features from channels included in these 6 differents regions. For
the connectivity features, 15 possible connections were possible
across the 6 ROI. Values were firstly evaluated for each pair (861
couples) and then averaged across couples connecting the same
regions. Couples of channels included inside one ROI were also
kept, which gave 15+ 6= 21 connectivity measures.

At this step, we had 6 measures for each oxygenation feature
and 21 measures for each connectivity feature per epoch and per
subject.

2.5.1.2. Frequency specific measures
For the two coherence measures (Magnitude Squared Coherence
and Wavelet Coherence), the obtained coherence values were
averaged for a frequency range between 0.3125 Hz (1/3.2 s) and
0.08 Hz (1/12.8 s) accordingly to the fNIRS literature (Cui et al.,
2012).

2.5.1.3. Normalization: z-score
Regarding all features, they were normalized by z-scoring (i.e.,
transform it to have 0 mean and 1 standard deviation; Toronov
et al., 2001; Tsunashima and Yanagisawa, 2009; Sasai et al., 2011).

2.5.2. Classification and Cross-Validation
A Linear Discriminant Analysis (LDA) with regularization of
the empirical covariance matrix by shrinkage, also known as
“shrinkage method”, was used (Friedman, 1989; Blankertz et al.,
2011). This method has proved its robustness for BCI and passive
BCI (pBCI) application (Roy et al., 2016a,b) but also with fNIRS
(Herff et al., 2013; Bauernfeind et al., 2014; Hennrich et al., 2015).

Our paradigm was an intra-subject binary classification. Each
subject performed 8 landings (4 of each of the 2 conditions). Data
were processed to obtain 12 10 s epochs for each landing which
gives 12× 8= 96 epochs (examples) for each subject. Our model
prediction performance was assessed by using a stratified cross
validation, which is a good tradeoff between bias and variance
estimation (Kohavi and Sommerfield, 1995; Friedman et al.,
2001). The classifier was trained with examples that originated
from 6 different landings (3 of each of the 2 conditions, i.e., 6∗12
= 72 examples) and tried to predict examples from the last 2
landings (1 of each condition, i.e., 2∗12 = 24 examples). This
method was applied for every combination (16) of landings left
out of the training set and the averaged performance was kept.

Regarding the features, 2 types of comparisons were
done. Firstly, a single feature comparison where each feature
classification performance is assessed separately was performed.
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Secondly, features were merged together to evaluate their
potential. They were combined 2 by 2 and the classification
performance obtained with each couple was assessed.

2.5.3. Statistical Assessment

2.5.3.1. Subjective workload comparison
A paired-sample t-test was performed in order to compare the
average overall workload obtained for the 2 conditions among
subjects.

2.5.3.2. Classification performance significance
For a 2-class problem like ours, the theoretical chance level
for classification is 100/2 = 50 %, but this is only right for an
infinite sample number. To assess the significance of our classifier
(decoding accuracy) the classification error was modelized by
a binomial cumulative distribution (see Combrisson and Jerbi,
2015 for more details):

P(Z) =

n
∑

i=z

(

n

k

)

×

(

1

c

)i

×

(

c− 1

c

)n−1

(9)

Where - P is the probability to predict the correct class at least Z
times - n the number of samples - c the number of classes.

The performance of our classification pipeline was assessed by
repeating the stratified cross validation 16 times and averaging it.
As stated earlier, our classifier was trained with 72 samples and
tested on the last 24 samples. By using the cumulative binomial
distribution, it sets the 5% significance classification threshold at
58.3%.

2.5.3.3. Classification performance comparison
In order to compare the classification performance for each
feature, a repeated measure ANOVA was used considering
FEATURES (or FEATURES COUPLE) and CHROMOPHORE
(HbO/HbR) as within factors. A post-hoc Tukey’s Honestly
Significant Difference (HSD) procedure was applied to perform
multiple comparisons.

3. RESULTS

3.1. Subjective Workload Assessment
Participants rated their workload significantly higher for the
manual landing condition (M = 66.6 ± 9) than the automatic
landing condition (M = 18.7± 7; t(11) = −17.43, p < 10−8).

3.2. Classification with Individual Features
Figure 5 illustrates the classification performances for each
feature computed over the HbR and HbO signals. In order to
compare classification performance among features, a repeated
measure ANOVA was done.

The statistical analysis showed that there was a significant
effect of feature type on classification performance [F(11,121) =

5.66, p < 10−3] and it also revealed a significant effect of
the chromophore used [F(1,11) = 8.73, p < 0.05]. Post-
hoc comparisons revealed significant differences among features
mainly for HbO. In particular, Wavelet Coherence had a
significantly better performance than the Average, Skewness,

Kurtosis, and Slope. Also, every connectivity feature gave a
significantly greater performance than the Skewness. Moreover,
regarding HbR, the Wavelet Coherence and the Covariance
gave a significantly greater performance than the Kurtosis. All
the connectivity features did not exhibit significant differences
between one another. Post-hoc comparisons did not show
any significant effect of the chromophore on the classification
performance regardless of the feature used. In other words, every
feature gave non-significant different results when using either
the HbO or HbR signals for the classification.

Moreover, every connectivity feature computed over the HbO
signals led to an average classification performance above chance
level (>58.3 %). Furthermore, Pearson’s, Spearman’s correlation,
and the Wavelet Coherence exceeded the chance level for both
HbO and HbR. Concerning classical oxygenation features, the
AUC and Variance were the only features to reach a classification
performance above chance level but only when computed over
HbO signals.

Regarding the best features, Wavelet Coherence benefited
of the best classification performance among subjects with an
average 65.34 and 59.94% of good classification respectively for
HbO and HbR. The second was the Covariance (62.93 and
56.03 %) followed by the Area Under the Curve (61.76 and
57.83%) for HbO and HbR respectively.

3.3. Classification with Combined Features
Figures 6, 7 show the averaged classification performance for all
the possible combinations of 2 oxygenation or 2 connectivity
features respectively.

Following the same procedure as before, a repeated measure
ANOVA was done with the data showed Figures 6, 7. It revealed
that there was a significant effect of the feature couple [F(30, 330) =
5.42, p < 10−3] but not of the chromophore [F(1, 11) = 2.47, p =

0.14] on the classification performance.
When evaluating multiple comparisons for HbO, the main

observation is that the 7 best connectivity couples gave a
significantly greater classification performance than the 7 worse
oxygenation couples. Besides that, it can also be noted here
that connectivity couples did not exhibit significant differences
between one another.

For oxygenation features, 9 out of 21 couples of features
led to a classification performance above chance level, namely
AUC-Peak, AUC-Variance, AUC-Average, Average-Variance,
AUC-Slope, Variance-Slope, Peak-Variance, AUC-Skewness, and
Variance-Skew. The AUC-Peak couple reached a classification
performance of 61.2 and 56.7% for HbO and HbR respectively.
Moreover AUC is in 5 of these 9 best couples. Regarding
combined connectivity features, every connectivity couple
reached a classification performance above chance except
the couple Covariance-Coherence when computed over HbR.
The best couple (Covariance-WaveletCoherence) led to a
classification performance of 66.4 and 59.8% (for HbO and HbR
respectively).

Results for every feature couple, including couples mixing
oxygenation and connectivity features, for every subject are given
in Tables 1, 2.
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FIGURE 5 | Pilot’s engagement classification performance function of the type of fNIRS-based feature (average across subject). Blue and red bars represents features

extracted from respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95 %. The black lines indicate the most relevant significant effect

for our research question (***p < 0.05).

FIGURE 6 | Pilot’s engagement classification performance function of couple fNIRS-based oxygenation feature used (average across subject). Blue and red bars

represents features extracted from respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95 %.
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FIGURE 7 | Pilot’s engagement classification performance function of couple fNIRS-based connectivity feature used (average across subject). Blue and red bars

represents features extracted from respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95 %.

TABLE 1 | Classification performance (HbO/HbR) for every possible combination of 2 features with an average performance across subjects under chance level (<58.3

%) computed over HbO.

Features S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

Skew - Slo 40/55 46/53 46/47 57/56 50/58 58/64 50/57 51/49 51/45 52/51 55/39 49/56 50/52

Skew - Kurt 57/57 45/54 53/48 54/57 48/65 55/51 61/51 55/55 50/48 47/47 55/39 43/56 52/52

Ave - Skew 54/53 58/51 48/51 64/51 48/62 52/63 52/51 51/52 56/49 43/51 56/49 47/54 52/53

Ave - Slo 61/57 59/51 48/47 57/51 52/51 56/59 41/49 52/51 51/53 47/52 51/49 53/52 52/52

Kurt - Slo 60/53 49/49 53/47 47/55 52/55 57/53 60/51 57/53 49/53 46/44 49/36 50/56 52/50

Peak - Slo 56/55 60/52 42/39 55/57 54/47 58/73 43/55 62/70 63/53 47/50 59/63 41/47 53/55

Peak - Skew 51/56 56/53 45/46 62/54 52/56 53/69 53/54 59/62 65/51 47/49 63/62 38/49 54/55

Ave - Kurt 67/50 57/53 54/49 59/54 53/51 52/57 60/47 61/55 50/59 47/43 49/53 43/53 54/52

Peak - Kurt 61/54 61/54 50/45 48/55 55/46 57/65 55/55 65/71 64/64 46/42 57/63 35/47 55/55

Kurt - AUC 69/61 57/63 60/42 52/55 60/45 63/66 60/60 65/81 61/55 53/40 45/62 40/44 57/56

Ave - Peak 65/52 64/59 50/43 62/42 60/49 59/74 49/56 65/71 68/57 46/49 60/62 38/43 57/55

Skew - Coh 66/48 51/50 50/53 65/54 51/64 46/56 69/52 62/47 58/54 54/52 59/69 56/66 57/55

Var - Kurt 67/55 64/55 62/43 41/53 64/46 57/66 64/60 74/82 64/53 52/44 45/57 38/41 58/54

Skew - Spe 58/60 49/57 49/53 68/66 64/77 57/59 66/73 62/46 61/54 48/50 49/48 66/62 58/59

Results are rounded to the closest integers and ordered by their average value (the last couple (row) is the best performing on average across subjects). Columns refer to subjects

(S1–S12) and rows to each feature couple (Ave, Average; Pea, Peak; Var, Variance; Skew, Skewness; Kurt, Kurtosis; AUC, Area Under the Curve; Cov, Covariance; Pear, Pearson’s;

Spear, Spearman’s; Coh, Coherence; WTC, Wavelet Coherence).

4. DISCUSSION

The main motivation of the present study was to assess the
potential of connectivity measures to classify two different
levels of task engagement with fNIRS under relatively ecological

settings. We therefore designed a protocol whereby pilots had to
perform several manual and automated landings. Our subjective
measures confirmed that these two situations were contrasted
as manual landing led to significantly higher subjective NASA-
TLX scores than automated landing. Our overall classification
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TABLE 2 | Classification performance (HbO/HbR) for every possible combination of 2 features with an average performance across subjects above chance level (>58.3

%) computed over HbO.

Features S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

Var - Skew 64/56 60/52 57/46 57/51 60/60 60/70 62/59 78/82 66/45 50/51 51/54 38/42 58/56

Skew - AUC 68/60 54/57 58/46 61/53 59/56 66/71 62/59 69/80 63/50 51/48 49/63 42/41 58/57

Kurt - Coh 66/53 52/45 57/48 58/57 53/59 52/50 69/49 69/53 55/59 55/54 57/68 60/67 59/55

Slo - Coh 66/52 58/41 52/45 61/59 51/61 51/64 71/52 69/52 55/58 54/57 59/68 59/70 59/56

Peak - Var 64/50 65/52 57/40 52/50 64/41 61/72 56/56 73/81 70/55 55/55 53/63 37/41 59/55

Var - Slo 67/58 69/49 57/42 48/56 66/51 69/72 56/59 75/84 63/47 50/54 44/57 43/40 59/56

AUC - Slo 72/60 59/59 60/40 59/64 57/51 67/76 60/62 71/78 64/48 53/46 44/62 46/43 59/58

Skew - Pea 58/60 50/56 48/53 63/66 64/75 58/63 69/76 66/48 68/56 48/52 55/45 67/61 59/59

Ave - Var 66/51 67/53 59/50 59/40 64/48 64/72 57/58 80/82 69/54 47/51 46/56 39/40 60/54

Ave - AUC 70/61 58/60 61/45 61/47 57/44 67/72 60/61 70/81 66/54 53/45 49/63 46/45 60/57

Peak - Coh 65/48 58/49 53/50 66/55 54/57 56/67 70/52 65/58 64/52 54/55 60/71 54/61 60/56

Kurt - Cov 66/57 72/51 64/46 52/53 63/63 63/67 65/53 74/81 64/49 52/48 46/63 39/42 60/56

Pea - Spe 64/58 52/59 55/58 65/60 63/73 59/64 66/72 67/52 65/58 50/54 49/48 66/62 60/60

Pea - Coh 63/57 52/51 51/51 64/64 64/72 54/60 70/68 65/49 64/58 54/59 55/61 68/64 60/60

Ave - Coh 71/45 60/43 58/51 67/53 56/58 53/60 70/49 65/50 59/60 55/57 56/68 58/65 61/55

Spe - Coh 67/57 53/53 52/53 64/65 66/71 57/56 69/68 64/46 64/58 53/60 54/63 67/66 61/60

Skew - Cov 63/61 65/49 60/53 61/47 66/69 65/68 63/52 75/80 68/44 49/50 54/63 42/45 61/57

Kurt - Spe 65/57 51/58 59/56 63/67 66/70 58/56 68/72 72/51 63/56 48/48 54/49 65/60 61/58

Var - AUC 71/62 63/61 66/42 61/54 60/44 67/69 58/60 72/83 66/53 54/47 50/64 43/43 61/57

Peak - AUC 69/60 61/55 60/39 62/57 59/43 65/76 61/57 70/79 69/54 57/49 56/67 46/44 61/57

Peak - Cov 65/52 70/52 63/50 59/50 65/61 69/70 61/47 75/82 68/46 53/56 52/66 37/44 61/56

Kurt - Pea 64/57 55/55 59/56 61/65 68/71 57/59 71/74 73/53 65/55 48/50 54/47 65/60 62/59

Slo - Spe 60/58 58/53 55/51 68/61 68/70 62/66 67/72 67/49 65/55 49/55 51/47 67/61 62/58

Slo - Cov 65/58 71/41 59/52 59/53 70/63 68/71 61/53 76/84 65/45 49/53 50/65 47/43 62/57

Slo - Pea 59/59 60/51 54/49 62/59 69/70 62/70 69/74 68/52 67/55 50/53 54/47 69/61 62/58

Peak - Spe 61/62 58/56 53/55 72/62 66/71 62/66 65/72 71/64 70/55 49/52 56/57 63/55 62/60

Var - Cov 64/55 70/52 63/53 59/45 67/66 70/68 60/52 75/82 71/51 52/52 52/67 44/43 62/57

AUC - Coh 71/53 60/48 57/45 63/56 57/54 62/71 73/54 75/80 63/60 62/57 50/68 58/59 63/59

Ave - Spe 66/62 61/55 52/60 73/61 69/71 63/65 64/71 66/51 66/58 49/52 55/52 65/61 63/60

Ave - Cov 68/51 73/46 64/55 64/39 65/63 67/70 58/50 78/81 68/49 49/52 50/62 46/42 63/55

Var - Coh 70/50 65/44 59/49 61/56 58/60 58/68 72/53 76/80 66/57 58/52 56/66 53/59 63/58

Peak - Pea 63/62 60/55 52/54 67/59 66/70 60/69 68/74 74/65 71/55 51/52 59/56 63/57 63/61

AUC - Cov 69/62 67/54 66/52 64/54 67/63 68/68 60/52 76/82 69/49 54/51 52/70 43/47 63/59

Ave - Pea 66/62 59/52 52/59 70/58 69/71 61/65 69/76 68/52 68/60 51/51 55/51 69/63 63/60

Var - Spe 64/64 62/56 57/53 67/64 66/71 61/66 66/72 83/77 67/55 54/53 49/58 61/53 63/62

Skew - WTC 42/58 53/65 57/65 70/54 81/70 64/74 78/71 63/46 67/49 54/48 60/57 68/64 63/60

AUC - Spe 64/66 57/65 52/53 70/64 67/71 66/67 70/72 78/78 68/56 52/55 50/66 64/54 63/64

Cov - Coh 68/55 72/40 59/53 64/52 62/69 64/66 69/48 76/80 66/55 57/54 53/69 53/55 63/58

AUC - Pea 65/65 59/64 52/53 66/60 65/69 67/70 70/74 79/80 71/57 55/54 52/61 67/56 64/64

Cov - Spe 64/64 69/55 61/55 70/62 67/70 62/67 66/67 85/78 64/52 53/56 50/58 60/53 64/61

Kurt - WTC 52/54 58/65 60/65 67/55 80/64 66/73 76/66 67/46 65/48 56/43 61/56 65/64 64/58

Peak - WTC 53/54 64/67 52/60 66/53 82/65 66/77 76/70 65/62 68/46 55/47 60/59 65/60 64/60

Var - Pea 66/64 65/55 58/53 63/59 66/71 61/68 71/75 83/79 69/58 55/53 52/57 66/55 65/62

Slo - WTC 44/57 62/61 64/63 67/58 83/70 65/76 76/70 65/46 65/52 54/49 63/60 68/66 65/61

Spe - WTC 55/60 54/66 60/62 70/65 85/75 65/74 74/74 66/45 66/56 57/45 57/59 65/71 65/63

Cov - Pea 64/64 68/54 59/54 65/57 66/71 64/70 71/71 82/80 67/54 56/55 53/57 67/54 65/62

Ave - WTC 54/53 64/64 62/64 66/50 84/70 64/74 77/68 63/46 67/51 55/49 62/57 66/64 65/59

Pea - WTC 54/59 57/62 59/61 71/63 85/74 67/77 78/74 66/49 68/57 57/48 59/59 67/71 66/63

(Continued)
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TABLE 2 | Continued

Features S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

Coh - WTC 59/50 61/55 60/55 72/56 84/69 65/74 78/63 68/46 67/52 56/50 55/63 68/68 66/58

Cov - WTC 57/55 67/57 61/63 66/50 81/70 67/77 79/67 77/81 68/45 58/43 57/59 59/51 66/60

Var - WTC 59/53 63/63 59/63 67/51 81/66 68/80 78/70 75/83 70/48 59/43 59/57 62/53 67/61

AUC - WTC 64/59 61/64 60/61 70/53 80/63 69/81 77/70 68/78 72/48 59/45 57/64 65/55 67/62

Results are rounded to the closest integers and ordered by their average value (the last couple (row) is the best performing on average across subjects). Columns refer to subjects

(S1–S12) and rows to each feature couple (Ave, Average; Pea, Peak; Var, Variance; Skew, Skewness; Kurt, Kurtosis; AUC, Area Under the Curve; Cov, Covariance; Pear, Pearson’s;

Spear, Spearman’s; Coh, Coherence; WTC, Wavelet Coherence).

results confirmed that the two different engagement levels could
be discriminated in a flight simulator. This is in line with previous
neuroergonomics studies showing that this brain optical imaging
technique is well suited for mental state monitoring in ecological
situations (Herff et al., 2013; Durantin et al., 2015; Gateau et al.,
2015; Foy et al., 2016).

The best classification accuracy reached 66.9 %, a result
that does not compare favorably with recent studies at first
hand. For instance, Hong et al. (2015) obtained a classification
performance of 75.6 % on 10 subjects with a mental motor
imagery and mental arithmetic paradigm using average and
slope features over chromophore concentration. Holper and
Wolf (2011) did a complex vs. simple imaginary movement
paradigm with 12 subjects. By combining different features such
as the average, variance, skewness and kurtosis computed over
HbO and HbR, they reached a performance of 81.3 %. Naseer
et al. (2016) obtained a 93 % classification performance with
almost similar features to classify mental arithmetic vs. rest on
7 subjects. However, these studies did not consider a continuous
but rather an event locked assessment of a specific cognitive
activity contrarily to our flying task involved different executive
and attentional skills. Interestingly enough and contrary to
our results, Khan and Hong (2015) showed that classical
oxygenationmetrics could yield to a high accuracy (84.9 %) when
continuously monitoring drowsiness under ecological settings
such as driving in simulated conditions. The comparison with
our study remains challenging as the construct of engagement
is probably more subtle to be captured. Eventually, the limited
number of trials did not allow us to optimize the training of our
model to guarantee high classification accuracy.

Interestingly, the connectivity measures led to better
classification performance than the classical oxygenation
metrics (i.e., chromophore concentration variation). The better
performance of the connectivity metrics over classical ones could
rely on two main explanations. Firstly, one has to consider that
the analysis of task-related concentrations (i.e., hemodynamic
response) is time-locked to the event. It has been proposed that
these task-related responses induce a small increase (<5%) in
neural energy consumption compared to the overall brain energy
consumption (Raichle and Mintun, 2006). Thus by focusing
only on a localized hemodynamic response, the majority of
the brain activity is dismissed. It is now well admitted that
cognition relies on the activation of several distributed brain
areas rather than single dedicated processing units (Siegel et al.,

2012; Hutchison et al., 2013; van den Heuvel and Sporns, 2013).
Thus, the analysis of the interaction between neural networks
provides more information on the brain dynamics, especially
when concerned with the understanding of complex real-life task
(Cui et al., 2012; Leff et al., 2015; İşbilir et al., 2016). Secondly,
some relevant studies disclosed that frequency or amplitude
correlations among spontaneous LFOs (around 0.1 Hz) are
tightly linked to cortical processes (Lowe et al., 1998; Xiong et al.,
1999; Obrig et al., 2000, see Siegel et al., 2012 for a review). As a
matter of fact, when considering continuous monitoring of the
brain activity, where no specific events are expected, connectivity
features based on frequency or amplitude coupling can give an
insight on the ongoing cognitive processes.

The comparison of the connectivity metrics classification
performance revealed that covariance, correlation (Pearson’s or
Spearman’s) and wavelet coherence led to significantly higher
classification accuracies than respectively 3, 2, and 4 classical
oxygenation metrics. It is interesting to note that the formers
present complementary advantages. On one hand, correlation
and covariance are straightforward and low cost computational
measure to implement. This is of great advantage as long as pBCIs
are concerned. On the other hand, the wavelet coherence takes
into account both time and phased locked oscillations. While
being used for some years by the fMRI community, the wavelet
coherence metrics has only recently been applied to fNIRS signal
(Cui et al., 2012; İşbilir et al., 2016). Wavelet coherence also
allows to target specific and relevant frequency bands such as
LFOs as discussed previously. However, the implementation
of wavelet coherence based pBCIs remains challenging as this
metric requires a high number of wavelet convolutions and
the calculation costs could be critical in an online paradigm.
One possible promising approach to overcome this issue is
to consider dimensionality reduction (Guyon and Elisseeff,
2003). Taken together our findings provide some methodological
guidance for the implementation of fNIRS based BCI metrics.
To the best of our knowledge, this study is one of the rare to
benchmark different fNIRS connectivity metrics and to use them
for classification purposes in ecological settings. It paves the way
toward online mental state estimation in ecological aeronautical
settings, but some challenges still remain.

Despite its potential interests, our paper has several
limitations. Firstly, this experiment involved 12 subjects
that only performed four trials of each conditions. This limited
number of trials relied on a compromise as the participants
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would experience fatigue and discomfort if wearing the cap
for a long period (around 40 min). Secondly, the choice of
the two contrasted conditions (automatic vs. manual) can be
discussed since potential confounds such as motor responses
could influence our measures. Yet we did not target motor areas
therefore the risk is low. However, our motivation is to monitor
pilots’ brain activity when facing realistic flying conditions.
The designing of well contrasted and controlled conditions in
ecological environments such as flying remains challenging.
This first experiment was meant to set the path to more refined
protocols to characterize different tasks with a view to perform
crew monitoring as achieved by Toppi et al. (2016). The
third limitation is regarding the fNIRS signal analysis. Indeed,
fNIRS signal is the result of a global component influenced
by skin blood flow and a local neuronal component. Some
algorithms based on spatial filtering and principal component
analysis such as the one proposed by Zhang et al. (2016) could
have been used if the analysis was not done on each epoch
separately. Moreover fNIRS signals can also be influenced by
other physiological activities such as heartbeats, respiration or
changes in blood pressure. It would have been interesting to also
record those activities to evaluate how they can correlate with the
engagement level. Regarding the paradigm settings and because
of these limitations, despite the fact that our classification
performance were very high and satisfying, it is not possible to

make any claim regarding the underlying neurophysiological
processes.

Finally, the performance of the classification pipeline needs to
be improved before its implementation in the cockpit as such
rate of false negative detection cannot be afforded as it is in
such critical systems, even though using multisensory fusion
this accuracy level is still usable. A promising way to increase
classification performance could be to use a bimodal EEG-fNIRS
pBCI (Fazli et al., 2012).
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