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Modeling and Control of a Rotating Flexible Spacecraft:
A Port-Hamiltonian Approach

Saïd Aoues , Flávio Luiz Cardoso-Ribeiro , Denis Matignon, and Daniel Alazard

Abstract— In this brief, we develop a mathematical model
of a flexible spacecraft system composed of a hub and two
symmetrical beams using the port-Hamiltonian framework. This
class of system has favorable properties, such as passivity for
controller synthesis and stability analysis, where the global
Hamiltonian plays the role of a Lyapunov function candidate. The
spacecraft model is viewed as a power-conserving interconnection
between an infinite (beam) and finite (hub) dimensional system.
We show that the interconnection result has a port-Hamiltonian
structure and is passive. The introduction of a nonlinear feedback
term, which takes into account the beam’s flexibility, is developed
using the control by an interconnection approach. The closed-
loop stability is proven; then, through explicitly solving the
partial differential equations of the system, asymptotic stability
is obtained. Finally, the experimental results are carried out to
assess the validity of the proposed design methodology.

Index Terms— Flexible spacecraft, Lyapunov stability, mixed
port-Hamiltonian systems (PHSs), passivity-based control.

I. INTRODUCTION

ATTITUDE maneuver of spacecraft with flexible
appendages has received a significant focus in several

research fields, particularly in robotics and aerospace
domains. Appendages such as antennas and solar arrays
attached to the central rigid body of the spacecraft are
flexible. The dynamics of a flexible spacecraft is usually
governed by mixed finite–infinite-dimensional equations of
motion (EMs): a finite-dimensional equation [an ordinary
differential equation (ODE)] for attitude maneuver, coupled
with infinite-dimensional equation for the vibratory motion
of flexible structures. The modeling step is a crucial issue in
the design of control laws, since the performances are very
sensitive to the error introduced by mathematical models.

In recent years, several studies related to the control of
flexible space systems have been done; the principal chal-
lenges are: 1) a large order model; 2) weakly damped
oscillating behavior of the flexible appendages; 3) inherent
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modeling errors due to finite-order approximation of the partial
differential equation (PDE) describing the motion of the
flexible parts; and 4) parameter uncertainties. Optimal con-
trollers for linear and nonlinear models have been presented
in [3] and [9]; control laws based on linearization and non-
linear inversion have been designed in [17]. The Lyapunov
stability and the dissipativity theory have been used to design
controllers for the maneuver of a flexible spacecraft [8].
The design of a composite adaptive control system using
the backstepping technique has also been considered [11].
Recently, the discrete-time controller has been proposed using
the passivity theory [2].

In the last decades [13], a new class of systems called Port-
Hamiltonian Systems (PHSs) has been proposed. This class is
very useful to model multiphysics phenomena and/or complex
systems. The idea was originally developed for modeling
finite-dimensional systems [14]. However, the framework has
been extended to the case of infinite-dimensional systems [19].
The mixed finite–infinite dimensional PHSs are also treated
in [12] and [15]. One of the most important properties of
the PHS is that the interconnection of several PHSs, which
results in a new PHS. This concept of interconnection is
important from a control point of view, since implementing
a control law or controlling a system is usually done with
an external device, via external port variables [6]. Unlike
other modeling techniques, the stability analysis can be easily
carried out, using the total energy of the system as a Lyapunov
function [18].

Our objective here is twofold: the first is to use the
Hamiltonian framework to obtain the dynamic equations of
flexible spacecraft, and the second is to investigate the control
law based on the fundamental properties (i.e., passivity and
interconnection) of this class of the system. The global model
is given by a mixed finite–infinite dimensional PHS (m-PHS)
viewed as the power-conserving interconnection between the
central rigid body with flexible beams. Computing the energy
balance equation, it is shown that the system is passive. The
asymptotic stability at desired a goal position is proposed using
the Proportional-Derivative (PD) control. Then, the control by
interconnection is used to introduce the information about the
vibrations of the beams through a nonlinear term in addition to
the PD controller. Stability of the closed-loop system is proved
when taking the total energy as a Lyapunov candidate function.
The experimental results are carried out to assess the validity
of the proposed approach. A main contribution of this brief is
the design of the controller architecture with stability proofs
directly on the infinite-dimensional port-Hamiltonian model,
allowing a direct implementation on the experimental setup
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Fig. 1. Description of the spacecraft model.

and avoiding intermediate validations on a finite-dimensional
simulation model.

This brief is organized as follows. In Section II, the space-
craft model with flexible appendages is briefly introduced.
Section III deals with modeling of the system using the port-
Hamiltonian framework. The control law and the stability
result are given in Section IV. Experimental results show the
validity of the proposed approach in Section V. Finally, some
conclusions are outlined in Section VI.

II. DYNAMICS OF A FLEXIBLE SPACECRAFT SYSTEMS

The configuration of a flexible spacecraft system considered
in this brief is presented in Fig. 1. The model consists of a
center hub body, two flexible beams, and two tip masses.

Such a model is commonly used to describe the
rigid/flexible interactions governing the dynamic behavior of
a spacecraft around a single degree of freedom: for instance
in [16, Ch. 10] where the flexible beams are modeled by
simple or multiple spring-mass systems and in [21], using a
finite-dimensional model based on the assumed modes method
or more recently in [5]. Nethertheless, the direct design of a
controller on the infinite-dimensional model is not addressed
in the space engineering context.

A. Notations and Assumptions

This test bed works in the horizontal plane R1 = (0, X0, Y0)
where R1 is an inertial frame, and it is composed of the
following.

1) A rigid hub articulated with respect to the inertial
frame by a pivot-joint around a vertical axis (0, Z0).
Rh = (0, Xh , Yh) is the hub body frame. The half-side
and the inertia [around (0, Z0)] of this hub are denoted
r and Ih , respectively.

2) A torque motor, driving the hub in rotation around the
vertical axis (0, Z0).

3) Two identical flexible beams (in the horizontal plane)
cantilevered on the hub. The length of each beam is l,
the quadratic moment of a section is I , and Young’s
modulus of the beam material is denoted E . The frame
R2 = (0,−X0,−Y0) is defined to describe the deflec-
tion of beam 2.

4) One local mass m fitted at the tip of each beam.

Let us denote the notations as follows.

1) τm [N.m] is the driving torque.
2) θ [rd] is the angular position of the hub.

3) yi (x, t) [m] is the deflection of the beam i in the frame
Ri at the point of abscissa x ∈ [0, L] with length
L = r + l.

4) βi (t) = (∂yi (x, t)/∂x)|x=L := ∂x yi (L, t) [rd] is the
angular deviation (slope, with respect to equilibrium
position) at the free-end of the beam i .

5) αi = βi − θ .

B. Dynamic Equations

From the Euler–Bernoulli equation [10] and the Euler
principle applied to the hub, the EM and the boundary
conditions (BCs) are then derived

EM:

{
EI∂4

x4 yi (x, t) + ρ∂2
t2 yi (x, t) = 0, i = 1, 2

Ih θ̈ (t) + Dθ̇ (t) = τm(t) − �2
i=1τi (t)

(1a)

BC:︸︷︷︸
i=1,2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

at x = r : yi (r, t) = rθ(t); ∂x yi (r, t) = θ(t)

EI∂2
x2 yi(r, t) = −τi (t)

at x = L : EI∂2
x2 yi (L, t) = 0

EI∂3
x3 yi (L, t) = m∂2

t2 yi (L, t).

(1b)

where τi (t) represents the bending moment at the root of
the beams, and D is the damping constant of the driving
mechanism.

Let us consider the change of a variable

y(x, t) = 1

2
(y1(x, t) + y2(x, t))

ȳ(x, t) = 1

2
(y1(x, t) − y2(x, t)).

Then, Model (1) can be reformulated as two independent
subsystems �1 and �2 as follows:

�1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

EI∂4
x4 y(x, t) + ρ∂2

t2 y(x, t) = 0 (2.a)

at x = r : y(r, t) = rθ(t); ∂x y(r, t) = θ(t) (2.b)

EI∂2
x2 y(r, t) = 1

2
(Ih θ̈ (t) + Dθ̇ (t) − τm(t)) (2.c)

at x = L : EI∂3
x3 y(L, t) = 0 (2.d)

EI∂3
x3 y(L, t) = m∂2

t2 y(L, t) (2.e)

(2)

�2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EI∂4
x4 ȳ(x, t) + ρ∂2

t2 ȳ(x, t) = 0

at x = r : ȳ(r, t) = 0; ∂x ȳ(r, t) = 0

at x = L : EI∂2
x2 ȳ(L, t) = 0

EI∂3
x3 ȳ(L, t) = m∂2

t2 ȳ(L, t).

(3)

It is clear that �1 and �2 are completely independent and
that �2 is uncontrollable by the control signal τm . �1 and
�2 are the EMs of the antisymmetric and symmetric [with
respect to (0, Y1)-axis] deflections of the two beams. The
symmetric deflection (�2) is uncontrollable (see also [1]) and
will not be considered in the sequel. Thus, assuming that
y1(x, t) = y2(x, t) = y(x, t) and due to the antisymmetry
of the shear forces at the two beam roots, the EM of �1 (2)
can be completed by the BC

∂3
x3 y(r, t) = 0 (4)

and the sum of the two beam bending moments is denoted τr

τr (t) = τ1(t) + τ2(t) = −2EI∂2
x2 y(r, t). (5)



Fig. 2. Feedback interconnection between subsystems.

III. PORT-HAMILTONIAN MODEL

The model of the spacecraft is composed of three subsys-
tems: the hub (subscript h), the beams (subscript b, reduced
to their antisymmetric deflections), and the tip masses (sub-
script m) in feedback interconnection according to the block-
diagram shown in Fig. 2. Each subsystem i (i = h, b, m)
is now characterized by its port-Hamiltonian model with its
Hamiltonian Hi , its input ui , and its conjugated output yi . The
time-derivative Ḣi is also computed to highlight the passivity
property of the subsystems. It is important to note that most
of the works existing in the literature about the modeling
and control of flexible spacecraft use the mathematical model
given by PDE equations (1) and (2) and/or the approximate
models (ODE). One objective of this brief is to use the port-
Hamiltonian modeling, which allows applying energy-based
control techniques in a quite straightforward way. Moreover,
the stability analysis of multiphysics-coupled systems is made
easier.

Assumption 1: Since this brief is oriented to a concrete
experimental application, we assume that the equations are
well-posed.

A. Hub

1) Input/Output: uh = τ is the total torque applied on the
hub, and yh = θ̇ is the angular velocity.

2) ODE Model: It shows that

Ih θ̈ (t) + Dθ̇ = τ (t). (6)

3) PHS Model: With the angular momentum zh(t) :=
Ih θ̇ (t) as a state variable, we get

Hh(zh) := 1

2
Ih θ̇2 = 1

2Ih
z2

h (7)

żh = −D
d

dzh
Hh + 1τ and θ̇ = 1

d

dzh
Hh. (8)

4) Passivity:It shows that

Ḣh(zh(t)) = 1

Ih
zh żh = −Dθ̇2 + θ̇τ ≤ yhuh . (9)

B. Beams

1) Input/Output: The boundary control ub =
[θ̇ , Fr , τL , ẏL]T , and the boundary measurement
yb = [τr , ẏr , β̇, FL ]T where yr and yl are the

deflections at the two tips (x = r and x = L) of a
beam, and Fr , τr , FL , and τL are the shear forces and
bending torques applied on the two tips of the beams.

2) PDE Model: Given by (2) and (4).
3) PHS Model: Assuming that y1(x, t) = y2(x, t) =

y(x, t), the Hamiltonian Hb, defined as the sum of the
kinetic and potential energies of the two beams, reads

Hb = ρ

∫ L

r
∂t y(x, t)2dx + EI

∫ L

r
∂2

x2 y(x, t)2dx .

(10)

Choosing the state variables as follows:
z1(x, t) := ρ∂t y(x, t) and z2(x, t) : ∂2

x2 y(x, t)

(11)

Hb(z1, z2) =
∫ L

r

1

ρ
z1(x, t)2dx +

∫ L

r
EIz2(x, t)2dx

(12)

and the variational derivative of the energy δz Hb with
respect to the state variables (11) is given by

δz Hb :=
[

δz1 Hb

δz2 Hb

]
=

[ 2
ρ z1

2EIz2

]
. (13)

Hence, the PHS model is described by ż = Jδz Hb,
that is

[
ż1
ż2

]
=

⎡
⎢⎣ 0 −1

2
∂2

x

1

2
∂2

x 0

⎤
⎥⎦[

δz1 Hb

δz2 Hb

]
(14)

ub =

⎡
⎢⎢⎢⎣

θ̇ (t) = ∂2
xt y(r, t)

Fr (t) = 2EI∂3
x3 y(r, t)

τL(t) = 2EI∂2
x2 y(L, t)

ẏL(t) = ∂t y(L, t)

⎤
⎥⎥⎥⎦ (15)

yb =

⎡
⎢⎢⎢⎣

τr (t) = −2EI∂2
x2 y(r, t)

ẏr (t) = ∂t y(r, t)

β̇(t) = ∂2
xt y(L, t)

FL(t) = −2EI∂3
x3 y(L, t)

⎤
⎥⎥⎥⎦ (16)

where ub and yb are the boundary ports (see [7, Ch. 11]
for the general setting).

4) Passivity: Indeed, both these ports prove conjugated with
respect to the Hamiltonian functional Hb, in so far as

Ḣb(z1(t), z2(t)) = τr θ̇ + ẏr Fr + β̇τL + FL ẏL = yT
b ub

(17)

see [4] for a careful computation of this energy balance.
Note that, in our case, (4) reads Fr = 0, and (2.d)
reads τL = 0; hence, the conjugated ports ẏr and β̇
are left free.

C. Tip Masses

1) Input/Output: um = F is the force (doubled) applied on
the two masses, and ym = ẏL is the velocity.

2) ODE Model: It shows that

2mÿL(t) = F(t). (18)



3) PHS Model: With the linear momentum zm(t) :=
2mẏL(t) as a state variable, we get

Hm(zm) := mẏL(t)2 = 1

4m
zm(t)2 (19)

żm = 0
d

dzm
Hm + 1F and ẏL = 1

d

dzm
Hm.

(20)

4) Passivity: It shows that

Ḣm(zm(t)) = 1

2m
zm żm = ẏL F = ymum . (21)

D. PHS Model of the Whole System

Since all three the subsystems are passive and they are
interconnected with negative feedbacks, the whole system �1
is passive [12].

Indeed, from Fig. 2, the interconnection equations are

τ = −τr + τm (22)

F = −FL . (23)

Let us define the total Hamiltonian

H (X) := Hh(zh) + Hb(z1, z2) + Hm(zm).

The passivity of the whole mixed PHS (m-PHS) �1 with
Hamiltonian H , variables X := [z1, z2, zh , zm ]T , input τm(t),
and conjugated output θ̇ states that

Ḣ(X (t)) = −Dθ̇2 + θ̇ τm ≤ θ̇ τm . (24)

Now our objective is to derive the controller which will
drive the system to the desired equilibrium. With this in mind,
we adopt an approach based on the passivity theory. We choose
a desired energy Hd and we compute the controller in order
to have a minimum of Hd at the desired equilibrium of the
closed-loop system. This subject will be addressed in the
sequel.

IV. CONTROLLER DESIGN USING PASSIVITY

Based upon the m-PHS dynamics, for a flexible spacecraft
of Section III-D, the control law design is developed in
this section. The control objective is to drive the central
body to a desired angular position θ∗ based on the passivity
theory. In Section IV-A, we show that a pure PD con-
troller can stabilize the m-PHS to a given equilibrium point.
Generally, the system performance is not satisfactory, because
the elastic vibrations cannot be effectively suppressed. From
the Hamiltonian framework, we show in Section IV-B that
a nonlinear term of the elastic vibrations of each appendage
can be easily introduced to the PD controller via a control by
interconnection (i.e., interconnection of several PHSs is also
a PHS) in order to suppress as far as possible the residual
vibration of each appendage. In all the cases, the stability and
the asymptotic stability are proved.

A. Proportional-Derivative Controller

From an engineering point of view, the proportional-
derivative controller is very easy to implement, since only
measurements of θ and θ̇ are required. In addition, this
controller is independent of the system parameters and thus
possesses stability robustness to system parameters uncertain-
ties, thanks to Theorem 2.

Theorem 2: The system �1 in a closed loop with the control
law

τm = −kd θ̇ − k p(θ − θ∗) (25)

where (k p > 0, kd > 0) has a unique equilibrium solution
defined by

ye(x, t) = θ∗x . (26)

This equilibrium is globally asymptotically stable.
Proof: Obviously θ̇ = 0 (the input of an integrator

on the output of �1 in Fig. 2 is null) at the equilibrium.
Then, considering the Euler–Bernoulli equation (2.a) with the
BCs (2.b), (2.d), and (4) and the equilibrium condition

∂2
xt y(r, t) = θ̇ = 0

one can show (see the Appendix) that y(x, t) = θex where θe

is the equilibrium angular position of the hub.

Then, τr (t) = ∂2
x2 ye(r, t) = 0 and τm

(2).c= 0 = −k p(θe−θ∗).
Thus, θe = θ∗ and ye(x, t) = θ∗x .
With X := (X, θ), let us consider the Lyapunov function

Hd(X ) = H (X) + 1

2
k p(θ − θ∗)2 (27)

= 1

2
Ih∂2

xt y(r, t)2 + ρ

∫ L

r
∂t y(x, t)2dx

+ EI
∫ L

r
∂2

x2 y(x, t)2dx + mẏ2
L

+ 1

2
k p(∂x y(r, t) − θ∗)2 (28)

where Hd corresponds to the desired Hamiltonian such that Hd

has the minimum at the angular position reference input θ∗.
Hd enjoys the following properties.

1) Hd(X ) > 0 ∀X �= Xe.
2) Hd(X ) = 0 if X = Xe.
3) Hd(X ) → ∞ if ‖X‖ → ∞.
4) Ḣd(X (t)) ≤ 0.

Indeed

Ḣd(X (t)) = Ḣ(X (t)) + kp θ̇ (θ(t) − θ∗) (29)

≤ θ̇ τm + kpθ̇ (θ(t) − θ∗) (30)

≤ −kd θ̇2 (31)

≤ 0. (32)

Thus applying LaSalle’s invariance principle [7, Ch. 8
and 9], one can conclude that the equilibrium solution is
globally asymptotically stable. From a theoretical point of
view, the precompactness of the trajectories of the infinite-
dimensional dynamical system should be verified first, before
applying LaSalles invariance principle more formally; in our



Fig. 3. Schematic of the control m-PHS.

geometric configuration though, the spatial domain is bounded,
and the Rellich theorem on compactness does apply. �

Remark 3:

1) This property is independent of Ih , D, and m. Indeed,
conditions (2.c) and (2.e) are not used.

2) The BC (4) is determinant in this proof and is due to the
fact that �1 considers only the antisymmetric motion of
the beams (�2 is uncontrollable). It does not hold for a
spacecraft with a single beam.

3) The equilibrium solution ye(x, t) = θ∗x corresponds to
the rigid motion of the system and guarantees a response
without any steady-state error.

B. Control by Interconnection

The controller (25) is able to stabilize the system �1, but
the vibrations of the flexible beam are not taken into account.
Unlike the works that exist in the literature [1], the elastic
vibrations feedback can be easily added to (25) to improve
the performance of the flexible spacecraft. Wang et al. [20]
proposed adding a nonlinear term to the classical proportional-
derivative controller. This nonlinear term is given by the
integral of the product of the hub angular rate θ̇ (t) times the
angular rate of the deflection at the tip of the beam α̇(t), given
by: kcα̇(t)

∫ t
0 θ̇ (s)α̇(s)ds. This term can be seen as a controller

�C added to the previous controller (see Fig. 3).
It can then be shown that such a nonlinear controller can

be represented by a port-Hamiltonian subsystem, leading to a
more straightforward way to derive stability proofs. Indeed,
the port-Hamiltonian representation of �C reads

�C :

⎧⎪⎨
⎪⎩

ξ̇ = Jc
∂ Hc

∂ξ
+ Gcuc

yc = GT
c

∂ Hc

∂ξ

(33)

where Jc = 0, and Gc = GT
c = 1, and the energy associated

to the controller Hc(ξ) is

Hc(ξ) = 1

2
kcξ

2, kc > 0. (34)

Note that solving (33) leads to

ξ =
∫ t

0
uc(s)ds, and yc = kc

∫ t

0
uc(s)ds. (35)

We can interconnect the flexible spacecraft in Section III-D
and the controller (33) via the following power-conserving

Fig. 4. Picture of a one degree-of-freedom flexible spacecraft.

Fig. 5. Discrete-time implementation (Z O H is a zero-order hold).

feedback interconnection with some extra input uPD given
in (25):

[
u
uc

]
=

[
0 −α̇
α̇ 0

] [
y
yc

]
+

[
uPD

0

]
. (36)

The closed-loop system is obtained from a power-
conserving interconnection of two PHSs; therefore it is still
a PHS with total energy Htot(X) given by the sum of the
subsystems energies defined by

Htot(X) := H (X) + 1

2
k p(θ − θ∗)2 + 1

2
kcξ

2 (37)

with X := (X, θ, ξ). From the interconnection of (25), (35),
and (36), the nonlinear controller is obtained as

u = −α̇yc + uPD

= −kcα̇

∫ t

0
θ̇ (s)α̇(s)ds − kd θ̇ − k p(θ − θ∗). (38)

This controller explicitly introduces the information about a
flexible beam and the hub velocity, which has some effects on
the reduction of elastic vibrations.

Theorem 4: The nonlinear controller in (38) can guarantee
the closed-loop stability of the system [Section III-D] inter-
connected with �C via feedback interconnection (36).



Fig. 6. Time responses with different controllers. Left column: nonlinear controller (38) (in red). Right column: PD controller (25) (in blue). In each column,
we record the hub-angular position first, the applied control torque second, and the responses of the hub-angular rate and the tip-angular rate, respectively.

Proof: The time derivative of Htot(X) is

Ḣtot(X(t)) = −Dθ̇2 + θ̇u + θ̇ [k p(θ − θ∗)]
+ kcθ̇ α̇

[∫ t

0
θ̇ (s)α̇(s)ds

]
= − Dθ̇2

+ θ̇

[
−kcα̇

∫ t

0
θ̇ (s)α̇(s)ds−kd θ̇ − k p(θ − θ∗)

]

+ θ̇ [k p(θ − θ∗)] + kcθ̇ α̇

[∫ t

0
θ̇ (s)α̇(s)ds

]
= − (D + kd)︸ ︷︷ ︸

Dd>0

θ̇2 ≤ 0. (39)

Then, the system is stable. �
The asymptotic stability can be proved using the same lines

as for Theorem 2. At the equilibrium point, when Ḣtot ≡ 0
from (39), we have θ̇ ≡ 0, and the nonlinear controller (38)
becomes u = −k p(θe − θ∗).

V. EXPERIMENTAL RESULTS

In this section, we give some experimental results to support
the theoretical control method proposed in Section IV. The
experimental test bed is depicted in Fig. 4 and corresponds
to the scheme presented in Fig. 1 with the parametric data
given in Table I. The sizing and the instrumentation of this
experimental setup were chosen in order to increase the
rigid/flexible interactions and to be relevant for the validation
of new control strategies.

This test bed is instrumented with the following.

1) A reaction wheel to apply a torque τm on the hub.

TABLE I

NUMERICAL VALUES OF THE PARAMETERS OF A

FLEXIBLE SPACECRAFT (ρ = 0.2 Kg/m)

2) An optical encoder to measure the angular position θ of
the hub with respect to the inertial frame.

3) A tachymeter to measure the angular rate θ̇ (t) of the
hub with respect to the inertial frame.

4) A gyrometer to measure the inertial angular rate
β̇(t) = θ̇ (t) + α̇(t) at one tip mass.

The sampling period of the on-board computer is �t = 10 ms.
The controller (38) to be implemented involves three gains
k p, kd , and kc. In this application: kp and kd are tuned on the
system assumed rigid to assign the rigid mode to a second
order with a frequency of ω = 1 rd/s and damping ratio
of 0.7, that is: kp = Itω

2 and kd = 1.4Itω (It = Ih +
2m(l + r)2). The last gain kc = 0.324 corresponding to the
nonlinear integral term in (38) is chosen as great as possible
considering limitation of the real-time system (phase lags due
to discrete-time sampling and actuator bandwidth). Finally, the
discrete-time controller is implemented according to the sketch
of Fig. 5.

The experimental results are obtained in the following
conditions.

1) At time t = 0, the hand-made disturbance is applied on
the system to excite the flexible mode. The open-loop
response is recorded during 3 s.



2) At time t = 3 s, the feedback loop is closed on the
controller with a reference input θ∗ = 5°.

Two controllers are analyzed: the PD controller (25) and
the nonlinear controller (38). Fig. 6 shows the hub-angular
position θ , the control torque τm , the hub-angular rate θ̇ , and
the tip-angular rate β̇. Comparing the different responses, we
can conclude the following.

1) The open-loop responses (from 0 to 3 s) exhibit the very
low damping behavior of the flexible mode.

2) Both controllers allow the reference input θ∗ to be
tracked efficiently.

3) But, from the tip-angular rate response and during
the transient response (between 3 and 5 s), it can be
observed that the nonlinear controller reduces all the
elastic vibrations of the flexible spacecraft by comparing
with a simple PD controller.

The nonlinear controller part of the controller feedback∫
θ̇ (t)α̇(t)dt allows to attenuate the oscillations, which are

present on the response with the PD controller in the steady
state.

VI. CONCLUSION

In this brief, an m-PHS of a flexible spacecraft system
is presented, based on the power-conserving interconnection
property. Then, the passivity theory is used to develop the
nonlinear controller, which takes into consideration and/or
suppresses the beam’s flexibility. The asymptotic stability
result is proved using the total Hamiltonian as a Lyapunov
function candidate. The experimental results are carried out to
assess the validity of the proposed design methodology.

APPENDIX

Equilibrium Conditions

The change of variables

v(x, t) := y(x + r, t)

in the Euler–Bernoulli equation (2.a), the BCs (2.b), (2.d), and
(4) and the equilibrium condition

∂2
xt y(r, t) = θ̇ = 0 ⇔ ∂x y(r, t) = cst = θe

lead to the PDE problem

ρ∂2
t2v(x, t) + EI∂4

x4v(x, t) = 0 (40)

with the following four unusual BCs:
v(0, t) = θer (41)

∂xv(0, t) = θe (42)

∂3
x3v(0, t) = 0 (43)

∂2
x2v(l, t) = 0 (l = L − r). (44)

Applying the method of separation of variables, the elementary
solutions are looked for

v(x, t) = φ(x)η(t)

with

η̈ + ω2η = 0 ⇒ η(t) = Ee jωt (45)

φ
′′′′

(x) − λ4φ(x) = 0 with λ4 = ω2 ρ

EI
(46)

and with two kinds of solutions (or any linear combination of
these).

1) The rigid solution

if ω = 0, then φr (x) = A0 + A1x + A2x2 + A3x3.

2) The flexible solutions

if ω �= 0, then φ f (x) = A cos λx + B sin λx

+ C cosh λx + D sinh λx .

The equilibrium condition reads

∂2
xtv(0, t) = φ

′
(0)η̇(t) = φ

′
(0)E jωe jωt = 0.

with the following two cases.

1) ω = 0, then the BCs (41)–(44) lead to

A0 = θer, A1 = θe, A3 = 0, A2 = 0

⇒ φr (x) = θe(x + r).

2) ω �= 0, then φ
′
(0) = θe = 0 and the BCs (41)–(44)

lead to

A + C = 0

λ(B + D) = 0

λ3(−B + D) = 0

λ2(−A cos λl + C cosh λl) = 0.

Since cos λl + cosh λl = 0 has no real solution

A = B = C = D = 0 and φ f (x) = 0.

Thus, the only solution is: v(x, t) = θe(x + r), that is

y(x, t) = θex .
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