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Compensation of Permanent Magnet Motors Torque Ripple by Means of 
Current Supply Waveshapes Control Determined by Finite Element Method 

S.Clenet, Y.Lef&vre, N.Sadowski, S.Astier and M.Lajoie-Mazenc 
LEEI/CNRS/ENSEEIHT 2, Rue Camichel3 1071 TOULOUSE FRANCE 

A b s t r a c t - - - A  method to determine the supply 
current waveshapes for torque ripple compensation 
In permanent magnet motors without saliency and 
damping bars, by means of a finite element code, is 
presented. First, a theoretical analysis shows that 
current waveshapes producing constant torque can 
be determined. This analysis leads us to an 
expression for the current as a function of the motor 
emf and cogging torque. Several methods, based on 
finite element computation of the magnetic field, 
for computing the cogging torque and emf are 
proposed and compared. A special experimental 
bench for motor torque measurement is used to 
validate the theoretical results. 

without polar pieces, the energy and coenergy are equal: 

where n is the number of phases of the machine; Wa is the 
energy of the magnet in the iron circuit; Ljk is the mutual 
inductance between the phase j and the phase k, (self 
inductance of the phase j when j=k); a a j  is the magnet flux 
through the winding of the phase j and ii is the current in the 
phase j. 

Whence, 

I INTRODUCTION 

Finite element codes for the computation of the 
electromagnetic fields are employed more and more by 
electrical motor designers. These codes enable designers to 
evaluate the performance and the operating qualities of motors 
during design. Several studies based on finite element code 
have shown that it is possible to minimize torque ripple by 
adapting the constructive parameters of the machine [ 11. In 
this paper we show that finite element code can as well be 
used in order to define the input waveshapes of electrical 
motors. 

Indeed, several works have shown that it is theoretically 
possible to reduce torque ripple by controlling the current 
input motors [2] [3]. However, these works only concem the 
elimination of electromagnetic torque ripple and disregard the 
cogging torque ripple. The taking the cogging torque into 
account leads to a more complex calculation since it cannot 
be determined by an analytical method; it requires the use of 
models based on a fine representation of the electromagnetic 
structure. 

Our purpose is to describe a method to compensate for all 
torque ripple by feeding the motor with well fitted current 
waveshapes. 

I1 THEORETICAL ANALYSIS OF THE TORQUE 
PRODUCED 

The torque of an electric machine is given by the 
derivative of the magnetic coenergy with respect to the 
mechanical position of the rotor, keeping the currents 
constant 

T =  (s) 
i=Canst 

If the laminations are not saturated (constant permeability) 
which is generally the case for permanent magnets machines 

The motor studied has no polar pieces and the magnet and 
the air permeabilities are practically equal, so the self and the 
mutual inductances both satisfy for every j,k 

dL'k-0 -- 
de 

(4) 

The emf ej of the phase j is defined as the derivative with 
respect to time of the no-load flux passing through the phases 
j, so the emf ej is given by: 

where R represents the mechanical rotational speed of the 
motor. 

Consequently, for a permanent magnets synchronous 
machine without saliency, the torque is given by: 

T = Tern + Td (6) 

where 

is the cogging torque, 

(7) 

is the electromagnetic to 
The origin of the 

electromagnetic torque 
electromagnetic torque 
between the emf and the 
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Generation of 
n-phased sine curvc I 

is the consequence of interaction between the magnets and the 
magnetic structure of the stator. The relation (6) shows that 
only the electromagnetic torque depends on the currents. 
Therefore, the only way to reduce torque ripple is that the 
electromagnetic torque ripple compensate the cogging torque. 

h f l =  A(@) sin [J(~+W)] 
1ref2 = 4 8 )  sin [p(e+y+a)] 

kef, = A(e) sin [de+y+[n-l]a)] I 

+ 

(9) 

Generation 
of 

provided that the cogging torque and the emf are known. 

he amplitude 

111 THE TORQUE CONTROL STRATEGY 

1 -  

rotor ?:que 

V. APPLICATION OF FINITE ELEMENTS METHOD 

A field calculation code called EFCAD [4] based on the 
finite element method has been used to compute the cogging 

- - -  

where 6 represents the position of the rotor with respect to 
stator, a=2n/p/n and y~ is the phase difference between 
currents and emf. 

In the following study, the phase angle difference w will 
be fixed equal to zero, which corresponds to a maximun 
torque per ampere working for a smooth poles machine when 
the currents are sinusoidal. Considering the torque expression 
(6) and assuming that the actual currents perfectly follow their 
references, the electromagnetic torque becomes: 

(10) 
e@) sin[ p (6-(i-l)a)] 

n Tem=A(e) C 
i=l 

which gives for the total torque: 

With the chosen control method, the torque is constant 
and to Tref if: 

moving band technique and gives results in good agreement 
with exueriments r41. IV COMPENSATING CURRENTS 

V-1-. Computation of the cogging torque 
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The cogging torque has been calculated by means of 
EFCAD, simulating the unexited rotating motor at a constant 
speed. This simulation has been worked out with a rotation 
step equal to the discretization step of the moving band. The 
result is presented in figure 3. 

met. angle (degl 

Figwe 2 : Mesh of the motor with the moving band. 

V-2-. Computation of the emf 

Two methods which enable us to compute the emf are 
ptesewd-. 

The first is by the computation of the emf by deriving the 
no-load flux. Owing to the definition, the emf of one phase is 
the derivative of the offcircuit flux in this phase with respect 
to time: 

where ei is the emf in the phase i and @aiis the flux in the 
phase i 

The simulation of the unfed working of the motor gives 
simultaneously the cogging torque and the flux @i in each 
phase i as a fonction of the position (Figure 3). To compute 
the derivative, the simple Euler formula has been first used: 

where T qresents  the sampling period, so thus: 

T=f2A8 (15) 

A0 is the rotation step used and !2 is the chosen rotation 
speed. This formula introduces some errors and particularly a 
phase lag with respect to actual emf approximatively equal to 
half the rotation step. This small phase lag is enough to 
introduce some mrs in the computation of the compensation 
currents by means of (12) which generates torque ripple as 
shown in figure 4. This latter result disagrees with the 
theoretical analysis. Furthermore, we found out that a denser 
mesh does not bring improvement. 

So, to improve the calculation of emf from the flux, 
another formula has been used. For a given position, the emf 
per phase can be calculated, using the two former and the two 
latter positions, thus: 

Consequently, only the emf corresponding to the two 
steps behind can be computed, at each step of calculation. So, 

0 

-2 1 I , ,  I , ,  1 I , ,  , , , , 
0-57f lux (WbI 

mec. angle Iaegl , I I I , ,  , ,  , ,  I i 4 - 6 1 ,  
0 50 I00 160 

Figure 3: Simulated cogging torque and neload flux for the 
threephases. 

emf can as well be computed from the 
known currents. Thus, if only 
constant current I, then the static 

-~ 

which then gives for the emf, 

I 

Thus, computing the static and cogging 
possible to infer the emf of the three phases. 
step to calculate simultaneously the three 
forces, the equations of the fields co 
succesive supply of the three 
simultaneously. This is possible si 
saturated @ the field equations are linear. 

one phase by one Ampere and the inferred emf by (18) are 
The simulated static torque componding to the supply of 



2022 

2 

- 
0 

JEEE TRANSACTIONS ON MAGNETICS, VOL. 29, NO. 2, MARCH 1993 
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Figure 5 : Calculated emf by the derivative of the no-load flux 

t o r q u e  ( N - m l  

0 50 io0 i 60 
Figure 6 : Upper figure : compensated torque (continuous 
curve) and uncompensated torque wit sinusoidal current 
(dashed curve). Lower figure : the three compensation 
CUllWts. 

presented in the figure 7. Few differences can be observed 
with the emf calculated by derivation. The currents computed 
by means of (12) are similar to those presented in the figure 
5. 

Meanwhile, if the compensated torque computed by means 
of the two methods of emf calculation axc compared in details 
as in figure 8, it can be observed that the torque produced by 
the currents computed from the static torque has fewer ripple 
than the torque produced by the currents computed from the 
derivative of the no-load flux. 

This second method of emf calculation Seems better than 
the first one and furthermore an emf computation can be done 
at each rotation step. 

VI EXPERIMENTAL, VERIFICATION 

We have at one's disposal a special torque measurement 
bench on which a torque control loop has been realised to 
control the instantaneous amplitude A(8) as a way of 
producing a constant torque. The torque and the current 
according to the position can be recorded. The compensated 
torque is presented in figure 9 where it can be compared with 
the torque measured in the case of a sinusoidal supply. The 
ripples have been divided by 20. The currents are presented in 
figure 10 and they can be compared with the simulated 
currents (figure 5). We find out few differences which 
indirectly validates the proposed method of torque ripple 
compensation. 

Figure 7: upper figure: simulated static torque. 
lower figure: calculated emf from the simulated static torque 

CONCLUSION 

In this paper, we have shown that it is theoretically 
possible, knowing the cogging torque and the emf of a 
permanent magnets synchronous machine without saliency 
and damping bars. to compute the currents which enable us to 
obtain a constant torque. 

To compute the cogging torque and the emf, a field 
calculation software using finite elements has been used. The 
movement is taken into account by means of the moving 
band technique associated with the Maxwell stress tensor 
method to compute the torque. 

Two methods of calculation of compensation currents 
have been tested, The first one is based on the emf calculation 
from the derivative of the flux. It gives good results provided 
a well-fitted method of derivation is used but the emf cannot 
be computed at each rotation step. The second method is based 
on the emf calculation from the static torque. This latter 
method gives better results and furthermore enables the emf 
computation at each step of calculation and rotation. 

The proposed method of torque compensation has been 
validated using a special experimental bench. 

mec. angle ' (degl  
3 . 9 9 , 1 1 1 1 1  I 1  1 I 1 , J I  i 

0 50 100 150 

Figure. 8 : Simulated torque produced by currents computed 
by means of the derivative of the no-load flux (dashed curve) 

and by means of the static torque. 
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Figure 9 : Compensated torque (continuous curve) compared 
to toque obtained with sinusoidal current (dashed curve) 

measured on a torque bench. 
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