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Hemodynamically based functional neuroimaging techniques, such as BOLD fMRI and PET, provide indirect

measures of neuronal activity. The quantitative relationship between neuronal activity and the measured

signals is not yet precisely known, with uncertainties remaining about the relative contribution by their

metabolic and hemodynamic components. Empirical observations have demonstrated the importance of the

latter component and suggested that micro-vascular anatomy has a potential influence. The recent

development of a 3D computer-assisted method for micro-vascular cerebral network analysis has produced

a large quantitative library on the microcirculation of the human cerebral cortex (Cassot et al., 2006), which

can be used to investigate the hemodynamic component of brain activation through fluid dynamic modeling.

For this purpose, we perform the first simulations of blood flow in an anatomically accurate large human

intra-cortical vascular network (~10000 segments), using a 1D non-linear model taking account of the

complex rheological properties of blood flow in microcirculation. This model predicts blood pressure, blood

flow and hematocrit distributions, as well as volumes of functional vascular territories, and regional flow at

voxel and network scales. First, the influence of the prescribed boundary conditions (BCs) on the baseline flow

structure is investigated, highlighting relevant lower- and upper-bound BCs. Independent of these BCs, large

heterogeneities of baseline flow from vessel to vessel and from voxel to voxel, are demonstrated. These

heterogeneities are controlled by the architecture of the intra-cortical vascular network. In particular, a

correlation between the blood flow and the proportion of vascular volume occupied by arterioles or venules,

at voxel scale, is highlighted. Then, the extent of venous contamination downstream to the sites of neuronal

activation is investigated, demonstrating a linear relationship between the catchment surface of the activated

area and the diameter of the intra-cortical draining vein.

Introduction

The morphological, topological and functional study of cerebral

microcirculation is a topic of growing interest in the communities of

both vascular physiology and neuroimaging (Cassot et al., 2006;

Heinzer et al., 2006; Risser et al., 2007; Lauwers et al., 2008; Weber et

al., 2008; Reichold et al., 2009). Cerebral microcirculation is linked to a

large number of applications: angiogenesis and neo-angiogenesis,

long term remodeling in ageing and/or disease (hypertension,

metabolic syndrome, neurological disease such as Alzheimer's),

patho-physiology (cerebro-vascular disease, brain tumors), and, of

course, functional neuroimaging.

Hemodynamically based functional imaging methods (whether

Positron Emission Tomography (PET) or Blood Oxygenation Level

Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI),

which is the method most widely used for brain mapping and for

studying the neural basis of human cognition)make use of the coupling

which exists betweenneuronal activity and the associated local increase

in both blood flow and energy metabolism. To put it simply, neural

activation is accompanied by a local increase in the diameter of the

feeding arterioles (neuro-vascular coupling). This induces a local

increase in blood flow and volume, but the resulting oxygen excess is

only partially used by the neurons for aerobic metabolism. As a result,

the relative concentration of paramagnetic deoxyhemoglobin in the

blood decreases locally. This lowers the magnetic field distortions

between blood vessels and the surrounding tissue, causing a deceler-

ation of the magnetization transverse relaxation process. Finally,
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activated and non-activated brain areas differ in transverse relaxation

times T2 or T2*, thus providing a contrast in T2- or T2*-weighted BOLD

images (obtained by SE or GRE sequences, respectively). So, the BOLD

signal is an indirectmeasure of neuronal activity (D'Esposito et al., 2003;

Logothetis and Wandell, 2004; Uludağ et al., 2009).

However, the quantitative relationship between neuronal activity

and the BOLD signal is not yet precisely known, with uncertainties

remaining about the relative contribution by its vascular and

metabolic components. In particular, regional differences in BOLD

reactivity between rest (baseline) and active neuronal states, for

example between primary and association cortex, have been observed

(Ances et al., 2008) but are poorly understood. Regional differences in

the baseline cerebral blood flow (CBF) have also been observed (Klein

et al., 1986), as well as regional differences in CBF and BOLD reactivity

when hemodynamic variations independent of neural activity are

induced (e.g. by hypercapnia, acetazolamide) (Davis et al., 1998;

Rostrup et al., 2000; Ances et al., 2008). Taken together, these

empirical observations evidence the importance of the hemodynamic

(cerebrovascular) component of the BOLD signal and suggest the

possible influence of the micro-vascular anatomy. In particular, it has

recently been pointed out that, due to the completely different

vascular densities and architecture of different cortical areas, directly

comparing the fMRI results between these areas would be inappro-

priate (Harrison et al., 2002; Weber et al., 2008; Logothetis, 2008). In

addition, the influence of micro-vascular alterations should also be

taken into account when interpreting BOLD fMRI studies in normal

ageing or disease (D'Esposito et al., 2003).

In this context, Weber et al. (2008) recently emphasized that “a

better and more quantitative understanding of cerebral blood flow

control could be obtained through fluid dynamic modeling” and that,

“for this purpose, tomographic assessments of the vasculature in large

cortical fields of view are necessary to obtain the 3-dimensional

topology of the vascular network.” Fluid dynamic theoretical and

computational models have been successfully developed and validated

in quasi bi-dimensional organs, such as the rat mesentery, for which

complete experimental data sets of morphological and topological

parameters have been available for nearly twenty years (Pries et al.,

1990). Based on the network concept (Gaehtgens, 1992), these models

have been able to take account of large heterogeneities in vascular

architecture (diameters and lengths of vessels, vascular density) and

topology (hierarchical organization, deviation from symmetry) as well

as in hemodynamic variables (hematocrit, blood velocity, transit time),

which constitute a fundamental characteristic of micro-circulation,

including intra-cortical micro-circulation (Pawlik et al., 1981;

Kuschinsky and Paulson, 1992; Villringer et al., 1994). They have

provided a conceptual framework for understanding the quantitative

discrepancies between the hemodynamic behavior observed on the

whole organ scale (perfusion rate, exchange surface) and extrapolations

based on direct observations performed in single “representative”

microvessels.

Complementing these models developed for blood flow simula-

tion in micro-vascular networks, several powerful methods for

modeling oxygen transfers from any 3-dimensional network

supplying a finite region of tissue have been presented (Secomb et

al., 2004; Fang et al., 2008). In contrast to previous models based on

the classic Krogh cylinder approach, these approaches are not

restricted to configurations of uniformly distributed parallel vessels

and require no a priori assumption regarding the extent of the tissue

region supplied by each vessel. Also, these approaches can be

adapted to take account of the heterogeneity of hematocrit and to

study its functional role regarding oxygen distribution to tissues.

However this would necessitate coupling with a network model for

blood flow simulation. To the best of our knowledge, apart from two

studies of oxygen transport in the rat cortex (Secomb et al., 2000;

Fang et al., 2008), these models have never been applied to intra-

cortical networks, much less to large anatomically accurate human

micro-vascular networks, mainly because of the lack of precise

morphometric and topological data.

In order to provide quantitative bases for the interpretation of fMRI

experiments, alternativemodels have been suggested for describing one

or more steps of the complex relationship between neuronal activation

and variations in the BOLD signal (Buxton et al., 1998, 2004; Mandeville

et al., 1999; Aubert and Costalat, 2002; Zheng et al., 2002; Zheng and

Mayhew,2009;Valabrègueet al., 2003;Piechnik et al., 2008). These steps

can be identified as linking: (1) neuronal activation to arteriolar dilation

(neurovascular coupling); (2) arteriolar dilation to changes in flow;

(3) changes in flow to changes in blood volume and in oxygen transfers

to tissues, as well as the related changes in the spatial distribution of

deoxyhemoglobin; and (4) changes in deoxyhemoglobin distribution to

modifications of the BOLD signal. In these previous studies, except for

Piechnik et al. (2008) who focused on steps (2) and (3) in the context of

hypercapnia, the main focus was on steps (3) and (4). Steps (1) and (2)

were schematically modeled either by directly prescribing the temporal

dynamics of the flow entering the system (Buxton et al., 1998; Aubert

and Costalat, 2002; Valabrègue et al., 2003) or by prescribing an ad hoc

non linear relationshipbetween the time-courseof the imposed stimulus

and the inlet flow (Zheng et al., 2002; Buxton et al., 2004). In the same

way, in Mandeville et al. (1999), the temporal evolution of arteriole

resistance and venous compliance were adjusted to match the

experimental data for cerebral blood flow and volumes. In addition, in

these studies, a compartmental approach was adopted for modeling

either blood flow or the oxygen transfers from blood to tissue, which

drastically simplifies the vascular geometry, whatever the number of

compartments considered. As a result, these models only focus on the

temporal dynamics of the BOLD signal and cannot reproduce the spatial

characteristics of the hemodynamic response, such as the surround

negativity observed inwhisker barrel cortexwithoptical imaging (Coxet

al., 1993; Woolsey et al., 1996; Devor et al., 2007). More importantly,

they cannot be used to investigate the characteristic spatial scales of the

flow response. Still, these characteristic spatial scales fundamentally

limit the spatial specificity of BOLD fMRI techniques, despite the growing

interest in obtaining improved spatial resolution in the context of high

field fMRI (Duong et al., 2001; Harel et al., 2006).

In order to make progress in describing the spatio-temporal

response to brain activation, Boas et al. (2008) have introduced what

they called a vascular anatomical network (VAN)model. In thismodel,

the vascular anatomy was represented by a 190-segment parallel,

symmetric dichotomous network linking one single arteriole back to a

single venule through 64 capillaries. The central role of arteriolar

dilations in neurovascular coupling was investigated by focusing on

the network steady state or transient response to localized variations

of the arteriolar diameter. These were directly modeled as localized

variations of the hydrodynamic resistance. In parallel, Reichold et al.

(2009) have used an anatomical database obtained by synchrotron

radiation X-Ray Tomography in rat brains to simulate cerebral blood

flow, but only qualitative results have been presented. However, this

recent work highlighted the tremendous simplifications of the VAN

description. In fact, the intra-cortical vasculature is a fully three-

dimensional structure, linking asymmetric arteriolar and venular

quasi-fractal trees through a mesh-like capillary structure, without

obvious spatial segregation between arterial and venous territories.

Our group has recently produced a large quantitative data library on

the architecture of the microcirculation of the human cerebral cortex

(Cassot et al., 2006, 2009; Lauwers et al., 2008). This large quantitative

data library can be used to investigate the intra-cortical vascular

structure/function relationship, with particular attention to the hemo-

dynamic modifications induced by variations of vessel diameters. For

this purpose, blood flow is simulated using the one-dimensional non-

linear network model presented and validated by Pries et al. (1990),

slightly modified to handle larger networks (e.g. more than 10,000

nodes and segments). In this model, the complex rheological properties

of blood flow in the microcirculation, i.e. Fahraeus, Fahraeus–Lindquist



and phase separation effects (Pries et al., 1996) are described by

phenomenological laws,whereas inBoas et al. (2008) andReichold et al.

(2009), hematocrit and blood viscosity in each vessel segment are fixed

a priori depending on the segment diameter and hierarchical position in

the network. The main methodological difficulty is associated with the

truncation of the data set used, which is a direct consequence of the

relatively small thickness of the anatomical preparations (thick

sections). To our knowledge, this is an unavoidable constraint as far as

human anatomical data are concerned, because no library with thicker

range is currently available. Thus, properly prescribing the boundary

conditions at the frontiers of the domain (e.g. ~3000 boundary nodes) is

a major challenge (Reichold et al., 2009). However, several approaches,

which define the type of interactions between the territory under study

and the neighboring territories, can be considered: assigned pressure,

shear stress or flow rate (possibly as a function of local network

characteristics). For example, Reichold et al. (2009) have used a no-flow

boundary condition, while noting that this is possibly incorrect. To

overcome this difficulty, the strategy conducted in the present paper is

to carefully investigate the influence of the prescribed boundary

conditions on the flow structure at different scales, in baseline

conditions (no vasodilation). More specifically, with a view to

methodological validation, the first objective of the present work is to

identify relevant boundary conditions providing lower- and upper-

bound limits to the network behavior, surrounding the physiologic

behavior. With such limiting conditions, the available data set can be

used for fluid dynamicmodeling. The second objective is to seek for the

characteristics of the baseline flow relevant to functional imaging (such

as venular territories, Turner, 2002).

In a companion paper (Lorthois et al., 2010), flow re-organizations

induced by global arteriolar vasodilations, e.g. mimicking hypercap-

nia, are analyzed. Hypercapnia is used to induce an isometabolic

global increase in cerebral blood flow (Rostrup et al., 2000) and to

provide a calibration reference for fMRI studies (Davis et al., 1998;

Ances et al., 2008). Furthermore, the effects of localized arteriolar

vasodilations, which are representative of a local increase inmetabolic

demand (neuro-vascular coupling), are analyzed with particular

attention to the spatial scales of the flow response (vascular point

spread function) and to emerging spatial patterns such as surround

negativity (Devor et al., 2007; Boas et al., 2008). In this last context, it

is noteworthy that the existence of negative BOLD and its link with

neuronal activity is still controversially discussed (Shmuel et al.,

2002).

Materials and methods

Data sets

The data sets used for analysis have been previously obtained by

Cassot et al. (2006) from thick sections (300 μm) of a human brain

injected with Indian ink, from the Duvernoy collection (Duvernoy et

al., 1981). The brain came from a 60 year old female who died from an

abdominal lymphoma with no known vascular or cerebral disease.

The images were obtained by confocal laser microscopy, with a spatial

resolution of 1.22 μm×1.22 μm×3 μm. The procedures used for image

acquisition, mosaic construction and vessel segmentation, as well as

their validation, have been described in detail elsewhere (Cassot et al.,

2006; Fouard et al., 2006). In this way, a complete automatic

reconstruction of the vascular network in a large volume (1.6 mm3)

of cerebral cortex was obtained, stretching over 7.7 mm2 along the

lateral part of the collateral sulcus (fusiform gyrus), i.e. mosaic M1 in

Cassot et al. (2006). For further processing, this reconstruction was

stored in an ASCII file. Each line of the file corresponded to a vessel

segment, i.e. a blood vessel between two successive bifurcations, and

contained the x, y, z coordinates of its origin and extremity as well as

its mean diameter and length. The main vascular trunks were

identified manually and divided into arterioles and venules according

to their morphological features, following Duvernoy's classification

(Duvernoy et al., 1981; Reina-De La Torre et al., 1998). Due to the

limited depth of the brain sections used, as well as to intrinsic

limitations in the acquisition technique, numerous vessels were

interrupted at the upper and lower surfaces of the section. The main

interrupted vessels were classified as arterial or venous, looking for

morphological information on the contiguous sections which were

aligned according to the pattern of the gyrus and the main vessels

crossing branches.

Micro-vascular network

The ASCII file (11930 lines) describing the entire reconstructed

network was first processed to remove all the isolated segments, i.e.

segments not connected through any other segment to one of the

arterioles or venules originating from the sulcus. In this way, the

remaining network (10318 segments, see supplementary material)

only had one connected component. Its connectivity was computed

and stored in the form of an adjacency list (Weisstein, 1998), whose

symmetry was checked. The mean radius and length of each segment,

rescaled by a factor of 1.1 to account for the shrinkage of the

anatomical preparation, were also stored in the form of a list.

The intra-cortical vascular network can be considered as the union

of a random homogeneous capillary mesh and of quasi-fractal trees

with a lower cut-off corresponding to the characteristic capillary

length (Lorthois and Cassot, 2010). In other words, the topological

structure of intra-cortical arterioles and venules is tree-like whereas

the capillary network is mesh-like (Cassot et al., 2006; Lauwers et al.,

2008; Fung, 1996). Thus, for further analysis, each segment was

classified as capillary or non-capillary based on a diameter threshold.

As in Lauwers et al. (2008), this threshold was fixed to 9.9 μm
following Cassot et al. (2006) and taking into account the rescaling

factor of 1.1.

Numerical method for flow calculation

A 1D non-linear network model taking into account the complex

rheological properties of blood flow in the microcirculation (i.e.

Fahraeus, Fahraeus–Lindquist and phase separation effects) was used.

The model was adapted from Pries et al. (1990) to handle large

networks. The notations used are summarized in Table 1. Briefly, the

flow Q ij through each segment (i,j) was related to the pressure drop

(Pi−Pj ) by Poiseuille's law:

Q ij = Gij Pi−Pj

! "

; ð1Þ

where Pk denotes the pressure at node k and Gij is the segment

hydrodynamic conductance given by:

Gij = πd
4
ij = 128μ ijlij

! "

: ð2Þ

In this expression, dij and lij are the segment diameter and length,

respectively, and μ ij is the apparent viscosity of blood. To take the

Fahraeus–Lindquist effect into account, the following in vivo phenome-

nological relationship describing the variations of μij as a function of

vessel diameter (expressed inmicrometers) anddischargehematocritHij

was used (Pries et al., 1996):

μ ij = μp 1 + μ 0:45−1ð Þ: 1−Hij

! "C
−1

# $

= 1−0:45ð Þ
C
−1

! "

: dij = dij−1:1
! "! "2

% &

× dij= dij−1:1
! "! "2

; ð3Þ



where μp represents the viscosity of plasma, considered as a

Newtonian fluid (μp=1.2 cP), μ0.45 represents the apparent viscosity

of blood for a discharge hematocrit of 0.45:

μ0:45 = 6:exp −0:085dij

! "

+ 3:2−2:44:exp −0:06d
0:645
ij

! "

; ð4Þ

and C is the following coefficient:

C = 0:8 + exp −0:075dij

! "

: −1 + 1= 1 + 10
−11

d
12
ij

! "! "h i

+ 1= 1 + 10
−11

d
12
ij

! "h i

:

ð5Þ

Assuming a known hematocrit H̃ij in each segment of the network,

the application of Poiseuille's law to each tube, along with the

conservation of mass at each interior node (i):

ΣjGij Pi−Pj

! "

= 0; ð6Þ

led to a sparse system of linear equations, which was stored in a row-

indexed sparse storage mode (Press et al., 1992). Given the pressure or

theflowrate at each boundary node (see “Boundary conditions”below),

this sparse system can be solved using a biconjugate gradient method

(Press et al., 1992) to provide the pressure at each interior node and,

hence, the flow in each tube. Note that Eq. (6) is valid when considering

impermeable vessels, which is a reasonable approximation in the

cerebral vascular bed due to the presence of the blood-brain barrier

(Paulson, 2002).

However, due to the phase separation effect at diverging micro-

bifurcations, the hematocrit in each segment is not a priori known. In fact,

at diverging micro-bifurcation, erythrocytes and plasma may be

distributed non-proportionally between the daughter vessels, one of

them receiving a higher erythrocytes volume fraction than the feeding

vessel, and the other receiving a lower fraction (Pries et al., 1989). Careful

quantitative in vivo experiments performed in the rat mesentery have

enabled the determination of the relevant parameters to describe the

phase separation effect: daughter vessels (da and db) to feeding vessel

(d*)diameter ratios, fractions of bloodflow from the feeding vessel being

diverted into both daughter branches (FQB
a and FQB

b), and inlet discharge

hematocrit H* (Pries et al., 1989). An empirical law, adapted from these

original experimental data in order to “render predictions more robust

for extreme combinations of input hematocrit anddiameter distribution”

(Pries et al., 2003), relates the fractions of erythrocyte flow from the

feeding vessel being diverted into both daughter branches (FQE
a and FQE

b)

to these parameters and to d*, the diameter of the feeding vessel.

However, fromdimensional arguments, the erythrocyte to feeding vessel

size ratio should be a relevant non-dimensional parameter. Thus, this

empirical law can be modified to describe the behavior of human

erythrocytes by rescaling the terms weighting for d* by a factor 0.86, i.e.

the cubic root of the mean corpuscular volume of rat erythrocytes

(56.51 fl) to human erythrocytes (89.16 fl) ratio (Baskurt et al., 1997).

The relationship used in this study was then:

j
FQ

a
E = 0; if FQ

a
B≤X0;

logit FQ
a
E

) *

= A + B logit FQ
a
B−X0

) *

= 1−X0ð Þ
+ ,

; if X0bFQ
a
Bb1−X0;

FQ
a
E = 1; if FQ

a
B≥1−X0;

ð7Þ

where logit (x)=ln[x/(1-x)] and A, B and X0 are non-dimensional

parameters given by:

X0 =
P
X

P
0
1−H*ð Þ= d* and

P
X

P
0
= 1:12μm; ð8Þ

A = −
P
A d

a2
−d

b2
! "

= d
a2

+ d
b2

! "h i

1−H*ð Þ= d* and
P
A = 15:47μm;

ð9Þ

B = 1 +
P
B 1−H*ð Þ= d* and

P
B = 8:13μm: ð10Þ

In addition, in order to avoid obtaining unrealistically high values

of hematocrit, a threshold of 0.8 for the hematocrit in the daughter

brancheswas prescribed. The hematocrit in the other branchwas then

calculated by mass conservation. Finally, in order to avoid numerical

instabilities, the hematocrit was set to zero in daughter branches with

flow below a given threshold (10−4 nl/s).

The phase separation effect induces tremendous heterogeneity of

the hematocrit among vessels in micro-vascular networks, thus

coupling blood flow dynamics to micro-vascular architecture. There-

fore, an iterative procedure allowing the determination of the

hematocrit in each vessel was needed (Pries et al., 1990). At each

iteration (n), once the linear system of equations (6) had been solved

assuming a known distribution of hematocrit H̃
nð Þ

ij , the network was

oriented in the direction of blood flow by sorting its nodes according

to decreasing pressure. Given the hematocrit at every input segment

(see Boundary conditions below), relationship (7) was then sequen-

tially used to determine a predicted value H ij
(n) of the hematocrit in

each segment, using the flow rate values deduced by Eqs. (1)–(3)

from the calculated pressure distribution and the assumed hematocrit

H̃
nð Þ

ij . For numerical stabilization, the distribution of hematocrit used at

the beginning of the next (n+1) iteration was determined by a

predictor–corrector scheme as:

H̃
n+1ð Þ

ij = αH̃
nð ÞÞ

ij + 1−αð ÞH̃
nð Þ

ij ; ð11Þ

where α is strictly comprised between zero and one, the lowest value

providing the highest stabilization but the slowest convergence. In

practice,αwas set to 0.2. Iterationswere stoppedwhen the distribution

of erythrocyte flow remained unchanged between two successive

iterations, i.e. ||H̃
n+1ð Þ

ij Q ij
(n+1)

- H̃
nð Þ

ij Q ij
(n)

||bε (ε=5.10−3 nl/s). This also

ensured the convergence of the pressure distribution. The validity of the

Table 1

Nomenclature.

A: Phenomenological coefficient used in Eqs. (8)–(10)

B: Phenomenological coefficient used in Eqs. (8)–(10)

C: Phenomenological coefficient used in Eqs. (3) and (5)

D: catchment surface of an activated area (Turner, 2002)

FQ: fractional flow

G: hydrodynamic conductance

H: discharge hematocrit

K: coefficient for assigned flow rate boundary condition

P: Pressure

Q: Flow

V: volume

X0: Phenomenological coefficient used in Eqs. (7)–(10)

d: vessel diameter

l: vessel length

r: vessel radius

γ: exponent for assigned flow rate boundary condition

μ: apparent viscosity

Subscripts

E: erythrocyte

B: blood

cap: capillaries

i: node number

ij: edge between node i and node j.

p: plasma

v: vein

Superscripts

*: feeding vessel

a: first daughter vessel at a diverging bifurcation

b: second daughter vessel at a diverging bifurcation

in: input



results was checked by verifying blood and erythrocyte mass conser-

vation at each node.

Boundary conditions

As indicated above, the pressure or the flow rate at each boundary

node, i.e. each node connected to only one other node, must be

prescribed in order to solve the linear system of equations (6). These

boundary nodes can be divided into two main categories: the nodes

situated at the frontiers of the domain, including the extremities of

vessels interrupted at the upper and lower surfaces of the section; and

the nodes embedded in the domain where some interrupted vessels

can also be found. In the second category, a zero flow condition

(equivalent to removing the interrupted segments) was used. In the

first category, the boundary nodes can be further classified as follows:

- arteriolar nodes, if belonging to an arteriolar tree; in this case, the

pressure is set to 75 mmHg (Espagno et al., 1969 cited by Zagzoule

and Marc-Vergnes, 1986) at the main arteriolar trunk of each tree

(nodes highlighted by red cylinders in Fig. 1) and a zero flow

condition is assigned to all other interrupted segments (nodes

highlighted by yellow cylinders in Fig. 1),

- venular nodes, if belonging to a venular tree; in this case, the

pressure is set to 15 mmHg (Zagzoule andMarc-Vergnes, 1986) at

the main venular trunk of each tree (nodes highlighted by green

cylinders in Fig. 1) and a zero flow condition is assigned to all other

interrupted segments (nodes highlighted by blue cylinders in

Fig. 1),

- capillary nodes; in this case, several boundary conditions (BC)

have been tested: a zero flow condition (Case 1), an assigned

capillary pressure condition (Case 2) or an assigned flow rate

condition (Case 3), see below.

These threedifferent conditions, prescribed at capillary nodes, define

the type of interactions between the territory under study and the

neighboring territories. They are summarized in Table 2 and described

with further detail below:

- Case 1: a zero flow condition is used. The territory under study is

therefore totally independent of the neighboring territories: flux

lines are parallel to the frontier and no exchange of fluid is allowed.

As a consequence, this condition minimizes the regional blood

flow;

- Case 2: thepressure is assigned to a constantvalue (Pcap). In this case,

the methodological difficulty is due to the coupling between

network geometry and flow. For example, in the case of global

arteriolar vasodilations (e.g. mimicking response to hypercapnia),

even if the arteriolar (input) pressure and the venular (output)

pressure can be kept constant as a first approximation (because the

resistance of larger upstream and downstream vessels is small

compared to the resistance of intracortical vessels), it is clear that the

mean pressure of the capillary bed must be affected. In order to

prescribe a self-consistent value for the pressure at capillary

boundary nodes, Pcap can be adjusted such that the total flow

feeding the network through the arteriolar trunks equals the total

flow drained by the venular trunks. In other words, Pcap can be

adjusted such that the net flux contributed by all the boundary

capillary segments is null. As a consequence, the net flux leaving the

studiedbrain region, through capillaries, to supplyneighboringareas

is exactly compensated by the net flux arriving from neighboring

areas through capillaries. This is a reasonable assumption because

the depth of the section is greater than the size of the Representative

Elementary Volume (REV)1 of the capillary bed (Lorthois and Cassot,

2010). In this case, the frontiers of the domain are iso-pressure

surfaces (P=Pcap), except in the vicinity of the arterial and venous

trunks. Thus, for a first approximation, the flux lines should be

perpendicular to the frontier, maximizing the exchanges of fluid

with the neighboring tissue. As a consequence, this condition

maximizes the regional blood flow;

- Case 3: the flow rate is related to the capillary radius by a power

law: Qcap=Krcapγ, where rcap is the radius and K and γ are the

coefficients obtained from adjustment of the results of Case 1 and

Case 2 (see Results and Table 3). Moreover, contrarily to Case 2, the

flow direction (incoming or outgoing flow at the capillary node)

does not result from the calculation but must also be assigned. In

practice, the flow direction is chosen randomly.

α
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Fig. 1. Left: connectivity representation of a human microvascular network (collateral sulcus of the temporal lobe) containing 8832 nodes (including 2930 boundary nodes) and

10318 segments (including 2930 boundary segments). For clarity of representation, diameters have been increased fourfold compared to lengths. Capillary segments are displayed in

light blue and non-capillary segments in black. Arteriolar and venular boundary segments are indicated by colored cylinders: the main arteriolar trunks are displayed in red whereas

all other interrupted arteriolar segments are displayed in yellow; the main venular trunks are displayed in green whereas all other interrupted venular segments are in blue. Latin

(resp. Greek) symbols indicate arterial (resp. venous) trunks that will be studied in more detail in the remainder of this paper). Right: Enlarged view of the area delimited by the red

box in the left image, exhibiting one arteriolar and one venular intra-cortical trees. In the arteriolar tree, blood flow is from bottom (sulcus) to top (white matter): blood enters

through node A1 and exits toward neighboring section through two nodes (A1*). In the venular tree, blood flow is from top (white matter) to bottom (sulcus): blood enters from

neighboring section through three nodes (V1*) and is drained through the main venular trunk V1.

1 In the usual sense given in the porous media literature, the scale at which a porous

medium may be considered as a continuum (for more details see Bear, 1972).



In addition, the hematocrit at each input segment, i.e. boundary

nodewith flow entering the region under study, must be prescribed in

order to account for phase separation (Eq. (7)). A uniform value (Hin)

is assigned to themain arteriolar trunks. In addition, the hematocrit in

capillary beds shows a large heterogeneity and its characteristic

statistical distribution exhibits two linear segments and a peak around

the systemic hematocrit (Pries et al., 1990). To account for this, the

hematocrit of capillary nodes is randomly chosen according to the

following ad-hoc normalized probability distribution function:

j
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in
! "2

% &
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in
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This distribution was implemented from a uniform deviates

random generator using a transformation method (Press et al., 1992).

Data treatment

The computational method presented above gives the pressure at

each node and the flow rate and hematocrit in each segment, i.e. a

large number of data, which can be analyzed from different points of

view. First, these individual data, as well as related quantities derived

for each segment (velocity, mean pressure, wall shear stress,

erythrocyte flow, etc) can be analyzed directly by studying their

frequency distributions, spatial maps or dependence between each

other (e.g. flow in each segment as a function of segment radius).

Second, these data can be averaged over parallelepiped regions of

interest (ROIs) of depth equal to the depth of the thick section.

Averaging is performed depending on the variable under study to

retain its physical significance. For example, the ROI blood flow is

calculated as the total flow entering the ROI through any of its

segments. The sides of the parallelepipeds in the plan of the section

(250 or 500 μm) is chosen such that the volume of each ROI is small

compared to the entire volume of the mosaic but large enough to

contain a significant number of segments. The 500 μm voxel size

corresponds to the typical spatial resolution of fMRI at 7Tesla (Yacoub

et al., 2007). Finally, integrated quantities (i.e. quantities character-

izing blood flow at the scale of the network, e.g. network resistivity,

regional blood flow, mean transit time, network Fahraeus effect, etc.)

can be calculated.

Results

Micro-vascular network

Fig. 1 displays the intra-cortical network structure corresponding

to mosaic M1 in Cassot et al. (2006). This structure includes a total of

10318 segments and 8832 nodes. A large proportion of these nodes

(~33%) corresponds to the 2930 boundary nodes. Among these

boundary nodes, 42 arteriolar and 45 venular nodes were identified,

including 11 main arteriolar and 12 main venular trunks.

As reducing the proportion of boundary nodes is not achievable in

the short term (see Discussion), it is essential to investigate the

influence of the prescribed BC on the baseline flow in the network, i.e.

before studying any variations of the vessel diameters. Therefore, the

question of whether it is possible to identify BC providing lower- or

upper-bound limits to the network behavior is addressed in the next

paragraph.

Baseline hemodynamics and influence of boundary conditions

Regional blood flow

The regional blood flow can be calculated as a function of the BC

prescribed, given the structure of the intra-cortical vascular network

obtained fromourquantitative library, thepressure drop from75 mmHg

in feeding arterioles to 15 mm Hg in draining venules, and the inlet

hematocritHin. Table 4displays the values obtained, expressed inml/mn/

(100 g). It is not surprising that, whatever the BC, the regional flow

increases with decreasing Hin. In addition, for a given Hin, the assigned

pressure condition (Case 2)maximizes the regional blood flowwhile the

zero-flow condition (Case 1) minimizes the regional blood flow, as

expected (see Materials and methods).

For Hin=0, the regional blood flow is well over the physiological

value of 50 to 65 ml/mn/(100 g) observed in graymatter (Rostrup et al.,

2000), whatever the BC. In contrast, for Hin=0.4, the regional blood

Table 2

Summary of the prescribed boundary conditions.

Node type Case Boundary Condition Comment

Arterial nodes Main arteriolar trunks All P=75 mm Hg –

Other nodes All Q=0 –

Venular nodes Main veinular trunks All P=15 mm Hg –

Other nodes All Q=0 –

Capillary nodes Case 1 Q=0 –

Case 2 P=Pcap Pcap adjusted so that the net flux contributed by boundary capillary segment is null

Case 3a Q=Krcap
γ K and γ obtained by adjustment of the results computed with Case 1 (see Table 3)

Case 3b Q=Krcap
γ K and γ obtained by adjustment of the results computed with Case 2 (see Table 3)

Table 3

Best fit for coefficients of power law Qcap=Krcap
γ as a function of Hin and boundary

condition assigned at the interrupted capillaries (see Supplementary Material, Fig.

SM1). rcap must be expressed in micrometers for a flow rate expressed in nl/s. For

boundary condition “Case 3a,” and “Case 3b,” the value of the coefficients log(K) and γ,

as obtained by adjustment of “Case 1” and “Case 2” results are between brackets. Note

that they are different from the values obtained from fitting the “Case 3” results,

demonstrating a significant discrepancy between the predicted and prescribed values.

Case 1 Case 2 Case 3a Case 3b

log(K) γ log(K) γ log(K) γ log(K) γ

Hin=0.2 −3.58 3.31 −3.58 3.21 – – – –

Hin=0.4 −3.83 3.30 −3.48 3.19 −3.34

[−3.83]

2.69

[3.30]

−3.05

[−3.48]

2.41

[3.19]

Table 4

Baseline regional blood flow (ml/mn/(100 g)) as a function of Hin and boundary

condition prescribed at the interrupted capillaries (see Materials and methods for

details). Note that in order to express the regional blood flow inml/mn/(100 g), the raw

results, expressed in ml/mn, have been rescaled over the volume of tissue

corresponding to the region under study (1.21 mm3). A tissue density of 1.05 has

been assumed.

Case 1 Case 2 Case 3a Case 3b

Hin=0 152.24 433.73 – –

Hin=0.2 58.78 408.05 – –

Hin=0.4 32.57 235.53 76.89 127.72



flow calculated using the zero flow BC (Case 1) and the assigned

pressure BC (Case 2) surround the physiological value, the first BC

providing an underestimate and the second BC an overestimate. The

assigned flow rate BC (Case 3) also, though to a lesser extent,

overestimates the regional bloodflow. This result is noteworthybecause

no adjustable parameter was used in the calculations, demonstrating

the relevance of themethodology used, aswell as the relevance of these

three BC.

Pressure drop

The distribution of mean pressure drop among arteries, capillaries

and venules as a function of their radius is displayed in Fig. 2. The

pressure drop is predicted to be steeper in the arterial side than in the

venous side, in agreementwith trends experimentally observed in other

organs (Pries et al., 1990; Lipowsky, 2005; Piechnik et al., 2008). In

addition, the mean value of capillary pressure (Table 5) is in reasonable

accordance with the value of 34 mm Hg found by Espagno et al. (1969)

for the human brain microcirculation (cited by Zagzoule and Marc-

Vergnes, 1986). However, a closer examination of Fig. 2 exhibits some

aberrant pressure values when the assigned flow rate BC (Case 3) is

used. In this case, the predicted pressure in 12 μm −14 μm venular

vessels (14.66 mm Hg and 12.87 mm Hg for Case 3a and 3b,

respectively) is lower than the pressure assigned at the venous outlets

(15 mm Hg). This underestimation may appear to be small but, when

the whole pressure distribution is considered, 891 segments in Case 3a

and 1429 in Case 3b display amid-segment pressure lower than 15 mm

Hg. 307 segments in Case 3a and 421 in Case 3b even display a negative

pressure (data not shown). Thus, with regard to pressure distribution,

this latter BC is irrelevant.

Flow rate dependence on radius in capillary vessels

Despite the very large dispersion of flow rates for a given radius

(several orders of magnitude), averaged flow rates vary according to

the radius following a power law Qcap=Krcapγ (see Supplementary

Material, Fig. SM1). Table 3 displays the coefficients K and γ obtained

by least square interpolation in the different conditions studied. For

BC Case 3a and 3b, a significant discrepancy between predicted and

imposed values of log(K) and γ is evidenced, once again suggesting

that this latter BC is inappropriate (see legend of Table 3 for details, as

well as Fig. SM1).

Conclusion on boundary conditions

Taken all together, these results suggest that the assigned flow rate

boundary condition (Case 3) is inappropriate for capturing the

hemodynamics of the intra-cortical network under study. On the

other hand, zero flow and assigned pressure boundary conditions are

relevant and respectively provide a lower- and an upper-bound for

the network behavior. Furthermore, with Hin=0.4, the predicted

regional blood flow underestimates the physiologic value (50 to

65 ml/mn/(100 g)) by a factor 1.5 to 2 (Case 2), whereas the

prediction overestimates the physiologic value by a factor 3.6 to 4.7

(Case 3), i.e. in a reasonably symmetrical manner. Thus, the whole

analysis which follows will be restricted to BC “Case 1” and “Case 2”

with Hin=0.4.

Hematocrit frequency distribution

The frequency distribution of discharge hematocrit in the network

is shown in Fig. SM2 (see Supplementary Material). In both Case 1 and

Case 2, this distribution exhibits the characteristic behavior with a

peak surrounded by two quasi-linear segments, as measured by Pries

et al. (1990) in the rat mesenteric network. Thus, the hematocrit

distribution is in qualitative agreement with the available experi-

mental data.

Spatial distributions of pressure and flow

The spatial distributions of pressure and flow in the network are

displayed in Fig. 3. Even if, as expected, the BC used has a clear influence

on the flow structure, some common features emerge. Regarding

pressuremaps, high pressure regions evidence the functional territories

of arteries whereas low pressure regions evidence the functional

territories of veins, which are conspicuously not segregated in space.

However, due to the smoothing effect of the assigned pressure

condition, these functional territories are slightly less extended in

space in Case 2 than in Case 1. Equally, as the pressure is also assigned in

several capillaries in between the territories of adjacent arterioles or

venules, there is a clearer distinction between the territories of every

single arteriole (venule) in Case 2.By contrast, in Case 1, the territories of

adjacent arterioles are merged. Regarding flow maps, high flow

segments clearly correspond to the main trunks of arteriolar and

venular trees, with flow significantly decreasing in secondary vessels,

and decreasing by several orders in capillaries. Of course, in Case 1, the

proportion of capillary segments with zero flow (dark blue segments in

Fig. 3) is higher.

Arteriolar and venular territories

An alternative and quantitative approach for determining the

vascular territories of a given arteriole is to tag the blood entering the

network through the particular arteriole and to follow it (Turner, 2002).

In other words, from each arteriolar trunk, all segments are tagged

following pathways of positiveflow rates. Equally, the blood drained by a

given venule can be tagged following pathways of negative flow rates to
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Fig. 2. Mean baseline pressure as a function of vessel radius, for the different boundary

conditions tested and Hin=0.4. For arterioles and venules, pressure has been averaged

over 2 μm vessel radius ranges. Mean capillary pressure has been calculated for all

capillary segments, i.e. smaller than 4.95 μm in radius. Note that no significant

difference is observed when Hin=0.2 (i.e., for each radius, pressure values differ by less

than 2 mm Hg, data not shown).

Table 5

Baseline mean capillary pressure (mm Hg) as a function of Hin and boundary condition

prescribed at the interrupted capillaries (see Materials and methods for details). In case

of boundary condition “Case 2”, the value of the prescribed capillary pressure Pcap is

indicated between brackets. Note that it is very close to the mean capillary pressure,

showing no discrepancy between the predicted and prescribed values.

Case 1 Case 2 Case 3a Case 3b

Hin=0 30.81 33.80 [34.80] – –

Hin=0.2 31.36 32.45 [32.95] – –

Hin=0.4 31.35 30.69 [30.7] 29.9 28.01



identify the cortical region drained by this venule (see Fig. 4 for a

schematic illustration of the method). In practice, segments with an

absolute flow value below a given threshold (0.2 nl/min) are not

considered when determining these territories. As an example, Fig. 5

displays the spatial regions fed or drained by three distinct arteries or

veins as determined using BC Case 1. From this figure, it is clear that the

territories of arteries and veins are not paired. Moreover, the laminar

extensionof the territories is highly dependent on the vessels considered.

Schematically, with regard to arterioles, two main classes can be

identified: arterioles whose territory is restricted to the superficial layers

of the cortex (e.g. arteriole a in Fig. 5) or arterioles whose territory spans

theentiredepthof the cortex (e.g. arteriolesband c in Fig. 5).With regard

to the veins, the territory patterns are more diverse, with no obvious

simple classification. However, it is noteworthy that several veins drain a

very large territory (e.g. venule γ in Fig. 5).

The volume of the territories can subsequently be calculated as the

sum of the volumes of each of the tagged segments. As previously, the

volumes of territories obtained with BC Case 2 (8.50 105 to 1.94

107 μm3) are less extended than those obtained using BC Case 1 (8.90

105 to 2.36 107 μm3). However, they are highly correlated, with a

Pearson's r coefficient of 0.94 and a significance level against the null

hypothesis (no correlation), tested by a t-test as in Sokal and Rohlf

(1995), of 0.001. Their ratio, obtained by linear regression, is 0.77.

Moreover, as displayed in Fig. 6, the volumes of the venous territories

are significantly correlated with the mean diameters of their venular

trunks (r=0.78 at a significance level of 0.01 in Case 1 and r=0.89 at

a significance level of 0.0025 in Case 2). The slope of the correlation is

almost independent of the BC used (0.41 and 0.39 in Case 1 and Case 2,

respectively).

Fig. 3. Spatial distributions of baseline pressure (left column) and flow rate (right column) for zero flow (Case 1) BC (first row) and assigned pressure (case 2) BC (second row) and

Hin=0.4. Numerical values of mean pressure and flow rate in each segment are color-coded as indicated in the color scale. For clarity of representation, diameters have been

increased threefold compared to lengths. In addition, due to the large dispersion of flow rates in segments of different diameters, the flow rate color scale is logarithmic. The

normalized distributions corresponding to these maps are displayed in Fig. SM5.

A1 A2

V1 V2

A1 A2

V1 V2

A1 territory A2 territory
V1 territory

V2 territory

Fig. 4. Schematic representation of arterial (left) and venous (right) territories associated

with a simplified vascular network, including two main arteriolar (A1 and A2) and two

main venular (V1 andV2) trunks. Arteries, veins and capillaries are representedwith black

bold lines, gray bold lines and black thin lines, respectively. Flow direction is represented

by arrows. A given vessel is in the arterial territory of a given arteriole if and only if it is

possible to draw a path between this arteriole and this vessel, always following the flow

direction. A given vessel is in the venous territory of a given venule if and only if it is

possible to draw a path between this segment and the venule always, following the flow

direction. Note that the intersection between the territories of the two arteries is not

empty. The same is true for the intersections between the territories of the two veins.



Blood flow: correlation with vascular structure?

In order to seek for relationships between blood flow and vascular

structure at baseline, two distinct approaches were adopted. First, a

correlation was sought between the flow rate in each vascular trunk

(arteries and veins) and the volume of their territories, determined as

above. In Case 1, the Pearson's r coefficient is 0.6, indicating a weak

correlation, with a significance level of 0.005. In Case 2, a stronger

correlation is observed (r=0.73 at a significance level of 0.001). These

correlations can be slightly improved (see Fig. SM3, Supplementary

Material) by seeking a power relationship between the variables by

regression analysis in bi-logarithmic coordinates. In both cases, the

Pearson's r coefficient is improved (0.65 and 0.77 in Case 1 and Case 2,

respectively) and, in Case 1, the significance level is improved to

0.0025 (unchanged in Case 2). This significance level is very good

bearing in mind the small number of vascular trunks to be studied in

the mosaic (n=20). In addition, it is noteworthy that the exponent in

the power relationship is independent of the BC prescribed (a=0.46,

see Fig. SM3).

However, this approach is a “non-local” approach, because the

vascular territories can span large volumes of tissue and cannot be

known a priori. Thus, in addition, a correlationwas also sought between

flow in parallelepiped ROIs and local structural parameters represen-

tative of these ROIs, such as vascular density, exchange surface or

proportion of vascular space occupied by non-capillary vessels. No

Fig. 5. Spatial regions fed (respectively drained) by three distinct arteries (veins) as determined using the zero flow BC (Case 1) and Hin=0.4. Arterial territories are green and venous

territories are yellow, with vascular trunks highlighted in red and blue respectively (Symbols refer to vascular trunks as defined on Fig. 1). A given arterial territory highlights a single

arterial tree and its spatial relationshipswith its draining veins. Conversely, a given venous territory highlights a unique venous tree and its spatial relationshipswith its feeding arteries. As

a result, these functional arterial and venous territories are not paired. This is illustrated in the figure by displaying on each line (right) the venous territory of one of the veins belonging to

the territory of the artery chosen on the left.



significant correlationwas found, exceptwith theproportion of vascular

space occupied by non capillary vessels (see Fig. SM4, Supplementary

Material). In 250 μm ROIs, this correlation is weak but significant

(pb0.001)with both boundary conditions used (Pearson's r coefficients

of 0.59 and 0.74 in Case 1 and case 2, respectively (n=56)). Due to the

reduced number of 500 μmROIs (n=9), no correlation can be detected

in Case 1whereas in Case 2, a Pearson's r of 0.69 at a significance level of

0.025 is obtained. In addition, as the flow rate is a flux quantity, the

results obtained in both kinds of ROIs can be quantitatively compared if

the flow rate in 500 μm ROIs is rescaled by a factor 6/16 to account for

the difference in total surface between a single 250 μmROI and a single

500 μm ROI of depth equal to the depth of the thick section. This

comparison (open symbol vs. filled symbols in Fig. SM4) is satisfactory,

demonstrating the relevance of the observed correlation, which is

indeed independent of the size of the ROIs. This means that the

architectures of the vascular tree is directly correlated to the

hemodynamic pattern at voxel scale. Thus, spatial heterogeneities in

CBF cannot be considered as pure noise.

Discussion

In this paper, a large and unique quantitative data library on the

architecture of the microcirculation of the human cerebral cortex

(Cassot et al., 2006; Lauwers et al., 2008) has been used to investigate

its baseline structure/function relationship through numerical blood

flow simulations. To the best of our knowledge, such simulations

(large network, geometrically and topologically accurate anatomical

data sets of the human cortex) have never been done before. Before

discussing the results obtained about baseline flow and their

implications for functional imaging, several methodological aspects,

related either to the available data set or to the numerical method for

blood flow simulation, will first be addressed.

Methodological aspects

The first methodological limitation of our study is due to the

relatively limited thickness of the brain sections in the available data

set. In fact, the large proportion (~1/3) of boundary nodes in the

network is a direct consequence of the anatomical preparations used

(thick sections): the volume of brain tissue investigated in Cassot et al.

(2006) scales as Sh, S being the total surface and h the depth of tissue

scanned by confocal microscopy. If, as a rough estimate, we assume

that vascular nodes are separated by a characteristic distance dc, then

the total number of boundary nodes to be found at the lower and

upper surfaces of the section should scale as 2 S/dc
2 whereas the total

number of nodes to be found in the volume under investigation

should scale as Sh/dc
3. Therefore, the proportion of boundary nodes

should scale as 2 dc/h. Here, h is about 300 μm, which leads to

dc~50 μm. This value corresponds closely with the mean capillary

length determined by Cassot et al. (2006) in mosaic M1 (57.37 μm) as

well with the mean value of the extravascular distance (50 μm),

which provides an alternative definition for the order of magnitude of

the capillary mesh (Cassot et al., 2006). It is also in accordance with

the characteristic length of the capillary lattice determined using

classic multi-scale tools (Lorthois and Cassot, 2010).

As a consequence, reducing the proportion of boundary nodes is

not achievable in the short term, because it would require a new

methodological framework for the acquisition of data, either using

biphotonic confocal microscopy on consecutive (adjacent) brain slices

and applying an alignment procedure to the subsequent linesets, or

else using other material preparation techniques such as methylme-

tacrilate (mercox) castingwith complete tissue removal, whichwould

allow a much deeper penetration of the laser beam.

To overcome this difficulty, which is currently unavoidable as far

as human anatomical data are concerned, we have carefully

investigated the influence of the capillary boundary condition over

the baseline flow in the network. By this way, we have identified two

different boundary conditions (zero flow and assigned pressure)

which respectively provide a lower- and a upper-bound limit to the

network behavior. These lower and upper limits surround the

physiological values, allowing the utilization of the available data

set for fluid dynamic modeling. In particular, we have demonstrated

that, with regard to cerebral blood flow, these two boundary

conditions respectively provide an under- and over-estimate of the

physiological value. This result, obtained without any adjustable

parameters (in the sense that every input variable for the model was

either deduced from literature values or from the data library used),

suggests that the methodology used is valid, providing quantitative

results. Moreover, the slope of the correlations between the volumes

of the venular territories and the mean diameter of their venular

trunks, as well as the exponent of the power relationship between the

volume of arterial or venous territories and the flow rate in their

vascular trunks, are independent of the boundary condition used.

The second methodological limitation of the present study is

intrinsic in the numerical method used for blood flow simulation,

which is only able to handle steady states. This does not matter for the

study of baseline flow structures. However, with regard to the flow

variations induced by modifications of arteriolar diameters, the present

methodology does not allow any conclusion on temporal dynamics.

Nevertheless, the spatial dynamics can be explored further by focusing

on flow re-organizations observed between two steady states.

Baseline flow: implications for functional imaging

Several brief observations with relevance to functional imaging can

be made from the study of baseline flow. First, large heterogeneities of

baseline flow, not only from vessel to vessel (Fig. 3) but also from voxel

to voxel (see Fig. SM4) have been demonstrated, which is consistent

with earlier experimental knowledge (Pawlik et al., 1981; Kuschinsky

and Paulson, 1992; Villringer et al., 1994). These voxel to voxel

heterogeneities are correlated to the underlying vascular structure:

the voxels with the larger proportion of arteriolar or venular vessels

exhibit larger flow rates. Therefore, these heterogeneities cannot be

considered as noise. Of course, they increasewith decreasing voxel size.

Thus, they might turn out to be of importance, especially in the context

of high field imaging, where voxel size approaches the minimal size

studied in the present work (250 μm), and in studies focused on signal

fluctuations in the absence of stimuli (e.g. during sleep, Fukunaga et al.,

2008).

Second, our results suggest that regional blood flow at ROI level

scales with the surface of the ROI and not its volume (see Fig. SM4).

Thus, the usual normalization of regional blood flow with mass or

Fig. 6. Volume (V) of venous territories as a function of diameter of their vascular trunks

(D). Circles and plain line: Case 1; Squares and dotted line: Case 2. Hin=0.4.



volume, and the corresponding unit traditionally used for cerebral

blood flow (expressed in ml/min/100 g), might be misleading.

Finally, our data on baseline flow can be used to estimate the

extent of venous contamination downstream to the sites of neuronal

activation. Orders of magnitude have previously been presented by

Turner (2002) for pial veins on the basis of structural data obtained

from photomicrographs of the cortical surface, and considering only a

single venular tree. This analysis led to the following cubic

relationship between the catchment surface of an activated area D

(expressed in mm2) and the diameter dv of the single vein draining

this area (expressed in mm):

D = 520d
3
v : ð13Þ

From our flow data, the volume V of the territories drained by the

cortical veins have been calculated, demonstrating a linear dependence

with the diameter of the draining vein, with slope independent of the

Boundary Condition used (see Fig. 6). If, following Turner, reasonable

values for the cortical thickness t (3 mm) and blood volume fractionβ in

the gray matter (2%) are used, D can be estimated by V/(tβ), leading to:

D = 6:66dv: ð14Þ

In the above expression, D is expressed in mm2 and dv in mm. The

intercept,which is less than0.05 in dimensional formwithbothBoundary

Conditions used, has been neglected. Thus, for intra-cortical veins, a linear

relationship insteadof a cubic one is demonstrated. It is interesting tonote

that both expressions predict the same catchment areas (0.75 mm2) for

veins of 113 μmdiameter, i.e. roughly at transitionbetweenpial and intra-

cortical vasculature. Below, i.e. for the physiological range of intracortical

veins, the cortical areadrainedbya singleveinwouldbeunderestimated if

Eq. (13) was used: for example, D predicted by this equation is 5 times

lower than D predicted by Eq. (14) in 50 μm veins. Thus, despite the

generality of Turner's model, it is not possible to extrapolate its cubic

expression to intracortical veins, including principal intracortical veins.

This result might be of importance in the context of high field imaging.

Of course, in functional neuroimaging, two different states–an

activated state and a reference state–are compared. Thus, the flow re-

organizations in response to modifications of arteriolar diameters, as

well as their implications for functional imaging, are explored further

in a companion paper (Lorthois et al., 2010).

Supplementarymaterials related to this article can be found online

at doi:10.1016/j.neuroimage.2010.09.032.
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Supplementary figures 

Figure SM1: Flow rate in individual vessel segments as a function of vessel radius in bi-

logarithmic coordinates, for the different boundary conditions tested and H
in

=0.4. Blue line: 

Mean value (averaged over 0.5 µm vessel radius ranges) and standard deviation for capillary vessels 

as a function of radius. Black dotted line: best fit for equation Qcap=Krcap
γ
. Case 3: Stars: flow rate

in boundary segments. Note that for BC Case 1 and Case 2, γ is a coefficient close to - but higher 

than - three, demonstrating that Murray's law (which implies γ = 3 due to mass conservation) does 

not hold, even as a mean approximation, for intra-cortical blood vessels. 

Case 1  Case 2 

Case 3a Case 3b 



Figure SM2: Hematocrit baseline frequency distribution for zero flow (Case 1) and assigned 

pressure (case 2) boundary conditions and H
in

=0.4. Segments with flow below 0.2 nl/min 

(corresponding to the mean flow rate in non-interrupted capillary vessels as calculated using BC 

Case 1, divided by four) are not accounted for in these distributions, resulting in differences in total 

frequency counts. Plain lines: frequency distributions for all segments with flow above  0.2 nl/min 

(Filled circles: Case 1; Open squares: Case 2); Dotted lines: Eq. 12 with peak rescaled to match the 

"Case 1" peak frequency; Dashed line : frequency distribution at the interrupted capillary segments 

where a boundary condition (BC) for hematocrit is needed (Case 2 only), rescaled for its peak 

frequency to match the "Case 1" peak frequency. 

Note that for the zero-flow condition (filled circles), the observed distribution (exhibiting a 

characteristic behavior with a peak surrounded by two quasi-linear segments) is self-consistent, i.e. 

not forced by Eq. 12. In this case, the flow in interrupted capillary segments is set to zero and it is 

therefore not necessary to assign any value to the hematocrit in these boundary segments. However, 

Eq. 12 correctly describes the observed behavior in the vicinity of the peak, i.e. for H in [0.15 ; 

0.55] (filled circles vs. dotted lines). In addition, the implementation of Eq. 12 at the interrupted 

capillary segments for the assigned pressure BC is verified by checking that the assigned 

distribution at these segments, rescaled for its peak frequency to match the "Case 1" peak 

frequency, follows Eq. 12 (open squares on dashed line vs. dotted line).  

Eq. 12 



Figure SM3: Volume (V) of arterial and venous territories as a function of blood flow in their 

vascular trunks to the power a (Q
a
). a was obtained by a linear fitting of V vs. Q in bi-logarithmic 

coordinates. Open symbols: veins; Filled symbols: arteries; Circles: Case 1; Squares: Case 2. 

H
in

=0.4.



Figure SM4: Blood flow in cubic ROIs plotted against the percentage of vascular volume 

occupied by arterioles or venules in the ROI. Open symbols: 250 µm ROIs; Filled symbols: 500 

µm ROIs; Circles: Case 1; Squares: Case 2. Note that, as the flow rate is a flux quantity, the flow 

rate in 500 µm ROIs has been rescaled by a factor 6/16 take into account the difference in surface 

between a single 250 µm ROI and a single 500 µm ROI. The resulting point clouds (filled symbols) 

are reasonably included in the point clouds obtained for 250 µm ROIs (open symbols) 

demonstrating the relevance of the observed correlation, which is indeed independent of the size of 

the ROI. H
in

=0.4. 



Figure SM5: Normalized distributions of the pressure (left) and the logarithm of the flow rate 

(right) in the network. Case 1 : Continuous lines; Case 2 : dashed lines. Right: the segments with a 

flow rate strictly equal to zero (4072 segments in Case 1 and 1905 segments in Case 2) are not 

accounted for in these distributions.  


