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Integrated Formal Verification of Safety-Critical Software

Ning Ge · Eric Jenn · Nicolas Breton · Yoann Fonteneau

Abstract This work presents a formal verification pro-

cess based on the Systerel Smart Solver (S3) toolset

for the development of safety-critical embedded soft-

ware. In order to guarantee the correctness of the im-

plementation of a set of textual requirements, the pro-

cess integrates different verification techniques (induc-

tive proof, bounded model checking, test case genera-

tion and equivalence proof) to handle different types of

properties at their best capacities. It is aimed at the

verification of properties at system, design, and code

levels. To handle the floating-point arithmetic (FPA)

in both the design and the code, an FPA library is de-

signed and implemented in S3. This work is illustrated

on an Automatic Rover Protection (ARP) system im-

plemented on-board a robot. Focus is placed on the

verification of safety and functional properties and on

the equivalence proof between the design model and the
generated code.
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1 Introduction

Even though significant progress has been made to-

wards the integration of formal methods in the indus-

try of safety critical systems, their usability is still im-

paired by their cost. It makes sense to formally verify

the safety-critical parts of a system by combining dif-

ferent verification techniques at their best capacities.

Moreover, the hope is that once the initial integration

is done, subsequent verifications can be achieved at sig-

nificantly lower costs. This work investigates how this

could be achieved using a formal verification toolset,

Systerel Smart Solver (S3)1, and draw some lessons

from our experience.

S3 [14] is built around a synchronous language and

a model checker (S3-core) based on SAT [4] techniques.

As the proof engine, S3-core relies on Bounded Model

Checking (BMC) [3] and K-induction [38,6] techniques.

S3 supports different activities of a software develop-

ment process: property proof, equivalence proof, auto-
matic test case generation, simulation, debug, and pro-
vides necessary elements to comply with the software

certification processes. S3 is usually applied in the de-

velopment process relying on SCADE [11]/Lustre [27]

design models and the implementations in C and Ada.
It has been exploited as industrial solutions to formally

verify the railway signalling systems for years by various

industrial companies in this field.

Critical applications used to rely on fixed-point arith-

metic that requires less memory and less processor time

than floating-point arithmetic (FPA) to perform non-
integer computations on executing processors with no

Floating-Point Unit (FPU), while leading to a limited-

precision. Floating-point numbers support a trade-off

1 S3 is maintained, developed and distributed by Systerel
(http://www.systerel.fr/).



between range and precision thanks to its formulaic rep-
resentation which approximates a real number, and its
standardization based on solid mathematical grounds

[1]. Nowadays, FPA is more and more used in the space,

aeronautics and automotive industries, as required by

the increasing complexity of the computations and be-
cause FPUs are becoming standard for most processors.
However, a common problem for the safety-critical soft-

ware is the erroneousness due to the rounding and ex-
ceptions in floating-point computations [33]. It is nec-

essary to provide verification means to guarantee the
correctness of critical software with floating-point arith-
metic.

This article is aimed at implementing a formal ver-

ification process, and providing approaches & tools to

guarantee the correctness of the safety-critical embed-

ded software. Our main contributions are twofold. On

the one hand, we have designed and implemented a li-

brary of floating-point arithmetic (FPA-Lib) in S3 that

is compliant with the IEEE Standard for FPA [1]. To

evaluate the performance of this implementation, we

show the experimental results on a triplex sensor voter

using our FPA-Lib and other SAT/SMT solvers. On the

other hand, we presents the integrated verification pro-

cess using S3 on an Automatic Rover Protection (ARP)

system that is deployed on a three-wheeled robot. Fo-

cus of the latter is placed on three main activities: (1)

formally specify the textual requirements of the embed-

ded software, (2) ensure correct design of the textual

requirements by proving properties using appropriate

formal techniques, and (3) guarantee the compliance of

the generated code with respect to the design model by
proving the equivalence between the design model and

the generated code. An additional purpose of this work

is to make the ARP use case publicly available to the

research community.

This article is organized as follows: Sect. 2 presents

the S3 toolset; Sect. 3 depicts the design and imple-
mentation of floating-point arithmetic in S3, and shows

experimental results on the triplex sensor voter; Sect. 4

describes the ARP use case; Sect. 5 exposes the verifi-

cation of safety and functional properties using induc-

tive proof, BMC, and test cases generation techniques
to guarantee the correctness of the design model; Sect.

6 illustrates the process of equivalence proof to guar-

antee the correctness of the generated C code; Sect. 7
discusses the experience derived from the verification
activities, and Sect. 8 gives some concluding remarks

and discusses perspectives.

2 The HLL Modeling Language and S3 Toolset

This work relies on the S3 verification toolset and its

modelling language, called HLL (High Level Language).

The architecture of S3 is depicted in Figure 1. S3 facili-

tates the construction of formal verification solutions

compliant with certification standards, e.g. DO178C
[22]. Towards this goal, S3 is organized in a set of small,

independent components, from which the most critical
ones - an equivalence model constructor, and a tool to
verify the validity of the proof - are developed accord-

ing to the highest integrity levels. We briefly introduce

these components in S3 in the following part:

– A synchronous declarative language similar to the

Lustre language [27], HLL, that is used to model the
system, its environment constraints as well as ex-

pected properties on the system. To give an overview

of the language constructs, Figure 2 shows the HLL
model of a saturated counter and its property on the
range of output value (respectively in the names-

paces Counter and Counter_Verif). The counter

reacts to the input command (modelled as an HLL

enumeration): incrementation (INC), decrementation

(DEC) or reset (RESET). The saturation range is de-

fined by HLL constants. The behaviour of the counter

is initialized by the value zero and then periodically

updated. The effect of INC and RESET are directly

defined in the schedule, while the effect of DEC is

defined as a function contract by using HLL con-

straints and an intermediate variable dec_input of

the HLL block Fun_dec(), without final implemen-

tation.

– Several translators to convert models (SCADE/Lus-

tre) and code (C and Ada) to HLL.

– Two expanders to translate the HLL models into

a bit level language, called LLL (Low Level Lan-

guage) that only preserves Boolean streams and is

restricted to three bitwise operators: negation, im-
plication and equivalence.

– A SAT-based proof engine, named S3-core, to check

LLL models. The performance of this proof engine
allows users to manage the proof of industrial size

problems: the size of those models routinely attains
ten millions variables and several hundred millions

clauses.
– Tools to build equivalence proof between models, or

between models and code.

– Tools to animate and debug models (cex-simulator,

why) that provide counterexamples. The counterex-

amples allow the users to developer simulators at
user level.

S3 supports the following activities of a typical for-

mal development process:
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Fig. 1: The S3 Toolset
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Fig. 2: An Example HLL Model

– Static detection of runtime errors and stan-

dard conformance check, including array bounds

check, range check, division by zero check, over and

underflow check, output and constraint initializa-

tion check, etc. Proof obligations are also generated

to ensure that the generated HLL models show no

undefined behavior with respect to the semantics of

the source language.

– Property proof : Figure 3 presents the workflow

of property proof. The design model, e.g. Lustre,

is translated into an HLL model. Combined with

properties expressed in HLL as well, it is then ex-

panded to an LLL model that is fed to the S3-core.

If a property is falsified, a generated counterexam-

ple can be simulated at the HLL level. This activity

will be detailed in Sect. 5.

HLL System

 HLL Properties

�  LLL Model
Properties
Valid? Yes/No

Expander
Proof using 
S3-core

Property debug

Design debug
Lustre Design

Lustre-
translator

Fig. 3: Process of Property Proof

– Equivalence proof : Figure 4 presents the process

of proving the equivalence between the design, e.g.

the Lustre model, and the generated/implemented

code, e.g. the C code. Models and code are trans-

lated into HLL models, which are then expanded

to LLL models using diversified expanders2. Equiv-

alence models are respectively constructed at the

2 The diversified expanders are designed and implemented by
different teams using different programming languages.



HLL level and the LLL level. Equivalence proof is
performed on one of the equivalence models or both.
This activity will be detailed in Sect. 6.
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  C Code
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Lustre Design
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Code 
generation

Fig. 4: Process of Equivalence Proof

– Test case generation: Test scenarios are gener-
ated from properties expressed as test goals using
BMC. This activity will be detailed in Sect. 5.3.

3 Floating-Point Arithmetic Library in S3

Floating-point numbers are not real numbers. Floating-

point operations behave in quite different way from the

real counterparts, due, for instance, to rounding and

cancellations [33]. Consequently, a software implemen-

tation of some mathematical expression usually pro-

vides results that are not strictly, mathematically, ex-

act. As it is often difficult to foresee the behaviour of

floating-point programs, formal verification of floating-

point programs is mandatory.

This part presents a new component in S3, the FPA

library (FPA-Lib). This library addresses the verifica-

tion of embedded software with FPA by means of bit-

blasting (also called bit-flattening), which is a classic
method that translates bit-vector formulas into propo-
sitional logic expressions.

3.1 Implementation of Floating-Point Arithmetic

The basic approaches to address formal verification of

floating-point programs include abstract interpretation
& static analysis, formal proof and bit-blasting. Ab-

stract interpretation partially executes a program on

an abstract domain. This approach performs well in
static program analysis with floating-point variables to

ensure that the critical software never executes an in-

struction with "undefined" or "fatal error" behavior,

such as out-of-bounds accesses to arrays, overflows or

division by zero [7]. Formal proof supported by proof
assistants is a very powerful approach, but requires the

guide from highly skilled expert to direct the reasoning

towards target properties. Interactive theorem provers

such as ACL2, Coq, HOL Light and PVS have been ap-

plied to floating-point verification [28]. Both of abstract

interpretation and formal proof approaches lack ability
to generate counterexamples when the property does

not hold. Bit-blasting represents floating-point opera-

tions as circuits, which are then transformed to Boolean
formula with bit-wise operators to be solved by SAT

solvers. Bit-blasting relying on SAT solvers is a fully au-

tomatic reasoning benefiting from counterexamples for
floating-point programs. It is also implemented in the

SMT solvers such as Z3 [19], MathSAT 5 [13], SONO-

LAR [29], CBMC [10], etc. Bit-blasting is the elemen-
tary but the most significant part of other floating-point
verification strategies using SAT solvers as the back-

end. Since the publication of SMT-LIB theory of binary
FPA [35], solvers are starting to support it using some

advanced QF_FP solving strategies, such as mixed ab-
straction in CBMC [10], non-conservation approxima-

tions in Z3 [23], abstraction into interval arithmetic in
MathSAT [8,9], translation into non-linear reals in Re-

alizer [30], etc.

We have implemented an FPA standalone library to

enable the floating-point verification by means of bit-

blasting. This optimized FPA library establishes a solid

foundation and basic strategy for our future investi-

gation on advanced FPA strategies in S3. The imple-

mentation of FPA library in S3 is based on the IEEE

FPA standard 754-2008 [1]. A single(double) precision

floating-point number is expressed as a binary of 32(64)

bits that contains a sign of 1-bit, a biased exponent of

8(11)-bit, and a mantissa of 23(52)-bit. The HLL mod-

elling of the numbers is shown as follows.

Struct {

s: bool;

e: int unsigned 8;

m: int unsigned 23

} float;

Struct {

s: bool;

e: int unsigned 11;

m: int unsigned 52

} double;

We briefly present the implementation of addition/-

subtraction to illustrate the principles of encoding. As
shown in Figure 5, this implementation follows three

steps: (1) align, to shift mantissa and render exponents
equal; (2) addition/subtraction, to added/subtracted

resulting mantissas; and (3) round, to shorten mantissa
and obtain a number in F.

The FPA library in S3 includes the constructs in
Table 1. The square root and trigonometric operations

are implemented using both the interpolation table and

the function proposed by Cody & Waite [15].



Fig. 5: Implementation of Addition/Subtraction in

FPA-Lib

Table 1: Inclusions of FPA-Lib

Inclusions Implementations

Binary

interchange

format

single/double precisions,
user defined range

Numbers Normal, subnormal, infinity, NaN

Rounding

directions

roundTiesToEven,
roundTiesToOdd,

roundTiesToAway,

roundTowardPositive,

roundTowardNegative,

roundTowardZero

Comparison

operations

Equal, NotEqual,

Greater, GreaterEqual,

Less, LessEqual

Arithmetic

operations

Addition, Subtraction,

Multiplication, Division,

SquareRoot

Conversion

operations
convertIntToFloat,

convertFloatToInt

Trigonometric

operations
sin, cos, tan, ctan, etc.

Exception

handling
invalid operations, division by zero,

overflow and underflow

3.2 Evaluation of FPA-Lib on Triplex Sensor Voter

The triplex sensor voter3 is used in a common form

of redundant aircraft system Triplex Modular Redun-

dancy (TMR), which relies on three identical sensors to
compute an output value from the three input values

by the voter. It is implemented using linear arithmetic

operations as well as conditional expressions (such as

saturation). Its formal analysis covers functional and
non-functional properties including stability, absence of

runtime errors, and also to parameterize certain parts of

the model to help the formal analysis. The formal anal-
ysis of triplex sensor voter was first studied by Dajani-

3 Triplex sensor voter case study is provided by Rockwell
Collins to make it publicly available to the research community.

Brown et al. in [18], where real values were abstracted
by integer values and integrators were not used. The
work [20] analyzed the Simulink model with real num-

bers by both simulation and formal verification, and

then estimated the impact of rounding errors caused by

the floating-point implementation using SMT solvers
and abstract interpretation. The work [12] strength-
ened the stability property by generating lemmas using

a property-directed approach.

In our work, we start from a Lustre model of the
voter and translate it to HLL using the SCADE(Lustre)-

translator in S3. The FPA library is then applied to the

verification of the stability properties by S3. Relying on

this use case, we also evaluate the SMT solvers Z3 v4.4,
MathSAT 5 and SONOLAR. Experiments are carried
out using floating-point numbers of simple & double

precisions, normal & subnormal numbers, and different
rounding modes.

The experimental results in Table 2 show that nei-

ther Z3 v4.4 (bit-blasting strategy, floating-point strat-

egy) nor MathSAT 5 (bit-blasting strategy, abstract

CDCL algorithm) or SONOLAR are able to handle the

inductive(also called step) instance in the K-induction

proof, be it in simple or double precision. We man-

aged to prove the inductive instance using a combina-

tion of SONOLAR bit-blasting to a CNF and a pure

SAT solver (glucose 4.0 multithread with 8 threads and

aggressive restart strategies, satellite preprocessing) in

10min of computation for the simple precision instance,

and 4h15min of computation for the double precision

instance (wall clock time). S3 proved the inductive in-

stance in 6min using glucose 4.0 and 5mins using S3’s

own solver for the simple precision instance, and in

9h32min using glucose 4.0 for the double precision in-

stance.

Note that this evaluation on the voter case does not

lead to any conclusion about the performance of the
concerning solvers, as the performance of SAT/SMT

solvers depends on the target problem.

4 Specification and Design of the Automatic

Rover Protection System

4.1 The Context of Use Case

The verification approach presented in this article has

been applied on the Automatic Rover Protection (ARP)

System embedded in TwIRTee, a small three-wheeled

robot (or "rover") as the demonstrator of the the INGE-
QUIP project4. It is used to experiment and evaluate

4 The INGEQUIP project is conducted at the IRT Saint-
Exupéry.



Table 2: Experimental Results of Triplex Sensor Voter

Solver Strategy Simple Precision Double Precision

S3 Bit-blasting 5m (time out)

S3 + Glucose 4.0 Bit-blasting 6m 9h32m

Z3 v4.4 Bit-blasting + floating point (time out) (time out)

MathSAT5 Bit-blasting + abstract CDCL (time out) (time out)

SONOLAR bit-blasting (time out) (time out)

SONOLAR+Glucose 4.0
Bit-blasting + aggressive restart +

satellite preprocessing
10m 4h15m

various methods and tools in the domain of hardware/-

software co-design, virtual integration of equipments

[16], and formal verification [14,26,25,21,24]. TwIRTee’s

architecture and its software and hardware components
are representative of typical aeronautical, spatial and

automotive systems [17]. The overall system is com-

posed of a unique stationary supervision station and

a set of TwIRTee rovers moving in a controlled envi-

ronment (Figure 6). The architecture of rover is com-

posed of a mission and a power control subsystems.

The power control subsystem is in charge of power sup-

ply, motor control and sensor acquisition. The mission

subsystem is composed of a pair of redundant chan-

nels A and B. Each channel contains a monitoring unit

(MON) in charge of monitoring the data and a com-

mand unit (COM) in charge of calculating commands

for the rovers. The mission and power control systems

communicate via CAN bus.

In the nominal case, each rover moves autonomously

on a set of predefined tracks so as to perform its mis-

sions, i.e., moving from a start waypoint to a target

waypoint under speed and positioning constraints. In
this system, the ARP function is aimed at preventing

collisions between the rovers. It generates the maximal

accelerations and minimal decelerations that are taken
into account by the rover trajectory management func-

tion. The communication between rovers are carried out

via WIFI.

Here, we introduce several terms used in the pa-
per. A mission is defined by a list of waypoints to be

"passed-by" by the rover. A segment, defined by a cou-

ple of waypoints on the track, corresponds to a straight

path. Segments only intersect at waypoints. The set of
all waypoints and segments constitutes a map. Dedi-

cated monitoring mechanisms ensure that if the rover

gets out of the track, it is placed in a stopped safe mode

and the supervisor is alerted. Accordingly, we consider

that all displacements of rovers comply with the map.

In the use case, we consider 3 rovers moving on a map

of 45 segments and 150 waypoints. A mission contains
at most 20 waypoints.

4.2 System-Level Safety and Functional Requirements

The requirements of ARP use case comes from the in-

dustrial partners of the INGEQUIP project. The safety

requirements are defined in Table 3 and the functional

& performance requirements are defined in Table 4.

The ARP is expected to ensure system-level safety

requirement (REQ-SAF-1) in Table 3. This requirement

states that at any time, the minimal distance between

the centers of two rovers shall be greater or equal to

0.4m. It is split in two subsets of requirements: one is

about the exclusive access to segments (REQ-SAF-1-1)

and the other is about the design of a map (IR-F1, IR-

F2 and IR-F3). The compliance with the requirements

of map data is under the map supplier’s responsibility.

The system-level functional requirements in Table

4 (REQ-F1 and REQ-F2) are mainly about exclud-

ing trivial implementations that would prevent colli-

sions by, e.g., freezing all rovers. In the same man-

ner, REQ-QoS-1 is introduced to guarantee the perfor-
mance of the design, and to prevent trivial solutions of

anti-collision, e.g., by performing missions sequentially.

Note that the ARP is not to schedule the movement of
the rovers but to ensure safety. Accordingly, if missions

are schedulable, they shall remain schedulable with the

ARP.

4.3 System Design Choice

Missions are elaborated off-line and transmitted via the
supervision station. They are considered to be vali-

dated on-board (according to the REQ-F1 in Table 4).
To ensure the main safety requirements, separation of
rovers is implemented as follows: a rover may only en-

ter a segment if it has been granted exclusive access
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Table 3: System-Level Safety Requirements

REQ-ID REQ

REQ-SAF-1
Minimal separation: At any time, the minimal distance between the centers of two rovers

shall be greater or equal to 0.4m.

REQ-SAF-1-1
Exclusive access to segment: The ARP shall consider that it has been granted exclusive

access to a segment.

IR-F1 Length of segment: The length of a segment shall be greater or equal to 0.4m.

IR-F2
Distance between waypoint and segment: The distance between a segment and a way-

point on a non-continuous segment shall be greater or equal to 0.4m.

IR-F3 No intersection: There shall not be any intersection between two segments.

Table 4: System-Level Functional and Performance Requirements

REQ-ID REQ

REQ-F1 Missions shall be structurally deadlock free.

REQ-F1-1 The initial waypoints of missions shall not be the same.

REQ-F1-2 The end waypoints of missions shall not be the same.

REQ-F1-3 The end waypoint of a rover’s mission shall not exist in the missions of other rovers.

REQ-F2
No deadlock: At any time, if the definitions of scheduled missions are free of deadlocks, a

deadlock shall not occur due to the ARP.

REQ-QoS-1 Fairness: At any time, any rover shall be given the opportunity to move.

to both the beginning and the end waypoints of the

segment. As waypoints are global resources shared by
all rovers, their reservation is ensured at system-level.

Our system is designed as globally asynchronous and

locally synchronous. Usually the synchronous program-

ming schema used in synchronous languages, such as
Lustre and HLL, supposes that time is defined as a se-

quence of instants. To preserve determinism, these lan-



guages use the concept of instantaneous broadcast [2]
when several processes in parallel communicate, which
means that message reception is synchronous (or simul-

taneous) with their emission.

To support the synchrony hypothesis, we rely on

two components:

– A distributed clock synchronization protocol to guar-
antee a common clock for all units. This protocol has

been modelled and verified using model checking re-
lying on TINA5.

– An implementation of the Physically Asynchronous

Logically Synchronous (PALS) protocol [37]. The
PALS protocol is aimed at providing logical syn-

chrony on a physically asynchronous system. From
a programming perspective, under the PALS proto-

col, a system composed of n units behaves as if all

units were all ideally synchronized. The correctness
of PALS protocol for distributed real-time systems

has been proved by the work [32].

4.4 High-Level Software Requirements and Software

Design

During the software design process, the system-level re-

quirements are refined into a set of High-Level software

Requirements (HLRs), given in Table 5.

The HLRs represent "what" to be implemented,

while the Low-Level Requirements (LLRs) represent

"how" to implement it. In this work, the LLRs are ex-

pressed by a Lustre model6. Some figures about the size

of the design are provided. For an ARP system con-

taining 3 rovers and missions of at most 20 waypoints

performed on a map of 45 waypoints and 150 segments,
there are about 50 variables and 1700 lines of code in
the Lustre model. For space reasons, the Lustre model

is not presented in the paper7.We briefly describe some

of its key points.

In order to validate the design by simulation, the

C code generated from the Lustre design has been em-
bedded in a simulation model developed in Scicos lan-

guage8. Figure 7 shows the Scicos model. Here we use
this simulation model to explain the architecture of
our design. The ARP is split in two parts: the deci-
sion model that manages segments reservation and the

behavior model that calculates the speed and position

5 http://projects.laas.fr/tina/home.php
6 With respect to the DO178, the Lustre model is considered

to express LLRs, since the source code is directly generated from
the model with no other interpretation/refinement.

7 Contact the authors for the specification document, design
model and formal properties.

8 http://www.scicos.org/

of the rover with respect to the reservation decision.
As mentioned in Sect. 4.3, the problem of reserving a
track segment can be reduced to the problem of man-

aging access to critical sections in a distributed system.

In our design, this problem is solved by decomposing

time into "time-slots" and allocating a dedicated reser-
vation slot to each rover: so that only one rover at a
time can perform a reservation. Each time-slot is split

in four sub-slots respectively for request, reply, reser-
vation and empty tasks. For example, if there are two

rovers (R1 and R2) in the system, the first time-slot

(sub-slots t0 - t3) is assigned to R1, while the second
time-slot (sub-slots t4 - t7) is assigned to R2.

5 Property Verification against Lustre Design

We have specified the system and produced a candi-
date validated Lustre design model in Sect. 4. Before
generating C code from the Lustre model using lus2c

generator, it is required to guarantee that this design

actually complies with the set of requirements. S3 al-

lows the users to formally express these requirements,

and verify them against the design model. The verifica-

tion process combines inductive proof, BMC, test case

generation and equivalence proof techniques. The first

three techniques are used to verify properties of the de-

sign model. The equivalence proof technique is applied

to prove the correctness of the generated code againts

the set of requirements by checking the equivalence be-

tween the design model and the generated code. We

illustrate the property verification in this section and

present the equivalence proof in Sect. 6.

5.1 The Workflow of Property Verification

Figure 8 depicts the workflow of property verification

using S3. The Lustre model is translated into an HLL

model, to which properties and environment constraints

expressed in HLL are concatenated9. The HLL model
is then expanded to the LLL model used as the input

of the S3-core. This verification workflow can be split
in two phases: first, the properties are checked for a
certain time length n. If no property is violated, n is

increased until either a counterexample (cex) is found,

or some pre-known upper bound of n is reached. In

case a safety property10 fails, a cex in the form of a
sequence of states is generated, where the last state

9 It’s the verifier’s duty to translate the natural language re-
quirements to the HLL properties.
10 Usually, the safety referred by requirements means the system

is safe, while the safety referred by properties is related to the
deterministic process. Here is the latter case.



Table 5: High-Level Software Requirements

REQ-ID REQ

HLR-01

Mission validation: The ARP shall validate the missions to be executed. A mission is an ordered
set of waypoint indexes. (HLR-01-1) The mission shall have a starting waypoint. (HLR-01-2) The
mission shall refer to existing waypoints in the map. (HLR-01-3) The mission shall not successively

refer to the same waypoint. (HLR-01-4) Each waypoint in a mission shall have unique precedent

waypoint except the starting waypoing (referred to as continuity in this document).

HLR-02
Motor Request: The ARP shall control the motor using one command out of emergency braking,
acceleration, and deceleration.

HLR-03
Emergency braking: The ARP function shall send a non-null emergency brake request to the

motor control if the distance to the end of the reserved area is less than or equal to [D_BRK] and
the reserved end is not the mission end, or if the rover is at the reserved end.

HLR-04
Deceleration: The ARP function shall send a non-null deceleration request to the motor control
subsystem if the distance to the end of the reserved area is less than or equal to [D_DEC] and

greater than [D_BRK], and the reserved end is not the mission end.

HLR-05
Acceleration: The ARP function shall send a non-null acceleration request to the motor control
if the distance to the end of the reserved area is greater than [D_DEC], or if the distance to the
end of the reserved area is less than or equal to [D_DEC] and the reserved end is the mission end.

HLR-06

Inside Reserved Area: The ARP shall only allow a rover to enter an area that has been previ-

ously reserved. (HLR-06-1) The rover position shall be in front of or at the initial position of the

reserved area. (HRL-06-2) The rover position shall be behind or at the final position of the reserved

area. (HLR-06-3) The initial waypoint of the reserved area shall be reserved. (HLR-06-4) The final

waypoint of the reserved area shall be reserved.

HLR-07
Desired Reservation Zone: At any time, the ARP shall require segments that enclose a zone of

length [D_RSV] in front of the rover.

HLR-08
Request of waypoints: The ARP shall send reservation request for all the waypoints in the

desired reservation area.

HLR-09
Reply to requests: The ARP shall reply to reservation requests sent by other rovers. It shall ac-

knowledge positively (accept) a reservation for a waypoint if and only if the waypoint it not currently

reserved by the local rover. The acknowledgement shall contain a continuous set of waypoints.

HLR-10
Reservation of waypoints: The ARP shall reserve a waypoint once it has received positive

reservation acknowledgement from all other rovers.

HLR-11
Release of waypoints: The ARP shall release the waypoints of a segment as soon as the segment

is on longer in its reserved area.

HLR-12
Fairness of reservation: The ARP shall send waypoint reservation requests when its reservation

slot is activated. The APR shall have the possibility to perform a reservation if the required waypoint

is not reserved by other rovers.

HLR-13
End of mission: The ARP shall ensure that the scheduled mission is completed within worst case

mission time (WCMT).

contradicts the property. The cex trace is then directly

exploited to debug the property, the design model, or
the environment constraints.

The BMC represents a partial decision procedure
for a model checking problem, which is not complete.

The completeness of a safety property can be achieved

with k-inductive proof based on strengthening induc-

tive invariants (also referred to as lemmas hereafter)

if needed11. The k-induction relies on an iterative pro-
cess to search for lemmas by analyzing the repeatedly

produced step counterexamples, until the proof is com-

11 Lemma searching is not a must. It is possible that a property
is k-inductive.
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plete. Examples of k-induction proofs and BMC verifi-

cation are given in Sect. 5.2 and 5.3 respectively.

5.2 K-inductive Proof of Safety Property

Recent works have shown that k-induction often gives

good results in practice when implemented by SAT or

SMT based model checking [38,6]. Mathematical in-

duction is the classical proof technique that consists

of proving a base case (Eq. 1) and an inductive step

case (Eq. 2). Let a transition system S be specified by

an initial state condition I(x) and a transition relation

T (x, x′) where x, x′ are vectors of state variables. A

state property P (x) is invariant for S, i.e., satisfied by

every reachable state of S, if the entailments in Eq. 1

and Eq. 2 hold for some k ≥ 0.

I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xk−1, xk)

|= P(x0) ∧ · · · ∧ P(xk)
(1)

T(x0, x1) ∧ · · · ∧ T(xk, xk+1) ∧

P(x0) ∧ · · · ∧ P(xk) |= P(xk+1)
(2)

A counterexample trace for the base entailment in-

dicates that the property P is falsifiable in a reach-

able state of S. This is similar to the counterexamples
produced by BMC, but a counterexample trace for the

induction step entailment may start from an unreach-
able state or an over-approximated reachable state of

S. In Figure 9, we distinguish the reachable part of the

state space and the over-approximated reachable state
space. The transition T (xn, xn+1) starts from an over-

approximated reachable state in step n, and ends in a

unreachable state in step n + 1. One way to rule out

such step counterexamples is to increase the depth k

of the induction. However, some invariant properties



are not inductive for any k. So, instead of increasing k,
the method to enhance k-induction of a property is to
strengthen the induction hypothesis using new lemmas

to reduce the over-approximation of the reachable state

space.

Many recent efforts are dedicated to the automatic
generation of invariants (used as lemmas in this work):

automatic invariant checking based on BDDs [36]; un-

bounded model checking using interpolation [31]; property-
directed reachability (PDR) [5]; quadratic invariant gen-

eration using templates based on abstract interpreta-
tion [34]. S3 provides a lemma generation tool based on
a speculation strategy that searches for equivalent vari-

ables at bit-level. According to our experience, it is still

very difficult for those tools to generate all necessary
lemmas for an arbitrary system, and manual elabora-

tion of lemmas to complete the proof remains impor-

tant. So, to keep the approach as generic as possible,

we do not apply invariant generation methods. Instead,
we show how lemmas can be found "manually" on the

basis of the step-counterexamples. We pick the prop-

erty HLR-06-1 in Table 5 as an example to illustrate

the process of inductive proof.

Example 1 HLR-06-1 states that the rover position shall

be in front of or at the initial position of the reserved

area.

It is formally expressed in Eq. 3, where pos_r(t) is

the position of the rover r at time t, and posr(initrsv)

is the initial position of the reserved area of rover r

at time t. This requirement is expressed in HLL using

the FPA operators, given by Eq. 4, where i is the id of

rover r, and the FLT_ge() is the floating point greater-

or-equal operator. The notion of time cycle does not
appear in Eq. 4, because time is implicit in HLL. To

simplify the explanation, we suppose that the mission

of each rover contains at most 5 waypoints.

∀r ∈ Rovers, t ∈ Time
(

posr(t) ≥ posr(initrsv)
)

(3)

FLT_ge(posi, init_rsvi) == true; (4)

Following the workflow defined in Figure 8, BMC is

executed first, and no counterexample is found within
a time length of 20 cycles. Then k-induction is exe-

cuted. With k = 1, a step counterexample is found in
the next inductive depth (depth = 2), shown in Fig-
ure 10. The FPA-lib of S3 follows the IEEE 754 FPA

standard, thus a variable of float type (here variables

pos1 and init_rsv1) is composed of a sign, an ex-

ponent, and a mantissa. To facilitate the explanation,

the converted decimal values of floating numbers are

given in Figure 10. The Boolean variable rsv1[i] rep-

resents the reservation status (by the local rover) of

waypoint i of a rover’s mission. Values of variables pos1,

init_rsv1 and rsv1 are given for steps 0 - 3, where a
step-counterexample is produced in step 2.
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Fig. 10: Step-counterexample of Property HLR-06-1

This step-counterexample contradicts the property

HLR-06-1 because of pos1 < init_rsv1 in step k=2.

This means that the rover locates outside the reserved

area. The reserved area is in fact a set of continuous12

reserved waypoints of rover’s mission, therefore the cal-

culation of init_rsv1 depends on the reservation sta-

tus of the waypoints (variable rsv1). We notice that

in step k=1, the waypoints P0 and P2 in the mission

are reserved (i.e., rsv1[0]=t and rsv1[2]=t), but the

waypoint P1 is not (i.e., rsv1[1]=f), which means that

the reserved area is not continuous. This step-

counterexample does not indicate a design error. In-

deed, HLR-09 in Table 5 requires that any positive reply

to a reservation request shall contain a set of continuous
waypoints. Unfortunately, we cannot use it as lemmas

of this property because its inductive proof also pro-

duces step-counterexamples and needs to be analyzed.

We thus have two solutions: (1) express and prove a

property about the continuity of the reserved area, if

valid, use it as a lemma to prove HLR-06-01; (2) inves-
tigate the step-counterexamples of HLR-09 to make it

proved, and then use HLR-09 as a new lemma to prove

HLR-06-1.

For the first solution, the added lemma is expressed

in HLL as Eq. 5, where N is the number of waypoints
in a mission. Using this additional lemma, HLR-06-1 as

well as all other indeterminate13 properties are proved

12 As explained by the REQ-01-4 in Table 5, we use continu-
ous (continuity) hereafter for the fact that each waypoint has a
unique precedent waypoint in a mission or in a reserved area,
except that it is the initial one.
13 Indeterminate means neither valid nor violated, or unknown.
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by 1-induction. Although this step-counterexample is
not due to any missing or wrong property in the spec-
ification, we still suggest to report it to the designer.
Then s/he might decide to add the new lemma as a
complementary requirement about the continuity of re-

served areas in the specification. This may reduce the
re-verification effort. In this case, as the designer thinks
this implicit property is important, and he decides to
add it in the specification as a derived requirement from
the development process.

ALL i : [0, N− 3], j : [2, N− 1]
(

rsv1[i] ∧ rsv1[i+ 1] ∧ i+ j ≤ N− 1 → rsv1[i+ j]
)

; (5)

For the second solution, we can first consider HLR-

09 as an axiom. Inductive proof demonstrates that even

if HLR-09 were proved, HLR-06-1 would remain inde-

terminate and a step-counterexample similar to the one

in Figure 10 would be produced again. Following the

same idea, we assume all indeterminate properties ex-

cept HLR-06-1 are valid, all the step-counterexamples

indicate that the step k+1 contains non-continuous re-

served areas. This leads the verifier to add the same

lemma as the one in the first solution.

5.3 BMC and Test Case Generation

The formal verification cannot completely replace the

testing. Model-based test case generation has been de-
veloped as an important technique to perform software
testing and system testing. Usually, we derive the ab-

stract test suite from formal specification of require-

ments against the model of the system under test. Rely-
ing on the information for converting abstract test case
to executable one, the executable test suite is derived.

In general, properties are classified as safety or live-

ness properties. The former declares what should not
happen (or should always happen), while the latter de-

clares what should eventually happen. The vast major-
ity of properties in the ARP system are safety ones,

except the system-level functional property REQ-F2

in Table 4 and the software-level functional property

HLR-13 in Table 5.

Example 2 REQ-F2 states that at any time, if the def-

inition of schedulable missions are free of deadlock, a

deadlock shall not occur due to the ARP. HLR-13 states

that the ARP shall ensure that the schedulable mission

is completed within worst case mission time (WCMT).

HLR-13 is a bounded liveness property because an

over-approximated WCMT can be used as the upper

bound of checking. Hence it is a good candidate for

BMC. If no counterexample14 is found before the time

bound, the property is valid. In the case of HLR-13, a

counterexample is easily produced using BMC. A pre-

condition of HLR-13 is REQ-F2, because a rover may
not complete its mission when deadlocks occur. The val-

idation of REQ-F2 requires that missions are schedula-
ble, otherwise it is possible that deadlocks occur, and

HLR-13 fails. As we cannot check these two properties
considering the actual mission schedules, we use BMC

to generate test case scenarios containing deadlocks due

to unschedulable missions. These test cases can be used
later to check the verification tool of mission schedules.

To explain the generation of deadlock scenarios, we

consider a system with two rovers. REQ-F2 is satisfied

if the property expressed in Eq.6 is false, where rovers

ri and rj are stopped, ri (rj) requests waypoint pj (pi),
but pi (pj) is reserved by ri (rj). Both rovers wait for

a locked resource.

∀pi ∈ Misi, pj ∈ Misj, ri, rj ∈ Rovers, t ∈ Time
(

i 6= j ∧ state(ri, t) = STOP ∧ state(rj, t) = STOP

∧ req(ri, pj, t) ∧ req(rj, pi, t) ∧ rsvd(ri, pi, t) ∧ rsvd(rj, pj, t)
) (6)

14 The counterexample of liveness property is a path to a loop
that does not contain the desired state. This implies that with an
infinite loop path, the system never reaches the specified state.



We launch BMC for this property for some time
length, and test case scenarios are extracted from the
generated counterexamples.

5.4 Safety Property and Map Data Validation

Once the design is delivered to the verifier, it is the ver-
ifier’s duty to express and verify the properties. S/He

might have several ways to express one property. Some
safety properties can hardly be verified by induction or
BMC due to, for example, the complexity of calcula-

tion. In that case, we may take benefit of divide and
conquer strategy by decomposing the property into a

set of simpler ones, even static ones. Take the REQ-
SAF-1 in Table 3 as an example.

Example 3 REQ-SAF-1 states that at any time, the

minimal distance between the centers of two rovers shall
be greater or equal to 0.4m.

This property can be verified by calculating the dis-

tance between two rovers at any time and then checking

its value, unfortunately this solution is expensive due to

the nonlinear floating-point arithmetic. To alleviate this

problem, REQ-SAF-1 is split in another safety property

about the reservation of waypoints (REQ-SAF-1-1) and

a set of properties about the map data (IR-F1, IR-F2

and IR-F3) in Table 3. REQ-SAF-1-1 is proved by k-

induction using similar process as described in the Sect.

5.2. IR-F1, IR-F2 and IR-F3 are requirements about

the length of segment, the distance between a waypoint

and a segment, and the absence of intersection between

segments. In this work, the map data are modeled in

Lustre, as same as the software. In fact, these static

requirements on the map data could be easily checked
using a dedicated verification program. However, when

these map properties are used as sub-properties of the

safety property REQ-SAF-1, they need in any case to be
re-verified in the Lustre model. Our work uses a unique
tool chain for the data validation. This approach allows

the users to reuse the properties expressed on the map

data for the verification of software.

5.5 Property Verification Results

The safety, functional and performance properties of

ARP are formally expressed. As shown in Table 6, some
safety properties can be directly proved by 0-induction

or 1-induction, while some others need additional lem-

mas. REQ-QoS-1 is a system-level performance prop-
erty. It is difficult to verify it at system-level without

having software design, it is thus expressed as HLR-12
and verified at software-level by inductive proof.

6 Equivalence Proof between Design and

Generated Code

The property verification activities depicted in Sect. 5

demonstrate that the design model complies with the
set of requirements. However, there is still a gap be-
tween the design model and the code embedded in the
system. The code can be either implemented by the
developer or be generated automatically from the Lus-

tre model. In our case, we use the lus2c translator15 to
generate the C code from the Lustre model. However,

as this translator is not qualified16, it is still unknown
whether this C code satisfies the requirements.

To prove the correctness of the generated C code,

two approaches are applicable. The first one follows the

strategies presented in Sect. 5. We first translate the
C code into the HLL model using the C-translator in

S3, and verify that this HLL model satisfies all require-
ments defined in Sect. 4. The second approach demon-
strates that the code is equivalent to the design model,

i.e., the same inputs generate the same outputs. This

guarantees that the properties (related to inputs and

outputs) satisfied by the design model will be satisfied

by the code.

Figure 11 presents several verification activities (A)

in the process of equivalence proof: A1 generates C code

from Lustre model with a qualified translator; A2 trans-

lates Lustre models into HLL models, where properties

are combined and verified; A3 translates C code into

HLL models, where properties are combined and ver-

ified; A4 proves that the HLL models generated from

the Lustre model and the C code are equivalent; A5

proves that the LLL models generated from the Lustre

model and the C code (through the HLL model) are

equivalent.

Based on different development contexts and the ac-

tivities in Figure 11, we summarize a set of strategies

(S) for the verification of the C code, as follows:

– S1: The code generator is qualified as a development
tool at the same level as the application. Properties
are verified on the Lustre model (A2). Thanks to the

qualified translation (A1), properties are preserved
in the generated C code.

– S2: The code generator is not qualified at the same

level as the application.

– S2a: Properties are directly verified on the C

code (A3).
– S2b: Properties are verified on the Lustre model

(A2). The C code is proved to be equivalent to

the Lustre model (A4 or A5). Thanks to the

15 The translator lus2c is provided by Lustre v4 toolset.
16 Qualification is a requirement in getting a system certified.



Table 6: Property Verification Results of the ARP Design

Verification Techniques REQ-ID Verification Results

Inductive Proof

IR-F1, IR-F2, IR-F3, REQ-F1, HLR-01, HLR-

03, HLR-04, HLR-05, HLR-07, HLR-08, HLR-11
Valid by 0-induction

REQ-SAF-1-1, HLR-10 Valid by 1-induction

HLR-02, HLR-06-1, HLR-06-2, HLR-06-3, HLR-

06-4, HLR-09, HLR-12 (REQ-QoS-1)

Valid by 1-induction us-

ing additional lemmas

Data Validation REQ-SAF-1 (IR-F1, IR-F2, IR-F3) Valid

BMC and Test Case Generation HLR-13, REQ-F2 Test cases generated

Fig. 11: Activities in the Process of Equivalence Proof

equivalence proof, properties are preserved by

the C code.

• S2b1: The equivalence is proved at HLL level

(A4).
• S2b2: The equivalence is proved at LLL level

(A5).

– S2c: Properties are verified at both Lustre and
C code level (A2 and A3).

In our case study, we have proved the equivalence

between the Lustre model (including the map data) and

the generated C code using the strategy S2b. The rea-

sons for choosing this strategy are explained as follows:

1. The C code generator lus2c is non-qualified. (rule
out S1)

2. It is reasonable to assume that only a subset of the
requirements will be formally expressed and veri-

fied. One will probably use other more classical ap-

proaches, such as testing. The cost of test increases

as the abstraction level decreases, thus test is less

expensive at Lustre level than at C level. (rule out

S2a and S2c)

3. Specific formal verification techniques can be ap-

plied on Lustre thanks to its abstract semantics,

which is lost once the C code is generated. This im-

plies that proving properties at Lustre level is sim-

pler than at C level. (rule out S2a and S2c)

4. S2b supports two complementary approaches of equiv-

alence proof S2b1 and S2b2. S2b1 allows debug-

ging counterexamples at the HLL level, but might

need additional lemmas for some cases. S2b2 auto-
matically searches and adds necessary lemmas us-

ing speculation techniques, but counterexamples are
still difficult to exploit. Usually S2b2 is performed

first; if a property is falsifiable or indeterminate, the

S2b1 is used to analyze the (step-)counterexample.
(keep S2b)

7 Discussion

In this part, we provide more details and discuss some

lessons learnt from the experiments.



7.1 Proof of Generated Code

The strategies of equivalence proof discussed in Sect. 6
have pros and cons. One can select appropriate strate-
gies under the development contexts and the available

resources.

– S1 requires a qualified code generator. This was not
an option in our case, but this is the usual strategy
in the domain of safety critical applications where

the cost of a failure largely exceeds the cost of qual-
ification. A qualified code generator saves a lot of

effort, but is very expensive.

– S2a and S2c require to express and verify proper-

ties and lemmas at code level. As the code is less
abstract and more complex than the Lustre model,
property verification requires more effort.

– S2c seems redundant as property proofs are per-
formed at both Lustre and C level. However, it might

be useful to determine the origin of an error: a prop-

erty satisfied in Lustre but falsifiable in C reveals

probably an error during translation.

– S2b is "S1 without qualified generator". The equiv-

alence proof between Lustre model and C code en-

sures that the generated C code implements exactly

the properties expressed in Lustre. S2b does not

need expensive qualified generator, but needs more

effort to carry out equivalence proof. Each time the

Lustre model is modified and the new code is gen-

erated, the equivalence needs to be re-proved.

7.2 Proof-Driven Design Guidance

The formal verification of a system could fail because

of the complexity of the system, the lacking of com-
plete requirements to support formal verification, etc.

For instance, in Sect. 5.2, the HLR-06-1 is proved by

k-induction after searching and adding a lemma. If we
consider that the verifier has not a complete or deep
knowledge about the design, s/he reports a scenario

that contains the step-counterexample to the designer.

If necessary, the designer may then decide to add a com-
plementary requirement derived from this lemma in the
initial specification, in order to reduce the cost of sub-

sequent verification. The other way round, the verifier
may ask the designer to state as many detailed require-

ments as possible about the system. These properties

may be written as comment and/or assertions to be
checked at runtime.

Sometimes, a lemma may not be provable from the
initial hypotheses. This might be the case that some en-

vironment hypotheses have been considered as granted

by the designer without ever being explicitly expressed.

This case could be handled either by a modification of

the requirements to make the hypothesis explicit or by a
modification of the design to make it independent from

these hypotheses.

8 Conclusion and Perspectives

This article shows how multiple formal verification tech-
niques (inductive proof, BMC, test case generation, and
equivalence proof) can be integrated to verify an ac-

tual system with an industrial grade toolset. Some sig-

nificant activities of a typical verification process have
been addressed, from the specification and design to
the formal verification. Focus has been placed on the

verification of safety and functional properties and on
the equivalence proof between the design model and the
generated code. We have drawn some lessons about the

equivalence proof and the proof-driven design guidance
from this experiment. This verification process is clas-

sic when the proof of property is based on SAT/SMT

solvers. The main effort lies in searching for lemmas for

the property proof using k-induction. This needs good

understanding of the proof techniques. As our verifica-

tion tool provides step-counterexamples feedback, the

debug process can be seen as an engineer work. This

case study is built on the Lustre modelling language

and S3 toolset. Similar property proof process can be

applied to other modelling languages and SAT/SMT

tools.

In order to tackle the floating-point limitation, we

have designed an FPA library and integrated it in S3.

Our next goal is to investigate how well it works on a

wider range of industrial designs from automotive, aero-

nautic, industry, energy, etc, and to establish bench-
mark (or reuse existing SMT benchmarks) to evaluate

the performance of floating-point verification by S3.
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