
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/19369

Muñoz Arancón, M. and Montano, G. and Wirkus, M. and Hoeflinger, K. and Silveira, D. and Tsiogkas, N. and Hugues,

Jérôme and Bruyninckx, H. and Dragomir, I. and Muhammad, A. ESROCOS: a robotic operating system for space and

terrestrial applications. (2017) In: 14th Symposium on Advanced Space Technologies in Robotics and Automation

(ASTRA 2017), 20 June 2017 - 21 June 2017 (Scheltema, Netherlands).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/153389823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ESROCOS: A ROBOTIC OPERATING SYSTEM FOR SPACE AND TERRESTRIAL

APPLICATIONS

M. Muñoz Arancón (1), G. Montano (2), M. Wirkus (3), K. Hoeflinger (4), D. Silveira (5), N. Tsiogkas (6), J. Hugues (7), H.

Bruyninckx (8), I. Dragomir (9), A. Muhammad (10)

(1) GMV Aerospace and Defence, Isaac Newton 11 PTM, Tres Cantos, 28760 Madrid, Spain, mmunoz@gmv.com
(2) Airbus Defence and Space Ltd, Gunnels Wood Road, SG1 2AS Stevenage, United Kingdom,

Giuseppe.Montano@Airbus.com
(3) Deutsches Forschungszentrum für Künstliche Intelligenz GmbH - Robotics Innovation Center, Robert-Hooke-Straße

1, 28539 Bremen, Germany, malte.wirkus@dfki.de
(4) Deutsches Zentrum für Luft - und Raumfahrt Ev, Linder Höhe, 51147 Köln, Germany, Kilian.Hoeflinger@dlr.de
(5) GMVIS Skysoft SA, Av. D.Joao II Lote 1.17.02, Torre Fernao Magalhaes 7°, 1998025 Lisboa, Portugal, Daniel

daniel.silveira@gmv.com
(6) Intermodalics BVBA, Gaston Geenslaan 9, 3001 Leuven, Belgium, Nikolaos Tsiogkas

nikolaos.tsiogkas@intermodalics.eu

(7) Institut Superieur de l'Aeronautique et de l'Espace, Avenue Edouard Belin 10, 31055 Toulouse, France,

Jerome.HUGUES@isae-supaero.fr
(8) Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium, Herman.Bruyninckx@kuleuven.be

(9) Universite Grenoble Alpes, 700 Avenue Centrale, 38401 Saint Martin d’Heres, France, iulia.dragomir@univ-

grenoble-alpes.fr
 (10) VTT Technical Research Centre of Finland Ltd., Tekniikankatu 1, 33720 Tampere, Finland, ali.muhammad@vtt.fi

ABSTRACT

ESROCOS (http://www.h2020-esrocos.eu) is a

European Project in the frame of the PERASPERA

SRC, (http://www.h2020-peraspera.eu/), targeting the

design of a Robot Control Operating Software (RCOS)

for space robotics applications. The goal of the

ESROCOS project is to provide an open-source

framework to assist in the development of flight

software for space robots, providing adequate features

and performance with space-grade Reliability,

Availability, Maintainability and Safety (RAMS)

properties. This paper presents the ESROCOS project

and summarizes the approach and the current status.

1. INTRODUCTION

In the industrial robotics domain, it is common practice

for robotics manufacturers to adapt proprietary Real-

Time Operating Systems (RTOS) regarding specific

functional and business demands. This results in the

development of non-standardized, proprietary solutions.

The space robotics industry has been following a similar

path, with the additional constraints imposed by the

operating environment and the particularities of each

mission, leading to minimal reuse across developments.

On the other hand, open-source robotics frameworks

such as ROS [1], ROCK [2] or GenoM [3] have

flourished in the academic world, enabling the growth

of reusable functional block libraries and allowing for

faster application development. However, these open-

source frameworks are not developed with sufficient

level of quality assurance, and they are not suitable for

space or critical terrestrial robotics applications with

demanding RAMS properties.

ESROCOS will provide an open-source robotics

framework designed from the beginning to support the

development of space robotics. ESROCOS will provide

the foundation of a robotics software development eco-

system not only relevant for the space industry, but also

fulfilling the requirements of other industries like

underwater, nuclear or medical robotics. To gain this

large and multi-domain user base (including industry),

the resulting tools have to be simple to use and a diverse

offering of modules has to be available.

The paper is structured as follows: § 2 enumerates the

specific objectives and challenges, identified for the

project; § 3 describes the ESROCOS framework; and

§ 4 summarizes the project status and planning.

2. PROJECT OBJECTIVES AND CHALLENGES

In order to meet the goal of providing to the robotics

community an open-source framework that is the base

of future space robotics applications, the ESROCOS

project has defined several objectives:

1. Develop a space-oriented RCOS: the

development of ESROCOS follows the ECSS

standards [4,5] and implements certain

capabilities specific to space communications

(ECSS PUS services [6]) and hardware support

(LEON processor and bus drivers) on top of a

space RTOS such as RTEMS [7]. ESROCOS

mailto:mmunoz@gmv.com
mailto:Giuseppe.Montano@Airbus.com
mailto:malte.wirkus@dfki.de
mailto:Kilian.Hoeflinger@dlr.de
mailto:daniel.silveira@gmv.com
mailto:nikolaos.tsiogkas@intermodalics.eu
mailto:Jerome.HUGUES@isae-supaero.fr
mailto:Herman.Bruyninckx@kuleuven.be
mailto:ali.muhammad@vtt.fi
http://www.h2020-esrocos.eu/
http://www.h2020-peraspera.eu/

covers three levels of quality: laboratory, high-

reliability and critical software. Each level has

different quality assurance and hardware

representativeness.

2. Integrate advanced modelling technologies:
ESROCOS will include a complete model-

based methodology, including robotic-specific

modelling semantics, and supporting the design

and integration of software components, as

well as the verification of the structural and

behavioural properties at system level. By

relying on formal verification and automatic

code generation, this methodology will help to

reduce the number of defects that are

introduced in the software. ESROCOS will

provide a kinematic modelling tool, based not

just on models, but semantic models, making

possible model-to-model transformation, and

not just the traditional model-to-text

transformations.

3. Focus on the space robotics community:
actors that have a leading role in state-of-the-

art robotics missions have participated in the

definition and review of the ESROCOS

requirements, ensuring that they are aligned

with the needs of current and future missions.

4. Allow for the integration of complex

robotics applications: ESROCOS will support

mixed-criticality applications using time and

space partitioning, which allows running

applications with different levels of quality on

the same on-board computer, ensuring no

propagation of failures among them.

5. Avoid vendor lock-in: ESROCOS will

integrate existing open-source tools as well as

new developments, and will be distributed as

open-source software to the robotics

community.

6. Leverage existing assets: instead of

attempting to develop a new framework from

scratch, ESROCOS builds on existing

technologies such as the TASTE framework

[8] developed and maintained by ESA and

partners. It will incorporate tools, libraries and

approaches from well-established robotics

software ecosystems such as ROCK and ROS.

ESROCOS will also offer interoperability

capabilities with these robotics frameworks, so

that critical software components can be tested

in combination with existing algorithms or

tools (data viewers, simulators, etc.).

7. Cross-pollinate with non-space solutions and

applications: the design of ESROCOS will

benefit from the experience gathered from the

nuclear robotics domain, with very stringent

RAMS requirements.

The development of ESROCOS is not an isolated

activity. The PERASPERA SRC has launched six

Operational Grants (OG) to target different aspects of

space robotics (software, autonomy, data fusion,

sensors, manipulation and validation). The activities of

the six OGs are coordinated, and an integrated Interface

Control Document (ICD) is being developed.

ESROCOS provides the software infrastructure and

methodology that will enable the other OGs to comply

with the software RAMS requirements of space

systems. Therefore, the coordination with these parallel

activities is essential to ensure mutual success.

The results of the ESROCOS project will be validated

taking as reference two representative applications: a

planetary rover mission, and an in-orbit servicing

scenario using a robotic arm. In addition, validation in a

nuclear robotics scenario is also foreseen. The

validation will follow a two-stepped approach, with an

internal validation phase against ESROCOS’

requirements, followed by a demonstration of the

system in two facilities that will be provided by the

Facilitators project (OG6) [9].

The objectives of ESROCOS are ambitious and present

several challenges. The most relevant are:

- Successfully combine innovative and well-

established modelling approaches at different levels

(system architecture, physical configuration,

software architecture and behaviour, etc.).

- Integrate tools and libraries in a consistent way,

providing a unified view to the final user.

- Coordinate with the parallel Operational Grant

activities to ensure that they are compatible at

interface level and that together they cover all the

capabilities required by space robotics systems.

- Provide a powerful and flexible framework that can

be adopted by the community, mainly in the space

robotics domain, but also for terrestrial applications

with strict RAMS requirements.

The following section presents the ESROCOS

framework, as well as the approach selected to

overcome these challenges and accomplish the project

objectives.

3. DESCRIPTION OF THE FRAMEWORK

3.1. Scope and workflow

ESROCOS is a framework for developing robot control

software applications. It includes a set of tools that

support different aspects of the development process,

from architectural design to deployment and validation.

In addition, it provides a set of core functions that are

often used in robotics or space applications.

The ESROCOS framework supports the development of

software following the ECSS standards. It does not by

itself cover all the development phases and verification

steps, but it facilitates certain activities and ensures that

the software built can be made compatible with the

RAMS requirements of critical systems.

Figure 1 summarizes the main activities supported by

the ESROCOS framework. The rounded white boxes

indicate activities, grey rectangles denote software

artefacts (models, source code, applications, etc.), and

dashed boxes group related items. The software

artefacts are either product of the activities (identified in

italics), or directly provided by the framework as

functional blocks to use in the activities. The figure

illustrates how the activities, their products and the

functional blocks combine to form a consistent

workflow for the production of distributed robot

application software.

The starting point of the workflow is the formal

modelling of the robot and the application. The model-

based approach facilitates the early verification of the

system properties, in particular for RAMS. The

modelling activities encompass the following aspects:

- The robot’s kinematic chain, in order to produce a

formal model of the robot motion, from which

software can be automatically generated.

- The hardware and software architecture of the

application, including non-functional properties

(real-time behaviour, resource utilisation, etc.).

The models allow for different analyses to verify the

non-functional properties of the system and iteratively

refine the system architecture. ESROCOS relies on both

existing and newly developed tools to support the

different modelling aspects.

The model of the application may include functional

building blocks, either provided by ESROCOS or

specifically generated from the models (e.g. a hybrid

dynamics instantaneous motion solver). This model can

then be used to automatically generate the software

scaffolding for the application, consisting of the

skeleton of the application components and the glue

code that enables the inter-component communication.

The application-specific behaviour is implemented and

integrated in this structure, making use of libraries to

support the required functionalities.

The application binaries can then be built and deployed

in a runtime platform. Distributed applications are

possible, with components running in separate nodes or

partitions. ESROCOS supports SPARC/RTEMS and

x86/Linux platforms. The former is intended for usage

in space-quality systems, while the latter aims towards

laboratory setups, as well as validation and debugging.

The framework includes the autoproj [10] package and

build management system to handle software builds and

component dependencies. The management system

allows the developer to seamlessly combine ESROCOS,

3rd-party and own components to build an application.

ESROCOS can be used to model applications using

time and space partitioning, in order to build mixed-

criticality systems in which components with different

Model

kinematic chain

Robot formal

model
Analyse SW

(schedulability, etc.)

transform

Model distributed

real-time system

Instantaneous

motion solver

PUS services

Timestamped

data alignment

Etc.

Core space robotics functions

Data view
Deployment

view

Interface

view

HW/SW model

Concurrency

view

include

Implement

behaviour

Application

skeleton

Glue

code
Libraries

User

code

Robotic application

integrate

generategenerate

Application

binaries

Deploy

and run

Distributed robot

application SW

Simulation

Logging and

replay

2D/3D data

visualization

Etc.

Support tools

communicate

Monitor, test,

debug
use

Pre-existing

assets

Integrate

legacy SW

sparc/rtems +

device drivers

x86/linux

Runtime platform

High integrity

middleware

External

middleware

bridges

TSP

hypervisor

(sparc)

Hypervisor

services

(IO, health, etc.)

Manage build

and dependencies

Package

repositories

Figure 1. Development of a robot control application with ESROCOS

RAMS levels can safely coexist. These applications can

be deployed on a SPARC (LEON) platform using the

AIR hypervisor.

The communication between the application

components at runtime is enabled by the PolyORB-HI

middleware. ESROCOS will provide also bridge

components that enable the communication with

external middleware for ROS and ROCK. This will

allow the robotics engineer to use tools from these

ecosystems (data visualizers, simulators, etc.) for testing

and debugging the application. A selection of tools will

be provided ready to use with ESROCOS, with all the

required data types and interfaces. In addition,

middleware bridges will allow the user to integrate

existing software assets and run them together with

newly built software in a distributed environment.

The following sections explain in detail the main

elements of the ESROCOS framework.

3.2. Robot and software modelling tools

Kinematic chain models. ESROCOS includes tools to

formally model the kinematics and dynamics of ideal,

lumped-parameter robots of all possible configurations

(serial, mobile, parallel, hybrid, multi-DOF joints,

multi-articular actuation), with a structured set of

interdependent modelling languages: geometry (e.g.,

line, point, pose), kinematics (e.g., joint, link, inverse

dynamics, Jacobian, singularity), mathematical

representations (e.g., frame, quaternion), numerical

representations (e.g., homogeneous transformation

matrix, n-vector), digital representations (e.g., 16-bit

integers, IEEE floats), and physical dimensions (e.g.,

length, meter, energy, Joule). For all properties and

transformations that are physically relevant for robots

(e.g., forward kinematics, hybrid dynamics), code-

generators will be provided, that take a specification in a

formal modelling language as input, and generate code

with verifiable properties (e.g., no dynamic allocation).

Distributed real-time system models. ESROCOS

relies on the TASTE framework to model robotics

applications from a real-time software perspective.

TASTE is an open source framework that allows the

development of embedded, real-time systems. It relies

on technologies such as standardized modelling

languages (e.g., ASN.1 [11] and AADL [12]), code

generators and real-time systems, and allows for the

generation of application skeletons and the production

of the system executable. The designers implement their

embedded systems using a set of views, abstracting the

user from the implementation details of the underlying

platform (e.g., operating system, drivers) and

guaranteeing the fulfilment of real-time properties.

Model analysis and verification. The TASTE

framework supports the analysis of the real-time

behaviour and resource utilisation of the software.

ESROCOS will complement these capabilities with BIP

(Behaviour, Interaction, Priority) [13] formal models,

which offer additional possibilities to analyse the

software and verify properties at a behavioural level.

The verification and validation of TASTE models is

done with the BIP framework via a model translation

between the two formalisms using the TASTE2BIP tool,

currently under development. The BIP framework offers

several analysis tools: iFinder [14] verifies the

satisfaction of safety properties, SMC [15] evaluates a

system’s performance metrics, and user-

guided/automated simulation validates the given

requirements. The workflow of these tools is illustrated

in Figure 2. The model translator, the simulator and the

SMC are being developed/expanded in the ESROCOS

framework to consider more complex systems with hard

real-time constraints, such as robot controllers.

BIP can be used to formally model not only the nominal

operation of the system but also its faults, enabling the

correct construction of fault tolerant systems. The

nominal behaviour and the Fault Detection, Isolation

and Recovery (FDIR) strategy are given by the user in a

state machine formalism such as SDL or BIP. The faults

model is given explicitly by the user in the BIP

formalism, targeting mainly the erroneous behaviour of

hardware. Then the two models – nominal and faulty –

are put together and the user-designed FDIR component

can be validated by simulation in the BIP framework.

3.3. Runtime platforms

The ESROCOS framework supports the development of

applications for three target quality levels: laboratory,

Figure 2. Verification and validation workflow of

TASTE models with the BIP framework. Components

in blue are new/extended tools developed in the

ESROCOS framework.

high-reliability and space. Laboratory applications focus

on reduced development times with light quality

assurance activities. Space quality applications have

demanding RAMS requirements and must follow a

strict development process. Finally, the high-reliability

level is a balance between the two.

ESROCOS uses the TASTE toolset, which supports

different hardware and software platforms. For

laboratory applications, ESROCOS targets x86/Linux

systems and provides a set of tools for logging and data

visualization, among others, to facilitate the

development and debugging of applications. For space-

quality applications, the framework targets

SPARC/RTEMS systems and includes formal

modelling tools that enable correct-by-construction

software development and verification of RAMS

properties.

Space robotics applications are complex and they may

combine functions with different degrees of criticality

and real-time requirements. For instance, the functional

layer may rely on hard real-time control loops, while

higher-level functions may require a varying amount of

time and memory to complete an operation. In order to

safely support such diverging requirements, the

ESROCOS framework offers the capability to design

time- and space-partitioned systems using TASTE and

the AIR/XKY hypervisor.

The TSP (Time and Space Partitioning) concept, also

known as IMA (Integrated Modular Avionics), emerged

as an opposing concept to the federated architecture,

and offered the possibility of integrating multiple

functions into partitions of the same set of physical

resources, allowing the aeronautical industry to manage

software growth in functionality and in efficiency.

Partitioning keeps applications from inadvertently

influencing each other by enforcing strict separation,

segregating computing resources in space and time [16].

In a system operating under the specification ARINC

653 [17], all the inter-partition communications take

place over statically defined ports and channels. Ports

can be configured for a queuing or sampling discipline.

A message-passing technique is used to communicate

through a channel between two partition ports.

The architectural concept of IMA was transposed from

the aeronautical to the space domain by ESA and other

agents of the European space industry in the IMA-SP

(IMA for Space) activity [18]. The IMA-SP platform

defines a two-level software executive. The system

executive level is composed by a software hypervisor,

also called partitioning kernel, which segregates

computing resources between partitions. A second level,

the application level, is composed by the user's

applications running in a partition. Each application can

implement a system function by running several tasks

managed by the Partition Operating System (POS),

which is modified to operate along with the underlying

hypervisor. In the context of IMA-SP, the selected POS

was the space-qualified version of the Real-Time

Executive for Multiprocessor System (RTEMS). A

graphical representation of an IMA-SP executive is

depicted in Figure 3.

The ESROCOS framework includes the AIR/XKY

hypervisor, also known as ARINC Interface in RTEMS

(AIR) separation kernel [19]. It is an ARINC 653

compliant time and space partitioned operating System

that was originally based on RTEMS technology.

3.4. Functional building blocks and tools

One important factor in the success of robotics

frameworks is that they provide ready-to-use

components (algorithms, sensor and actuator

controllers, etc.) and tools that greatly speed up

application development. In order to address the specific

needs of space systems, ESROCOS will offer a set of

reusable components for common robotics functions

compatible with the space quality level, as well as a set

of TM/TC services. In addition, the framework will

integrate popular visualization and simulation tools, and

provide support for the reuse of legacy software

developed in ROS and ROCK.

Generic robotics building blocks. ESROCOS is

intended as a software development framework for the

space robotics domain. It must therefore support

common development tasks within the envisioned

domain by means of tools, libraries and software

components. An example of this has been introduced in

Section 3.2, with the kinematics modelling tool. In

addition to this tool, we intend to provide software that

supports the developer in calculating geometric

transformations at library level. This tool will allow

Figure 3. The IMA-SP executive composed by a

hypervisor and two partitions, each one running its

version of RTEMS.

configuring a graph with named geometric reference

frames as nodes and frame transformations generated by

user code as edges. Also from user code, transforms

between arbitrary frames within the specified graph can

be queried. Similar functionality is provided within

ROCK with the transformer [20] and in ROS with the tf

mechanism [21].

Another common problem in the robotic domain is to

handle data that might be created and processed

asynchronously. To support the handling of such data,

we intend to implement a mechanism to buffer multiple

asynchronous data streams for the selection of best

corresponding samples at a given time point, inspired by

the stream aligner [22] in ROCK.

These two proposed tools stand exemplary as first

developments toward a potentially growing tool box for

robotic developments. The pool of user components

developed within the ESROCOS framework and the

support for 3rd party frameworks (as described above)

work into the direction in making ESROCOS a valuable

tool for robotic application development.

TM/TC services building blocks. The Telemetry and

Telecommand Packet Utilization Standard (PUS)

defines a set of on-board services for ground monitoring

and control of spacecraft, including space robotics

missions. The ESROCOS framework provides a set of

PUS services, implemented at logical level, that can be

integrated in applications to emulate the operation of the

robot from a ground control station.

Support tools from 3rd-party frameworks.
ESROCOS will integrate existing tools to facilitate the

development of robotics applications. One of the areas

that will be supported by these tools is the visualization

of robotics data. The vizkit3d [23], from the ROCK

ecosystem, and the RViz [24] tool, from ROS, will be

integrated in ESROCOS. These tools have proven to be

extremely useful in the development process, allowing

the user to have a full 3D view of the system status,

which increases the understanding of the system

functionality. This in turn can increase the pace of

development and debugging process.

Another tool to be integrated is the Gazebo simulator

[25]. Although technically not part of ROS, Gazebo is

highly integrated with it, making it an ideal addition to

ESROCOS. Simulation tools are essential for the

development of any robotics application. By eliminating

the need to use real hardware in certain phases of the

development, they allow fast iterations and lower costs.

The combination of visualization and simulation tools

can vastly improve the efficiency of the development of

any space robotics application. It can provide a stable

platform to simulate and test software developed in a

cost and time effective manner.

Interaction with 3rd-party frameworks. The

ESROCOS framework will include support for the

integration with 3rd-party frameworks, in particular for

ROCK and ROS, which are popular within the scientific

robotics community. The support is established by

providing a mapping for the abstractions of the different

frameworks, conversion functions between basic data

types from the particular frameworks, and a set of

software components that serve as bridge between the

ESROCOS middleware (PolyORB-HI) and an external

middleware at runtime.

During execution, the bridge component is visible in

both middleware domains as a regular component. It

performs the data conversion on-line and passes the

respective data from its source to the sink, bridging

between both middleware domains.

This bridge mechanism will potentially allow for the

integration of a larger pool of available components and

development tools.

3.5. Build and package management

In ESROCOS, many individual software developments

are arranged to work together and build the overall

development framework. Many of these software

developments also have relevance out of the scope of

ESROCOS and have their own maintenance structure or

development road-map. For example, the TASTE tool,

the kinematics modelling tool or the AIR/XKY

hypervisor are software packages that are used in

different contexts than ESROCOS. Also, an

infrastructure for reusing other developments made

within the framework should be provided.

To allow this, we use the Autoproj tool, which allows

specifying a set of software packages from different

sources, such as Git or SVN repositories, archives such

as tar or zip, or system package management software

such as apt. It can also handle different kinds of

packages like source code packages with different

languages and build systems, or binary packages.

3.6. Validation approach

The validation of the ESROCOS software products will

be done in two steps. The software will be fully

validated within the project with a combination of

unitary, integration and end-to-end system tests. Then,

in order to demonstrate the capability to integrate with

the developments of the other PERASPERA OGs, the

ESROCOS framework will be used to develop two

applications that will leverage the validation facilities

developed by the Facilitators project (OG6).

The ESROCOS framework will be validated according

to the two reference scenarios defined by the

PERASPERA SRC as representatives of future space

robotics missions: a planetary exploration rover mission

and an in-orbit assembly mission. To validate the

ESROCOS concept, these use cases will be oriented to

cover the laboratory (x86/Linux) and the space

representative (SPARC/RTEMS) environments. The

ESROCOS application will be deployed on a space-

representative on-board computer. For the orbital

scenario, the application will control a robotic arm and a

camera, perform Cartesian and joint space real-time

motion control, and acquire and display telemetry. For

the planetary scenario, the application will drive a rover

platform in Ackermann and point-turn modes, acquiring

images and platform telemetry during the traverse.

In addition, in order to demonstrate the benefits of the

ESROCOS framework for other critical robotics

applications beyond space systems, ESROCOS will be

validated in a nuclear robotics scenario. VTT hosts the

DTP2 platform of ITER since 2007. The purpose of

DTP2 is to develop and demonstrate maintenance of the

ITER divertor with remotely operated robots with high

degree of RAMS attributes. The demonstration

equipment at DTP2 includes the Cassette

Multifunctional Mover (CMM) robot and control

system along with the infrastructure such as the full

scale Divertor Region Mockup. The system reproduces

the particular constraints of the domain. For example,

due to the fusion-induced radiation, the operations

cannot be relayed on video feedback from cameras and

must rely on a high-quality calibrated virtual model that

provides the operators with the missing information

about the CMM state.

An ESROCOS application will be executed on the

CMM robot to control a subset of functionalities. The

performance of the CMM will be benchmarked against

the existing control system. The control system shall be

able to avoid failure or ensure a successful recovery

without damaging the task or the robot.

4. PROGRESS AND PLANNING

The ESROCOS project started in November 2016 and

successfully passed its System Requirements Review

(SRR) in February 2017. The planned duration of the

activity is 27 months.

Updates on the activity can be found at the project’s

website (http://www.h2020-esrocos.eu). The ESROCOS

consortium plans to make the framework available

through GitHub (https://github.com/ESROCOS), once

the software reaches a sufficient level of maturity for

widespread usage.

5. REFERENCES

1. The Robot Operating System. Online at

http://www.ros.org

2. Robot Construction Kit. Online at http://rock-

robotics.org

3. Ceballos (2011), A., et al. GenoM as a robotics

framework for planetary rover surface

operations. ASTRA, 2011, p. 12-14.

4. European Cooperation for Space

Standardization (ECSS), Space Engineering:

Software. ECSS-E-ST-40C, 6-Mar-2009

5. European Cooperation for Space

Standardization (ECSS), Space Product

Assurance: Software Product Assurance.

ECSS-Q-ST-80C, 6-Mar-2009

6. European Cooperation for Space

Standardization (ECSS), Space Engineering:

Telemetry and Telecommand Packet

Utilization. ECSS-E-ST-70-41C, 15-Apr-2016

7. RTEMS Real-Time Operating System. Online

at: https://www.rtems.org/

8. Perrotin, M., Conquet, E., Dissaux, P.,

Tsiodras, T., Hugues, J. (2010), The TASTE

Toolset: turning human designed

Figure 4. DTP2 facility (top) and five-degrees-of-

freedom CMM robot at the DTP2 facility at VTT

Tampere (bottom)

http://www.h2020-esrocos.eu/
https://github.com/ESROCOS
http://www.ros.org/
http://rock-robotics.org/
http://rock-robotics.org/
https://www.rtems.org/

heterogeneous systems into computer built

homogeneous software. In: ERTS 2010,

Toulouse (2010)

9. H2020 Facilitators project: Facilities for

Testing Orbital and Surface Robotics Building

Blocks. Online at: http://www.h2020-

facilitators.eu/

10. Autoproj. Online at https://github.com/rock-

core/autoproj

11. International Telecommunications Union,

Recommendation X.680-X.693 (08/2015):

Information Technology - Abstract Syntax

Notation One (ASN.1) & ASN.1 encoding

rules.

12. SAE International, Architecture Analysis &

Design Language (AADL), AS5506C

(18/01/2017).

13. A. Basu, M. Bozga, J. Sifakis (2006),

Modeling heterogeneous real-time components

in BIP, in SEFM ’06: Proceedings of the

Fourth IEEE International Conference on

Software Engineering and Formal Methods.

Washington, DC, USA: IEEE Computer

Society, 2006, pp. 3–12.

14. Ben-Rayana S., Bozga M., Bensalem S.,

Combaz J. (2016), RTD-Finder: A Tool for

Compositional Verification of Real-Time

Component-Based Systems. In: Chechik M.,

Raskin JF. (eds) Tools and Algorithms for the

Construction and Analysis of Systems.

TACAS 2016. Lecture Notes in Computer

Science, vol 9636. Springer, Berlin,

Heidelberg

15. Nouri, A., Bensalem, S., Bozga, M. et al.

Statistical model checking QoS properties of

systems with SBIP. International Journal of

Software Tools for Technology Transfer

(2015) 17: 171.

16. C. Silva. Integrated Modular Avionics for

Space applications: Input/Output Module.

Master’s thesis, Instituto Superior Técnico,

October 2012.

17. ARINC653, Arinc Specification 653-1.

Avionics Application Software Standard

Interface. Published: October, 2003 by RTCA.

18. IMA-SP (Ima for Space Activity). Online at:

http://esaconferencebureau.com/docs/12c25_2

310/sa1440_deredept.pdf?sfvrsn=2

19. AIR. Online at:

http://www.gmv.com/en/Products/air/

20. ROCK Transformer. Online at http://rock-

robotics.org/stable/documentation/data_proces

sing/transformer.html

21. ROS tf. Online at http://wiki.ros.org/tf

22. Stream aligner. Online at http://rock-

robotics.org/stable/documentation/data_proces

sing/stream_aligner.html

23. Graphical User Interfaces in ROCK. Online at

http://rock-

robotics.org/stable/documentation/graphical_u

ser_interface/index.html

24. RViz. Online at http://wiki.ros.org/rviz

25. Gazebo Simulator. Online at:

http://gazebosim.org/

ACKNOWLEDGEMENTS

We would like to thank the European Commission /

Research Executive Agency and the members of the

PERASPERA Programme Support Activity (ESA as

coordinator, ASI, CDTI, CNES, DLR and UKSA) for

their support and guidance in the H2020 ESROCOS

activity. The project has received funding from the

European Union’s Horizon 2020 research and

innovation programme under grant agreement No

730080.

http://www.h2020-facilitators.eu/
http://www.h2020-facilitators.eu/
https://github.com/rock-core/autoproj
https://github.com/rock-core/autoproj
http://esaconferencebureau.com/docs/12c25_2310/sa1440_deredept.pdf?sfvrsn=2
http://esaconferencebureau.com/docs/12c25_2310/sa1440_deredept.pdf?sfvrsn=2
http://www.gmv.com/en/Products/air/
http://rock-robotics.org/stable/documentation/data_processing/transformer.html
http://rock-robotics.org/stable/documentation/data_processing/transformer.html
http://rock-robotics.org/stable/documentation/data_processing/transformer.html
http://wiki.ros.org/tf
http://rock-robotics.org/stable/documentation/data_processing/stream_aligner.html
http://rock-robotics.org/stable/documentation/data_processing/stream_aligner.html
http://rock-robotics.org/stable/documentation/data_processing/stream_aligner.html
http://rock-robotics.org/stable/documentation/graphical_user_interface/index.html
http://rock-robotics.org/stable/documentation/graphical_user_interface/index.html
http://rock-robotics.org/stable/documentation/graphical_user_interface/index.html
http://wiki.ros.org/rviz
http://gazebosim.org/

