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ABSTRACT
Classical RANS turbulence models have known deficiencies

when applied to jets in crossflow. Identifying the linear Boussi-
nesq stress-strain hypothesis as a major contribution to erro-
neous prediction, we consider and contrast two machine learning
frameworks for turbulence model development. Gene Expression
Programming, an evolutionary algorithm that employs a survival
of the fittest analogy, and a Deep Neural Network, based on neu-
rological processing, add non-linear terms to the stress-strain re-
lationship. The results are Explicit Algebraic Stress Model-like
closures. High fidelity data from an inline jet in crossflow study
is used to regress new closures. These models are then tested
on a skewed jet to ascertain their predictive efficacy. For both
methodologies, a vast improvement over the linear relationship
is observed.

NOMENCLATURE
ai j Anisotropy tensor.
ax

i j Extra anisotropy tensor.
d Pipe diameter.
h Channel height.
k Turbulent kinetic energy.
Ik Scalar invariants of anisotropy tensor.
r Velocity ratio: U j/U∞

∗Address all correspondence to this author.

J Momentum flux ratio: ρ jU2
j /ρ∞U2

∞

Si j Strain rate tensor.
si j Non-dimensional strain rate tensor.
V k

i j Basis for anisptropy tensor.
δ Incoming boundary layer thickness.
U Reynolds-averaged velocity
τi j Reynolds stress.
tI RANS turbulent timescale.
θ Angle of pipe and bulk velocity direction, in the wall parallel

plane.
φ Angle of pipe and bulk velocity direction, in the wall normal

plane.
ρ Fluid density.
p Pressure.
Ωi j Rotation rate tensor.
ωi j Non-dimensional rotation rate tensor.
ω Specific dissipation rate.

SUBSCRIPTS
j Jet quantity (when Einstein summation is not implied).
∞ Bulk quantity.
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INTRODUCTION
Accurate prediction of the jet in crossflow (JiC), the ejec-

tion of secondary flow through an orifice into traveling fluid [1],
is vital to the efficiency and lifespan of gas turbine components.
In the pursuit of said efficiency, the inlet temperatures of turbine
rotors exceed the melting point of the blade material. To circum-
vent this, JiCs are used to film cool the surface. At operating
conditions, marginal decreases in surface temperature can result
in large extensions to the life expectancy of turbine components.
Such parts are extremely expensive to replace (tens of thousands
of dollars), where a reasonable fraction of the cost is spent on the
film cooling holes themselves [2].

For practical calculations, Direct and Large Eddy simula-
tions (DNS/LES) are unfeasible due to intractable computational
requirements. Therefore, primarily the industry is limited to the
use of Reynolds-Averaged Navier-Stokes (RANS) tools. Whilst
being computationally affordable and numerically robust, RANS
has known theoretical deficiencies [3, 4, for example]. From a
practical perspective, the JiC is particularly troublesome. For
the velocity ratios r indicative of film cooling applications, the
dominant highly three-dimensional structures manifest as horse-
shoe/necklace vortices on the windward side of the orifice that
wrap around a pair of counter-rotating vortices [1]. A RANS
model must accommodate these structures (in a mean sense) for
accurate predictions.

In reality, the jet penetration distance is overpredicted by
models based on linear and non-linear stress-strain relation-
ships [5, 6] and second moment closures [7]. Further, the tur-
bulent mixing is poorly represented [8], which results in slow
spreading of the jet [6]. Unsteady RANS calculations have
also been performed [9], which better captured the aforemen-
tioned structures, yet incorrectly predicted the Reynolds stress
anisotropy.

The above paragraph highlights model form uncertainty,
particularly attributed to the linear Boussinesq approximation.
There have been several efforts to reduce uncertainty for JiC
applications, many with the assistance of high fidelity numer-
ical or experimental data. A turbulence model that neglected
Reynolds stress transport terms was derived to achieve a higher
lateral turbulence diffusivity to boost the spreading rate [10]. For
this model, the spanwise eddy viscosity was curve fit to exper-
imental data. Simulations of suction side cooling [11, 12] show
that enforcing bounds on the time scale appearing in the eddy
viscosity, thus limiting turbulent kinetic energy production in re-
gions of strong strain, improve the heat transfer prediction made
by RANS. Further, these simulations showed that using the v2- f
turbulence model [13], which induces anisotropy by damping the
wall normal stress, improves predictions for moderate blowing
ratios. Specific damping functions have been formulated by con-
sidering DNS data in an a priori manner [14], which reduced the
error in the eddy viscosity.

The model uncertainty attributed to the linear stress-strain

relationship also impacts on heat transfer prediction. Scalar flux
models have therefore been considered a priori, via the use of
LES data, which showed that the non-linear diffusion models
drastically improved predictions [15, 16].

These studies showcase a variety of possibilities for model
improvement via a priori reference data considerations. Conse-
quently, in recent times there has been a growing trend towards
complex machine learning tools that utilize data to produce mod-
els with minimal constraints and assumptions. These data-driven
approaches are still relativity dormant in the turbulence modeling
community, yet some applications have newly emerged [17–20,
for example].

In this paper, we compare and contrast two such methodolo-
gies: Gene Expression Programming [21] (GEP) and Deep Neu-
ral Networks [22] (DNN). The former applies an evolutionary
analogy to ‘evolve’ non-linear mathematical expressions whilst
the latter is loosely based on neurological processing, produc-
ing non-linearity by optimizing edge weightings along a graph.
Both approaches are applied to reducing the model form uncer-
tainty of the Reynolds stress and have the ultimate goal of being
deployed in existing codes predictively. The GEP is trained on
the LES velocity field to learn the mapping between the LES
mean velocity gradients and the stress anisotropy. The aim is
to learn the physics of the problem and improve on the standard
Boussinesq approximation used in linear turbulence models. The
DNN is trained on the RANS velocity field to predict the LES
anisotropy. When deployed it therefore requires first converging
the default RANS model, then iteratively re-converging using the
DNN Reynolds stress predictions. These two approaches reflect
two different philosophies on how to develop a robust, stable tur-
bulence model using data-driven closures. These different ap-
proaches reflect the current aims of the users, not limitations in
the methodologies, and as such we also discuss the impact on the
methodology and resulting output.

In both machine learning frameworks the objective is a
non-linear stress-strain relationship, of the Explicit Algebraic
(Reynolds) Stress Model (EASM) class [23, 24], that is better
suited to JiC applications. To this end, an inline JiC (IJiC) is used
to train new Reynolds stress closures using the two frameworks
and a skewed JiC (SJiC) is used to test the predictive capability
of these new models. This represents a typical machine learn-
ing application — first build a model on a related (yet different)
flow problem, then test on a new flow case. In this instance, the
SJiC represents an extrapolation in physics learnt in the IJiC be-
cause of the broken symmetry. This provides a challenging test
for machine learnt Reynolds stress models.

The paper is structured as follows. In the next section we
briefly discuss the Reynolds stress-strain relationship, in par-
ticular EASM-like non-linear algebraic extensions possible and
the target for optimization in both frameworks. Then the IJiC
and SJiC flow cases are described. Next, the two optimiza-
tion philosophies are discussed, in reference to the data prepara-
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tion, followed by introductions to the GEP and DNN techniques.
Once the frameworks are discussed, we show results and follow
with discussions and conclusions.

THE RANS STRESS-STRAIN RELATIONSHIP AND
MACHINE LEARNING OBJECTIVES

Typically a RANS model closes the stress-strain relationship
by invoking Boussinesq’s linear hypothesis,

ai j ≡
τi j

2k
− 1

3
δi j (1a)

=−tISi j (linear) (1b)

= ai j(V
1
i j,V

2
i j, . . . , I1, I2, . . .) (EASM, GEP) (1c)

= ai j(V
1∗
i j ,V

2∗
i j , . . . , I

∗
1 , I

∗
2 , . . .), (EASM, DNN) (1d)

where the non-dimensional anisotropy ai j is related to the mean
strain rate tensor Si j via the turbulent timescale coefficient tI .
k = 1

2 τkk is the turbulent kinetic energy. Note, the ∗ in Eq. 1d
denotes variables from a RANS solution — this is discussed be-
low. It is precisely Eq. 1b that the machine learning frameworks
are trying to improve upon. A class of turbulence models, known
as EASMs, begin from the weak equilibrium hypothesis [24] to
write down non-linear terms in ∂x jUi for the anisotropy tensor.
The V k

i j and Ik of Eq. 1c and Eq. 1d are a basis and set of scalar
invariants, found using the Cayley-Hamilton theorem [23]. They
are non-dimensional functions of the strain and rotation rate Ωi j
tensors. By defining si j = tISi j and ωi j = tIΩi j, we can write V k

i j
and Ik as

V 1
i j = si j, V 2

i j = sikωk j −ωiksk j,

V 3
i j = siksk j − 1

3 δi jsmnsnm,

V 4
i j = ωikωk j − 1

3 δi jωmnωnm,

V 5
i j = ωiksklsl j − siksklωl j,

V 6
i j = ωikωklsl j + sikωklωl j − 2

3 δi jsklωlmωmk,

V 7
i j = ωikskmωmnωn j −ωikωkmsmnωn j,

V 8
i j = sikωkmsmnsn j − sikskmωmnsn j,

V 9
i j = ωikωkmsmnsn j+

sikskmωmnωn j − 2
3 δi jskmsmnωnpωpk,

V 10
i j = ωikskmsmnωnpωp j −ωikωkmsmnsnpωp j,

I1 = smnsnm, I2 = ωmnωnm,

I3 = skmsmnsnk,

I4 = ωkmωmnsnk,

I5 = ωkmωmnsnpspk.

(2)

θ

U j

U∞ h φ

d

FIGURE 1. TOP AND SIDE VIEW OF JET IN CROSSFLOW
SCHEMATIC, HIGHLIGHTING RELEVANT PARAMETERS.

It is thus the objective of the machine learning frameworks to
construct new expressions from Eq. 2 for the Reynolds stress
anisotropy; the GEP process targets Eq. 1c and the DNN tar-
gets Eq. 1d. The main difference in the current work is that the
GEP uses the LES data as inputs and the DNN takes RANS data
as inputs. The DNN uses the RANS data as it is designed to be
deployable on flows for which high fidelity data is not available.
This is detailed in the Data Preparation Philosophy section be-
low. Note, the GEP methodology takes the LES data, because the
overall aim is a turbulence model based on the observed physics.
Whilst in this work the models are tested using the LES data,
other studies [19,25] have successfully used the GEP models ex-
actly as any other EASM turbulence model. This is because the
GEP framework returns an algebraic expression that is easily in-
serted into CFD codes. The previous studies added simple non-
linear terms to the k-ω-SST model to improve internal [25] and
separated [19] flow prediction using OpenFOAM. In this study,
we do not test the models a posteriori converging from initial
conditions, however prepare the LES data to mimic RANS quan-
tities. This is detailed in the Machine Learning Methodology
section below. Note in the previous studies, models that better
reproduced anisotropy on high fidelity data were better as pre-
dictive RANS models [19].

FLOW CONFIGURATIONS
Two flow cases are required to test the efficacy of the ma-

chine learning frameworks. The first, a training case, is used to
actually build the models and second, a test case, is used to vali-
date the learnt closures. The following briefly outlines these two
cases.

Training: Inline Jet In Crossflow
The training case, an incompressible JiC, is schematically

shown in Fig. 1. The relevant flow parameters are detailed in
Table 2. The jet was at a 30◦ angle to mimic a film cooling appli-
cation and injected into a channel of height h. Note, the plenum
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TABLE 1. SUMMARY OF JiC PARAMETERS.

φ θ r J Re j δ/d Reh

IJiC 30◦ 0◦ 1 1 5,400 1 45,800

SJiC 30◦ 30◦ 1 1 5,800 1.9 50,000

was included in order to capture the interaction of the boundary
layer with the vorticity inside the pipe [26]. The physical setup
replicates a hydrodynamic experiment [27], with the exception of
the molecular diffusivity (water versus air) — but this is deemed
negligible with respect to the turbulent diffusion.

LES details. The LES was performed using the mas-
sively parallel code CharLESx [28], with the Vremen subgrid-
scale model [29] and synthetic turbulence [30] added at −40d
with the outflow at 35d (the orifice was placed at the origin).
The spanwise extent was 10d. The finite-volume nature of the
solver allows for unstructured cells in regions not vital for accu-
racy and consequently the total cell count was 52 million. For
more information see Ref [31].

RANS details. The RANS was performed with the stan-
dard k-ε turbulence model, implemented in FLUENT (v. 13.0).
The grid was structured, consisting of 2.5 million cells. Note,
the streamwise extent was (−15d,35d) For more information see
Ref. [27].

Testing: Skewed Jet In Crossflow
The testing case, an incompressible JiC is schematically

shown in Fig. 1 and summarized with the parameters in Table 2.
This flow is similar to the IJiC described above, except that the
angle θ made with the x axis and pipe center line in the y-z plane
is non-zero. Because of the non-zero spanwise jet velocity, the
channel is wider.

LES details. The same numerical method and stream-
wise extent was used as described above. The spanwise extent
was 18d. The grid consisted of 101 million cells. For more in-
formation see Ref. [15].

RANS details. The RANS was performed using the re-
alizable k-ε model implemented in FLUENT (v. 13.0). The grid
was the same as that used for the LES.

DATA PREPARATION PHILOSOPHY
For the inputs to the optimization algorithms, described in

the next section, two philosophies are tested. These differ in the
nature of produced model. It should be reiterated that the data
preparation steps are not machine learning algorithm dependent,
but reflect current directions being explored in the literature. We
provide a description of both, such that the reader may under-
stand the purpose of such a step. Note, both make use of the
training (IJiC) and testing (SJiC) cases described above to opti-
mize models and then test their efficacy respectively.

GEP Data Preparation
When regressing a model for the anisotropy, of the form

Eq. 1c — which is designed as an extension to the k-ω-SST tur-
bulence model [32] — one requires V k

i j and Ik from the high fi-
delity database to make expressions for ai j. The velocity gra-
dients appearing in Eq. 2 are calculated readily enough from
the LES mean flow field, however the non-dimensionalization
through the coefficient tI is more problematic. It is not neces-
sarily trustworthy to calculate the time scale from LES, as the
RANS transport equations contain many modeled terms and con-
sequently expect something very different from LES quantities.
Further, k and ω from a companion RANS would introduce an
error, because the velocity fields are different, thereby changing
the Reynolds stress. If the global flow features are incorrectly
captured by the RANS and the flow fields for ai j and tI differ
significantly, then produced models will be optimized including
this inconsistency and future predictions, when using the trained
model in a CFD code, are unlikely to give satisfactory results
(certainly on vastly differing flow problems).

To mitigate these issues, we chose an approach in which
we ‘freeze’ the mean LES flow field (U,ρ, p,τi j) and solve the
ω transport equation from the k-ω-SST turbulence model. The
Frozen RANS (F-RANS) fields are then the ‘correct’ RANS so-
lution for a given LES field. Note, other frameworks [33] have
been implemented to circumvent this problem at optimization
time, however the F-RANS pre-processing approach [34] has
previously shown good results in a posteriori CFD [25]. This
data preparation step is shown in Fig. 2, as part of the overall
GEP framework. Note, in order to test the models, we also apply
the same data preparation to the SJiC case and apply the learnt
anisotropy model. This is quicker than full a posteriori calcula-
tions using the new non-linear k-ω-SST turbulence model.

DNN Data Preparation
Instead of using the frozen RANS approach as above, the

DNN used the RANS results directly, so the F-RANS calculation
is not used. The idea behind the DNN approach is that if you
have a fully converged RANS solution to the flow, that can be
used as the starting point for the DNN. The RANS mean velocity
field is fed into the DNN, which then predicts a new Reynolds
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Freeze LES
(U,τi j,ρ, p) to get

F-RANS k, ω fields

Database
of LES

Training
Set: IJiC
Validation
Set: SJiC

Optimize GEP to model
LES Reynolds stress

anisotropy tensor given
F-RANS variables

Training Phase

Given F-RANS vari-
ables, use GEP to

predict Reynolds stress
anisotropy tensor

Prediction Phase
Compare predicted

Reynolds stress
anisotropy tensor to

LES anisotropy tensor

Evaluation Phase

LES and F-RANS Trained
GEP Model

GEP ai j

LES ai j

F-RANS V k
i j Ik

FIGURE 2. GENE EXPRESSION PROGRAMMING WORK FLOW WITH DATA PREPARATION.

stress tensor field. This updated Reynolds stress tensor can be fed
back into the RANS solver to allow iterative re-convergence, now
using the DNN closure model for the Reynolds stresses. At this
stage, this iterative re-convergence has not yet been demonstrated
using the DNN closure. However, previous work [20] has shown
that for two different flow configurations, if the DNN Reynolds
stresses are applied as a fixed field (instead of iteratively) and
the RANS mean velocity field is re-converged using the DNN
Reynolds stresses, then improved accuracy in the mean velocity
field is recovered. There are continuing efforts to develop the
iterative convergence framework for forward propagation.

This data preparation step is shown schematically below, in
Fig. 4, as part of the DNN methodology.

MACHINE LEARNING METHODOLOGY
Evolutionary Framework

With a given set of N data points xα = (V k
i j, Ik, ai j)

α ,
α = (1, . . . ,N), GEP symbolically regresses an algebraic expres-
sion of the form Eq. 1c. That is, the optimized model is a tangi-
ble mathematical equation in V k

i j and Ik, of a functional form not
specified by the user. Evolutionary algorithms, which employ a
‘survival of the fittest’ analogy, brought symbolic regression into
the computer domain [35]. For example, an algebraic expression
of the form described by Eq. 1c,

ai j = (V 8
i j + I3 exp(−I2)V 1

i j)−V 2
i j (3)

is displayed in Expression Tree (ET) form in Fig. 3. In the GEP
algorithm, ETs are constructured from linear strings, known as
chromosomes. In the current example, the following chromo-
somes produce the required ET,

-+V8pV1|V2V3V2V4V1V9

*I3E|I2I1I2I4

The chromosomes are read left to right, with each representing
a tree in Fig. 3. The | denotes a split between head and tail of
the chromosome and the E denotes the reciprocal exponential.
The head may consist of operators and variables and the tail only
of variables. This distinction guarantees mathematical syntax —
see Ref. [21] for more details. The ETs are read recursively in or-
der to reconstruct Eq. 3. The p symbol, known as a plasmid [19],
is a symbiotic join between the two chromosomes. The first is
a tensor expression and the second is a scalar field. The plas-
mid has made it possible to regress variables that are not all of
the same dimension. For a full introduction to the algorithm see
Ref. [19]. Figure 2 describes the overall framework where,
once the training data has been prepared, the GEP algorithm be-
gins during the training phase. Initially, a population of chromo-
somes is randomly created. These are then non-deterministically
evolved according to survival of the fittest. During each succes-

−

+

V 8
i j p

V 1
i j

V 2
i j

×

I3 e−

I2

FIGURE 3. EXAMPLE ET.
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Database
of RANS
and LES

Training
Set: IJiC
Validation
Set: SJiC

Optimize DNN to
map from RANS
state variables to

LES Reynolds stress
anisotropy tensor

Training Phase

Given RANS state
variables, use DNN
to predict Reynolds

stress anisotropy tensor

Prediction Phase
Compare predicted

Reynolds stress
anisotropy tensor to

LES anisotropy tensor

Evaluation Phase

RANS & LES Trained
DNN Model

DNN ax
i j

LES ax
i j

RANS V k
i j Ik

FIGURE 4. DEEP NEURAL NETWORK WORK FLOW FLOW WITH DATA PREPARATION.

sive generation, expressions that better approximate ai j for the
IJiC data are more likely to mate and provide genetic material
to the next generation. Mutations are mimicked by randomly
introducing error when copying the chromosome into the next
generation. For a full description of such genetic operators see
Refs. [21, 35]. Once a stopping criteria has been met, usually af-
ter a finite number of generations, the best expression from the
population is taken as the output.

The fitness of an expression is calculated as a relative dis-
tance from the training values,

Fit(agep
i j ) = 1−

N

∑
α=1

|agep
i j (xα)−ai j(x

α)|
|ai j(xα)|

. (4)

| · | is the `2,2 norm and the summation is over the N training data
points xα . This defines a maximal fitness of 1 and the model
closest is passed onto the prediction phase in Fig. 2. Note, in
reality we perform the training phase multiple times and we take
an ensemble of predictions. This is to overcome overfitting the
training case and is made possible by the randomness inherent
in the algorithm. For this particular case, the training of a single
algebraic expression is of the order of core minutes.

Deep Neural Network Framework
Neural networks are a type of machine learning algorithm

that allow for complex, hierarchical feature interactions. Each
neuron in a neural network represents a non-linear mapping.
Layers of neurons feed into each other to generate the hierarchi-
cal interactions. Many customized network architectures, with
different size layers and different connection pathways between
layers, have been proposed for different learning tasks.

The output of each neuron in the neural network is f (wT x),
where f (x) is the activation function, w is the weight vector, and

FIGURE 5. NEURAL NETWORK ARCHITECTURE

x is the input vector to the neuron. Typical activation functions
include sigmoids, tanh, and rectified linear units (ReLU). The
leaky ReLU function ( f (x) = max(εx,x) for small pre-specified
slope ε < 1) was used in this study because of its previously
demonstrated ability to allow the training of deep neural net-
works [36]. The network architecture used in this project is
shown in Fig. 5, and has been previously described in detail in
Ref. [20]. This architecture was developed to explicitly embed
Eq. 1d to guarantee Galilean invariance. It has an input layer
that takes in the scalar invariants I1, I2, .. and non-linearly trans-
forms them through a series of hidden layers to obtain the coef-
ficients cn to the tensor basis. These coefficients are then multi-
plied by the tensor basis Vi j to obtain the final prediction of the
Reynolds stress anisotropy tensor ai j. This specialized architec-
ture has been shown [20] to provide more accurate predictions
than a generic architecture that does not embed Galilean invari-
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ance.
The weight vectors w of each neuron in the hidden layers

were learned during the training phase through a process called
back-propagation, in which the sensitivity of the mean squared
error objective function to each weight was propagated from the
output layer back through the nodes of the network. These sen-
sitivities were used to iteratively update each weight vector. The
network was trained on the IJiC case to learn a mapping from
the RANS velocity gradient tensor to the LES Reynolds stress
anisotropy tensor. Predictions were then made on the SJiC case
based on the RANS results for that flow field. This work flow is
shown schematically in Fig. 4.

RESULTS
The trained GEP and DNN anisotropy models, in the eval-

uation phase (see Figs. 2 and 4), are applied to the SJiC. For
the GEP this is using the F-RANS solution and for the DNN
the companion RANS solution. The resulting anisotropy tensor
components, Eq. 1a, are plotted in Fig. 6 alongside the LES. Also
included is the companion RANS solution as a visual guide to the
improvement possible. The components of particular interest in-
clude the anisotropy of the leeward side of the jet near the orifice,
the development downstream and the near-wall behavior.

Both machine learning methods vastly improve on the linear
k-ε model solution. By a comparison of the anisotropy plots in
the first (LES) and last (RANS) columns of Fig. 6, we can see
that no component is satisfactorily computed when using Eq. 1b.
This is because, apart from at the orifice itself, the streamwise
velocity gradient component ∂xU1 is small (for the LES, but es-
pecially for the RANS). Then, by continuity the statement

a22 ≈−a33 (5)

holds for the linear model. This unphysical relationship between
wall normal and spanwise Reynolds stress seriously limits the
prediction.

In contrast, the machine learning algorithms have used terms
from Eq. 2, that provide more spatially varying components.
These redistribute the Reynolds stress components using higher
order velocity gradient terms that improve the prediction of a11
(see Figs. 6(b)-(c)). Consequently, the remaining normal stress
components are not dictated by Eq. 5. This is true, even for the
DNN — which uses the RANS velocity gradient tensor to make
predictions.

Another major issue with Eq. 1b, used in the RANS calcula-
tion, is the vanishing near-wall anisotropy of the diagonal com-
ponents. This is because the off-diagonal velocity gradients are
not redistributed using V 1

i j alone. We can see that both machine
learning frameworks have successfully utilized V 2

i j and V 3
i j , which

TABLE 2. SUMMARY OF RMSE.

GEP F-RANS DNN RANS

0.078 0.141 0.093 0.152

provide variance near the wall without side effects in other parts
of the flow.

Note, other components — such as V 4
i j, the anisotropy of the

rotation matrix squared — can provide near-wall improvements,
but at the price of strong anisotropy on the leeward side of the
orifice. A small region, approximately 1 ≤ x/d ≤ 3 depending
on the methodology, has high vorticity which means that usage
of V k

i j components that are strong functions of ωi j have caused er-
rors. Hence the region of inaccuracy at x/d = 2 for the GEP and
DNN — seen most predominantly in the a33 component. This is
the region that is the biggest extrapolation from the training case;
the higher levels of streamwise vorticity, a result of the non-zero
θ in the SJiC case, are not observed in the IJiC, which is sym-
metric about z. That said, this region is relatively localized and
therefore encouraging.

This sensitivity to streamwise vorticity, something previ-
ously unseen during training, whilst local, is a potential cause
for concern should the models be used for a posteriori predic-
tion for large θ . In order to alleviate this, as part of a CFD code,
the machine learnt models could be applied with limiters.

With respect to machine learning differences, these are seen
predominantly as a result of data preparation and the philosophy
of usage. The DNN uses the RANS velocity gradients, which
contains an incorrect penetration height and spreading rate, so
larger differences may be expected visually.

This difference in framework philosophy means that the ma-
chine learning algorithms cannot be absolutely compared for per-
formance. One way of providing a tentative indication is via
an error metric of a modeled tensor amod

i j and compare to their
respective baseline anisotropy. For the GEP and DNN models,
these are the F-RANS and RANS solutions respectively. We de-
fine the root mean square error (RMSE) of the anisotropy tensor,

RMSE(amod
i j ) =

√√√√ 1
6N

N

∑
α=1

3

∑
i=1

i

∑
j=1

(ai j −amod
i j )2 (6)

taking care to include only the off-diagonal components once.
The RMSE for all models is reported in table 2. This is a 44.7%
decrease over the F-RANS and a 38.8% decrease over the RANS
errors for the GEP and DNN respectively. These values quantify
the excellent reduction in error possible via both methodologies.
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FIGURE 6. CONTOURS ALONG THE CENTRELINE. TOP TO BOTTOM: a11, a22, a33, a12. LEFT TO RIGHT: LES, GEP, DNN, RANS.

CONCLUSIONS

In this paper, we have presented two machine learning
methodologies applied for improved Reynolds stress anisotropy
predictions for JiCs. GEP, an evolutionary algorithm, was ap-
plied in an a priori sense and a DNN was used for correct-
ing a linear RANS solution post simulation. These applications
present two possible ways of applying machine learning for tur-
bulence modeling. Resulting models could now be tentatively
plugged into CFD codes. We began by building a model for the
anisotropy using an IJiC, then extrapolated the learnt physics to
an SJiC. Whilst predictions were greatly improved over a linear
baseline calculation, in the region of strongest streamwise vortic-
ity — the biggest extrapolation of physics — both models were
found to return incorrect levels of anisotropy. This level of ex-
trapolation should be further explored. With this information,
limiters may be incorporated in order to provide a more trust-
worthy and robust model.

With regards to extensions of this study, it would be inter-
esting to test new models in CFD codes. This would be achieved
by inserting the GEP model into Eq. 1c and the DNN model into
Eq. 1d. However, the code is likely to be unstable because of the
high order velocity gradients. With the knowledge that V 2

i j and

V 3
i j do not contribute to the model extrapolation error, it would be

sensible to regress new closures including only these basis func-
tions alongside V 1

i j. This would result in a quadratic model, that
would not contain the local inaccuracy on the leeward side of the
orifice. Further, as briefly mentioned, limiters may be required
on basis coefficients. These could be based on simple min/max
functions that limit the inputs to values seen in the training data.

In short, the incorporation of such anisotropy models is not
yet a trivial matter, yet the potential predictive capability of ma-
chine learnt turbulence closures has been demostrated for these
canonical, but difficult, film cooling applications. Via these ma-
chine learning algorithms, more generally, this study has demon-
strated the significant potential of data-driven modeling frame-
works to provide improved turbulence closures.
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