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Abstract -- This paper relates a new model of quasi-static 

magnetic hysteresis based on the Play model hysterons, which 

builds the magnetic field density B from the magnetic field H. In 

the original model, H is discretized into temporal values H(tm), 

which is itself modeled by a hysteron chain of m sub-values. B is 

then reconstructed from these sub-values through a function 

experimentally determined by measuring B(H) centered cycles, 

using a constraint optimization method. The new proposed 

method is to measure asymmetrical B(H) loops, which give 

additional equations leading to a fully determined linear square 

invertible system. The asymmetrical B(H) loop is included in a 

bigger symmetrical loop with a magnetic flux density 

turnaround in order to be regulatable.  

Index Terms—Asymmetrical loops, Electrical machines, 

Hysteresis, Hysterons, Iron losses, minor loops, Play model, 

Steel sheet  

I. INTRODUCTION 

HE iron losses have been studied for decades, especially 
in electrical machines [1]. Following the development of 
power electronics and new controlling systems such as 

Pulse Width Modulation (PWM), high frequency harmonics 
due to switching frequency must be treated inside electrical 
machines [2]. Moreover, high speed applications require high 
fundamental frequency of functioning. The increase of 
frequencies induces a high iron losses growth [3]. Therefore, 
models must be adapted. 

 Several models exist and generally two kinds are 
considered: post-processing models based on physical 
considerations [4] which need experimental characterization, 
and pre-processing models based on the B(H) loop building, 
which need also experimental measurements. Both types 
have their own issues and advantages, but the pre-processing 
method appears to be more accurate. Its major disadvantage 
is the high calculation power needed. Indeed, the most 
famous pre-processing model is Preisach model [5], which 
needs the highest calculation power but provides the best 
accuracy in quasi-static hysteresis building. Play and Stop 
models [6] derive from Preisach model and have been proved 
as mathematically equivalent [7]. The Play model proposes 
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to build the magnetic flux density B from the applied 
magnetic field H. The Stop model is equivalent and builds 
the applied magnetic field from the magnetic flux density. 
Both are based on a double deconstruction of H and B. First, 
for each time step a value of B and H is obtained. Then, 
strings of intern variables called hysterons are assigned to 
each value of H or B. The global functioning is described 
further in the article. 

This paper proposes a new modeling of Play model based 
on asymmetrical hysteresis loops. First, the principle of 
original Play model is described. Then, the issues induced by 
this way of modeling are presented and a method is finally 
developed in order to improve the efficiency of the model. 

II. DEVELOPMENT OF THE METHOD

A. Original model description  

The principle of the original model [8] is simple: in order 
to obtain the magnetic flux density B from the applied 
magnetic field H, which both are temporal signals, H is first 
temporally discretized. Hence, H is decomposed in M 
temporal values H(t) separated by a specific step . Then, 
each value H(t) is also decomposed in intern variables . 
Those intern variables are called hysterons and follow a 
specific algorithm presented in [9]. Hysterons could be 
compared to a spring network: each hysteron in the chain has 
an influence on another one. The algorithm is given as: 

  

 For   preferentially changes to
 with a  step 

 For  

 The starting point must be known, the saturation 
point is preferred 

Then, for each corresponds a specific  defined as: 

 
(1) 

With 

Where  are piece-wise linear functions which need to 
be identified. Finally B(t) is obtained with: 
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(2) 

The general functioning is presented in Fig. 1. 

Fig. 1: Global functioning of Play model described in [8] and [9] 

However, the  coefficients have to be identified to use 
the model. The method proposed in [8] is based on major 
hysteresis loop measurement. The number l of major loops is 
equal to M; the more M is high, the more the system is 
accurate. Then,  are identified with the 

as presented Fig. 2 with . 

Fig. 2: Parameter identification 

The parameters obtained are:  

Therefore, a matrix system describes the problem as below: 
 

(3) 

Where  is the matrix representing the coefficients  of 
(1). The matrix  corresponds to the experimental 
measurements and  is a matrix fulfilled by 0,1 or -1.  

However, (3) induces a major issue: the problem described 
here is not solvable. Matrix  has to be reduced as a square 
one with a specific optimization algorithm [9]. Unlike the 
model proposed in [10] which used a 3-D vector for H and B, 
the method presented here is in one dimension. In this way, a 
finite element calculation is not required to get the hysterons 
from B and H, but the method does not take into account the 
space dependency of hysterons. Indeed, the model described 
here is applied on electrical steel sheet which limit space 
effect, whereas ring core are used in [10]. 

B. Principle of the new method 

The new method proposed here is typically following the 
same process. The magnetic field is temporally discretized 
and then decomposed in intern variables. The only difference 
in the global functioning is the mean to get . Indeed, to 
avoid the utilization of piece-wise linear functions, it is 
proposed to directly use the measurements to identify . 
The interpolation used in the original model is suppressed. 
Hence, (3) becomes: 

 (4) 

Where  is the matrix of . For two loops ( ), 
matrices of (4) can be detailed from the Table 1: 

TABLE 1: 

DETAILS OF PARAMETERS FOR TWO MAJOR LOOPS 

Loop 
n° 

H step    

2 

    

    

    

    

1 
    

    

Therefore, for this example, the system changes as: 

(5) 

Although, the simple matrix system obtained is not 
exploitable. Indeed, , so  is not invertible: 



more equations are needed. Using only major loops with the 
presented method involves a non-invertible system.  So the 
method has to be adapted. That is why we have decided to 
change the common method of identification using 
asymmetrical loops. 

C. Asymmetrical loops introduction  

As presented before, more equations are needed. With an 
eye to add equations, the concept of using only major loops 
must be necessarily changed. Regarding to the global 
functioning of hysterons building, adding more major loops 
would be useless. Indeed, it would involve new hysterons 
and the ones without enough information would be still 
undetermined.  

The solution proposed here is to add asymmetrical inner 
loops, as presented in Fig. 3. Starting from the saturation 
point, when a hysteron is undetermined, a minor loop allows 
to go back and get it. These asymmetrical loops allow to 
reach new magnetization states unreachable with only 
symmetrical loops, thus leading to new equations containing 
the unknown intern variables . 

Fig. 3: Hysteresis loop with asymmetrical loop in NO20 - 1000A/m 
at 10Hz

However, an asymmetrical regulation is not possible. The 
minor loop is then inserted inside a bigger symmetric loop, 
as in Fig. 4. The symmetric opposite of the minor loop is also 
added, in order to have a controlled set of H points. The 
bigger loop and the inferior minor loops have no other use 
than allowing the superior minor loop to be regulated. 

Actually, the asymmetrical loop is calculated to start at 
each H step of the major loop. Then, following the 
asymmetrical loop, H increases up to the saturation point and 
goes back to its starting point. However, the “history” of 
hysterons sequence keeps evolving step by step like for the 
original model. But after the point of U-turn, the H changes 
its direction of variation, so as the sequence of hysterons. In 
this way, we add new sequences of hysterons for each H 

step. 

A combination of two sine waves, 1st and 3rd harmonics as 
in (6), is chosen to regulate the measurement sequence of 
Fig  4. This is chosen because it is the lowest possible 
harmonic content curve to generate the measurement 
sequence.  

(6) 

With 

(7) 

Where  and  are respectively the magnitudes of the
third harmonic and the fundamental. 

 In order to control the minor loops, the ratio r between 
harmonic and fundamental has to be calculated. The general 
form of the magnetic field waveform is given in Fig. 5. 

Considering the relation between maximum and 
minimum, the ratio can be expressed as: 

(8) 

With  

(9) 

 is in the end adjusted to fit the required sequence of
points.  

Actually, the ratio r allows a complete control of the 
lowest H point of the asymmetrical loop. Basically, when the 
ratio , the waveform is a pure sine wave, related to the 
major loop. 

Finally, the method proposed here uses (8) and (9) in a 
specific algorithm to equilibrate the system with enough 
variables and equations. 

Fig. 4: Real hysteresis loop used to regulate applied magnetic field 
in NO20- 1000A/m at 10Hz



Fig. 5: Applied magnetic field waveform in NO20 - 1000A/m at 
10Hz 

D. A new algorithm 

The basic principle is to insert several asymmetrical loops 
to obtain new experimental values. Finally, more equations 
are obtained without adding more unknown variables due 
to the addition of experimental values  such as presented 
on Fig. 7 and Fig. 8. The global functioning of this new 
algorithm is described on the chart of Fig. 6. 

Here, a  NO20 single sheet (Fe-Si) was used 
to obtain 2 loops (related to the example of Fig. 2). We can 
see that with the asymmetrical loop, more experimental data 
at the same H step is obtained, twice more for this case. 

Considering M symmetrical loops (and so  H steps) 
and the applied field H as in (6), Table 2 describes the 
functioning of our algorithm in order to choose the 
parameters.  

Then, both magnitude and ratio change following a 
specific evolution based on the H step. Therefore, for the 
same quantity of  we obtain more experimental values , 
still following (4) but with different sizes for matrices: 

 (10)

The matrix of  is still a vector of  
components, such as the number of column in C. 

TABLE 2: CHOICE OF MAGNETIC FIELD WAVEFORM 
PARAMETERS 

Highest H 
of the loop 

Smallest H of the loop Ratio  

 

 1 

  

  

… 

  

 

 1 

  

  

… …

 

 … …

Fig. 6: Chart of global functioning of the method 



The number  of lines in C and Q depends on the total 
number of loops M: 

(11)

Hence, the system is still non-invertible and has to be 
turned in a square matrix one. First we can assume that: 

(12)

The components from (12) have to be considered useless 
and the corresponding columns are suppressed. Then, the 
useless lines of C and Q are easily suppressible with a basic 
algorithm which removes the concerned lines and keeps the 
ranks of the matrices unchanged. Finally, the system 
presented in (10) is square and invertible and all the  are 
determined, then allowing the building of hysteresis loop and 
iron losses calculation. 

Fig. 7: Example with two symmetrical loops and asymmetrical 
loops  

Fig. 8: Zoom of Fig. 7 and addition of experimental values 
explanation 

III. VALIDATION OF THE MODEL

A. Experimental validation 

As for Fig. 3, Fig. 4 and Fig. 5, a NO20 steel sheet is used 
in order to identify . First we tried the algorithm for 

. We obtained the following values for : 

 

(13)

Then, it is easily possible to construct B step by step from 
H as described in Table 3. In this way, only the superior part 
of the hysteresis loop is built, but the whole loop is obtained 
with a central symmetry. Then, a comparison between the 
simulated loop using the algorithm and the measured one is 
foreseeable, as presented in Fig. 9. 

With an eye to develop the validation, we also used the 
algorithm for M = 4 and the comparison between the 
simulated loop and the measured one is presented in Fig. 10. 

TABLE 3: CONSTRUCTION OF HYSTERESIS LOOP FOR M=2 

H step  sequence  sequences 
Values of 

B (T) 
   1,536 

   1,376 

   0,6317 

   -1,29 

   -1,536 

Fig. 9: Comparison between simulated and measured hysteresis 
loop for M = 2 in  NO20 - 1000A/m at 10Hz 



Fig. 10: Comparison between simulated and measured hysteresis 
loop for M = 4 in  NO20 - 2000A/m at 10Hz 

The new method is working and allows to obtain the 
magnetic flux density B from the applied magnetic field H. 
Obviously, a low value of M involves a low accuracy of the 
hysteresis loop construction. However, both comparisons 
enable the verification of the good functioning of this 
method. 

B. Magnetic flux density prediction using the method 

To go further, we can build a hysteresis loop with an 
applied magnetic field, given in Fig. 11, which is different 
than the one used for parameter identification. In order to 
stay as close as possible in a quasi-static state, the 10 Hz 
frequency is conserved. The number of major loops remains 
equal to M = 4.  

Then, the magnetic flux density is simulated using the 
model and compared to the measured one, as presented in 
Fig. 12. 

Figure 11: Applied magnetic field waveform used for experimental 
validation 

Figure 12: Comparison between simulated and measured Magnetic 
flux density 

Figure 13: Comparison between simulated and measured hysteresis 
loop 

Figure 14: Comparison between simulated and measured hysteresis 
loop – Zoom 



The comparison of hysteresis loops from measured and 
simulated magnetic flux density B and the applied magnetic 
field H is shown on Fig. 13. 

The target B zones are reached by the model but with a 
medium accuracy. The B points of the minor loops are also 
built whereas they differ from the hysteresis loops used for 
parameter identification. It is possible to observe those target 
zones on Fig. 14. 

Obviously, only B points corresponding to H steps  can 
be simulated. So with M = 4 the model cannot be accurate 
enough and this simulation is not sufficient. Hence, the 
experimental validation proposed here has to be developed. 
Nevertheless, it is an additional step in a global validation of 
the model. 

IV. CONCLUSION

The new implementation of the Play model proposed here 
permits to have magnetic flux density B from the applied 
magnetic field H with a correct accuracy considering the low 
value of the number of major loops M tested here. The 
simulation is based on matrix calculation and is very fast and 
does not need a high power of calculation. The 
characterization allowing the identification of the intern 
variables is not complex but needs a proper experimental 
approach.  

However, to be complete, the experimental validation has 
to be tested with a higher value of M. In this way, several 
values of M must be experimented, increasing the accuracy 
and allowing different types of H waveforms in the steel 
sheet. Other magnetic materials should also be tested. 

Moreover, to go beyond, it will be very interesting to have 
a dynamic model. Indeed, the proposed method is a quasi-
static one. As a first step, the proposition of [11] to take 
dynamic effect into account should be tested. A dynamic 
model associated with an accurate eddy current model would 
enable a complete modelling of magnetic material behavior. 
The iron losses prediction would be more precise and their 
calculation could be integrated to a global optimization chain 
for electrical machines design. 
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