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ABSTRACT

This paper investigates the use of the weighted essentially nonoscillatory (WENO) space discretization

methods of third and fifth order for momentum transport in the Meso-NH meteorological model, and their

association with explicit Runge–Kutta (ERK) methods, with the specific purpose of finding an optimal

combination in terms of wall-clock time to solution. A linear stability analysis using von Neumann theory is

first conducted that considers six different ERK time integration methods. A new graphical representation of

linear stability is proposed, which allows a first discrimination between the ERK methods. The theoretical

analysis is then completed by tests on numerical problems of increasing complexity (linear advection of high

wind gradient, orographic waves, density current, large eddy simulation of fog, and windstorm simulation),

using a fourth-order-centered scheme as a reference basis. The five-stage third-order and fourth-order ERK

combinations appear as the time integration methods of choice for coupling withWENO schemes in terms of

stability. An explicit time-splitting method added to the ERK temporal scheme for WENO improves the

stability properties slightly more.When the spatial discretizations are compared,WENO schemes present the

main advantage of maintaining stable, nonoscillatory transitions with sharp discontinuities, but WENO third

order is excessively damping, while WENO fifth order provides better accuracy. Finally, WENO fifth order

combinedwith theERKmethodmakes thewhole physics of themodel 3 times faster compared to the classical

fourth-order centered scheme associated with the leapfrog temporal scheme.

1. Introduction

Advection schemes play an important role in the

numerical models used for computational fluid dy-

namics. They are a key component of a dynamical

core, which solves the fluid dynamic equations in an

atmospheric model. A large amount of the literature

deals with scalar advection schemes, as it is crucial in

representing the transport of tracers and pollutants

with a high degree of accuracy and low diffusion.

Fewer studies are available for the advection of mo-

mentum, even though the flow field is of relevance for

all transports in the atmosphere. With momentum

advection, the wind field is both the ‘‘transporter’’ and

the ‘‘transported’’ field, making the modeling process

nonlinear.

Semi-Lagrangian (SL) type schemes have been

widely used for wind transport in numerical weather

prediction (NWP) models, for example, in the Unified

Model (UM; Davies et al. 2005), Applications of Re-

search to Operations at Mesoscale (AROME; Seity

et al. 2011), and the Global and Regional Assimilation

and Prediction System (GRAPES; Huang et al. 2014),

as they are robust and computationally efficient.

Standard SL schemes do not conserve mass since they

do not use the transport equations in their flux form.

However, a new generation of conservative finite-

volume SL transport schemes has recently been de-

veloped (Zerroukat et al. 2002; Aranami et al. 2015;

Shashkin et al. 2016; Erath et al. 2016; Lauritzen et al.

2017). On the other hand, Eulerian schemes are

widely used in mesoscale and large eddy simulation

(LES) models, in the flux form to ensure conservation.

Some of them are fourth-order central advectionCorresponding author: Thibaut Lunet, thibaut.lunet@isae.fr
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schemes [as in ARPS; see Xue and Thorpe (1991)],

since they present good accuracy and are easy to im-

plement. Nevertheless, the maximum time step size

required for their stability is often restrictive. Also,

they often require numerical diffusion to avoid energy

accumulation at the shortest wavelengths, and a

temporal Asselin filter when associated with the

leapfrog (LF) temporal scheme.

Another possibility is provided by high odd-ordered

(fifth or more) upwind advection schemes, which are of-

ten used to improve the computational efficiency, for

example, in WRF (Skamarock et al. 2005) and the Lokal

Model (LM; Baldauf et al. 2011), as well as the class of

essentially nonoscillatory (ENO) and weighted essen-

tially nonoscillatory (WENO) schemes. WENO schemes

owe their success to the use of a dynamic set of stencils,

where a nonlinear convex combination of lower-order

polynomials adapts either to a higher-order upwind

approximation at smooth parts of the solution or to a

low-order upwind spatial discretization (Jiang and Shu

1995; Shu 1998).

WENO schemes allow a better representation of the

solution in the presence of high gradients. Recently,

Pressel et al. (2015) have shown the advantages ofWENO

schemes from 3rd through 11th order for the transport of

scalars and momentum over central difference schemes.

A major advantage of WENO is its efficiency in sup-

pressing oscillations but it does not guarantee mono-

tonicity of the solution. This is not an issue formomentum

transport but it could pose problems for tracer transport

when negative tracer densities develop.

WENO spatial discretizations are often combined with

explicit Runge–Kutta (ERK) andmultistep time-stepping

schemes (Shu and Osher 1988). The linear stability of

WENO5 has already been studied by Jiang and Shu

(1995), Wang and Spiteri (2007), and Motamed et al.

(2011) using vonNeumann analysis.Originally introduced

by Crank and Nicolson (1947), this method has been ex-

tensively studied. In particular, Wang and Spiteri (2007)

developed criteria for ensuring the existence of a stable

Courant–Friedrichs–Lewy (CFL) condition for several

ERK–WENO5 combinations, based on Taylor de-

velopments in the long wavenumber stability domain.

Motamed et al. (2011) extended the methodology to ob-

tain the maximum CFL conditions for a given combi-

nation, after assimilatingWENO5 to a fifth-order upwind

scheme, and comparing spectra of temporal and

WENO methods. However, this analysis considered only

WENO5, and did not provide stability condition for

the ERK method of order strictly greater than 2. Fur-

thermore, the three-stage, third-order strong-stability-

preserving ERK (SSP-ERK) method is generally viewed

as the reference with WENO5 (Osher and Fedkiw 2003;

Shu and Osher 1988). However, Wang and Spiteri (2007)

found temporal discretizations other than the SSP-ERK

method to be better suited to WENO5 discretization.

The meteorological model used in this work is Meso-

NH, an anelastic research model (Lafore et al. 1998)

applied to a broad range of space and time scales. It is a

gridpoint Eulerian model using a fourth-order centered

advection scheme associatedwith leapfrog timemarching

for the momentum components and the piecewise para-

bolic method (PPM; Colella and Woodward 1984) ad-

vection scheme for other variables. Both schemes have

proven their accuracy for meteorological simulations

(Ricard et al. 2013) but the spatial and temporal schemes

for momentum transport strongly limit the time step.

Moreover, Meso-NH is increasingly used for large eddy

simulations (LESs; Bergot et al. (2015); Dauhut et al.

(2015)). LES studies of atmospheric flows have demon-

strated how important the numerical methods are for the

quality of LES solutions since the work of Ghosal (1996).

Kurowski et al. (2014) showed that they are more im-

portant than the choice of anelastic or fully compressible

equations. Advection plays the primary role in LES as

most of the eddies are resolved. Furthermore, LES often

deals with sharp gradients, as in the cloud edge region

(Baba andTakahashi 2013), or in complex shock-obstacle

interactions with an immersed boundary method

(Chaudhuri et al. 2011). To meet these objectives, a first

attempt was made using PPM for momentum in Meso-

NH, as it is already used in the model for scalar variables

and has demonstrated good conservative properties.

However, the C grid imposedmultiple averaging to adapt

PPM for flux variables, and induced a significant loss of

accuracy, making PPM worse than the fourth-order

centered advection scheme for wind transport. WENO

schemes were therefore of great interest in avoiding

generating spurious numerical oscillations around sharp

gradients so WENO simulations of third and fifth order

were implemented in Meso-NH.

Here, we aim to give a more complete picture of the

stability of WENO5 and WENO3 combined with ERK

methods in a meteorological model like Meso-NH with a

clear objective of finding an optimal combination in terms

of wall-clock time to solution and accuracy. The objective

is to find the time integration method allowing the higher

CFL number (around 2 at minimum) with WENO

schemes for momentum transport, so that the cost of

simulation, including physics modeling, is much cheaper.

The classical fourth-order centered schemes associated

with the LF temporal scheme will be used as a reference

basis to evaluate theWENO schemes.WENO3 is already

known to be excessively damping (Tan et al. 2005).

The aim of the WENO5 method is to reduce the gap

with the fourth-order centered advection scheme in
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terms of implicit numerical diffusion, while retaining a

good stability condition with the CFL number. First, the

von Neumann stability analysis will be applied to the

WENO schemes and to the several ERK methods.

It is also well known that an advection scheme may

work very well on some test problems but fail on others

(Tan et al. 2005). The test cases presented here are of

increasing complexity. They are first taken from a stan-

dard set of test problems for dynamical cores: mountain

wave flow in the hydrostatic regime and buoyancy-driven

flow. Then, they address meteorological applications in-

cluding all the physics and sharp gradients, like LESof fog

and mesoscale windstorm simulation. Throughout this

study, several combinations ofWENO-ERKmethods are

investigated and selected to determine the optimal com-

bination for the two WENO schemes. A good way of

measuring implicit numerical diffusion is by determining

the smallest resolved wavelength, defined as the effective

resolution (Skamarock 2004; Ullrich 2014). Increasing the

effective resolution of a model by using higher-order

numerical methods might prove more beneficial in terms

of precision than simply increasing the grid resolution,

supposing that relevant finescale structures are larger

than the grid scale. This method will be applied to the

meteorological test cases.

The remainder of this paper is organized as follows.

Section 2 describes the wind advection equations and

the spatial and temporal discretizations for the different

numerical methods. A von Neumann stability analysis is

then conducted for WENO schemes. Section 3 discusses

the evaluation of the numerical schemes for four test

cases. Finally, section 4 summarizes the key findings of

this research and proposes future directions of inquiry.

2. Theoretical analysis

a. General approach

Among all variables solved by a meteorological model,

the three-dimensional vectorial velocity field and its

modification through advection is the main focus here. In

Meso-NH, the equations for the wind in their flux form,

considering only advection, are as presented below:

›ru

›t
52

›(rUcu)

›x
2

›(rVcu)

›y
2

›(rWcu)

›z
, (2.1)

›ry

›t
52

›(rUcy)

›x
2

›(rVcy)

›y
2

›(rWcy)

›z
, and (2.2)

›rw

›t
52

›(rUcw)

›x
2

›(rVcw)

›y
2

›(rWcw)

›z
, (2.3)

where u and y are the two horizontal velocities andw the

vertical velocity. In addition, r is the density value, which

varies only with altitude, considering the anelastic ap-

proximation. The anelastic equations of Meso-NH are

formulated according to Durran (1989) or Lipps and

Hemler (1982) and the system of Durran (1989) will be

used in this study. As a result of the conformed horizontal

projection and terrain-following vertical coordinates such

as have been proposed by Gal-Chen and Somerville

(1975) or Schär et al. (2002), the contravariant compo-

nents of the wind Uc, Vc, and Wc are introduced, corre-

sponding to the components of the wind orthogonal to

the coordinate lines (Fig. 1, keeping in mind that con-

travariant components are not actually vectors). Within

the Cartesian framework, metric terms exactly cancel

out, and Uc, Vc, and Wc, are equal to u, y, and w. Hence,

the advection scheme transports the directional mo-

mentum (the ‘‘advected’’ field) by the contravariant

components of the wind field (the ‘‘advector’’ field).

To solve (2.1)–(2.3), Meso-NH uses the so-called

method of lines, which consists of discretizing the spa-

tial terms of each equation (right-hand terms) in order to

obtain a linear system of three ordinary differential

equations (ODEs) in time. A time integration will

then be applied to find the approximate solution. For

the sake of simplicity, this study will consider only the

x-momentum equation and its x-derivative term:

›(rUcu)

›x
5

›[F
C
(rUc)F(u)]

›x
, (2.4)

where FC(rU
c) contains the topologic terms, which in-

tegrate terrain transformations. The second flux F(u) is

calculated on themesh point without considering terrain

transformation, using the advection method. All other

derivative terms are built with a similar methodology.

b. Spatial discretization

Because of the Arakawa C grid, the advector (con-

travariant components) and the transported wind field

FIG. 1. Representation of contravariant components of the windUc,

Vc, and Wc on the C grid in a 2D vertical plane.
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(u, y, and w) represent different directions. The discrete

form of the contravariant metric term is of fourth order

in the vertical direction, in agreement with Klemp et al.

(2003), but of second order in the horizontal directions.

Defining i as the spatial index in the x direction andDx
as the mesh step size, the derivative is written such that

›(rUcu)
i

›x
5

F(u)
i11/2

F
C
(rUc)

i11/2

Dx

2
F(u)

i21/2
F
C
(rUc)

i21/2

Dx
. (2.5)

Then, a chosen discretization is applied to the flux terms

F, following its definition using the flux formulation:

›u
i

›x
5

F(u)
i11/2

2F(u)
i21/2

Dx
. (2.6)

Three different methods are used to discretize

F: WENOdiscretization of fifth and third order (WENO5

and WENO3, respectively) and a centered discretization

of fourth order (CEN4TH).

1) DISCRETIZATION WITH WENO5

The first step consists of separating the velocity flux

terms into positive and negative fluxes, using Lax–

Friedrich flux splitting as in Shu (1998):

F
WENO

(u)
i11/2

5 f1i11/2 1 f2i11/2 . (2.7)

In the following development, only the reconstruction of

positive fluxes will be described. The reader is invited to

refer toWang and Spiteri (2007), Shu (1998), and Castro

et al. (2011) for amore detailed description. The velocity

fluxes are constructed employing a stencil given by a

Lagrangian interpolation using the velocity average on

each cell:

f1i11/2 5g
0

�
2

6
u
i22

2
7

6
u
i21

1
11

6
u
i

�

1 g
1

�
2
1

6
u
i21

1
5

6
u
i
1

2

6
u
i11

�

1 g
2

�
2

6
u
i
1

5

6
u
i11

2
1

6
u
i12

�
(2.8)

with the average value of the velocity defined by

u
i
5

1

Dx
i

ðxi11=2

xi21=2

u(j) dj . (2.9)

The strength of the WENO-5 method rests on the

choice of the WENO stencil weights, gj. These allow a

nonoscillatory solution to be kept even in the presence

of shock or a high gradient in the velocity field. These

stencil weights are fully described in appendix A.

2) DISCRETIZATION WITH WENO3

As for WENO5, WENO3 is fully described by Shu

(1998). Third-order positive fluxes are defined by

f1i11/2 5 g
0

�
2
1

2
u
i21

1
3

2
u
i

�
1g

1

�
1

2
u
i
1

1

2
u
i11

�
. (2.10)

The WENO3 stencil weights are fully described in

appendix A.

The computational cost of WENO3 is lower than that

of WENO5, but WENO3 is known to be more diffusive

for advection problems, as observed by Tan et al. (2005).

This aspect will be studied further in the following

sections.

3) DISCRETIZATION WITH CEN4TH

For CEN4TH, no flux decomposition is required. The

fluxes are directly computed using a fourth-order

reconstruction:

F
CEN4TH

(u)
i11/2

5
7(u

i11
1 u

i
)2 (u

i12
1 u

i21
)

12
. (2.11)

CEN4TH reverts to a second-order centered scheme

at the edges of the computational domain (for open

boundary conditions only). It must also be combined

with a numerical diffusion operator of fourth order in

the model, in order to damp numerical energy accu-

mulation in the shortest wavelengths. This operator is

fully described in appendix B.

c. Temporal discretization

1) EXPLICIT RK METHOD

Once the space derivatives have been estimated, a

temporal discretization is used to integrate in time from

the current state to the next one. For CEN4TH, the

temporal discretization is based on the leapfrog method,

while the rest of the model uses the forward-in-time

(FIT) method. For WENO schemes, the leapfrog

method is unstable in the model. Therefore, ERK

methods of higher order are favored, together with FIT

time integration for the rest of the model [contravariant

flux FC(~rU
c) among others]. The general temporal

process for one advection term in (2.1) will then be

described.

Using the anelastic hypothesis (›r/›t 5 0), we con-

sider the tendency of a variable defined by its time

variation induced by the spatial term in the advection

equation, noted Tu,
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T
u
5 r

›u

›t
, (2.12)

which is written in discrete form using the FIT formu-

lation (with n as the temporal index):

Tn11
u 5 r

un11 2 un

Dt
. (2.13)

The contravariant flux FC (Uc), that is, the advection

field, is kept constant over the time step, to satisfy the

continuity equation. The ERK method is applied to the

following equation:

r
›u

›t
5M(u)1 S , (2.14)

where M(u) is the discrete term defined in (2.6) and S

represents the other terms of the momentum equation

(source, diffusive terms, etc.). We consider a general

s-stage ERKmethod defined by its Butcher coefficients:

c
1

c
2

a
21

c
3

a
31

a
32

c
4

a
41

a
42

a
43

..

. ..
. ..

. ..
.

⋱
c
s

a
s1

a
s2

a
s3

. . . a
s,s21

b
1

b
2

b
3

. . . b
s21

b
s

.

The advection tendency follows:

un
1 5 un

un
k 5 un 1Dt �

k21

j51

a
k,j

M(un
j )1 S

rn

Tn11
u 5 �

s

k51

b
k
[M(un

k)1 S] . (2.15)

Adding the advection tendency to obtain un11 using

(2.13) leads to the classical Runge–Kutta method ap-

plied to the momentum equation. The different explicit

RK methods considered in this study are presented be-

low (see appendix D).

2) ADDITIONAL TIME-SPLITTING METHOD

To increase the maximum CFL number, an additional

time-splitting step is introduced for the wind advection.

One time step [tn, tn11] is divided intoL regular substeps

[tl, tl11] with tn5 t0,⋯, tl, tl11, tL5 tn11. Once one

value ul is known (u0 at first), the next value ul11 is

computed using (2.13) with Dt 5 tl11 2 tl, which gives

Tl11
u 5 r

ul11 2 ul

Dt
(2.16)

with ul11 computed using all stages of the ERK method

as described in (2.15). This process is repeatedL times to

compute the L tendencies. In the end, the tendency of

the original final time tn11 is obtained with an average:

T
u
5

1

L
�
L

l51

Tl
u . (2.17)

The gain in terms of stability will be studied in

section 3.

d. Temporal scheme for the rest of the model

The other prognostic variables ofMeso-NH (potential

temperature, mixing ratios, turbulent kinetic energy,

scalars) are transported with a monotonic version of the

PPM (Colella and Woodward 1984; Carpenter et al.

1990), with FIT timemarching.With respect to a CFL of

strictly ,1 for PPM (a threshold of 0.8 is proposed), a

time-splitting step is also added to the advection of

scalar variables.

Hence, to summarize the time marching in Meso-NH,

three time steps are effective when WENO schemes are

applied to momentum transport (Fig. 2a). The larger

time step is applied to the whole model including the

physics and the pressure solver, with the FIT temporal

scheme. The advection of all variables is conducted

with a constant advection momentum vector. A smaller

time step is used for wind advection when applying the

ERK method on the subinterval. Another smaller time

step is used for scalar advection, to ensure a CFL of

strictly less than 1 for PPM. This smaller time step for

PPM can evolve during the run as a function of the

CFL number.

With the centered momentum transport scheme, a

single time step is considered as the CFL number and is

always strictly,1, with FIT timemarching for the whole

model except for wind advection, which uses the leap-

frog temporal scheme (Fig. 2b).

e. Von Neumann stability analysis

1) MOTIVATIONS

When the Runge–Kutta scheme is combined with

WENO schemes, one useful method for investigating

stability remains the von Neumann analysis. As an

introduction, von Neumann analysis principles will be

briefly summarized, based on the developments in

Motamed et al. (2011) and the generalization of the
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analysis for common space–time schemes in Baldauf

(2008). Then, a new graphical representation of linear

stability will be proposed, in order to determine

maximum CFL stability conditions along with the

diffusion error when considering the space–time dis-

cretization combination. This allows for discrimina-

tion among several ERK methods in an attempt

to find the best combination for both WENO3

and WENO5.

2) VON NEUMANN ANALYSIS

Considering one dimension (with j as the spatial

index), a constant value of contravariant velocity and

density is taken during a time step. This method, also

called the frozen coefficient method, is classically used

to adapt the linear von Neumann analysis to nonlinear

equations (Feistauer et al. 2003). Equation (2.1) is then

simplified as

›u

›t
52Uc›u

›x
’2Uc

F(u)
j11/2

2F(u)
j21/2

Dx
5M(u) . (2.18)

Assuming periodic boundary conditions and using a

discrete Fourier transform in space, the semidiscrete

solution of (2.18) is written as

u
j
(t)5 �

N/2

k52N/2

û
k
(t)eivkjDx , (2.19)

where j corresponds to the spatial index in the N-points

mesh and vk is the spatial frequency associated with ûk.

Because of the linearity of (2.18) and by the superposi-

tion principle, it is possible to focus on only one term of

the sum:

u
j
(t)5 û

k
(t)eijuk , u

k
5v

k
Dx , (2.20)

where uk is the wavenumber considered. The operator

M in (2.18) can be written as

M(u
1
, . . . ,u

j
, . . . , u

N
)52

z
WENO

(u
k
)u

j

Dx
, (2.21)

where zWENO corresponds to the Fourier symbol of

the spatial operator M. As in Motamed et al. (2011),

the analysis is conducted here by considering a

smooth solution, and the WENO discretization is

linearized to obtain the Fourier symbols described in

appendix C.

Applying an ERK method to the semidiscrete equa-

tion in (2.18) leads to

un11
j 5 g(ẑ

k
)un

j , with ẑ
k
52CFLz

WENO
(u

k
) , (2.22)

where n corresponds to a temporal index and the CFL

number UcDt/Dx. The function g is the ERK amplifica-

tion factor.

As developed by Wang and Spiteri (2007), noting the

matrixA and the vector b as the coefficients (ai,j) and (bi)

respectively, of the Butcher table of the s-stage ERK

method of order p, g can be expressed as

g(ẑ)5 11 �
p

l51

ẑl

l!
1 �

s

l5p11

ẑlbTAl21e , (2.23)

where e corresponds to the unity vector of size s. From

this, the CFL stability condition can be expressed as

CFL stable5" u
k
2 [0,p], jg(ẑ)j# 1. (2.24)

Values of uk are taken only in [0, p] because of the

symmetry implied by the Fourier transform of the real

field u. Using (2.24), a general method can be developed

to find the maximum stable CFL for all types of linear

spatial discretizations combined with all ERK methods.

FIG. 2. Representation of the time marching in Meso-NH with (a) WENO and (b) CEN4TH/leapfrog schemes for the transport of

momentum.
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The latter are fully described in appendix D, but a short

description is given below:

d FE, forward Euler method (one stage, order 1);
d RK21, two stages, order 1;
d HEUN2, Heun method (two stages, order 2) (Süli and
Mayers 2003);

d RK33, strong-stability-preserving (SSP) method,

three stages, order 3;
d RK53, five stages, order 3; and
d RKC4, classical ERK method (four stages, order 4).

3) EXTENSION OF THE ANALYSIS FOR WENO3
AND WENO5 SCHEMES

The condition (2.24) can be represented graphically,

using a two-dimensional contour plot of jg(uk, CFL)j.
Examples of these representations, which will be called

stability contours hereafter, are given in Fig. 3.

The primary goal of the stability contours is to determine

the maximum stable CFL number for a given combination

of time and space discretizations. It can be defined as the

ordinate of the highest horizontal line that does not cross

the isocontour line S, which is defined as follows:

S5 [(u
k
, CFL)/jg(u

k
, CFL)j5 1]. (2.25)

(The representation of such contours is given in Fig. 3

using a standard isocontour plotting function.) This is

actually a direct application of (2.24) to the stability

contour, which can be posed as

CFL
max

5max[CFL/"u
k
2 [0,p], jg(CFL, u

k
)j# 1].

(2.26)

Figure 3 shows how the stability condition changes with

the order of the space discretization for one given time

discretizationmethod. It also shows a good representation

of the diffusion properties of the scheme combination,

considering one given CFL number. The von Neumann

analysis was performed considering a pure advection

problem. In that case, diffusion is only brought by the

numerical schemes. The closer jg(uk, s)j is to 1 (shown in

green in Fig. 3), the smaller are the diffusion errors the

numerical method makes. In contrast, jg(uk, s)j close to

0 (blue color in Fig. 3) indicates a damping of the corre-

sponding wavenumber k, which will induce a diffusion

error in this wavenumber domain. Figure 4 shows the

combination of WENO5 with the RK33 and RK53 time

integrations. Considering a unitary CFL number, the

amplitude of the wavenumber component is divided by

two in one time step at around k . 0.60p for RK33, and

around k . 0.70p for RK53. So, the error in the high-

wavenumber domain is smaller for RK53 than for RK33,

despite the fact that both methods are of the same order.

The stability contour study methodology was used to

compare the different combinations of ERK methods

with WENO schemes. Maximum stable CFLs (CFLmax)

are represented in Table 1 and several conclusions can

be drawn, from the table and the stability contours:

d WENO3 with forward Euler and WENO5 with for-

ward Euler and the second-order RK method are

linearly unstable, in agreement with the findings of

Spiteri and Ruuth (2002).
d WENO3 requires at least two stages to achieve

stability with CFL $ 1.0, while WENO5 requires

mostly three stages.
d For a givenERKmethod, the diffusion error for a small

wavenumber is smaller for the WENO5 method than

for WENO3.
d RK53, RKC4, and RK33 for WENO schemes can be

ranked in this order for efficiency (i.e., in order of

FIG. 3. Stability contours for (left) WENO3 and (right) WENO5 combined with the HEUN method.
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maximum CFL numbers). The relatively smaller

CFLmax with RK33 is in agreement with Wang and

Spiteri (2007), who have shown linear instability with

RK33 for CFL numbers above 1.43 and the superiority

of RK53 over RK33.
d The diffusion error for small wavenumbers is smaller

when both the order and the number of stages increase.

To conclude on this section, the numerical analysis

pointed out that some ERKmethods (RK53 and RKC4,

as well as RK33) are better adapted to WENO schemes

in terms of stability. The FE and HEUN2 temporal

schemes will be discarded for the rest of the paper.

These results were achieved with the assumption of lin-

earity and without considering the impact of the general-

ized coordinates through the contravariant components. In

the next section, the different numerical schemes will be

evaluated on more complete test cases taking into consid-

eration the previously mentioned points, and comparisons

will be made with the von Neumann analysis results.

3. Numerical results

a. Hydrostatic mountain waves

Hydrostatic mountain waves are a classical test for the

advection topic, which handles orography. This test in-

volves the steady-state solution of linear 2D hydrostatic

flow over a single-peaked mountain with constant in-

flow, as in Durran and Klemp (1983) and Xue and

Thorpe (1991). The profile of the symmetric Witch of

Agnesi mountain is used as

h(x)5h
max

a2

x2 1 a2

with hmax 5 1m as the height and a 5 10 km the half-

width of the mountain. The initial state of the atmo-

sphere is a constant mean flow with U 5 20ms21, a

ground potential temperature of u 5 250K, and a

Brunt–Väisälä frequency ofN5 0.2 s21. The resolutions

are Dx5 500m andDz5 250m, and the domain extends

horizontally over 800km and vertically over 30 km. A

Rayleigh damping layer is applied above 22km. Figure 5

shows that the numerical (dashed gray) values of vertical

velocity and the analytical (colored contours) values

compare well. The simulation is given only for the

WENO5 scheme here, as the differences with various

advection schemes are too tiny to be visible.

A stability study was conducted, including the addi-

tional time-splitting step for WENO schemes, and

maximum CFL number and the effective CFL number

(CFL divided by the number of RK stages) are pre-

sented in Table 2. Without time splitting, the maximum

CFL numbers of the hydrostatic case are lower than for

the linear results in Table 1. With time splitting,

WENO3 achieves an equivalent maximumCFL number

for RK53, and even better results for RKC4, compared

to the linear stability analysis. WENO5 produces similar

maximum CFL numbers with RKC4 and RK53 (lower

than for the linear case with RK53).

FIG. 4. Stability contours for WENO5 combined with (left) RK33 and (right) RK53.

TABLE 1.MaximumCFL number forWENOschemes combined

with different ERK methods according to the stability contour

study from the von Neumann analysis.

FE RK21 HEUN2 RK33 RK53 RKC4

CFLmax

WENO5 0.00 0.78 0.00 1.44 2.14 1.73

WENO3 0.00 0.76 0.87 1.63 2.30 1.75
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RK33 presents the smallest CFL numbers but the

highest effective CFL numbers. However, the cost of an

ERK method is not only limited to its efficiency: as rep-

resented in appendix D, RK33 requires more memory

storage than the RKC4 and RK53 methods, as the latter

have a diagonal Butcher matrix; so, they only need to

store one field in memory at each stage to compute the

next field. RK33 has a plain Butcher matrix, so it requires

as many fields to be stored in memory as the number of

stages (three here) needed to compute the final solution.

Concerning the split number for both WENO

schemes, the additional two-time splitting steps yield an

improvement in the maximum CFL number of around a

factor of 2, while the effective maximum CFL number is

reduced. There is still one exception for RK33–WENO3

for which the two time-splitting steps allows an increase

in the maximum effective CFL. Three time-splitting

steps add nothing more to the maximum CFL number

compared to the two time-splitting steps.

To conclude, this test allowed the results of the previous

von Neumann analysis to be assessed. Even if the theory

did not reproduce exactly the same CFL limitations, they

were fairly well reproduced for the 2D hydrostatic case.

Two arguments have been shown to favor a combination

of RKC4 and RK53 with WENO5 compared to RK33 in

the rest of the study: themaximization of theCFL number

allows a bigger time step to be used tominimize the cost of

the rest of the model (physics, pressure solver, etc.) and

minimizes the memory storage.

b. The density current test case

The popular density current test case (buoyancy-driven

flows class) was proposed by Straka et al. (1993), who

described the conditions and hypothesis. It involves the

study of a cold-air bubble falling in idealized atmospheric

conditions and followed in time by the development of a

gravity current above an ideal surface. The stratification

is neutral, with a potential temperature equal to the sur-

face temperature of 300K. To illustrate the dynamics

studied, Fig. 6 shows the evolution of the potential tem-

perature (obtainedwith the reference simulation detailed

in appendix E). During the first 3min, and as a result of

the buoyancy effects, the cold-air bubble falls. After these

first few minutes, the bubble interacts with the non-

permeable ground and shifts the global vertical move-

ment toward a horizontal displacement, inducing a cold

front. After 9min, three vortices are clearly visible and

the front location covers a distance greater than 15km.

We focus our attention on the end of the period (t 5
900 s) and we study local and integrated variables:

d extreme values of the u temperature: Dumin 5 umin 2
300;

d extreme values of the u velocity vector: umin, umax,

ymin, and ymax (horizontal and vertical directions);
d total kinetic energy: Ek 5

ÐÐÐ
ek dV, where ek 5

(1/2)kuk2; and
d total enstrophy:Es 5

ÐÐÐ
es dV, where es 5 (=3 u)2 5

kvk2.
The converged solution in time and in space noted

REFO is described in appendix E and shows good

agreement with previous studies. In this section, the

impact of the three momentum advection schemes and

associated temporal algorithms is estimated: CEN4TH

(leapfrog), WENO3(RK21) and WENO5(RK53). No

time splitting is added for the ERK methods (L 5 1).

TABLE 2. Case of linear hydrostatic flow:maximumCFL number

with maximum effective CFL number (CFL number divided by the

number of stages) in italics for CEN4TH and for WENO schemes

combinedwith ERKmethods and additional time splitting (L is the

split number).

LF RK33 RK53 RKC4

CEN4TH 0.4

WENO5

L 5 1 1.0 1.4 1.4

0.33 0.28 0.35

L 5 2 1.7 1.8 1.8

0.28 0.18 0.23

L 5 3 1.7 1.8 1.8

0.18 0.12 0.15

WENO3

L 5 1 1.0 1.3 1.3

0.33 0.26 0.33

L 5 2 2.1 2.5 2.5

0.35 0.25 0.31

L 5 3 2.1 2.5 2.6

0.23 0.17 0.22

FIG. 5. Case of a linear hydrostatic mountain. Vertical cross-

section of vertical velocity (m s21) after 10 h. Colored isovalues

correspond to the analytical solution and dashed gray lines to the

numerical one, given here for WENO5 and RK53, with CFL5 0.4.
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The nondimensional space (time) step is defined as

DX*/Dxref (DT* 5 jjujjDt/Dx). The minima of the non-

dimensional space and time steps used in REFO (see

appendix E) are DX* 5 1, DT* 5 0.15.

1) COMPARISON OF TWO DISCRETIZATIONS

Two spatiotemporal resolutions are detailed: fine

(DX*5 2, DT*5 0.2) and coarse (DX*5 8, DT*5 0.4).

Figure 7 illustrates the fields of u (panel a), ek (panel b),

and es (panel c) obtainedwith the reference (top panels),

the fine (middle panels), and the coarse (bottom panels)

resolutions. For the fine resolution, all advection

schemes show visual and qualitative similarities with

REFO. The density current preserves its shape and

covers the same horizontal distance (Fig. 7a, top and

middle panels). It exhibits the vortex shedding of three

rotors (Fig. 7c, top andmiddle panels) and illustrates the

vorticity production at the head of the cold front as a

result of a strong shear acting in this region (the es
maximum is contained in the boundary layer separating

the cold front from the undisturbed region). The middle

panel in Fig. 7b highlights the location of the ek maxi-

mum in the first rotor developed in time.

When the resolution becomes coarser (Fig. 7, bottom

panels) the density current loses some of its expected

characteristics. The front shape exhibits only two rotors

with CEN4TH and WENO5; the second rotor tends to

disappear withWENO3. The ek field in the bottom panels

of Fig. 7b reveals, especially forWENO3, the impact of the

numerical dissipation leading to a decrease in kinetic en-

ergy. The ek maximum is always detected in the first rotor

and a loss of es is visible at the front head. Therefore, the

spatial resolution has become too coarse to capture the

shear in the boundary layer responsible for the growth of

Kelvin–Helmholtz instability. The first rotor (compared to

the second and the lost third rotors) corresponds to the

part of the gravity current that resists best (creation of the

first rotor at t ; 450 s by a front with a vertical thickness

approximately twice that of the front at t ; 900 s).

Table 3 summarizes all the variables studied and ob-

tained by the simulations using the fine and coarse res-

olutions, depending on the advection schemes. Boldface

characters in Table 3 indicate the results giving the

lowest relative error compared to REFO. Values of the

fine-resolution results highlight good agreement be-

tween WENO5, CEN4TH, and REFO. Considering all

the variables, WENO3 presents the most significant

differences. The bottom of Table 3 emphasizes the re-

sults obtained with coarse resolution. These results show

the best adequacy on Dumin, umin, ymin, ymax, and vmax

between the reference andWENO5. On umax, xfront, Ek,

and Es, CEN4TH shows the lowest relative error with

respect to the REFO values. Once more, the observed

deviation from the reference solution appears to be the

greatest with the overdiffusive WENO3.

To add a comment, umax is observed not to be related to

the front location here, which mostly reflects the well-

designed first rotor. In the sameway, thevmax location is in

the front (rear) rotor for the fine (coarse) resolution. This

shows, first, that the scales of the front head aremuchmore

complicated and difficult to capturewith regard to its wake

and, second, our interest in describing the problems asso-

ciated with several local variables because of the difficulty

in distinguishing the most pertinent among them.

FIG. 6. Snapshots of the potential temperature field at six times (MNH-REF0 resolution): t5 0, 3, 6, 9, 12, and 15min. Sixteen isocontours

are drawn with a 1-K contour interval (umin 5 284K, umax 5 299K).
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2) SENSITIVITY STUDY

Aparametric study is conducted by varyingDX*5 [2; 4;

8; 16] and DT* for all advection schemes. For the four

spatial resolutions, the gravity current is initially simulated

with the dimensionalized time stepDt5 0.15 s and then the

complete simulation is reproduced by doubling the pre-

vious time step as long as the numerical stability is re-

spected. The graphs in Fig. 8 represent integrated variables

Sjjujj2 and Sjjvjj2, which are nondimensionalized by the

TABLE 3. The impact of resolution: comparison of local and integrated variables. The REFO reference simulation corresponds to the

spatiotemporal resolution (DX* 5 1, DT* 5 0.15); the fine (coarse) resolution to [DX*5 2, DT*5 0.2 (DX* 5 8, DT*5 0.4)]. Boldface

characters indicate the results giving the lowest relative error compared to REFO.

Advection

Dumin

(K)

umin

(m s21)

umax

(m s21)

ymin

(m s21)

Umax

(m s21)

xfront
(km)

vmax

(1022 s21)

2Ek

(m2 s22)

Es

(1025 s22)

Scheme

REF0 29.66 215.26 36.14 215.91 12.93 15.39 7.45 10.50 8.15

Fine resolution

WENO5 29.72 215.23 36.39 215.97 12.98 15.31 7.38 10.42 8.07

WENO3 29.60 215.25 35.41 216.02 12.80 15.32 7.42 10.43 7.90

CEN4TH 29.66 215.24 36.11 215.88 12.89 15.38 7.43 10.50 8.09
Coarse resolution

WENO5 29.04 214.04 32.53 214.74 12.39 14.61 6.21 9.82 5.77

WENO3 28.22 213.35 27.42 212.56 11.54 14.62 4.50 8.78 4.51

CEN4TH 28.83 213.59 32.87 213.92 11.53 15.08 5.78 9.84 5.78

FIG. 7. Sixteen isocontours at t 5 900 s depending on the advection schemes (WENO3, WENO5, and CDN4TH) of (a) the potential

temperature (umin5 284K, umax5 299K), (b) the kinetic energy (ek,max5 600m2 s22), and (c) the enstrophy (es,max5 0.074m2 s22). (top)

TheREFO reference simulation (DX*5 1, DT *5 0.15), (middle) the fine spatiotemporal resolution (DX*5 2,DT*5 0.2), and (bottom)

the coarse spatiotemporal resolution (DX* 5 8, DT* 5 0.4).
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reference value obtained with REFO (Sjjujj2 / 1 and

Sjjvjj2 / 1 are expected). The abscissa corresponds to

DT* and the color code toDX* (DX*5 2 in red, 4 in green,

8 in blue, and 16 in orange. Note that the DX*5 16 curves

may not appear because of their relative error being larger

than 50%. WENO simulations remain stable throughout

the [0: 1.6] CFL range (note that the CEN4TH becomes

unstable for CFL . 0.5). No clear dependency of the

temporal stability threshold on DX* is observed (CFL .
1.6 in all cases). The slope and the height of each curve

provide information about the loss of energy. For a fixed-

time resolution, WENO5 exhibits the best results on

Sjjujj2 and Sjjvjj2. For a fixed space resolution, the de-

crease of Sjjujj2 and Sjjvjj2 with DT* is greatest with

WENO3. This slope can be related to the time order of the

temporal algorithm (e.g., RK21 or RK53). Some combi-

nations of WENO5–RK53 and WENO3–RK21 report

that the slope value and the stability threshold increase

with the algorithm order [DT max* (WENO52RK21)’ 2.4

and DT max* (WENO52RK53)’ 3.2; not illustrated here].

Additional tests on the activation or not of the time-

splitting method show that it does not affect the threshold

but improves the precision of the results when the chosen

time step approaches the threshold (not illustrated here).

3) CONCLUSIONS

To conclude on the density current test case, Meso-

NH shows good agreement with previous results,

particularly in its ability to recover the converged

solution with a weak dependence on the three mo-

mentum advection schemes. However, the parametric

study in time and space reveals that WENO5 and

CEN4TH propose the lowest degradation of the

numerical accuracy with the coarsest resolution.

WENO5 has the advantage in the modeling of the rear

rotor (conservative behavior) whereas CEN4TH

shows the best ability to maintain the production of

enstrophy at the head front (nonsmoothing behavior).

The WENO5 results are less time dependent than

those of WENO3. This release is partly due to

the association of WENO5 with a higher-order RK

algorithm. The higher CFL compensates for the

higher computational costs of the WENO5 computa-

tions and of the RK steps. The assessment will now

turn to test cases including physics.

c. Large eddy simulation of fog

Particular attention is paid to LESs of clouds, first

because LES is an important issue for models like

Meso-NH, and second because advection plays the

primary role in LES as most of the eddies are resolved.

Therefore, cloud processes in LES require an accurate

representation of transport, not only for water species.

This can also be related to the cloud edge problem

widely studied since Klaassen and Clark (1985) (e.g.,

Baba and Takahashi 2013). The advection scheme has

to capture the cloud edge sharply, simulating its

buoyancy without numerical diffusion. It will be shown

here that this constraint is not restricted to the scalar

advection scheme but also concerns the wind advection

scheme. The simulation consists of an LES of radiation

fog, performed over the Site Instrumental de Re-

cherche par Télédétection Atmosphérique (SIRTA)

observatory in the suburbs of Paris, France, which is

dedicated to fog life cycle observation. The objective is

to compare the impacts of the different advection

schemes on the fog life cycle. The fog event studied

took place on 15 November 2011 within the context of

the ParisFog field campaign (Stolaki et al. 2015) and

appeared at 0200 UTC. The site features open, flat,

grassy ground, with a tree barrier 15m high and 100m

wide on one side of the site and, for the case in question,

the flow passes through this high tree barrier. Meso-NH

is run at 5-m resolution over a horizontal domain of

1 km 3 1 km. The physical parameterizations are a

1.5-order closure turbulent scheme from Cuxart et al.

(2000) in 3D mode, a two-moment warm microphysical

scheme based on Khairoutdinov and Kogan’s (2000) work

designed for LES studies (Geoffroy et al. 2008), and sur-

face schemes fromMasson et al. (2013). To take the impact

of trees into account, drag terms have been added to the

momentum and subgrid turbulent kinetic energy equa-

tions by Aumond et al. (2013). The model is initialized at

2320 UTC 14 November 2011 from the radiosonde

launched byMétéo-France in Trappes, located 15kmwest

of SIRTA. The time step is 0.1 s for the WENO and

FIG. 8. Evolution at t 5 900 s of the nondimensional Sjjujj2 and
Sjjvjj2 variables according to the time step DT* and depending on

the advection scheme (WENO3 andWENO5) for DX*5 02 (red),

04 (green), 08 (blue), and 16 (orange).
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CEN4TH schemes, even though WENO schemes allow a

time step 10 times higher. The temporal scheme is RK53

for both WENO3 and WENO5 (with the addition of two

time-splitting steps). The CEN4TH simulation uses the

fourth-order diffusion scheme to suppress very short-

wavelength modes, with an equivalent damping scale of

200 s for the 2Dx waves [noted T4(2) in appendix B].

Figure 9 illustrates the resolved turbulent structures

induced by the tree barrier on the wind field after 3 h of

simulations, aligned in the wind direction. As a result of

this large resolved turbulence induced by trees, the im-

pact of the different advection schemes is significant at

the spatial scale of these coherent structures with finer

and more numerous structures given by the CEN4TH

simulation followed by WENO5; structures are coarser

with WENO3. This is striking on the mean kinetic en-

ergy spectra applied to the vertical wind component,

computed according to Ricard et al. (2013), which re-

veals effective resolutions of 4Dx, 72 8Dx, and 102 12Dx
for CEN4TH, WENO5, and WENO3, respectively

(Fig. 10 plotted during the mature stage of the fog life

cycle). These differences among the dynamics directly

impact the fog formation. Because of the subsidence

downstream of the trees, CEN4TH andWENO5 tend to

bring more of the warmer air from above and limit the

formation of fog, compared to WENO3. The compari-

son of liquid water path (LWP) with the observations,

which presents an error of up to 20 gm22 according to

Löhnert and Crewell (2003), shows better agreement

between CEN4TH and WENO5 than with WENO3

(which overestimates the cloud water amount). The

observed LWP lies between the CEN4TH andWENO5

solutions (Fig. 11).

It can be added that, if the tree barrier is not taken into

account in the model, the three advection schemes

produce approximately the same simulation, with ho-

mogeneous fog over the area, appearing too early and

producing far too great a cloud water path, as a result of

the cooling being too strong at the surface (not shown).

Thus, in this LES of fog, it appears that WENO5 is in

good agreement with the observations and behaves simi-

larly to CEN4TH, even if the effective resolution is

coarser. It brings a significant improvement compared to

WENO3, not only in terms of effective resolution, but also

on the strength of the top entrainment process, which is

crucial during the fog life cycle. This result also applies to

other stratocumulus diurnal cycle simulations, for which

WENO3 limits cloud-top entrainment and increases

LWP. In terms of efficiency, the time step with WENO5

could be 10 times larger than with CEN4TH. In that case,

because of the sub–time steps for wind and scalar advec-

tions, and to the more expensive algorithm of WENO5,

the computational cost and the time to solution would be

about 4 times less for WENO5 than for CEN4TH.

d. The windstorm Klaus

The last study concerns a windstorm, for which the

choice of wind advection scheme is expected to have an

impact. The different advection schemes are compared

on the European windstorm Klaus, which made landfall

over large parts of central and southern France, Spain,

and parts of Italy in January 2009. It caused 26 fatalities,

as well as extensive disruptions to public transport and

power supplies. The storm was the most damaging in

France since Lothar and Martin in December 1999. Peak

gusts reachedmore than 200kmh21, and sustained winds

of more than 170kmh21 (hurricane-force winds) were

observed. Klaus started on 23 January 2009 at about

0000 UTC in the middle of the Atlantic with a minimum

MSLP value of 1000hPa, according to ECMWF analysis.

The track of the cyclone was in the zonal direction and its

speed was remarkably high, reaching rates above

100kmh21. Aminimum surface pressure of about 964hPa

at the cyclone’s center occurred on day 24 at about

FIG. 9. LESFOG simulation: 10-mwind speed (m s21) with wind arrows and 10-m cloudmixing ratio. 0.001 g kg21 (shaded area) after 3 h

of simulation.
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0000 UTC. The storm made landfall near Bordeaux,

France, at 0500 UTC 24 January, and traveled southeast-

ward throughout the morning, finally reaching the south-

east coast of France at 1300 UTC. It continued eastward

over Italy, without causing significant damage.

Meso-NH is used in a configuration similar to the op-

erational model AROME (Seity et al. 2011), at 2.5-km

horizontal resolution over France, and with 46 vertical

levels below 20km. Simulations start from 0000 UTC

24 January 2009 with AROME or the ECMWF anal-

ysis, last 24 h, and are coupled with analysis every

3 h. AROME itself is coupled with the ARPEGE global

model. The time step for Meso-NH is 60 s for simula-

tions using the WENO schemes and 6 s for those using

CEN4TH. The temporal scheme is RK53 for both

WENO3 and WENO5, with two additional time-

splitting steps. This means that the physics is called

every 60 s for the WENO schemes, and every 6 s for

CEN4TH. For CEN4TH, the equivalent damping scale

of the numerical diffusion [T4(2) in B6] is 30min. The

physical package includes a mixed one-moment micro-

physical scheme (Pinty and Jabouille 1998), the 1.5-order

closure turbulent scheme of Cuxart et al. (2000) in 1D

mode, and the mass flux scheme of Pergaud et al. (2009)

to parameterize the thermals of the convective boundary

layer. Furthermore, it was checked that the differences in

the time steps between the simulations were not the

source of the discrepancies.

Figure 12 illustrates the 10-m mean wind speed sim-

ulated with CEN4TH at 0800 UTC over the whole do-

main, with observations superimposed, using either the

ECMWF or AROME initial and coupling fields. The

differences in the surface winds linked to initial and

coupling conditions are significant, especially over the

sea: ECMWFdevelops stronger winds over theAtlantic,

which concerns the coastal areas. Some differences also

appear over the continent across the west-northwest of

France but for moderate winds.

Focusing on the southwestern region (Fig. 13), where the

strongest winds occurred, the impact of the different ad-

vection schemes is seen to beweaker than the impact of the

initial–coupling conditions. Biases and root-mean-square

errors (RMSEs) are presented in Table 4 and Fig. 14 for

every hour, over the whole domain of simulation (700

stations) or over southwest France (180 stations). First, two

groups can be distinguished, depending on the coupled

model. Considering ECMWF for the initial and coupling

conditions, CEN4TH tends to develop the strongest winds,

inducing a higher bias, in contrast toWENO3, which tends

to smooth the wind field and to reduce the bias, as the

winds are slightly too high with the ECMWF initial and

coupling fields. But differences in bias andRMSEbetween

CEN4TH and WENO3 do not exceed 0.5ms21, with

WENO5 presenting intermediate results. When using

AROME as the initial–coupling conditions, the biases are

sometimes positive and sometimes negative, but the

RMSE is always higher than with the ECMWF initializa-

tion. None of the advection schemes has scores that are

markedly better than the others. However, WENO3 has a

small advantage as its smoother behavior tends to avoid

the ‘‘double penalty’’ problem (Amodei and Stein 2009)

where, first, the observation network is too sparse to easily

validate all the wind scales present in the simulation and,

second, the structures of the high-resolution fields can be

spatially or temporally displaced.

Kinetic energy spectra can be applied to the zonal

wind component (Fig. 15) for each Meso-NH simula-

tion. They are presented for 0800UTC as they were very

similar for all times. Spectra for all the simulations

FIG. 10. Mean kinetic energy spectra for the vertical wind com-

puted in the fog after 5 h of simulation: CEN4TH (red), WENO3

(green), and WENO5 (blue). The 25/3 (dashed) and 23 (dashed

dot) lines are also shown.

FIG. 11. Time evolution of the liquid water path (g kg21) ob-

served (black) and simulated with the CEN4TH (red), WENO3

(green), and WENO5 (blue) schemes.
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match the k25/3 results well. In agreement with the

previous LES study, the smallest diffusion in the short-

est wavelengths is given by CEN4TH, followed by

WENO5, and then WENO3. The most striking feature

is that the gap between the three spectra occurs at large

scale, up to 60km, meaning that advection schemes

impact not only the finest scales, but a significant part of

the range of resolved scales. WENO5 presents a signif-

icant improvement compared to WENO3, and its be-

havior is intermediate between CEN4TH and WENO3.

The gap between the CEN4TH and WENO5 spectra

only increases below 3 2 4Dx, while the CEN4TH

spectrum is slightly impacted by the 2Dx waves, in-

dicating that the numerical diffusion (applied only with

CEN4TH) could be slightly increased. As inRicard et al.

(2013), Meso-NH spectra can be compared to the

AROME forecast spectrum, as the initial conditions are

the same (AROMEanalysis) as well as the physics. Only

the dynamical core and the coupling fields (ARPEGE

forecast for AROME and AROME analysis for Meso-

NH) are different. In agreement with Ricard et al.

(2013), the AROME forecast presents a higher diffusion

toward the finescale, probably as a result of the implicit

diffusion of the semi-implicit semi-Lagrangian (SISL)

scheme. The AROME and WENO3 spectra are similar

up to 5Dx. The AROME forecast loses variance com-

pared to WENO3 between 4Dx and 3Dx and at 3Dx as a
result of an additional spectral quadratic truncation.

In terms of computational time, for the same fre-

quency of call to the physics, CEN4TH would be

cheaper, followed by WENO3 and then WENO5. For

the simulations of the windstorm, the physics pack-

age was applied after each dynamics update, and

produced a simulation time for WENO5 (WENO3)

that was 38% (27%) of CEN4TH. Explicitly, for the

24 h of simulation, the computational costs were 120 h

for the CEN4TH simulation, 45 h for WENO5, and

32 h for WENO3.

To conclude on this windstorm case, the strongest

sensitivity to the Meso-NH results is seen in the initial

and coupling fields. Nevertheless, the choice of ad-

vection scheme impacts the surface wind scores without

permitting the best one to be determined. The

smoother behavior of WENO3 tends to avoid the

double-penalty problem and to score better, but it

removes the kinetic energy variance at fairly large

scales. However, below 5Dx of the spatial scale,

WENO3 is less diffusive than the SISL scheme of

AROME.WENO5’s behavior is intermediate between

WENO3 and CEN4TH in terms of scores and energy

spectra. These conclusions, drawn from the windstorm

case, are representative of most of the real-case simu-

lations at the mesoscale.

4. Conclusions

This multi-test study has provided a complete over-

view of the different combinations of WENO momen-

tum transport schemes (third and fifth order) with ERK

temporal methods in terms of stability and accuracy with

Meso-NH. The linear theoretical von Neumann anal-

ysis, expanded with a new graphical method, revealed

that WENO3 with forward Euler and WENO5 with

forward Euler and the second-order RK method were

linearly unstable, as already shown by Wang and

Spiteri (2007). RK53, RKC4, and, to a lesser degree,

RK33 were the most efficient methods with WENO

schemes (larger CFL numbers). The hydrostatic

mountain wave test completed the stability study in 2D

mode. The five-stage third- and fourth-order ERK

FIG. 12. Klaus simulation: 10-m wind speed (colored shading, m s21) simulated with CEN4TH, initialized and

coupled with (a) ECMWF and (b) AROME analyses, with observations shown by the very small squares colored

using the same legend, for 0800 UTC 24 Jan 2009 (averaged over the previous 10min) over the whole domain.
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methods have been selected as optimal choices con-

sidering the maximum allowed time step and memory

storage. WENO5 combined with RK53 presented a

small time-step dependency on the cold-bubble test

case. Furthermore, an additional time splitting of the

ERK temporal discretization was very beneficial to

the stability, allowing CFL numbers of 1.8 to be

reached for WENO5 and 2.5 for WENO3, with an

optimal sub-time-step number of 2. This method is of

great interest for complete Meso-NH runs, as it limits

the number of calls to the rest of the model (physics

and pressure solver mainly).

The stability analysis has been complemented by

an evaluation of the WENO schemes, with the

fourth-order centered scheme associated with the

leapfrog scheme as a basis for reference. WENO5

presents low-diffusion properties in the area of sharp

gradients, whereas this is partly hidden with WENO3

because of its strong diffusive character relative to its

lower order. These properties have been pointed out

on the density current test case, where WENO5 ac-

curately reproduced the rear rotor; and at the top of

the fog layer in the LES, where the overdiffusive

WENO3 scheme reduced the top entrainment

process, modifying the amount of cloud water and the

fog life cycle.

In terms of accuracy, which is the first asset of the

fourth-order centered scheme as already shown by

FIG. 13. Klaus simulation: 10-m simulated wind speed (colored shading, m s21) for 0800 UTC 24 Jan 2009 (averaged over the previous

10min) zoomed-in over southwestern France, initialized and coupled with (top) the ECMWF and (bottom) AROME analyses with

observations shown by very small squares colored using the same legend: (a),(d) CEN4TH, (b),(e)WENO5, and (c),(f)WENO3 schemes.

TABLE 4. Bias and RMSE scores (m s21) of 10-m wind speed

(averaged over 10min before each hour) over the whole domain of

France and over the southwestern part with the different advection

schemes and with AROME or ECMWF initialization and coupling.

France

CEN4TH WENO5 WENO3

AROME initialization

Bias 0.44 0.55 0.51

RMSE 3.28 3.41 3.36

ECMWF initialization

Bias 0.61 0.55 0.54

RMSE 2.63 2.57 2.53

Southwestern France

CEN4TH WENO5 WENO3

AROME initialization

Bias 0.22 0.17 0.11

RMSE 4.17 4.14 4.10

ECMWF initialization

Bias 0.94 0.86 0.82

RMSE 3.63 3.51 3.43
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Ricard et al. (2013), WENO5 is somewhat less attractive

than CEN4TH, but presents fairly good abilities with an

effective resolution of 7 2 8Dx on the fog LES and

windstorm cases (compared to the 4Dx for CEN4TH and

10 2 12Dx for WENO3).

Thanks to the ERK method and the additional time

splitting, and despite the more expensive spatial al-

gorithm, the reduction of the computational cost of

the Meso-NH runs is significant when the WENO

schemes are implemented, with a mean factor of 3 for

WENO5 and 4 for WENO3 compared to the fourth-

order centered scheme, where the whole model, in-

cluding the physics, is called. This improvement is

very useful for the Meso-NH model, within the con-

text of the widespread use of LES on large grids

(Bergot et al. 2015; Dauhut et al. 2015). The benefit is

still more significant for aerosol and chemistry runs,

as the expensive chemistry is called with large

time steps.

Thus, it has been shown that time discretization of

wind gradient terms using ERK methods with an

added time splitting step can bring considerable ben-

efit in terms of the stability and time dependence of the

solution. In further work, it would be interesting to

evaluate these time integration methods and also

Kinnmark and Gray’s (1984) methods with the

CEN4TH space discretization in order to keep its ac-

curacy and to reach higher CFL numbers.
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observations of 10-m wind speed (averaged over 10min before each hour) over (top) the whole domain and (bottom) southwestern France.

Simulations are initialized and coupled with ECMWF (noted EC) or AROME (noted AR): EC CEN4TH (solid red), EC WENO3 (solid

green), EC WENO5 (solid blue), AR CEN4TH (dashed red), AR WENO3 (dashed green), and AR WENO5 (dashed blue).
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APPENDIX A

WENO Stencil Definition

The WENO5 stencils are given by
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The « term is used here to prevent the denominator from

being null and is set to 10215 in the model. The bj terms,

also called indicators of smoothness, are the heart of the

ENO methods, of which WENO schemes are exten-

sions. They are defined below:
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WENO5 reverts to WENO3 at the edges of the com-

putational domain for open boundary conditions only.

The WENO3 stencils are given by
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where the nonnormalized stencil weights are

a
0
5

1

3

�
1

«1b
0

�2

, a
1
5

2

3

�
1

«1b
1

�2

, (A5)

and for the smoothness indicators,

b
0
5 (2u

i21
1 u

i
)2, b

1
5 (2u

i
1 u

i11
)2 . (A6)

APPENDIX B

Numerical Diffusion Operator

The diffusion operator applied to the momentum

components f is a fourth-order operator used every-

where except at the first interior grid point where a

second operator is substituted in the case of nonperiodic

boundary conditions. It reads

D
f
52K

4

�
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›x4
1

›4f

›y4

�
, (B1)

where K4 is the positive diffusion coefficient, with the

fourth derivative needing a minus sign to damp waves.

The second-order accurate discretization is
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where Dx and i are the grid increment and the spatial

index, respectively. Considering a single harmonic wave

defined by f(x, t) 5 F(t)eikx, where F(t) is the wave

amplitude and k the wavenumber, the application of a

fourth-order diffusion operator during N time steps

leads to

f(x, t1NDt)5F(t)

�
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K
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The time T4 at which the initial wave is damped by e21 is

then

T
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h
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FIG. 15. Klaus simulation:meankinetic energy spectra for zonalwind

computed at 0800 UTC 24 Jan 2009 over the whole domain, applied to

Meso-NH simulations, initialized and coupled with AROME analysis,

with the different schemes and applied to AROME forecasts (denoted

AROME FC, dashed black): CEN4TH (red), WENO3 (green), and

WENO5 (blue). The25/3 profile is shown as a gray dashed line.
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which can be approximated by

T
4
;

Dx4

4K
4
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If k is the wavenumber associated with the nDx wave-

length, T4 is given by

T
4
(n);

Dx4

4K
4
(12 cos2p/n)2

. (B6)

As it is more convenient to specify T4, for a given sim-

ulation, we fix T4(2) as the equivalent damping time

scale for the 2Dx waves.

APPENDIX C

Fourier Symbols of WENO Schemes

The Fourier symbol of the fifth-order WENOmethod

can be written for smooth solutions as

z
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k
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This is the same formula as is used for the upwind form

of fifth order given by Baldauf (2008). When smooth

solutions are considered, the indicators of smoothness bi

are close to one, so the flux reconstruction can be ap-

proximated to the upwind form of the same order, as in

Motamed et al. (2011).

The Fourier symbol of the third-order WENO

method can be similarly written for smooth solutions:
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APPENDIX D

Explicit Runge–Kutta Methods

a. General description of a Runge–Kutta method

To integrate the ordinary differential equation

du

dt
5 f (u, t)

between tn and tn11, the ERK method uses s in-

termediate steps as follow:
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Then, the final solution at tn11 is obtained by
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Note that the ci coefficients are not used when in-

tegrating the Euler equations, because there is no time-

dependent term in the operator f.

b. Butcher tables

Several methods are represented in the following

tables, with their Butcher coefficients. First, some

well-known classical methods from the literature are

presented:

forward Euler (FF),

0

1

;

Heun (HEUN2),

0

1 1

1/2 1/2

; and

ERK order 4 (RKC4),

0

1/2 1/2

0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

.

Other methods from Wang and Spiteri (2007) are

presented below:

ERK with order 1 and two steps (RK21),

0

3/4 3/4

0 1

;

SSP-RK with order 3 and three steps (RK33),
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0

1 1

1/2 1/4 1/4

1/6 1/6 2/3

; and

ERK with order 3 and five steps (RK53),

0

1/7 1/7

3/16 0 3/16

1/3 0 0 1/3

2/3 0 0 0 2/3

1/4 0 0 0 3/4

.

APPENDIX E

Reference Solution of the Cold-Bubble Test

To study the spatiotemporal resolution on the gravity

current case (Straka et al. (1993)), here, we compare the

Meso-NH (MNH) results on a converged solution with

the literature: the EULAG anelastic nonhydrostatic

model in Rosa et al. (2011), the discontinuous Galerkin

evolution model (DGEM) in Müller et al. (2013), the

fully compressible reference solution (REFC) obtained

by Straka et al. (1993), the fully compressible WRF

Model in Skamarock and Klemp (2008), the anelastic

nonhydrostatic ARPS model in Xue et al. (2000), and

the SISL compressible nonhydrostatic model in Melvin

et al. (2010).

When the time and spatial discretizations are suffi-

cient to simulate a converged solution [the diffusion

term defined by Straka et al. (1993) allows this], the

solution has to be weakly dependent on the choice of the

advection scheme. To obtain the reference solution,we use

CEN4TH (leapfrog). Note that the first 300 s were simu-

lated with WENO5 (RK53) to verify that the results were

independent of the advection schemes. The mesh covers

2048 3 256 points (xref 5 25m) and fixes the time step at

Dt5 0.1 s. Until t5 900 s, the density current undergoes a

horizontal acceleration and amaximum is reached on the

velocity magnitude at t ’ 300 s, so we define the char-

acteristic velocity jjujjmax as jjujjmax (300 s) ’ 40ms21.

The CFL (5jjujjmax Dt/Dx) is not violated and divided

by at least 6.

Table E1 compares our result with those using the

same spatial discretization [except for Müller et al.

(2013), who used an adaptive mesh refinement (AMR)

technique with an equivalent space step Dxeff 5 28.26m].

The differences in umin, ymin, and ymax are in good agree-

ment (EULAG/REFC/MNH). More discrepancies be-

tween the results appear in umax and seem to be related to

the variation observed at the front location [defined by

xmax (Du5 21K]. Good agreement is observed for Dumin

and xfront for the WRF/SISL/ARPS/MNH codes. When

the Richardson extrapolation performed by Straka et al.

(1993) is added, suggesting a grid-converged solution with

Dxref 5 25m, the reference simulation REFO can be

considered to be validated.
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