

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author’s version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18649

To cite this version :
Josipović, Veliborka Tree species discrimination in temperate
woodland using high spatial resolution Formosat-2 time series.
(2015) [Mémoire]

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Université de Toulouse
École nationale supérieure d'électronique, d'électrotechnique,

d'informatique, d'hydraulique et des télécommunications (ENSEEIHT)

MASTER OF SCIENCE AND TECHNOLOGY
Electronic Systems for Embedded and Communicating Applications (ESECA)

Signal and Image Processing

Tree species discrimination in temperate woodland using
high spatial resolution Formosat-2 time series

Veliborka Josipović

UMR 1201 DYNAFOR
Dynamiques et écologie des paysages agriforestiers

Supervisors:
Mathieu Fauvel
David Sheeren September 2015

Acknowledgment

I would like to thank my supervisors, Mathieu Fauvel and David Sheeren, for their guidance
and inspiration during the work on this study. I would also like to thank my family and
friends for their help and support.

Abstract

Assessment and mapping of the tree species distribution is an important technical task for
forest ecosystem services and habitat monitoring. Since traditional methods (e.g. field
surveys) used for the mapping of the tree species tend to be time consuming, date lagged and
too expensive, a technology of remote sensing might potentially offer a practical solution for
the problem of tree species mapping, especially over large areas.

The main purpose of this study was to investigate the potential of Formosat-2 multi-spectral
image time series for classification of the tree species in temperate woodlands. Since
phenological variations might increase spectral separability of the trees species, additional
aim of the study was to assess the possibility of using multispectral-image time series as an
alternative to hyper-spectral data for forest type mapping. Noise from the Formosat-2 images
was removed with the Whittaker smoother algorithm, which performed quite well although
some additional work might be needed during the selection of the optimal regularization
parameter. Several supervised classification methods, Support Vector Machines (SVM),
Random Forest (RF) and Gaussian Mixture Model (GMM), were used to discriminate tree
species from the image time series. All of the classifiers performed reasonably well, with
classification accuracies from 88.5 % to 99.2 % (Kappa statistic), although SVM model was
the most accurate, while GMM was the most efficient in terms of computing time. High
classification accuracy also indicated that the multi-spectral image time series and remote
sensing might be a useful method for the mapping of tree species.

List of figures

Figure 1.1. Basic principle of NDVI. The healthy vegetation absorbs more Red light (left)
than the unhealthy vegetation (right). Source: http://earthobservatory.nasa.gov.3

Figure 3.1 Map of France with highlighted study area and typical landscape for study area .19

Figure 3.2. Reference pixels distributed over the study area. Aerial photograph (left) and
zoomed part of the reference pixels (right)..20

Figure 3.3. Multispectral image and cloud mask acquired on 12/01/2012..............................22

Figure 3.4. Forest/non-forest map for the Haute-Garonne department and for the study area
(zoomed part). Area covered by forest is presented in green colour.23

Figure 4.1 Simplified flow-chart of the project ...24

Figure 4.2. Simplified flow-chart of the pre-processing part of the project25

Figure 5.1. Generalized and Ordinary Cross-Validation errors for different values of λ for
year 2013..29

Figure 5.2. Temporal profiles of the pixel in blue band before and after smoothing in case
without clouds or cloud shadows detected. The temporal profiles are superimposed.............30

Figure 5.3. Temporal profiles of the pixel in blue band affected by cloud before and after
smoothing (left) and temporal profiles of the pixel in infra-red band affected by cloud shadow
before and after smoothing (right) ...30

Figure 5.4. Temporal profiles of the pixel containing NDVI values before and after
smoothing affected by clouds ..31

Figure 5.5. Temporal profiles of the pixel in red band before and after smoothing affected by
clouds present on two dates ...31

Figure 5.6. The grey-scale images with the clouds present in top-right corner before (left) and
after (right) smoothing ...32

Figure 5.7. Test classification accuracy for the different size of feature subsets selected using
SFS or SFFS algorithms. Classification was based on the spectral bands together with the
NDVI indices for level 2 of classification ...34

Figure 5.8. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 1 and year 2013. The selection rate is 1 when the image is selected
systematically (50/50). ...40

Figure 5.9. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 2 and year 2013. The selection rate is 1 when the image is selected
systematically (50/50). ...41

Figure 5.10. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 3 and year 2013. The selection rate is 1 when the image is selected
systematically (50/50). ...41

Figure 5.11. Classification maps for level 1 based on spectral bands with GMM (left) and
SVM (right)..43

Figure 5.12. Classification maps for level 2 based on spectral bands with GMM (left) and
SVM (right)..43

Figure 5.13. Classification maps for level 3 based on spectral bands with GMM (left) and
SVM (right)..43

Figure 5.14. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 1 based
on spectral bands with GMM (left) and SVM (right) ..44

Figure 5.15. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 2 based
on spectral bands with GMM (left) and SVM (right) ..44

Figure 5.16. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 3 based
on spectral bands with GMM (left) and SVM (right) ..44

Figure A1.1. The test classification accuracy for Hekla data set (top left), KSC (top right) and
Pavia (bottom left) ...48

Figure A1.2. Learning time needed to extract 15 best features for each iteration for Hekla
data set (top left), KSC (top right) and Pavia (bottom left) ...49

Figure A3.1. Histograms for Generalized and Ordinary Cross-Validation errors for different
values of λ for year 2011..71

Figure A3.2. Histograms for Generalized and Ordinary Cross-Validation errors for different
values of λ for year 2012..71

Figure A3.3. Histograms for Generalized and Ordinary Cross-Validation errors for different
values of λ for year 2014..71

Figure A3.4. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 1 and year 2011. The selection rate is 1 when the image is selected
systematically (50/50). ...84

Figure A3.5. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 2 and year 2011. The selection rate is 1 when the image is selected
systematically (50/50). ...84

Figure A3.6. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 3 and year 2011. The selection rate is 1 when the image is selected
systematically (50/50). ...85

Figure A3.7. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 1 and year 2012. The selection rate is 1 when the image is selected
systematically (50/50). ...85

Figure A3.8. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 2 and year 2012. The selection rate is 1 when the image is selected
systematically (50/50). ...86

Figure A3.9. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 3 and year 2012. The selection rate is 1 when the image is selected
systematically (50/50). ...86

Figure A3.10. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 1 and year 2014. The selection rate is 1 when the image is selected
systematically (50/50). ...87

Figure A3.11. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 2 and year 2014. The selection rate is 1 when the image is selected
systematically (50/50). ...87

Figure A3.12. The most frequently selected dates over 50 repetitions obtained using NPFS
classifier for level 3 and year 2014. The selection rate is 1 when the image is selected
systematically (50/50). ...88

Figure A4.1. The influence of the regularization parameter on smoothing of the simulated
data with a second-order penalty (d=2) for several values of the parameter λ89

Figure A4.2. Generalized and Ordinary Cross-Validation errors for different values of λ90

Figure A4.3 Smoothing the simulated data with GCVλ (on the left) and OCVλ (on the right) ...90

List of tables

Table 3.1. The number of the reference pixels for 14 tree species analyzed in the study20

Table 3.2. Characteristics of the Formosat-2 satellite sensor (Site Airbus Defence and Space)
..21

Table 3.3. Meaning of the bits in the mask of clouds and cloud shadows...............................21

Table 3.4. Formosat-2 imagery, available dates and number of acquired images for each year
..22

Table 5.1 Overall accuracy and Kappa statistics for three defined levels of classification using
NDVI indices, spectral bands (SB) and NDVI indices and spectral bands together for year
2013. NPFS_sfs denotes NPFS GMM based classifier computed with a set of features that
was chosen using standard feature selection algorithm described in Section 2.3.1. Similarly,
NPFS_sffs denotes NPFS GMM based classifier computed with a set of features chosen
using SFFS algorithm described in Section 2.3.2. The results correspond to the mean value
and variance of the overall accuracy (OA) and Kappa statistics over 50 repetitions in
percentages. The best results for each level are reported in bold face.....................................33

Table 5.2 Overall accuracy and Kappa statistics for three defined levels of classification for
each of the four years. Only spectral bands were used as the spectral features. NPFS_sfs
denotes NPFS GMM based classifier computed with a set of features that was chosen using
standard feature selection algorithm described in Section 2.3.1. The results correspond to the
mean value and variance of the overall accuracy (OA) and Kappa statistics over 50
repetitions in percentages. The best results for each level were reported in bold face............35

Table 5.3. Confusion matrix for level 1, year 2013. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...36

Table 5.4. Confusion matrix for level 1, year 2013. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...37

Table 5.5. Confusion matrix for level 2, year 2013. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages ..37

Table 5.6. Confusion matrix for level 2, year 2013. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...37

Table 5.7. Confusion matrix for level 3, year 2013. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...38

Table 5.8. Confusion matrix for level 3, year 2013. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...39

Table A1.1. Mean values of the overall accuracies and Kappa statistics for each data set48

Table A1.2 The mean processing time for learning and prediction for each data set..............49

Table A3.1. Overall accuracy and Kappa statistics for three defined levels of classification
using NDVI indices, spectral bands (SB) and NDVI indices and spectral bands together for
the year 2011. NPFS_sfs denotes NPFS GMM based classifier computed with a set of
features that were chosen using standard feature selection algorithm described in Section
2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based classifier computed with a set of
features chosen using SFFS algorithm described in Section 2.3.2. The results correspond to
the mean value and variance of the overall accuracy (OA) and Kappa statistics over the 50
repetitions in percentages. The best results for each level are reported in bold face...............72

Table A3.2. Overall accuracy and Kappa statistics for three defined levels of classification
using NDVI indices, spectral bands (SB) and NDVI indices and spectral bands together for
the year 2012. NPFS_sfs denotes NPFS GMM based classifier computed with a set of
features that were chosen using standard feature selection algorithm described in Section
2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based classifier computed with a set of
features chosen using SFFS algorithm described in Section 2.3.2. The results correspond to
the mean value and variance of the overall accuracy (OA) and Kappa statistics over the 50
repetitions in percentages. The best results for each level are reported in bold face...............73

Table A3.3. Overall accuracy and Kappa statistics for three defined levels of classification
using NDVI indices, spectral bands (SB) and NDVI indices and spectral bands together for
the year 2014. NPFS_sfs denotes NPFS GMM based classifier computed with a set of
features that were chosen using standard feature selection algorithm described in Section
2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based classifier computed with a set of
features chosen using SFFS algorithm described in Section 2.3.2. The results correspond to
the mean value and variance of the overall accuracy (OA) and Kappa statistics over the 50
repetitions in percentages. The best results for each level are reported in bold face...............74

Table A3.4. Confusion matrix for level 1, year 2011. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...75

Table A3.5. Confusion matrix for level 1, year 2011. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...75

Table A3.6. Confusion matrix for level 2, year 2011. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages ..75

Table A3.7. Confusion matrix for level 2, year 2011. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...75

Table A3.8. Confusion matrix for level 3, year 2011. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...76

Table A3.9. Confusion matrix for level 3, year 2011. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...77

Table A3.10. Confusion matrix for level 1, year 2012. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...78

Table A3.11. Confusion matrix level 1, year 2012. Classification was based on spectral bands
and SVM classifier. The results are computed and averaged over 50 repetitions and presented
in percentages...78

Table A3.12. Confusion matrix for level 2, year 2012. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages ..78

Table A3.13. Confusion matrix for level 2, year 2012. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...78

Table A3.14. Confusion matrix for level 3, year 2012. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...79

Table A3.15. Confusion matrix for level 3, year 2012. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...80

Table A3.16. Confusion matrix for level 1, year 2014. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...81

Table A3.17. Confusion matrix for level 1, year 2014. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...81

Table A3.18. Confusion matrix for level 2, year 2014. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages ..81

Table A3.19. Confusion matrix for level 2, year 2014. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. ...81

Table A3.20. Confusion matrix for level 3, year 2014. Classification was based on spectral
bands and GMM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...82

Table A3.21. Confusion matrix for level 3, year 2014. Classification was based on spectral
bands and SVM classifier. The results are computed and averaged over 50 repetitions and
presented in percentages. The main confusion for each species is reported in pink colour. ...83

Table of contents

Acknowledgment

Abstract

List of figures

List of tables

1 Introduction...1

1.1 General introduction ..1

1.2 Remote sensing and forest ...1

1.3 Working laboratory and study objectives ..3

2 Theoretical background ...6

2.1 Background of smoothing filter ...6

2.1.1 Whittaker smoother for equally spaced data ...6

2.1.2 Whittaker smoother for unequally spaced data ...9

2.1.3 Choosing a value for smoothing parameter λ ..11

2.2 Background of feature selection ..13

2.2.1 Non Linear Parsimonious Feature Selection (NPFS)..13

2.2.2 The Sequential Forward Floating Selection algorithm (SFFS) ...17

3 Study area and data collection...19

3.1 Study area...19

3.2 Field data collection...19

3.3 Remote sensing data ..21

3.4 Ancillary data...23

4 Methodology ..24

4.1 General procedure..24

4.2 Pre-processing..24

4.3 Classification and accuracy assessment...26

4.4 Used software and implementation..28

5 Results and discussion ..29

5.1 Pre-processing..29

5.2 Classification..32

6 Conclusion and future work ..45

Appendix 1..47

Appendix 2..51

Appendix 3..71

Appendix 4..89

References...91

1

1 Introduction

1.1 General introduction

Forest is one of dominant terrestrial ecosystem types, providing essential services to the
human society, e.g. wood production, climate control, habitat for animal and plant species,
carbon sink, water, human recreation [1]. Since the total area under forests is vast, around 4
billion hectares or 31% of the total land area [2], assessment of the forests current and future
states is very important.

To correctly estimate the forest state in one area it is necessary to first produce distribution
map of the tree species in the study area. Traditionally, distributions of the species were
estimated by ground based surveys during forest inventories. However, it is usually better to
have tree species distribution maps already during the planning phases of the forest inventory
in order to allocate resources and train ground based crews in time. Ground survey is still by
far the most accurate and detailed way of forest monitoring, although it is very elaborate,
time consuming, and expensive. One of the possible alternatives for consistent and
continuous monitoring is to use remote sensing and automated image analysis techniques [3].
Therefore, remote sensing approach for mapping tree species has been researched for a very
long time [4]. Nevertheless, accurate estimation of the tree species distributions from remote
sensing data is still a very difficult problem, since there are many factors influencing spectral
response of species, e.g. tree age, vegetation phase, tree vitality, presence or absence of the
understory.

1.2 Remote sensing and forest

Remote sensing is a scientific discipline which analyses and interprets measurements of
electromagnetic radiation (EMR) that is reflected from or omitted by a target and observed or
recorded from a vantage point by an observer or instrument that is not in contact with the
target. Remote sensing can be active or passive, depending on whether the acquired signal
was transmitted from a natural source like the sun or it was emitted from an artificial source
such as sensors. It is often used for earth observation, which is done by interpreting and
understanding EMR measurements of objects on the Earth’s land, ocean or ice surfaces and
which are usually made by satellite, together with making relationships between these
measurements and the nature of phenomena on the Earth’s surface [5].

Several satellite sensors were launched to collect useful data from Earth's surface in the last
decades. Satellite sensors have different spatial, spectral and temporal resolution depending
on their function and orbit. The spatial resolution defines the minimum size of an object that
can be detected in an image, which determines the pixel size of the images covering the Earth
surface. The spectral resolution defines the ability of a satellite to distinguish between two
neighbouring wavelengths. Therefore, it depends on the number of spectral bands of the
image. Depending on the number of spectral bands, three types of images can be defined:
panchromatic (one black-and-white band), multi-spectral images (approximately 3 to 7
bands), and hyper-spectral images (over 100 bands). The higher the spectral resolution is, the
higher will be the precision of the spectral signature of an object and it is likely that it will be
well discriminated. The temporal resolution is the ability of a satellite sensor to revisit the
same area after certain period of time. The temporal resolution is one of the most important

2

characteristics of the satellites for remote sensing environmental applications. In fact, it is
necessary to monitor Earth’s surface changes or short time varying phenomena, caused
mainly by human factors or natural evolution of vegetation. Furthermore, the number of
acquisitions that could be exploited may be really small because of the bad weather
conditions e.g. clouds or cloud shadows, which limit the view of the Earth's surface.
Therefore, this can be the reason for not obtaining even one usable image over, for example,
several months of acquisition time if the satellite has very low revisiting frequency.

In the past, many attempts to discriminate the tree species were based on the spatial
resolution of the data. Tree species classification was performed using aerial photography [6]
or high spatial resolution imagery [7], [8]. However, the results showed a limited success
with potentially high confusion rates [9]. With only few spectral bands in the multispectral
images accuracy of the species discrimination is diminished. Therefore, several studies
explored the ability of hyperspectral imagery to identify the tree species. Using LiDAR data
or a combination of multiple sources [10], [11], much higher accuracies were obtained, but
due to the limited availability and high cost of the hyperspectral imagery, the operational use
of these data remains difficult. Thus, several studies have addressed the problem of tree
species classification using satellite image time series (SITS). These studies were based on
the assumption that phenological variations from the start of the growing season to the
senescence should increase the spectral separability of the deciduous tree species [12], due to
the dependence of vegetation multispectral reflectance on it’s phenological phases. However,
most of the studies looking into SITS potential were based on Landsat time series composed
of a limited number of acquisition dates, sometimes from different years, and with only
partial coverage of the key phenological periods. Only few studies demonstrated the potential
of dense SITS acquired through entire growing season, but all of them were based on
airborne images [13], [14].

Currently, it is possible to obtain large dataset with very high temporal resolution using
MODIS. However, the spatial resolution of these images is relatively small: 250m (and even
500m or 1km), which is not enough to discriminate different tree species. Until this year the
only satellite that could provide SITS with high spatial resolution is FORMOSAT-2. Main
issue with this source is the high cost, which is the main reason for relatively few studies
using FORMOSAT-2 images. In the future, there is a potential to use Sentinel-2 images to
obtain SITS with high spatial resolution. This satellite will provide a global coverage of the
Earth's land surface with high spatial resolution optical imagery and high temporal resolution
(every 10 days with one satellite and 5 days with 2 satellites) and it will be free of charge.

The red band (600 nm to 700 nm) and the near-infrared band (700 nm to 1100 nm) are the
most commonly used to characterize the vegetation. From these bands, it is possible to create
different indices of vegetation, or to estimate biophysical variables.

Although there are several vegetation indices, one of the most widely used is the Normalized
Difference Vegetation Index (NDVI) [15]. Advantages of the NDVI for monitoring various
phenology phases of the vegetation during and between the seasons is that NDVI is very well
correlated with the photosynthetic activity and chlorophyll contents, can be easily computed,
and it is mostly independent from soil type and current climate conditions. Calculation of the
NDVI is based on two properties of the leaf cells of the green plants: 1) chlorophyll pigment
found in these cells strongly absorbs in the red and blue part of the visible light, while

3

reflecting most of the green, and 2) leaf cell structures reflect around 50% of the near-infrared
light (700-1100 nm) that hits them (Figure 1.1). Therefore, presence of the plants is indicated
by the reflection of near-infrared light, while plant vitality, if there are any plants present, is
indicted by visible light absorption.

NDVI is calculated from the visible (red) and near-infrared light reflected by vegetation using

following equation:

REDNIR

REDNIR
NDVI

++++

−−−−
==== (1.1)

Figure 1.1. Basic principle of NDVI. The healthy vegetation absorbs more Red light (left) than the
unhealthy vegetation (right). Source: http://earthobservatory.nasa.gov.

From the following NDVI values vary from -1 to 1. Since the reflection in near-infrared band
for green vegetation is always higher than in the red band, NDVI values for the vegetation are
always higher than 0. Bare ground and water have very low reflectance in the near-infrared
band and thus their NDVI values are lower or equal to 0.1. NDVI values from the interval
[0.2 – 0.5] indicate the presence of sparse vegetation of grassland and shrubs. NDVI values
higher than 0.5 indicate the presence of green leaves (values close to 1 are related to the high
density of green leaves) [16]. Finally, it should be noted that NDVI is mostly stable for the
conifer species, while it can vary for the broadleaf species.

1.3 Working laboratory and study objectives

My internship was done within the Joint Research Unit DYNAFOR, that is attached to the
French National Institute for Agricultural Research (INRA). This public institute was
established in 1946. and it is under the joint authority of the Ministries of Research and
Agriculture. INRA is composed of 13 departments in order to complete all tasks that are
entrusted to it.

4

DYNAFOR is a JMU (Joint Research Unit) which was established in 2003. Its mission is
mainly part of the 6th research area of the INRA center of Toulouse. This unit brings together
researchers from two INRA departments: SAD (Science pour l’Action et le Développement)
and EFPA (Ecologie des Forêts, Prairies et milieux Aquatiques) with teaching-researchers
from ENSAT (Ecole Nationale Supérieure Agronomique de Toulouse) integrated into the
National Polytechnic Institute of Toulouse, and teaching-researchers from the EI Purpan
(Ecole d’Ingénieurs de Purpan). DYNAFOR activities are focused on the sustainable
management of forest resources and rural areas as part of landscape ecology. The main
objective of DYNAFOR is to understand and model the relationships between ecological
processes, biotechnical processes and socio-economic processes in the management of
renewable natural resources. It addresses the current issues in rural and forest areas, induced
by global changes that are affected together by the climate, the land use, the biodiversity and
the human activities. Finally, another purpose of this JMU is to develop ecological
engineering of rural areas so that they could ensure their sustainability and capacity for
providing the products and services that are expected by the company.

The organization of DYNAFOR is divided into three main areas:

• Area 1: ecosystem services in landscape,

• Area 2: data, space, geomatics and modelling,

• Area 3: biodiversity of rural forests and natural environments.

My work was mainly based on Area 2, with an objective to discriminate tree species from the
multi-spectral satellite image time series (SITS) collected in the time period of four
consecutive years (2011, 2012, 2013, 2014). In fact in this study the ability of mapping forest
species using a dense high resolution multispectral Formosat-2 image time-series was
explored. A couple of supervised classification methods were performed and compared in
order to find the most convenient method for tree species discrimination. Feature selection
algorithm was used to extract the most important features from SITS which represent the best
dates for the tree species discrimination. Finally, the thematic maps were produced over the
study area for each of the processing years. Thematic maps from different years were then
compared to find the most accurate classified species and to assess the robustness of the
classifications. This work was initiated by work [17]. It was assumed that phenological
variations increase the spectral separability of the deciduous tree species. However, several
parts from [17] needed to be improved. Thus, the main tasks of my work were to:

I. Apply smoothing filter to SITS in order to reconstruct pixels contaminated with
clouds and cloud shadows in the time series data. In the previous work [17], images
that were affected by clouds or cloud shadows were not used for SITS creation.
However, since the tree species discrimination was based on the assumption that
phenological variations increase the spectral separability of the deciduous tree species
it was very important to use all of the available images. Some of the images, affected
by bad weather conditions and thus not used in the previous work [17], were acquired
during key growing and senescing periods of the year, which may have limited
discrimination potential of the study [17]. Therefore, it was expected that adding these
images, after smoothing filter application, could significantly improve the
identification of the most informative dates for the image acquisition.

5

II. Perform three supervised classification methods on smoothed SITS created for four
years. Instead of using only NDVI indices as the spectral features, and in order to see
if it is possible to get a better solution, classification was performed on SITS created
from all of the spectral bands and from both NDVI indices and spectral bands
together.

III. Implement a new algorithm for feature selection, the Sequential Floating Forward

Selection (SFFS), in order to improve the standard feature selection algorithm which
was used in the study [17], the Sequential Forward Selection (SFS) algorithm.

IV. Produce thematic maps for each year and compare the results in order to draw

conclusions about the robustness of the applied classification methods and to find the
spatial distribution of the tree species, which were the most frequently assigned to the
same class for the consecutive years.

During the internship period, I had interactions with a Master student Marc Lang and a PhD
student Mailys Lopez, who worked in the same laboratory on the grassland classification
using the same SITS.

6

2 Theoretical background

This chapter presents a detailed description of the algorithms used for the purposes of this
work.

2.1 Background of smoothing filter

High reliability of the analysed image time series is required for all applications, i.e. the
image time series has to be closely related to the observed land surfaces [18]. However, this
is not often the case since optical image time series are usually affected by clouds and cloud
shadows which add noise to the recorded signal [19]. Therefore, the SITS needs to be
smoothed in order to fill data gaps which appeared due to this noise.

In this study, the smoothing of the image time series was performed by Whittaker smoother
algorithm [20]. This algorithm is chosen because, compared to other smoothing filters, e.g.
[21], it gives continuous control over the smoothness, adapts automatically to the boundaries,
deals well with missing values by introducing the vector containing 0 and 1 weights and
gives automatic choice for the smoothing parameter due to the fast cross-validation.

Basic Whittaker smoother algorithm, which assumes equally spaced data, is described in
Section 2.1.1. Section 2.1.2 describes how basic algorithm can be modified to be applicable
on unequally spaced data. The algorithm for selecting the optimal regularization parameter is
presented in Section 2.1.3.

2.1.1 Whittaker smoother for equally spaced data

The following notations are used in Section 2.1. Each recorded pixel time series is denoted as

N-dimensional vector NRz ∈ , where N is the number of the time samples:

















=

)(

)(1

Ntz

tz

Mz (2.1.1)

Suppose this pixel is contaminated with noise. We can represent each noisy pixel sample as

z(ti) = x(ti) + b(ti), where []Ni ,...,1∈ , x(ti) is a pixel sample we want to retrieve from the

noisy sample z(ti) and b is a white noise. Therefore our goal is to find the smooth pixel vector
x:

















=

)(

)(1

Ntx

tx

Mx (2.1.2)

7

The basic Whittaker smoother algorithm

To describe the basics of the Whittaker smoother we need to assume equally spaced data.

Whittaker smoother is based on penalized least squares method with basic principle that
smoothing of the noisy/incomplete time series is a compromise between 1) fidelity to the data
and 2) roughness of the reconstruction. Whittaker smoother finds the smooth series x that
minimizes a function combining these two conflicting goals.

The measure of the roughness Rd can be expressed as a squared sum of the differences i

d
x∆ ,

where i

d
x∆ represents a d order difference of xi:

 ∑
=

∆=
N

i

i

d

d xR
1

2)((2.1.3)

The 1st order difference is:

1−−=∆ iii xxx (2.1.4)

General expression for dth order difference is:

)(1

i

d

i

d
xx

−∆∆=∆ . (2.1.5)

For example the 2nd and 3rd order differences are:

 21211

2 2)()()(−−−−− +−=−−−=∆∆=∆ iiiiiiiii xxxxxxxxx (2.1.6)

32132121

23 33)2()2()(−−−−−−−− −+−=+−−+−=∆∆=∆ iiiiiiiiiiii xxxxxxxxxxxx (2.1.7)

Deviation of the smooth pixel x from the observed pixel z can be expressed as the sum of the
squared differences between observed samples zi and smooth samples xi:

 2

1

)(∑
=

−=
N

i

ii xzS (2.1.8)

The function which combines these two measures is:

 dRSQ λ++++==== (2.1.9)

Parameter λ in equation (2.1.9) is a smoothing parameter that has to be defined by the user.
With increasing parameter λ, influence of the roughness in x will be stronger and the
deviation of x from the observation z will also increase. Some examples showing this effect
are given in Appendix 4. The aim of the penalized least squares is to find series x that
minimizes the final function Q.

To simplify the equations, the function Q will be expressed using matrices and vectors as:

8

 xDDxxzxzxDxz d

T

d

TT

dQ λλ ++++−−−−−−−−====++++−−−−====)()(
22

 (2.1.10)

In equation (2.1.10) ∑=
i ia

22
a is a quadratic norm of any vector a and Dd is a matrix such

that xΔxD d

d ==== . E.g. for the first order difference and N=6, matrix 1D is a () NN ×−1 given

by:























−

−

−

−

−

=

110000

011000

001100

000110

000011

1D (2.1.11)

Finding partial derivatives of the final function Q and equating them to 0, we get the solution
for the pixel vector x:

zDDIx

xDDxz
x

1)(

02)(2

−−−−++++====

⇒⇒⇒⇒====++++−−−−−−−−====
∂∂∂∂

∂∂∂∂

d

T

d

d

T

d

Q

λ

λ
 (2.1.12)

In equation (2.1.12) I is NN × identity matrix.

Dealing with missing data

The previous algorithm for smoothing can be easily modified to smooth the observations with
missing values. In this case the vector of weights w is introduced of the length equal to the

length of z (in our case N). Vector w can take values iw =0 for missing data elements and

1=iw for non-missing data elements. With missing values in the data, deviation of the

smooth pixel x from the observed pixel z is changed to:

 ∑
=

−−=−=
N

i

T

iii xzwS
1

2)()()(xzWxz (2.1.13)

Where W is NN × matrix with vector w on its diagonal.

The measure of the roughness Rd is calculated in the same way as in equation (2.1.3).

The final function Q changes to:

 xDDxxzWxz d

T

d

TT
Q λ++++−−−−−−−−====)()((2.1.14)

9

In the same way as in equation (2.1.12) a solution for the smooth pixel x is calculated as:

WzDDWx

xDDxzW
x

1)(

02)(2

−+=

⇒=+−−=
∂

∂

d

T

d

d

T

d

Q

λ

λ
 (2.1.15)

2.1.2 Whittaker smoother for unequally spaced data

It is often necessary to adapt basic Whittaker smoother algorithm to the algorithm for
smoothing unequally spaced data since the period between two consecutive image
acquisitions is usually not constant.

Deviation of the smooth pixel from the observed pixel (S) is estimated as for the equally
spaced data with missing values (equation 2.1.13).

The measure of the roughness of x, Rd , is given as:

 2

1

))((∑
=

∆=
N

i

i

d

d txR = xDDxxD d

T

d

T

d ====
2

 (2.1.16)

The equation (2.1.16) looks the same as the equation (2.1.3) but for unequally spaced data the
difference will change and therefore the measure of the roughness will also change e.g. for
d=1, the difference and the measure of the roughness for unequally spaced data will be:

2

2 1

1
1

1

1)()()()(
)(∑∑∑∑

==== −−−−

−−−−

−−−−

−−−−









−−−−

−−−−
====⇒⇒⇒⇒

−−−−

−−−−
====

N

i ii

ii

ii

ii

i
tt

txtx
R

tt

txtx
tx∆ (2.1.17)

Thus, matrix D1 is given as:



























−

−

−

=



















−

−

−



























=

NNNN tt

tt

tt

tt

tt

tt

δδ

δδ

δδ

δδ

δδ

δδ

11
00

0
11

0

00
11

1100

0110

0011

11
00

0
11

0

00
11

33

22

33

22

1

L

MOOOM

L

L

L

MOOOM

L

L

L

MOOOM

L

L

D
 (2.1.18)

where 1−−= iii tttδ . Size of the matrix D1 is NN ×−)1(.

The second order difference is:

2

12)()(
)(

−

−

−

∆−∆
=∆

ii

ii
i

tt

txtx
tx (2.1.19)

Thus, the matrix D2 can be written as:

10

12

2112

44234342

33223232

2

))((

1

))((

1

))((

1
00

0
))((

1

))((

1

))((

1
0

00
))((

1

))((

1

))((

1

DΔD ====



























−−−−

−−−−

−−−−

====

−−−−−−−− NNNNNN tttttt

tttttt

tttttt

δδδδδδ

δδδδδδ

δδδδδδ

L

MOM

L

L

 (2.1.20)

where δ2ti = ti - ti-2 and Δ2 is:



























−−−−

−−−−

−−−−

====

NN tt

tt

tt

22

4242

3232

2

11
00

0
11

0

00
11

δδ

δδ

δδ

L

MOM

L

L

Δ
 (2.1.21)

And finally, a dth order difference is:

dii

i

d

i

d

i

d

tt

txtx
tx

−

−
−−

−

∆−∆
=∆

)()(
)(1

11

 (2.1.22)

To find matrix Dd the following recursion is used:

 1−−−−==== ddd DΔD (2.1.23)

with





















−−−−

−−−−

====
++++++++

NdNd

dddd

d

tt

tt

δδ

δδ

11
00

00
11

11

L

MOM

L

Δ
 (2.1.24)

where δdti = ti - ti-d .

Thus, the derivative matrix of order d is obtained using the recursive formula:

 121... DΔΔΔD −−−−==== ddd (2.1.25)

11

Replacing deviation of the smooth from the observed pixel and roughness in the function Q
and finding partial derivatives (see equation 2.1.12) a solution for the smooth pixel x is
obtained as:

 WzDDWx d
1)(−−−−++++====

T

dλ (2.1.26)

2.1.3 Choosing a value for smoothing parameter λ

Value for the smoothing parameter λ can be iteratively chosen until we obtain a visually
satisfactory result. However, more objective and automatic choice for λ can be made using
cross-validation [20].

The procedure is done by leaving out one of the non-missing elements of the pixel time series

zi for { }Ni ...,,1∈ , then applying Whittaker smoother to the remaining elements and

predicting the left out element. Cross-validation error is found by doing this procedure for all
non-missing elements of the pixel z. Regularization parameter is chosen so that prediction is
as good as possible, i.e. error of the prediction is minimum.

Ordinary Cross-Validation

The Ordinary Cross-Validation mean square error is defined as:

 ()∑
∑ =

−−=
N

i

i

i

ii

i

i

wtxtz
w

OCV
1

2))((
1

)(λ (2.1.27)

In equation (2.1.27), i

itx
−)(is the estimation of the value)(itz after removing the th

i element

of z.

For the chosen interval for λ, the Ordinary Cross-Validation Estimate of λ is:

)(minarg λλ
λ

OCV
R

OCV
+∈

= (2.1.28)

Using the equation (2.1.26) and introducing the hat matrix H follows:

Hzx

WDDWH

====

⇒⇒⇒⇒++++==== −−−−1)(d

T

dλ
 (2.1.29)

Each of the elements of the vector x is calculated as:

12

 { }N1,...,ifor ,)()(
1

∈=∑
=

N

j

jiji tzhtx (2.1.30)

After removing the th
i element of the vector z, estimation i

itx
−)(is:

ii

iiiii

i

i

iiiiii

i

ii

i

iiij

N

j

N

ij
j

ijjij

i

ii

i

i

j

j

N

j

jij

i

i

h

tzhtx
tx

txhtzhtxtx

txhtzhtzhtxtx

ijiftx

ijiftz
txwheretxhtx

−−−−

−−−−
====

⇒⇒⇒⇒−−−−====−−−−

⇒⇒⇒⇒−−−−−−−−====−−−−

⇒⇒⇒⇒




====

≠≠≠≠
========

−−−−

−−−−−−−−

−−−−

====
≠≠≠≠
====

−−−−

−−−−
====

−−−−

∑∑∑∑ ∑∑∑∑

∑∑∑∑

1

)()(
)(

)()()()(

)()()()()(

,)(

,)(
)()()(

1 1

1

 (2.1.31)

Replacing i

itx
−)(in equation (2.1.27), OCV of the parameter λ is:

 ∑
∑ =










−

−
=

N

i

i

ii

ii

i

i

w
h

txtz

w
OCV

1

2

1

)()(1
)(λ (2.1.32)

Generalized Cross-Validation

To compute Generalized Cross-Validation error, iih is replaced by the mean of the diagonal

elements of the matrix H:

 [] []
2

1

2

2
1

2

)(
1

)()(
1

)(
1

)()(
1

)(

















−

−

=

















−

−

=

∑

∑

∑

∑

∑

∑
==

i

i

N

i

iii

i

i

i

i

N

i

iii

i

i

w

Htrace

wtxtz

w

HItrace
w

wtxtz

w
GCV λ

 (2.1.33)

As for Ordinary Cross-Validation, for chosen interval of the parameter λ, the Generalized
Cross-Validation Estimate of λ is selected as:

)(minarg λλ
λ

GCV
R

GCV
+∈

= (2.1.34)

13

2.2 Background of feature selection

Image classification is used for producing the thematic maps which provide an informative
description of the study area, i.e. the thematic maps show spatial distribution of the tree
species inside area of interest. Furthermore, classification was used in this project for
selecting the best features, which in this case represent the most useful images to discriminate
tree species and better define the image acquisition plan.

In this study, discrimination of the tree species from the multi-temporal images was
performed with three supervised learning methods: Support Vector Machines (SVM) [22,
Chapter 12], Random Forest (RF) [22, Chapter 15] and Gaussian Mixture Model (GMM)
classifier. Nonlinear Parsimonious Feature Selection (NPFS) package was used to learn
GMM model. NPFS was presented in [23] and represents feature selection algorithm which is
used in this study for indentifying the most important dates for discriminating the tree
species.

The basics of the NPFS algorithm are described in Section 2.2.1. Section 2.2.2 presents the
Sequential Floating Forward Selection (SFFS) algorithm as the replacement for the standard
feature selection algorithm in the NPFS.

2.2.1 Non Linear Parsimonious Feature Selection (NPFS)

Nonlinear Parsimonious Feature Selection (NPFS), compiles a pool of selected features by
iteratively selecting a spectral feature from the original set of features. This pool is used to
learn a Gaussian Mixture Model (GMM). Successive features will be selected according to
their classification rate, until the stopping criterion is reached. The estimation of the
classification rate is done using k-fold Cross-Validation (k-CV).

Fast GMM parameterization when k-CV is computed is crucial for the efficient
implementation of the NPFS. From the following, it is possible to quickly perform k-CV and
forward selection by using parameter update rules and the marginalization properties of the
Gaussian distribution.

Gaussian Mixture Model

Let (((()))){{{{ }}}}n

iii yS
1

,
====

==== x be a set of training pixels, where xi is a D-dimensional pixel vector,
D

i R∈∈∈∈x and { }Cyi ,...,1∈ its class. C is the number of classes, n is the number of training

pixels and nc is the number of training pixels belonging to the class c.

A Gaussian mixture model is a probabilistic model, which assumes that each pixel vector is
generated from a mixture of a finite number of the Gaussian distributions as:

 ∑
=

=
C

c

c cpp
1

)/()(xx π (2.2.1)

14

In equation (2.2.1) cπ is a prior probability for each class (10 ≤≤ cπ and 1
1

=∑
=

C

c

cπ) and

p(x/c) is a prior class conditional probability function for pixel vector x given as a D-
dimensional Gaussian distribution:

 







−−−−−−−−−−−−==== ∑∑∑∑

−−−−1

2/12/
)()(

2

1
exp

)2(

1
)/(

c c

T

c

c

D
cp μxμx

Σ
x

π
 (2.2.2)

where μc is the mean vector of the class c and, Σc and cΣ are the covariance matrix of the

class c and its determinant.

According to Bayes rule, the posterior probability of the class c when given the pixel vector x
is:

)(

)/(
)/(

x
x

x
p

cp
cp cπ

= (2.2.3)

Using the maximum a posteriori rule, pixel vector is classified to the class c if

[]Cjjpcp ,...1),/()/(∈∀≥ xx .

Since in equation (2.2.3) p(x) is a constant which does not affect the final result, the
maximum a posteriori rule is given by:

 Assign x to class c if)/(maxarg
,...,1

jpc j
Cj

xπ
=

= (2.2.4)

After replacing the eq. (2.2.2) in eq. (2.2.4) and by taking the log of eq. (2.2.4) the final
decision rule is given as:

)ln(2)ln()()()(
1

cc cc

T

ccQ π++++−−−−−−−−−−−−−−−−==== ∑∑∑∑
−−−−

Σμxμxx (2.2.5)

The estimators of the model parameters are obtained using standard maximization of the log-
likelihood as:

T

cici

n

ic

c

n

i

i

c

c

c

c

c

c

n

n

n

n

))((
1

,
1

,

1

1

∧∧∧∧∧∧∧∧

====

∧∧∧∧

====

∧∧∧∧

∧∧∧∧

−−−−−−−−====

====

====

∑∑∑∑

∑∑∑∑

μxμxΣ

xμ

π

 (2.2.6)

15

The Sequential Forward Feature Selection (SFS)

The main goal of feature selection is to select a subset of k features from the given set of D
measurements, k<D, without significantly degrading the performance of the recognition
system [24]. Feature selection techniques usually need a criterion for evaluating a
performance of the model and an optimization procedure for finding the subset of features
that maximizes/minimizes the criterion [25].

Let { }YxkixX iik ∈≤≤= ,1: be the set of k features selected from the complete set of

measurements {{{{ }}}}DiyY i ≤≤≤≤≤≤≤≤==== 1: , where D is the number of available features.

The basic Sequential Forward Selection (SFS) method can be split in several steps [22,
Chapter 3] [26]:

• Start with an empty set of selected features, Xk = Ø

• Iteratively add the most significant feature with respect to Xk from the set of available
features Y- Xk

• Stop if the increase of the estimated classification rate is too low or if the maximum
number of the features is reached

Classification rate was estimated with stratified k-fold cross-validation. The set of training
pixels S was divided into k subsets of equal size. Each subset contains approximately the
same percentage of the pixels which belong to the same class as the initial set S. One of the k-
subsets was used for model testing, while remaining subsets were used as a training data.
Since each of the k subsets needs to be used exactly once for validation, this procedure was
repeated exactly k times. The k test errors were computed and then averaged to compute the
mean test error.

Fast estimation of the GMM sub-models parameters during the Cross-validation
process

Suppose the number of the pixels used for validation during the Cross Validation procedure is
v. Parameters of the model Sn-v can be estimated from the full learned GMM model using
update rules. Classification rate can be estimated with subset of features using
marginalization properties of the Gaussian distribution parameters. Therefore, GMM model
needs to be learned only once during the entire training step.

The update rules after removing v samples for validation:

Rule 1 (Class proportion):

vn

vn c

n

cvn
c

−

−
=

∧

−
∧ π
π (2.2.7)

In equation (2.2.7)
n

c

∧

π and
vn

c
−

∧

π are the proportions of the class c computed over n and (n-
v) samples, respectively and vc is the number of the removed pixels which belong to the class

c. Note that ∑
=

=
C

c

c vv
1

.

16

Rule 2 (Mean vector):

cc

v

cc

n

cc

vn

c
vn

vn
cc

cc

−−−−

−−−−
====

∧∧∧∧∧∧∧∧
−−−−∧∧∧∧ μμ

μ (2.2.8)

In equation (2.2.8)
cn

c

∧∧∧∧

μ and
cc vn

c

−−−−∧∧∧∧

μ are the mean vectors of the class c computed over nc and nc -

vc training samples and
cv

c

∧∧∧∧

μ is the mean vector of the class c computed over vc removed

samples.

Rule 3 (Covariance matrix):

T

v

c

n

c

v

c

n

c

cc

ccv

c

cc

cn

c

cc

cvn

c

cccc

cccc

vn

vn

vn

v

vn

n
))((

)()()(2

∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧
−−−− −−−−−−−−

−−−−
−−−−

−−−−
−−−−

−−−−
==== μμμμΣΣΣ (2.2.9)

In equation (2.2.9), cn

cΣ and cc vn

c

−−−−Σ are the covariance matrices of the class c computed over

nc and nc - vc training samples, respectively.

Marginalization of Gaussian distribution

To get the GMM model over a subset of the original feature set, it is only necessary to
exclude non-selected features from the mean vector and the covariance matrix [27].

If initial set of features is represented as: []nss xxx ,= , where xs and xns are selected and non-

selected feature sets, respectively, then mean vector and covariance matrix computed over the
full model can be written as:

],[nss μμμ ====
∧∧∧∧

 (2.2.10)

 







====

nsnssns

nssss

,,

,,

ΣΣ

ΣΣ
Σ (2.2.11)

From the marginalization of Gaussian distribution follows that xs is also a Gaussian
distribution with mean vector μs and covariance matrix Σs,s. Therefore, when full model is
learned, all of the sub-models built with a subset of the original variables will be available at
no additional computational cost.

17

2.2.2 The Sequential Forward Floating Selection algorithm (SFFS)

Sequential forward selection algorithm (SFS), described in Section 2.2.1, suffers from the so-
called "nesting effect", which means that features once selected can not be excluded later
from the pool of the selected features. This can lead to the sub-optimal subset of the chosen
features. Since there is rather widely accepted belief [24, 29, 30, 31] that floating search
methods (Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating
Selection (SBFS)) [24] are superior to the simple sequential ones, SFS and SBF [28], SFFS
algorithm [24][32, Chapter 9] is implemented in this study as a modification of the original
SFS algorithm in order to avoid its “nesting effect”.

If the k features have already been selected and form the subset Xk with its criterion function
J(Xk), the values of the criterion function J(Xi) have to be stored for all the previously subsets
of size i =1,2,...(k-1). As in the SFS algorithm, in this project, J represents the estimated
classification rate.

The SFFS algorithm also starts from the empty set of features (k=0 and X0=Ø). For the
selection of the first two features original SFS method is applied. Then the algorithm
continues with the step 1.

• Step 1: Inclusion. Using the basic SFS method, select the most significant feature
xk+1 with respect to Xk from the set of available measurements, Y- Xk, and add it to
the subset Xk. The most significant feature is obtained as:

 [])((maxarg
)(

1 xXJx k
XYx

k

k

+=
−∈

+ (2.2.12)

 Thus the new formed feature set is Xk+1 = Xk+ xk+1.

• Step 2: Conditional exclusion.
 Find the least significant feature in the set Xk+1 as:

 [])((maxarg 1

1

xXJx k
Xx

r

k

−= +
∈ +

 (2.2.13)

1. If the least significant feature is the one just added in the first step, xr = xk+1,

keep it, set the number of selected features to k=k+1 and return to step 1.

2. If xr is the least significant feature and kr ≤≤1 , exclude it from the set Xk+1 to
form the new subset X'k = Xk+1 - xr. Note that now J(X'k) > J(Xk). If k=2 set
Xk= X'k, J(Xk) = J(X'k) and return to step 1, otherwise continue with the step
3.

• Step 3: Continuation of conditional exclusion.
 In the same way as in the Step 2, find the least significant feature xs in the set X'k .

1. If J(X'k - xs) ≤ J(Xk-1) set Xk= X'k, J(Xk)=J(X'k) and return to Step 1.

2. If J(X'k - xs) > J(Xk-1) then exclude xs
 from X'k to form new set X'k-1 = X'k - xs.

Set k=k-1. If k=2 set Xk= X'k , J(Xk)=J(X'k) and return to step 1, otherwise
repeat Step 3.

18

• The algorithm stops when the maximum number of features is selected.

19

3 Study area and data collection

3.1 Study area

The study area is located in southwest of France, in Midi-Pyrénées region, about 30 km west
of Toulouse (Figure 3.1). Climate of the area is characterized by mild and rainy winters and
dry and hot summers, i.e. Cfb climate type as classified by Köppen-Geiger climate
classification system [33]. Annual mean air temperature is higher than 13°C while mean
annual precipitation is 656 mm. Forests are found on 10 % of the area, while the most
prevalent tree species is Oak (Quercus spp.). Non-forest part of the area consists of
grasslands and crops (combination of wheat, sunflower and maize).

Figure 3.1 Map of France with highlighted study area and typical landscape for study area

3.2 Field data collection

Since supervised classification methods were used for tree species discrimination, it was
necessary to use ground truth data, which was collected by the DYNAFOR lab. during three
surveys in November 2013, January 2014 and May 2014. In total, 1038 sample points of the
dominant broadleaf and conifer tree species were collected from the study area. Two
observers were used to record each plot covering approximately an area of 576 m2, which is
equivalent to nine contiguous FORMOSAT-2 pixels of 8m x 8m. Each plot was
homogeneous in terms of tree species. GPS coordinates of plots were estimated with Garmin
GPSMap 62st receiver and all the plots were distributed over the whole study area. Plots were
later converted to polygons of one pixel size to use them in the classification (Figure 3.2).

20

Three thematic levels based on the Forest National Inventory [34] were defined from the
collected ground truth data (Table 3.1). The first one classifies the forest into broadleaf and
coniferous species (level 1). The second level splits level 1 forest groups into two sub-
categories. Broadleaf forests are for the most part deciduous, except for the evergreen
Eucalyptus, while conifer forests can be pine forest or other. Finally, third level includes all
the fourteen tree species. Sample size per species varied from 35 pixels for Black locust and
Douglas fir to 209 pixels for Aspen.

Level 1 Level 2 Level 3 Sample size

Broadleaf
Broadleaf
Broadleaf
Broadleaf
Broadleaf
Broadleaf
Broadleaf
Broadleaf

Deciduous
Deciduous
Deciduous
Deciduous
Deciduous
Deciduous
Deciduous
Evergreen

Silver birch (Betula pendula)
Pedunculate/Pubescent/Sessile oak (Quercus robur/pubescens/petraea)
Red oak (Quercus rubra)
European ash (Fraxinus excelsior)
Aspen (Populus tremula)
Black locust (Robinia pseudoacacia)
Willow (Salix)
Eucalyptus (Eucalyptus)

75
125
100
40

209
35
39

100

Conifer
Conifer
Conifer
Conifer
Conifer
Conifer

Pine
Pine
Pine
Pine
Other conifer
Other conifer

Corsican pine (Pinus nigra subsp. laricio)
Maritime pine (Pinus pinaster)
Black pine (Pinus nigra subsp. salzmannii)
Austrian black pine (Pinus nigra var. austriaca)
Douglas fir (Pseudotsuga menziesii)
Silver fir (Abies alba)

40
40
40
85
35
75

Table 3.1. The number of the reference pixels for 14 tree species analyzed in the study

Figure 3.2. Reference pixels distributed over the study area. Aerial photograph (left) and zoomed part of
the reference pixels (right).

21

3.3 Remote sensing data

This study uses images acquired by FORMOSAT-2, Taiwanese high resolution satellite, as a
source of the remote sensing data. The Remote Sensing Instrument (RSI) onboard
FORMOSAT-2 has multispectral sensors (sensitive to blue, green, red and near-infrared
wavelengths) and a panchromatic sensor which is sensitive to all wavelengths from visible to
near-infrared, processed as a gray-level image. Image spatial resolution is 2 m for
panchromatic FORMOSAT images and 8 m for multispectral images. Scene coverage is
24x24 km. Table 3.2 lists spectral bands and wavelengths for each spectral band.

Band Colour Wavelength (µm) Resolution
Band 1 Blue 0.45-0.52 8x8m
Band 2 Green 0.52-0.60 8x8m
Band 3 Red 0.63-0.69 8x8m
Band 4 Near-infrared 0.76-0.90 8x8m
Band 5 Panchromatic 0.45-0.90 2x2m

Table 3.2. Characteristics of the Formosat-2 satellite sensor (Site Airbus Defence and Space)

Due to their technical limitations, optical sensors do not capture the signals from objects
located under clouds and cloud shadows. Thus, it was necessary to use masks to exclude
samples which belong to the cloudy area (the corresponding values in the masks are higher
than zero) (Figure 3.3).

The mask is defined by the numbers in bits where each bit is specified in the following way:

Bit 0 (1) All clouds (except thin ones) or shadows

Bit 1 (2) All clouds (except thin ones)

Bit 2 (4) Cloud detected through absolute threshold

Bit 3 (8) Cloud detected through multi-t threshold

Bit 4 (16) Very thin clouds

Bit 5 (32) High clouds detected with 1.38 µm band (LANDSAT 8 only)

Bit 6 (64) Cloud shadows matched with a cloud

Bit 7 (128) Cloud shadows in the zone where clouds could be outside the image

Table 3.3. Meaning of the bits in the mask of clouds and cloud shadows

All the multi-spectral images used in the study, together with cloud masks for each date, were
provided by CESBIO (Centres d'Etudes Spatiales de la Biosphère). Table 3.4 shows the
number and dates of the available images and masks for each year processed in the project.
All the images were acquired with a constant viewing angle to reduce the within-species
spectral variation. Operational pre-processing chain was used for orthorectification,
atmospheric correction and cloud detection including cloud shadows and to obtain surface
reflectance time-series data [35].

22

Figure 3.3. Multispectral image and cloud mask acquired on 12/01/2012

Year 2011
(12 images)

Year 2012
(13 images)

Year 2013
(17 images)

Year 2014
(15 images)

January 25

April 15

May 09

May 20

May 24

Jun 21

July 08

September 06

September 27

October 06

October 22

December 10

January 12

February 18

March 07

March 27

May 03

Jun 20

July 07

July 17

August 10

August 22

November 01

December 15

December 31

February 16

March 03

May 06

May 26

Jun 06

Jun 26

July 06

July 20

July 30

August 11

August 22

September 01

September 21

October 12

October 27

November 28

December 20

March 02

March 28

April 23

May 05

May 16

Jun 05

July 16

August 10

August 24

September 07

September 17

September 27

October 23

November 02

November 19

Table 3.4. Formosat-2 imagery, available dates and number of acquired images for each year

23

3.4 Ancillary data

Ancillary map was used to mask non-forest areas of the images (Figure 3.4). This mask
provides information about forest/non-forest areas within Haute-Garonne department with a
minimum forest area size of 2.25 hectares. It was obtained from the French National Forest
Inventory database (IGN BD Foret®, v.1) produced in 1996.

Figure 3.4. Forest/non-forest map for the Haute-Garonne department and for the study area (zoomed
part). Area covered by forest is presented in green colour.

24

4 Methodology

4.1 General procedure

Simplified method used in this study consists of two main parts: pre-processing and
classification with accuracy assessment (Figure 4.1). Pre-processing part uses as inputs
multi-spectral images from one year together with cloud masks for each image. Output of the
pre-processing is Satellite Image Time Series, which is used together with the map containing
reference pixels as an input to the second part of the project. The final result of the project
consists of the classification accuracies and the thematic maps across the study area.

Figure 4.1 Simplified flow-chart of the project

4.2 Pre-processing

This part of the project had the aim to obtain Satellite Image Time Series (SITS) from the
available images and prepare it for classification (Figure 4.2).

25

Figure 4.2. Simplified flow-chart of the pre-processing part of the project

Pre-processing part of the project was divided into two steps:

Step 1. The Satellite Image Time Series creation

The SITS were created from the available multi-spectral images using OTB (Orfeo Toolbox)
applications package and Shell Programming. Two steps were necessary for the SITS
creation: the creation of the spectral features and concatenation. Spectral features were
generated firstly from the NDVI indices, then from spectral bands and finally from both the
NDVI indices and the spectral bands. Once the spectral features were generated for each
multi-spectral image, all the spectral features were concatenated into one multi-temporal
image, referred to as SITS. SITS were created for each of the four years separately, as well as
for each of the four years from NDVI indices, from spectral bands and from spectral bands
and NDVI indices together.

In this part of the project, masks containing clouds and cloud shadows were also
concatenated into one multi-temporal mask, Mask Time Series. Same as the SITS, Mask
Time Series were created for each of the four years.

An example of the shell scripts that were made for the purposes of this part of the project is
given in Appendix 2 (script_sits.sh).

Step 2. Smoothing

Smoothing function applies Whittaker smoother for unequally spaced data on each pixel in
the SITS along temporal axis. Before executing smoothing function, it was necessary to build
temporal axis which consisted of the days of the year for each acquisition (e.g. image
acquired on 18/02/2012, corresponds to the 49th day of the year).

26

At the beginning of the smoothing function each pixel time sample from the SITS under
clouds or cloud shadows was marked as the missing value. This was done by setting the

values of the vector w to iw = 0 if the corresponding pixel time sample in the Mask Time

Series is higher than zero and 1=iw if it is equal to zero. The size of the vector w was

different for each year and equal to the number of multi-spectral images (time acquisitions)
for that year.

Order of the Whittaker smoother d was set to two, since this value showed to be a good
balance between satisfactory smoothing results and computational complexity.
Regularization parameter λ varied across the years. To find the optimal λ for each SITS pixel,
belonging to the forest area, Generalized and Ordinary Cross-Validations were computed for

{{{{ }}}}150 10,...,10====λ . Then, for each of these pixels, the optimal λ was chosen so that ordinary

and generalized cross-validations had minimum values. Optimal λ for smoothing the whole
SITS of one year was set to the value which appeared most frequently.

At the end of the pre-processing part of the project, the output image contains the filtered data
where each pixel has the same number of samples.

Functions for generating the temporal axis (create_TimeStamp.py), smoothing function
(smooth_image.py) and the program which finds the optimal regularization parameter
(find_optimal_lamda.py), were implemented in Python and these codes are reported in
Appendix 2.

4.3 Classification and accuracy assessment.

This part of the general procedure was based on three steps:

Step 1. Extracting the training/validation samples from the SITS generated in the pre-
processing part of the project

Reference Map was used in order to get reference pixels, one part of which was used for
training the model and the rest for the model evaluation. Training samples were provided in
vector format (.shp). In order to use it, the vector data had to be converted to raster data. After
rasterization, raster image has the same dimension and size for the pixels as the images in
SITS. In this image, each pixel which has non-zero value is a reference pixel, and its value
corresponds to its class.

The OTB function was used for converting a vector data to a raster image. OTB function,
alongside the function for extracting training/validation samples which was implemented in
Python (get_samples_from_roi.py), is presented in Appendix 2.

Step 2. Learning the classifier and computing its performance (classification accuracy)

In order to learn GMM classifier with NPFS algorithm, both the SFS and SFFS algorithms
were used for feature selection. Stratified 5-fold CV was used to estimate the classification
accuracy. Maximum number of features for SFFS algorithm was set to 15. The SFS algorithm
stops either if the increase in classification accuracy is lower than 0.01% or the maximum
number of 15 features is reached.

David Sheeren
Texte surligné

27

SVM and RF classifiers were learned and predicted using the scikit-learn Python library [36].
SVM was used with a Gaussian Radial Basis Function (RBF) kernel due to its good
performance in comparison with other kernel functions [37] and low number of hyper-
parameters that should be fitted: the regularization parameter C and the width of the RBF
kernel function γ. They were fitted using grid search for the range of the regularization

parameter { }510,...,10,1=C and { }55 2,...,2−=γ . Optimal number of the classification trees in

RF algorithm was found using the range from 10 to 500 trees with the step of 50 trees. In
both cases, 5-fold CV was used to estimate the classification accuracy and fitted values were
chosen to produce the best cross-validated classification accuracy.

Classification was based on three different levels. On the first level we tried to discriminate
between Broadleaf and Conifer species. On the second level discrimination was based on 4
classes (deciduous broadleaves, evergreen broadleaves, pines or other conifers). On the third
level of classification discrimination was based on thirteen possible tree species (Table 3.1).

All of the classifiers were trained with 2/3 randomly selected reference pixels per class, and
the remaining pixels were used for the validation of the classifiers. To assess the
classification accuracy, the confusion matrix, kappa statistics and overall accuracy were
computed for 50 iterations and then averaged.

The number of the spectral features was different depending on the creation of SITS and
depending on the year. If SITS were generated from the NDVI indices the number of the
spectral features was equal to the number of acquisitions in the processing year (Table 3.4). If
SITS were generated from the spectral bands the number of the spectral features was equal to
the number of acquisitions multiplied by four (the number of spectral bands for each multi-
spectral image).

The main program which applies all of the classifiers to SITS (script_classif_formosat.py) is
presented in Appendix 2. This program implements RF and SVM classifiers using the scikit-

learn Python library. The implementation of SFFS algorithm is also presented in Appendix 2
(forward_selection_sffs.py).

Step 3. Prediction on all the pixels of the SITS to produce thematic maps

The last part of the project was to create thematic maps across the study area using three
classifiers described before. In order to learn the classifiers for this case, the entire set of the
available reference pixels was used. Prediction was done for each pixel from SITS which
corresponds to the forest-part of the study area, which was presented in Section 3.4. The main
function which was implemented for this part of the project is presented in Appendix 2
(predict_image.py).

After thematic maps were produced for each year and for each of the classifiers, the most
frequently discriminated species for each pixel was found, as well as the frequency of
classifying the same pixel to the same class. This function is also presented in Appendix 2
(thematic_map_consecutive_years.py).

28

4.4 Used software and implementation

OTB (Orfeo Toolbox) applications and Shell Programming were used to create SITS.
Smoothing function and all the classification methods were performed in Python with its
GDAL library (Geospatial Data Abstraction Library). Moreover, QGIS software was used
for the visualization of the images and rasterization of vector data.

29

5 Results and discussion

5.1 Pre-processing

Choosing optimal λ

The optimal value for regularization parameter for year 2013, for the vast number of pixels
obtained using Generalized Cross Validation was λ=10

0
. However, this value is very low and

using it would make smoothing insensible. To remove the noise from SITS, only the values
of λ that are higher than 1 were considered. Thus, the most frequent value for regularization
parameter λ was 105 obtained from both Generalized and Ordinary Cross-Validation (Figure
5.1).

Figure 5.1. Generalized and Ordinary Cross-Validation errors for different values of λ for year 2013

The same regularization parameter value λ=10

5 was obtained for year 2012. For year 2011
the optimal value obtained with Generalized Cross Validation was λ=10

5 and with Ordinary
Cross Validation was λ=10

6. However, the optimal value for that year was set to λ=10
5 , since

it was visually noticed that the final results were better than the results obtained with the
second value. The optimal value for year 2014 was selected in the same way as for year 2011.
The figures for years 2011, 2012 and 2014 are given in Appendix 3 (Figures A3.1, A3.2 and
A3.3).

Temporal profiles before and after smoothing

Clouds and cloud shadows have a significant impact on the image time series. When present,
white clouds will add positive noise to the values in blue, green, red and infrared bands,
whilst cloud shadows will add negative noise to the same bands. Clouds and cloud shadows
have opposite effect on NDVI, i.e. there are sudden drops of NDVI values when the clouds
are present and increase of NDVI values in the presence of cloud shadows. To illustrate how
smoothing struggles due to these effects, several pixels were chosen and their temporal
profiles before and after smoothing are presented together with the corresponding temporal
profiles of the pixels from the mask containing the information about the cloud and cloud
shadow presence (Figures 5.2, 5.3, 5.4 and 5.5).

30

Figure 5.2. Temporal profiles of the pixel in blue band before and after smoothing in case without clouds

or cloud shadows detected. The temporal profiles are superimposed.

Figure 5.2 shows the situation when there were no clouds or cloud shadows detected (values
of the mask were equal to 0 for all dates). In this case, values before and after smoothing are
almost the same. Figure 5.3 (left), shows an example with white cloud which added noise to
the value in the blue band. Figure 5.3 (right), illustrates an example when there was cloud
shadow which caused sudden drop of the value in infrared band before smoothing was
applied. In both examples it can be seen that smoothing algorithm managed to fill in the
missing values. Figure 5.4 shows that NDVI reacts differently on white clouds and that
smoothing managed to correct this value. And finally Figure 5.5 shows the result of
smoothing of the pixel time series in the red band affected by clouds presented on two dates.

Figure 5.3. Temporal profiles of the pixel in blue band affected by cloud before and after smoothing (left)
and temporal profiles of the pixel in infra-red band affected by cloud shadow before and after smoothing

(right)

31

 Figure 5.4. Temporal profiles of the pixel containing NDVI values before and after
smoothing affected by clouds

Figure 5.5. Temporal profiles of the pixel in red band before and after smoothing affected by clouds

present on two dates

Whittaker smoother showed high potential to eliminate the negative effects of clouds and
cloud shadows from SITS (Figures 5.2, 5.3, 5.4 and 5.5). Moreover, Whittaker smoother
removed some of the noise not caused by the presence of the clouds or cloud shadows, which
could have appeared due to the aerosols in the atmosphere (Figures 5.3 - right, 5.4 and 5.5).

32

Results of smoothing from the viewpoint of the images in the SITS

When comparing images with present cloud cover before and after smoothing (Figure 5.6),
the image obtained after smoothing reveals high ability of Whittaker smoother to eliminate
the cloud cover effects. However, applied smoothing technique is not perfect since the area
under clouds remained somewhat darker than the area which was not under cloud cover.

Figure 5.6. The grey-scale images with the clouds present in top-right corner before (left) and after (right)
smoothing

5.2 Classification

Unexpectedly, SFFS algorithm did not perform any better than SFS algorithm (Table 5.1).
The results obtained with SFFS algorithm were sometimes even worse than the results
obtained with SFS algorithm. The test classification accuracies indicate that the original
SFFS algorithm has a minor drawback. During backtracking after the number of variables
was excluded, it may happen that including new variables could make the algorithm end up
with the variable subset that is worse than a subset of the same size, which was found before
backtracking. The problem is that the SFFS algorithm continues to follow this worse feature
subset, although a better one has already been found (Figure 5.7). This drawback can be
corrected by storing previous feature subsets and checking whether the SFFS algorithm
follows wrong feature subset at each step. If SFFS algorithm follows wrong feature subsets
than algorithm needs to change the current variable subset to the best one of the same size
found earlier. This leads to the rather heavily increase of computational complexity both in
terms of memory and time. Somol et al. [38] have observed this drawback of the original
SFFS algorithm and proposed an updated version of the SFFS algorithm. Nevertheless,
several experiments were performed where the original SFFS algorithm was applied on the
hyper-spectral data sets with more reference samples and the results and discussion about
these experiments are reported in Appendix 1. But for now the conclusion is that the original
SFFS algorithm is not a good solution for a feature selection of Formost-2 image time series,
because even when it gives better results than the SFS algorithm, these results are not
significantly better when we take into considerations that slightly better results were achieved
through the cost of significant increase in time complexity.

33

Level 1 (classification based on 2 classes)
 NDVI (17 features) SB (68 features) SB+NDVI (85 features)

 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

NPFS_sfs

NPFS_sffs

RF

SVM

86.8 ± 0.03

87.2 ± 0.04

96.5 ± 0.01

97.0 ± 0.01

70.0 ± 0.10

68.8 ± 0.35

91.8 ± 0.04

92.8 ± 0.06

97.1 ± 0.01

97.5 ± 0.01

98.2 ± 0.00

99.6 ± 0.00

93.0 ± 0.06

94.1 ± 0.06

95.7 ± 0.02

99.2 ± 0.01

97.2 ± 0.01

98.0 ± 0.00

98.4 ± 0.00

99.5 ± 0.00

93.3 ± 0.08

95.1 ± 0.03

96.2 ± 0.02

98.9 ± 0.01

Level 2 (classification based on 4 classes)

 NDVI (17 features) SB (68 features) SB+NDVI (85 features)
 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

91.6 ± 0.02

89.2 ± 0.08

95.5 ± 0.01

95.7 ± 0.01

85.5 ± 0.05

81.4 ± 0.24

92.3 ± 0.04

92.6 ± 0.03

96.2 ± 0.02

96.6 ± 0.01

96.9 ± 0.01

99.0 ± 0.00

93.4 ± 0.05

94.1 ± 0.04

94.6 ± 0.03

98.2 ± 0.01

96.1 ± 0.01

96.6 ± 0.01

98.0 ± 0.01

98.9 ± 0.00

93.3 ± 0.05

94.0 ± 0.03

96.6 ± 0.03

98.0 ± 0.01

Level 3 (classification based on 14 classes)

 NDVI (17 features) SB (68 features) SB+NDVI (85 features)
 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

88.3 ± 0.03

87.9 ± 0.09

89.4 ± 0.02

91.8 ± 0.02

87.0 ± 0.03

86.5 ± 0.12

88.2 ± 0.03

90.9 ± 0.02

89.7 ± 0.14

88.8 ± 0.64

94.4 ± 0.01

98.2 ± 0.00

88.5 ± 0.17

87.6 ± 0.77

93.8 ± 0.01

98.0 ± 0.00

92.4 ± 0.08

91.9 ± 0.10

95.2 ± 0.01

98.1 ± 0.00

91.6 ± 0.1

91.0 ± 0.13

94.7 ± 0.02

97.8 ± 0.01

Table 5.1 Overall accuracy and Kappa statistics for three defined levels of classification using NDVI
indices, spectral bands (SB) and NDVI indices and spectral bands together for year 2013. NPFS_sfs
denotes NPFS GMM based classifier computed with a set of features that was chosen using standard
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over
50 repetitions in percentages. The best results for each level are reported in bold face.

34

Figure 5.7. Test classification accuracy for the different size of feature subsets selected using SFS or SFFS
algorithms. Classification was based on the spectral bands together with the NDVI indices for level 2 of

classification

The results given in the Table 5.1 revealed a high ability of the classifiers to discriminate tree
species using Formost-2 image time series. For the classification level 1 (discrimination
between broadleaf and coniferous tree classes) the lowest overall accuracy was obtained for
NPFS_sfs GMM based classifier when using only NDVI indices as the spectral features. The
highest overall accuracy was obtained for SVM classifier using both NDVI indices and
spectral bands together as the spectral features. Similar results have been obtained for the
classification levels 2 and 3. In general, using only the NDVI indices as spectral features
produced the lowest overall accuracy. Classifications based on spectral bands gave notably
better results. Adding NDVI to spectral bands produced only slight improvements in
classification accuracy, when compared to classifications based on spectral bands only. When
compared to other classifiers, SVM classifier performed the best in terms of classification
accuracy, while the NPFS_sfs GMM based algorithm is more than two times faster than
SVM algorithm (The mean processing time for NPFS_sfs was 11 s while the mean
processing time for SVM was 27 s). RF classifier performed the worst in terms of
computational time with mean processing time of 59 s.

The classification results for other years and each of the created SITS are given in Appendix 3
(Tables A3.1, A3.2 and A3.3). For all of the years the results were consistent with the
previously explained results obtained for year 2013. Table 5.2 reports the results in terms of
overall accuracy and Kappa statistics for each of the four years based on only spectral bands,
since for each of the years the spectral bands showed to be a satisfactory solution for the
SITS creation. The classification accuracy for one year and for the same classifier decreases
with increasing the number of classes that need to be discriminated i.e. going down from
level 1 to level 3. For classification levels 1 and 2 the highest accuracy was obtained for year
2012, while for level 3 the highest accuracy was obtained for year 2014. This is probably due
to the variation of the image acquisition dates available for the SITS creation (Table 3.4). For
year 2012 a lot of images were acquired during winter, spring and autumn, allowing the
relatively easy discrimination between coniferous and broadleaf classes. For year 2014 there
was a lot of images acquired during key phenological periods (March, April, September,

35

October, November), which might have helped discriminating between the species at level 3
of classification.

Level 1 (classification based on 2 classes)

 NPFS_sfs RF SVM
 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

2011
(48 features)

97.3 ± 0.01 93.7 ± 0.05 97.6 ± 0.01 94.3 ± 0.04 99.5 ± 0.00 98.7 ± 0.01

2012
(52 features)

98.3 ± 0.01 95.9 ± 0.03 99.3 ± 0.00 96.7 ± 0.02 99.7 ± 0.00 99.2 ± 0.00

2013
(68 features)

97.1 ± 0.01 93.0 ± 0.06 98.2 ± 0.00 95.7 ± 0.02 99.6 ± 0.00 99.2 ± 0.01

2014
(60 features)

97.7 ± 0.01 94.6 ± 0.05 98.6 ± 0.00 96.6 ± 0.03 99.5 ± 0.00 98.8 ± 0.01

Level 2 (classification based on 4 classes)
 NPFS_sfs RF SVM

 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)
2011

(48 features)
96.3 ± 0.01 93.7 ± 0.04 95.7 ± 0.01 92.6 ± 0.04 97.6 ± 0.01 95.9 ± 0.03

2012
(52 features)

97.1 ± 0.01 94.9 ± 0.02 98.1 ± 0.00 96.8 ± 0.02 99.0 ± 0.00 98.2 ± 0.01

2013
(68 features)

96.2 ± 0.02 93.4 ± 0.05 96.9 ± 0.01 94.6 ± 0.03 99.0 ± 0.00 98.2 ± 0.01

2014
(60 features)

96.6 ± 0.01 94.2 ± 0.04 97.5 ± 0.01 95.7 ± 0.02 98.8 ± 0.00 98.0 ± 0.01

Level 3 (classification based on 14 classes)

 NPFS_sfs RF SVM
 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

2011
(48 features)

90.4 ± 0.04 89.4 ± 0.05 90.9 ± 0.03 89.9 ± 0.03 95.3 ± 0.01 94.8 ± 0.01

2012
(52 features)

91.4 ± 0.03 90.5 ± 0.03 94.4 ± 0.04 93.7 ± 0.05 97.9 ± 0.01 97.6 ± 0.01

2013
(68 features)

89.7 ± 0.14 88.5 ± 0.17 94.4 ± 0.01 93.8 ± 0.01 98.2 ± 0.00 98.0 ± 0.00

2014
(60 features)

94.7 ± 0.01 94.1 ± 0.02 95.9 ± 0.01 95.5 ± 0.02 98.6 ± 0.00 98.4 ± 0.00

Table 5.2 Overall accuracy and Kappa statistics for three defined levels of classification for each of the
four years. Only spectral bands were used as the spectral features. NPFS_sfs denotes NPFS GMM based
classifier computed with a set of features that was chosen using standard feature selection algorithm
described in Section 2.3.1. The results correspond to the mean value and variance of the overall accuracy
(OA) and Kappa statistics over 50 repetitions in percentages. The best results for each level were reported
in bold face.

36

As expected, SVM showed less confusion than GMM classifier for each of the four years
(Tables 5.3-5.8 and A3.4-A3.21). Confusion matrices for level 1 of the both classifiers in the
year 2013 indicate very high accuracies (Tables 5.3 and 5.4). For level 2 and the same year,
confusion matrices show lower accuracies in comparison to the accuracies obtained for level
1. For GMM classifier, Deciduous and Evergreen species showed high accuracies, while the
confusions appeared with Pine, of which 5.48 % were assigned to Deciduous and 5.62 % to
other conifer, and other conifer, of which 4.16 % were assigned to Deciduous and 6.22 % to
Pine (Table 5.5). The highest confusions for SVM classifier appeared among two Conifer
species, where 4.60 % of the Other conifers were wrongly assigned to Pine (Table 5.6).
Confusion matrices for the third level in year 2013 had the lowest accuracies of all three
levels (Tables 5.7 and 5.8). For GMM classifier, among conifer tree species the lowest
accuracy is obtained for Douglas fir (59.83 %), where the highest confusion appeared with
Silver fir (18.50 %) and Black pine (67.29 %) where the main confusion appeared with Oak

(14.71 %). Higher accuracies were obtained for broadleaf species, with the lowest accuracy
for Black locust (67.83 %), where 24.50 % confusions were with Oak, while Willow, Red oak

and Aspen showed the highest accuracies (Table 5.7). For SVM classifier Douglas fir was
again the most difficult to discriminate among coniferous tree species with the accuracy
82.50 %, where the highest confusion was again with Silver fir (12.17 %), while other
coniferous tree species as well as all of the broadleaf species showed high accuracies, of
which Silver birch, Eucalyptus, Willow and Red oak had the highest (Table 5.8), while the
lowest accuracy was obtained for Black locust. As expected, a decrease in classification
accuracy was observed with increase of the number of classes, i.e. the classification accuracy
decreased going from level 1 to level 3. Results for other years indicate similar accuracies as
for year 2013 (Tables A3.4-A3.21).

Results obtained for level 2 showed that both GMM and SVM models had more confusions
among conifer tree species. The reason for this might be that there were significantly less
reference pixels available for coniferous tree species (315) than the number of reference
pixels available for broadleaf tree species (723) but also the fact that phenology is less
informative for coniferous than for deciduous tree species. Results obtained for level 3
showed that for both GMM and SVM models the lowest classification accuracies among all
of the conifer tree species was obtained for Douglas fir which had the lowest number of
reference pixels of all the conifer tree species (Table 3.1). The same conclusion can be made
after looking at the results for Broadleaf tree species. Again, for both SVM and GMM
classifiers, among all of the Broadleaf tree species, the lowest accuracy was obtained for
Black locust. The reason for this may be the same, since Black locust also had the lowest
number of reference samples among broadleaf tree species (35) which is very small
compared to the available reference samples for Aspen (209).

 Predicted class

Actual class Conifer Broadleaf
Conifer 92.86 7.14

Broadleaf 1.05 98.95

Table 5.3. Confusion matrix for level 1, year 2013. Classification was based on spectral bands and GMM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

37

 Predicted class

Actual class Conifer Broadleaf
Conifer 99.35 0.65

Broadleaf 0.23 99.77

Table 5.4. Confusion matrix for level 1, year 2013. Classification was based on spectral bands and SVM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.59 0.01 0.40 0.00

Evergreen 0.35 99.00 0.41 0.24

Pine 5.48 0.64 88.26 5.62
Other conifer 4.16 0.11 6.22 89.51

Table 5.5. Confusion matrix for level 2, year 2013. Classification was based on spectral bands and GMM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.93 0.00 0.07 0.00

Evergreen 1.06 98.65 0.29 0.00

Pine 0.52 0.00 98.81 0.67

Other conifer 1.35 0.05 4.60 94.00

Table 5.6. Confusion matrix for level 2, year 2013. Classification was based on spectral bands and SVM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

38

Predicted class

Actual class
Silver

fir
Oak

Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 91.36 0.64 2.72 4.24 0.00 0.00 0.08 0.00 0.00 0.00 0.24 0.40 0.00 0.32

Oak 0.00 90.05 1.05 0.29 1.86 1.81 0.05 1.28 1.95 0.09 0.24 0.62 0.09 0.62

Black pine 6.57 14.71 67.29 4.29 0.00 0.14 3.29 0.00 0.00 0.00 1.57 1.57 0.00 0.57

Douglas fir 18.50 6.33 3.50 59.83 0.00 0.33 3.00 0.00 0.17 0.00 3.00 4.00 0.00 1.33

Silver birch 0.00 6.00 0.00 0.00 92.40 0.00 0.00 0.00 0.16 0.24 0.00 0.00 0.00 1.20

European
ash

0.00 15.00 0.00 0.00 0.00 80.43 0.00 1.57 2.86 0.00 0.00 0.00 0.00 0.14

Maritime
pine

0.14 1.71 4.29 6.14 0.00 0.00 84.43 0.00 0.00 0.00 0.71 0.29 0.00 2.29

Black locust 0.00 24.50 0.00 0.00 0.33 5.17 0.00 67.83 1.83 0.00 0.00 0.00 0.00 0.33

Aspen 0.00 2.74 0.00 0.00 0.03 0.14 0.00 0.03 96.17 0.14 0.00 0.00 0.17 0.57

Red oak 0.00 1.88 0.00 0.00 0.00 0.00 0.00 0.00 0.65 97.18 0.06 0.00 0.00 0.24

Eucalyptus 0.12 1.47 0.41 0.71 0.00 0.82 0.12 0.06 0.06 0.00 95.41 0.06 0.00 0.76

Corsican
pine

1.00 4.71 1.86 2.71 0.00 0.14 0.14 0.00 0.00 0.00 0.14 88.71 0.00 0.57

Willow 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.77 1.08

Austrian
black pine

0.00 0.07 0.48 2.14 0.00 0.00 4.21 0.00 0.00 0.00 3.24 0.07 0.00 89.79

Table 5.7. Confusion matrix for level 3, year 2013. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over 50

repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

39

Predicted class

Actual class Silver fir Oak
Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 96.72 0.00 1.60 1.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 98.24 0.00 0.00 0.57 0.10 0.05 1.05 0.00 0.00 0.00 0.00 0.00 0.00

Black pine 0.57 2.57 96.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Douglas fir 12.17 0.83 1.50 82.50 0.00 0.00 0.67 0.00 0.00 0.00 0.50 1.83 0.00 0.00

Silver birch 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

European
ash

0.00 1.29 0.00 0.00 0.00 98.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maritime
pine

0.00 0.00 3.57 0.00 0.00 0.00 94.86 0.00 0.00 0.00 0.00 0.14 0.00 1.43

Black locust 0.00 3.17 0.00 0.00 0.00 1.00 0.00 95.83 0.00 0.00 0.00 0.00 0.00 0.00

Aspen 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 99.91 0.00 0.06 0.00 0.00 0.00

Red oak 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.18 99.59 0.00 0.00 0.00 0.00

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.94 0.00 0.00 0.06

Corsican
pine

0.00 1.29 0.29 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.00 0.00 0.00

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 99.69 0.00

Austrian
black pine

0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.00 0.00 0.00 0.00 0.00 0.00 98.97

Table 5.8. Confusion matrix for level 3, year 2013. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over 50
repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

40

To identify the most important dates for discriminating among tree classes for all three levels,
the nonlinear parsimonious feature selection approach (NPFS) was used. The selection rate of
the used dates over 50 iterations for year 2013 is shown in Figures 5.8, 5.9 and 5.10. Images
that were acquired during May had the highest selection rate (43/50) for discriminating at
level 1. Furthermore, images from December were also frequently chosen (with the selection
rate of 40/50). This was expected since the images that were acquired during spring and
winter should be the one of the best for separating broadleaf and coniferous species. Winter
images together with the images acquired in July were the most frequently selected for the
classification at level 2. At level 3, among many different dates which were frequently
selected, the highest selection rate is obtained for the images acquired in winter, May and
mid-summer. Contrary to our expectations, images acquired during growing and senescing
seasons were not very useful for discriminating among tree species, possibly because only
few images were acquired during key phenological periods. The most frequently selected
dates for the other years are given in Appendix 3 (Figure A3.4-A3.12).

Figure 5.8. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for level
1 and year 2013. The selection rate is 1 when the image is selected systematically (50/50).

41

Figure 5.9. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for level
2 and year 2013. The selection rate is 1 when the image is selected systematically (50/50).

Figure 5.10. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for
level 3 and year 2013. The selection rate is 1 when the image is selected systematically (50/50).

42

Classification maps for each level obtained with GMM and SVM classifiers for year 2013 are
presented in Figures 5.11, 5.12 and 5.13. Classification maps obtained here should be
verified in the future with ground surveys, although confusion matrices indicate that the
results obtained with GMM classifier were noisier (with higher confusions) than with the
SVM classifier.

Figures 5.14, 5.15 and 5.16 represents the frequency maps which show the number of time
that each pixel was classified with the same label looking at the classification maps obtained
for four year. Pixels having a frequency value of 4 indicated high consistency between four
classifications. A lower frequency indicated more differences between the years and most
likely more uncertainty on the classification accuracy, since it is unlikely that species
composition changed through the four studied years. For levels 1 and 2, most of the pixels
had a frequency value of 4 or 3, suggesting high stability of the classification between the
years. Higher instability is indicated for level 3, since most of the pixels had the frequency
value of 2. One of the reasons for the different positioned classification errors for consecutive
years could be explained by the difference in the dates of the images acquisition between the
years (Table 3.4). These maps should be analysed more deeply in the future.

43

Figure 5.11. Classification maps for level 1 based on spectral bands with GMM (left) and SVM (right)

Figure 5.12. Classification maps for level 2 based on spectral bands with GMM (left) and SVM (right)

Figure 5.13. Classification maps for level 3 based on spectral bands with GMM (left) and SVM (right)

44

Figure 5.14. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 1 based on spectral

bands with GMM (left) and SVM (right)

Figure 5.15. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 2 based on spectral

bands with GMM (left) and SVM (right)

Figure 5.16. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 3 based on spectral

bands with GMM (left) and SVM (right)

45

6 Conclusion and future work

The main aim of this study was to investigate the ability of Formosat-2 image time series to
discriminate different tree species. It was assumed that phenological variations of the tree
species during the year could potentially increase the spectral separability between different
species. The main conclusions of the study were:

• The Whittaker smoothing filter showed to be a good solution for smoothing the image
time series. However, the optimal regularization parameter obtained with generalized
cross-validation sometimes gave the results which were under-smoothed whilst
ordinary cross validation gave the results which were over-smoothed. In these cases
the optimal regularization parameter value was chosen to give visually good results.

• All of the classifiers produced high classification accuracies for each of the
considered years which indicate the importance of phenological information for
discriminating various tree species. However, SVM classifier performed the best in
terms of classification accuracy whilst NPFS performed the best in terms of
computing time. In fact, NPFS algorithm usually extracted only a few features (lower
than 5% of the total number) and was therefore much faster and more efficient than
the other two classifiers, while giving comparable classification accuracy. RF
classifier gave lower classification accuracy than SVM algorithm and better accuracy
than GMM classifier but used more processing time. Therefore, RF algorithm might
not be a good solution for tree species discrimination from SITS. The accuracies
obtained in this study were higher than the accuracies obtained in the comparable
studies. For example, Table 11 from the study [43] gives an overview of different
studies that were based on tree species discrimination using data sensors with
different spatial and spectral resolution. Wide range of the classification methods was
applied and the reported accuracies varied between 45 % and 96 %. The highest
values were obtained for discriminating between only a few tree species (96 % was
the highest obtained accuracy when classification was based on only 3 tree species).
In comparison, results of this study on level 3 of classification (discrimination
between 14 tree species), for year 2014 with SVM classifier, indicate overall accuracy
of 98.6 % which is significantly better result with significantly more species.

• The experimental results of this study indicate that SFFS algorithm might not be
superior to the SFS algorithm. The same conclusion was made in the study [42].
However, this conclusion contradicts widely-held belief that floating search methods
are superior to the simple sequential ones. For example, Jain et al. [29] claim that “in
almost any large feature selection problem, floating search methods [SFFS and SBFS]
perform better than the straightforward sequential searches, SFS and SBS.” This
claim together with many others [24, 30, 31] persuade many people to use floating
variable selection methods instead of simple algorithms [39, 40, 41], although
according to the results of this study these simple algorithms may give equally good
results in significantly less time.

46

When it comes to the future work, further development is needed to improve the way of
choosing optimal regularization parameter for smoothing. Additional reference data could be
also collected to improve the classification accuracy for the species which showed the lowest
classification results, at least for the species with the lowest number of reference pixels
(Douglas fir and Black locust). As the post-processing and the next step of this study spatial
smoothing could be applied to the classification maps in order to eliminate isolated classified
pixels and to produce more compact classes (homogeneous regions).

Personal contributions of the internship

This internship was of remarkable importance to me because I have immensely improved my
previous knowledge during these 5 months.

During the academic year I took a course in Remote Sensing, where we studied about basics
of remote sensing with the implementation of different classification approaches and the
analysis of the temporal profiles of the NDVI vegetation index. Also, I took a course in
Classification and Pattern Recognition where we studied about different classification
methods. This internship helped me a lot to improve my previous knowledge and to apply the
theoretical knowledge obtained through these two courses in practice.

Through this internship I have also improved my programming skills with the Python
programming language and Shell Programming, previously completely unknown to me, and I
also worked for the first time with the GIS software QGIS.

I have learned a lot about forests and their importance for our environment. This subject was
very interesting to me since it is related to a very important issue.

I have also discovered the world of the research though many interactions with other people
from the lab, which is also very significant experience for me.

47

Appendix 1

Several additional experiments were performed on real hyper-spectral data sets to explore the
ability of implemented SFFS algorithm to find a superior subset of features in comparison to
SFS algorithm using data sets with more spectral bands and more reference pixels. Four data
sets were used for this purpose. The first data set has been acquired in the region surrounding
the volcano Hekla in Iceland by the AVIRIS sensor. It contains 157 spectral channels from
400 to 1840 nm. The total number of reference pixels was 10227 for which 12 classes have
been defined. The second data set has been acquired during a flight campaign over Pavia,
northern Italy, with 103 spectral channels recorded from 430 to 860 nm. The number of
reference pixels was 42776 for 9 defined classes. The third data set has been acquired by the
NASA AVIRIS instrument over the Kennedy Space Centre (KSC), with 176 spectral bands
from 400 to 2500 nm used for the analysis, and 13 classes for a total of 361753 pixels.

For each data set, two thirds of the pixels were randomly selected per class as training pixels
and the remaining reference pixels were used for validation. 50 repetitions were performed
and new training set generated for each repetition. In order to compare SFFS and SFS
algorithms the maximum number of extracted features was set to 15. Each variable has been
standardized before the processing in order to get zero mean and unit variance.

Stratified 5-fold cross validation was used to estimate the mean test classification accuracy.
As described in Section 2.1, parameters of the GMM sub-models have been estimated using
update rules. The mean test classification accuracy with a subset of selected features has been
estimated using the marginalization properties of the Gaussian distribution parameters.

Figure A1.1 presents the estimated mean test classification accuracies during the training
procedure for each size of selected feature subsets until the size of 15 best features is reached.
For each data set SFFS performed better than SFS for the smaller size of feature set.
Moreover, by increasing the number of features in the feature set SFFS performance was
becoming similar to the performance of the SFS algorithm.

48

Figure A1.1. The test classification accuracy for Hekla data set (top left), KSC (top right) and Pavia
(bottom left)

Table A1.1 shows the mean value of the overall accuracy (OA) and Kappa statistics averaged
over 50 repetitions for each data set. From there, it can be seen that SFFS performed the same
as SFS for Hekla data set, whilst for the other sets it gave slight improvements. However,
each data set needed a lot of backtracking to be done, i.e. much more time was spent to obtain
these slightly better results (Figure A1.2 and Table A1.2). This is the general problem of the
SFFS algorithm independently of the data on which it is applied, since it is not possible to tell
in advance for how long the algorithm is going to run. The complexity will be similar to the
complexity of the SFS algorithm if data set is such that no backtracking needs to be done, but
then the result will not be improved. On the other hand, if a lot of backtracking is needed, the
results will be slightly better, but more time will be needed to obtain it.

SFS algorithm SFFS algorithm
Data sets

OA (%) Kappa (%) OA (%) Kappa (%)

Hekla 98.3 98.1 98.3 98.1
Pavia 93.4 91.3 93.5 91.4
Ksc 94.9 94.4 95.1 94.6

Table A1.1. Mean values of the overall accuracies and Kappa statistics for each data set

49

Figure A1.2. Learning time needed to extract 15 best features for each iteration for Hekla data set (top
left), KSC (top right) and Pavia (bottom left)

Learning time [s] Prediction time [ms]
Data sets

SFS SFFS SFS SFFS

Hekla 54.75 126.2 51.8 50.5
Pavia 107.41 217.18 168.73 177.7
Ksc 42.87 115.14 28.21 29.95

Table A1.2 The mean processing time for learning and prediction for each data set

50

Two more things related to SFFS algorithm were noticed:

• Even though the original SFFS algorithm sometimes gave the results which were
superior during the training phase in terms of estimated classification accuracy, this
does not always translate to better results for unseen data.

• The SFS algorithm will stop when the maximum number of variables is reached or if
the increase of estimated classification accuracy is lower than a predetermined
threshold. In this way, SFS sometimes finds a subset of features with the size of only
5% of the original feature set size and which gives very high classification accuracy
and thus performs very fast in terms of computational time. On the contrary, stopping
criterion for the SFFS algorithm should be defined only with the maximum number of
features since introducing the threshold for the test classification rate can stop the
algorithm before backtracking. For example, it can stop the algorithm when only a
few features were selected, although the algorithm may find better feature subset of
the same size, after it finishes with the higher feature subset backtracking.

51

Appendix 2

This chapter presents one part of the code that I have implemented for the purposes of this
work. Most of them I implemented in Python whilst the SITS creation I did using highly
specialized tool, OTB. SITS creation could also be done in Python, but this way was faster
and easier.

Pre-processing

SITS creation

Follows an example for using OTB applications and Shell Programming for creating SITS from
NDVI indices for year 2012.

The file with the images was in the following format:

SudouestKalideos_20120112_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120218_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120307_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120327_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120503_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120620_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120707_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120717_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120810_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20120822_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20121101_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20121215_MS_fmsat_ortho_surf_pente_8m.tif
SudouestKalideos_20121231_MS_fmsat_ortho_surf_pente_8m.tif

The script that was used to create SITS from NDVI indices is script_sits.sh and is given as:

Creating SITS from NDVI indices, processing year 2012

Input parameter: $i - the year

Usage: ./sits_2012.sh

for i in *8m.tif

do

 otbcli_BandMath -il $i -out ndvi_$i -exp "(im1b4-im1b3)/(im1b4+im1b3)"

done

otbcli_ConcatenateImages -il ndvi_*.tif -out sits_NDVI_$1.tif

rm -v ndvi_*.tif

The notation im1b4 refers to the forth band in the images which is for Formosat images near-infrared

band whilst im1b3 refers to red band.

For each image NDVI index was computed using OTB function otbcli_BandMath. The command
$i will return the name of one file from the list. Thus, for loop will process every file and the name

of the output will be the name of the original file where ndvi_ is added at the beginning. Then all the

NDVI indices were concatenated into one image time series, in this case, sits_NDVI_2012.sh. The

OTB function otbcli_ConcatenateImages was used for this purpose. And finally, to free the

space, all the NDVI indices were removed, since they are in the file sits_NDVI_2012.sh. This was
done using rm -v ndvi_*.tif.

52

Defining the temporal axis

After SITS creation, the smoothing was performed. As the first step, temporal axis needed to be built.

Temporal axis was defined using the function create_timestamp.py , which is presented in the

following box:

'''

 The program builds temporal axis for one year.

 TimeStamp will contain for each image its number in the year.

'''

from datetime import date # Import to menage the dates

import glob # Import to menage the files

import scipy as sp

NAME = glob.glob('*8m.tif')

NAME.sort()

TimeStamp=[]

Build the temporal sampling

for name in NAME:

 # There are 17 characters before the date, which is written as year-

 month-day

 date_tp = date(int(name[17:21]),int(name[21:23]),int(name[23:25]))

 TimeStamp.append(date_tp.timetuple().tm_yday)

TimeStamp = sp.asarray(TimeStamp)

If we consider year 2012 (the format of the images is given in previous example), the
temporal axis will be:

TimeStamp = [12, 49, 67, 87, 124, 172, 189, 199, 223, 235, 306, 350, 366].

53

Smoothing SITS

The following function, smooth_image.py , applies Whittaker smoother filter to SITS.

import scipy as sp

from osgeo import gdal

import scipy as sp

from osgeo import gdal

def smooth_image(raster_name,mask_name,output_name,l,t):

 '''

 The function applies a smoothing filter on all the pixels of the

input image.

 Input:

 raster_name: the name of the original SITS

 mask_name: the name of the Mask Time Series. Every pixel with value

greater than 0 refers to the clouds or cloud shadows presence and the

corresponding pixel from SITS is masked.

 output_name: the name of the smoothed image

 l: the regularization parameter

 t: the temporal sampling (scipy array)

 '''

 # Get

 import smoother as sm

 # Open Raster and get additionnal information

 raster = gdal.Open(raster_name,gdal.GA_ReadOnly)

 if raster is None:

 print 'Impossible to open '+raster_name

 exit()

 # Open Mask and get additionnal information

 mask = gdal.Open(mask_name,gdal.GA_ReadOnly)

 if mask is None:

 print 'Impossible to open '+mask_name

 exit()

 # Check size

 if (raster.RasterXSize != mask.RasterXSize) or (raster.RasterYSize !=

mask.RasterYSize) or (raster.RasterCount != mask.RasterCount):

 print 'Image and mask should be of the same size'

 exit()

 # Get the size of the image

 d = raster.RasterCount

 nc = raster.RasterXSize

 nl = raster.RasterYSize

 # Get the geoinformation

 GeoTransform = raster.GetGeoTransform()

 Projection = raster.GetProjection()

 # Get block size

 band = raster.GetRasterBand(1)

 block_sizes = band.GetBlockSize()

 x_block_size = block_sizes[0]

 y_block_size = block_sizes[1]

 del band

54

 # Initialize the output

 driver = gdal.GetDriverByName('GTiff')

 dst_ds = driver.Create(output_name, nc,nl, d, gdal.GDT_Float64)

 dst_ds.SetGeoTransform(GeoTransform)

 dst_ds.SetProjection(Projection)

 for i in xrange(0,nl,y_block_size):

 if i + y_block_size < nl: # Check for size consistency in Y

 lines = y_block_size

 else:

 lines = nl - i

 for j in xrange(0,nc,x_block_size): # Check for size consistency in

X

 if j + x_block_size < nc:

 cols = x_block_size

 else:

 cols = nc - j

 # Get the data

 X = sp.empty((cols*lines,d))

 M = sp.empty((cols*lines,d),dtype='int')

 for ind in xrange(d):

 X[:,ind] = raster.GetRasterBand(int(ind+1)).ReadAsArray(j,

i, cols, lines).reshape(cols*lines)

 M[:,ind] = mask.GetRasterBand(int(ind+1)).ReadAsArray(j, i,

cols, lines).reshape(cols*lines)

 # Put all masked value to 1

 M[sp.isnan(M)]=0

 M[M>0]=1

 X[M>0]=0

 # Do the smoothing

 Xf = sp.empty((cols*lines,d))

 for ind in xrange(cols*lines):

 smoother = sm.Whittaker(x=X[ind,:],t=t,w=1-

M[ind,:],order=2)

 Xf[ind,:] = smoother.smooth(l)

 # Write the data

 for ind in xrange(d):

 out = dst_ds.GetRasterBand(ind+1)

 out.WriteArray(Xf[:,ind].reshape(lines,cols),j,i)

 out.FlushCache()

 # Free memory

 del X,Xf,M,out

 # Clean/Close variables

 raster = None

 mask = None

 dst_ds = None

55

Before the function for smoothing was applied, it was necessary to find the optimal value for
regularization parameter. Follows the function for finding the optimal regularization

parameter, find_optimal_lamda.py :
from osgeo import gdal

import matplotlib.pyplot as plt

import sys

import smoother as sm

import scipy as sp

import random

from scipy.stats import mode

import time

'''

 The program finds an optimal regularization parameter for smoothing.

 Generalized and ordinary cross-validation are calculated for each of

the pixels which correspond to the forest area for a range values of

regularization parameter.

 Then for each of the pixels finds lamda, for which the ordinary and

genealized cross validations have min values.

 For the optimal lamda takes the value which appears most frequently.

 Inputs:

 sits_name: the name of the original SITS.

 cloud_mask_name: the name of Mask Time Series.

 mask_forest_name: the mask containing the information about

 forest/nonforest parts of the images.

 Outputs:

 lamda_gcv: the optimal lamda obtained using Generalized Cross-

 Validation

 lamda_ocv: the optimal lamda obtained using Ordinary Cross-Validation

 '''

Open Raster

sits_name = 'sits_2012.tif'

sits = gdal.Open(sits_name,gdal.GA_ReadOnly)

if sits is None:

 print 'Impossible to open '+sits_name

 exit()

Open mask with clouds

cloud_mask_name ='mask_clouds_2012.tif'

cloud_mask = gdal.Open(cloud_mask_name,gdal.GA_ReadOnly)

if cloud_mask is None:

 print 'Impossible to open '+cloud_mask_name

 exit()

Some tests

if (sits.RasterXSize != cloud_mask.RasterXSize) or (sits.RasterYSize !=

cloud_mask.RasterYSize) or (sits.RasterCount != cloud_mask.RasterCount):

 print 'SITS and mask with clouds should be of the same size'

 exit()

mask_forest_name = mask_final_2012.tif'

mask_forest = gdal.Open(mask_forest_name,gdal.GA_ReadOnly)

if mask_forest is None:

 print 'Impossible to open '+mask_forest_name

 exit()

56

Get the number of variables and the size of the images

d = sits.RasterCount

nc = sits.RasterXSize

nl = sits.RasterYSize

rangeX = (0, nc) # The actual range in x values of the raster

rangeY = (0, nl) # The actual range in y values of the raster

l=10.0**sp.arange(0,15,1)

lamda_gcv = []

lamda_ocv = []

mask_forest_array = mask_forest.GetRasterBand(1).ReadAsArray()

t = sp.nonzero(mask_forest_array)

n = t[0].size

gcv = sp.empty((n,len(l)),dtype=float64)

ocv = sp.empty((n,len(l)),dtype=float64)

start_time = time.time()

for i in range(n):

 mask_forest_final =

mask_forest.GetRasterBand(1).ReadAsArray(t[1][i],t[0][i],1, 1)

 if mask_forest_final>0:

 X = sp.empty(d)

 M = sp.empty(d)

 for ind in xrange(d):

 X[ind] = sits.GetRasterBand(int(ind+1)).ReadAsArray(t[1][i],

t[0][i], 1, 1)

 M[ind] =

cloud_mask.GetRasterBand(int(ind+1)).ReadAsArray(t[1][i], t[0][i], 1, 1)

 M[M>0] = 1

 M[sp.isnan(M)]=0

 smoother = sm.Whittaker(x=X,t=TimeStamp,w=1-M,order=2)

 gcv[i,:]= smoother.GeneralizedCrossValidation(l) # Value for each l

 ocv[i,:] = smoother.OrdinaryCrossValidation(l)

 ind1 = gcv[i,:].argmin()

 ind2 = ocv[i,:].argmin()

 lamda_gcv.append(l[ind1])

 lamda_ocv.append(l[ind2])

time_duration = time.time() - start_time

print mode(lamda_gcv)[0][0]

print mode(lamda_ocv)[0][0]

plt.figure()

plt.hist(sp.log10(lamda_gcv),100)

plt.figure()

plt.hist(sp.log10(lamda_ocv),100)

plt.show()

57

Classification and accuracy assessment

Extracting training/validation samples

The training/validating samples were extracted from SITS using the following function,

get_samples_from_roi.py :

from osgeo import gdal

import scipy as sp

def get_samples_from_roi(raster_name,roi_name):

 '''

 The function get the set of pixels given in the thematic map.

 Data is read per block.

 Input:

 raster_name: the name of the raster file, could be any file that

 GDAL can open

 roi_name: the name of the thematic image: each pixel whose values

 is greater than 0 is returned

 Output:

 X: the sample matrix. A nXd matrix, where n is the number of

referenced pixels and d is the number of variables. Each

 line of the matrix is a pixel.

 Y: the label of the pixel

 '''

 ## Open Raster

 raster = gdal.Open(raster_name,gdal.GA_ReadOnly)

 if raster is None:

 print 'Impossible to open '+raster_name

 exit()

 ## Open ROI

 roi = gdal.Open(roi_name,gdal.GA_ReadOnly)

 if roi is None:

 print 'Impossible to open '+roi_name

 exit()

 ## Some tests

 if (raster.RasterXSize != roi.RasterXSize) or (raster.RasterYSize !=

roi.RasterYSize):

 print 'Images should be of the same size'

 exit()

 ## Get block size

 band = raster.GetRasterBand(1)

 block_sizes = band.GetBlockSize()

 x_block_size = block_sizes[0]

 y_block_size = block_sizes[1]

 del band

 ## Get the number of variables and the size of the images

 d = raster.RasterCount

 nc = raster.RasterXSize

 nl = raster.RasterYSize

 ## Read block data

58

 X = sp.array([]).reshape(0,d)

 Y = sp.array([]).reshape(0,1)

 for i in range(0,nl,y_block_size):

 if i + y_block_size < nl: #Check for size consistency in Y

 lines = y_block_size

 else:

 lines = nl - i

 for j in range(0,nc,x_block_size): #Check for size consistency in X

 if j + x_block_size < nc:

 cols = x_block_size

 else:

 cols = nc - j

 # Load the reference data

 ROI = roi.GetRasterBand(1).ReadAsArray(j, i, cols, lines)

 t = sp.nonzero(ROI)

 if t[0].size > 0:

 Y =

sp.concatenate((Y,ROI[t].reshape((t[0].shape[0],1)).astype('uint8')))

 # Load the Variables

 Xtp = sp.empty((t[0].shape[0],d))

 for k in xrange(d):

 band = raster.GetRasterBand(k+1).ReadAsArray(j, i,

cols, lines)

 Xtp[:,k] = band[t]

 try:

 X = sp.concatenate((X,Xtp))

 except MemoryError:

 print 'Impossible to allocate memory: ROI too big'

 exit()

 # Clean/Close variables

 del Xtp,band

 roi = None # Close the roi file

 raster = None # Close the raster file

 return X,Y

59

Learning the classifier and computing its performance (classification accuracy)

The main program, script_classif_formosat.py , for performing classification with described

classifiers is given in the following box.
from npfs import *

import sys

from osgeo import gdal

import pdb

import get_samples_from_roi as fun

from accuracy_index import *

from sklearn.svm import SVC

from sklearn.cross_validation import KFold

from sklearn.grid_search import GridSearchCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.cross_validation import StratifiedKFold

from script_classif_whole_sits import *

ADDITIONAL FUNCTIONS

def standardize(x,M=None,S=None,REVERSE=None):

 ''' Function that standardize the data

 Input:

 x: the data

 M: the mean vector

 V: the standard deviation vector

 Output:

 x: the standardize data

 M: the mean vector

 V: the standard deviation vector

 '''

 if not sp.issubdtype(x.dtype,float):

 do_convert = 1

 else:

 do_convert = 0

 if REVERSE is None:

 if M is None:

 M = sp.mean(x,axis=0)

 S = sp.std(x,axis=0)

 if do_convert:

 xs = (x.astype('float')-M)/S

 else:

 xs = (x-M)/S

 return xs,M,S

 else:

 if do_convert:

 xs = (x.astype('float')-M)/S

 else:

 xs = (x-M)/S

 xs = (x-M)/S

 return xs

 else:

 return S*x+M

LOAD DATA

rt = ['sits_NDVI', 'sits_bands', 'sits_bands_NDVI']

for raster_type in rt:

 for roilev in range(1,4):

 raster_name = raster_type +'_2012.tif'

60

 roi_name = 'raster_ref_level' + str(roilev) + '.tif'

 ## PARAMETERS

 REP,r = 50,0

 SPLIT = 2.0/3

 AC_gmm = list()

 KAPPA_gmm = list()

 AC_gmm_sffs = list()

 KAPPA_gmm_sffs = list()

 AC_svm = list()

 KAPPA_svm = list()

 AC_rf = list()

 KAPPA_rf = list()

 IDS = list()

 IDS_sffs = list()

 sig = 2.0**sp.arange(-5,5)

 penalty = 10.0**sp.arange(0,5)

 param_grid_svm = dict(gamma=sig, C=penalty)

 n_estimators=sp.arange(10,500,50)

 param_grid_rf = dict(n_estimators=n_estimators)

 X,Y = fun.get_samples_from_roi(raster_name,roi_name)

 X = standardize(X)[0]

 n,d=X.shape

 C = int(Y.max())

 CONFU_gmm = sp.zeros((REP,C,C))

 CONFU_gmm_sffs = sp.zeros((REP,C,C))

 CONFU_svm = sp.zeros((REP,C,C))

 CONFU_rf = sp.zeros((REP,C,C))

 ## START

 while r < REP:

 print r

 # Random selection of the sample

 x = sp.array([]).reshape(0,d)

 y = sp.array([]).reshape(0,1)

 xt = sp.array([]).reshape(0,d)

 yt = sp.array([]).reshape(0,1)

 sp.random.seed(r)

 for i in range(C):

 t = sp.where((i+1)==Y)[0]

 nc = t.size

 ns = int(nc*SPLIT)

 rp = sp.random.permutation(nc)

 x = sp.concatenate((X[t[rp[0:ns]],:],x))

 xt = sp.concatenate((X[t[rp[ns:]],:],xt))

 y = sp.concatenate((Y[t[rp[0:ns]]],y))

 yt = sp.concatenate((Y[t[rp[ns:]]],yt))

 y.shape=(y.size,)

 cv = KFold(y.size, n_folds=5)

 ## GMM

 # Learn the model

 model = GMM()

 model.learn_gmm(x,y)

61

 model.ids,loo =

model.forward_selection(x,y,maxvar=15,delta=0.001,v=5)

 IDS.append(model.ids)

 # Predict

 yp = model.predict_gmm(xt,ids=model.ids)[0]

 # Confusion matrix

 confu = CONFUSION_MATRIX()

 confu.compute_confusion_matrix(yp,yt)

 AC_gmm.append(confu.OA)

 KAPPA_gmm.append(confu.Kappa)

 CONFU_gmm[r,:,:]=confu.confusion_matrix

 # GMM_sffs

 # Learn the model

 model_sffs = GMM()

 model_sffs.learn_gmm(x,y)

 model_sffs.ids,loo_sffs =

model_sffs.forward_selection_sffs(x,y,maxvar=15,v=5)

 t = sp.argmax(loo_sffs)

 model_sffs.ids = model_sffs.ids[0:(t+1)]

 IDS_sffs.append(model_sffs.ids)

 # Predict

 yp = model_sffs.predict_gmm(xt,ids=model_sffs.ids)[0]

 # Confusion matrix

 confu = CONFUSION_MATRIX()

 confu.compute_confusion_matrix(yp,yt)

 AC_gmm_sffs.append(confu.OA)

 KAPPA_gmm_sffs.append(confu.Kappa)

 CONFU_gmm_sffs[r,:,:]=confu.confusion_matrix

 # SVM

 grid = GridSearchCV(SVC(), param_grid=param_grid_svm, cv=cv)

 grid.fit(x,y)

 clf = grid.best_estimator_

 clf.fit(x,y)

 yp = clf.predict(xt).reshape(yt.shape)

 confu = CONFUSION_MATRIX()

 confu.compute_confusion_matrix(yp,yt)

 AC_svm.append(confu.OA)

 KAPPA_svm.append(confu.Kappa)

 CONFU_svm[r,:,:]=confu.confusion_matrix

 ## RF

 grid = GridSearchCV(RandomForestClassifier(),

param_grid=param_grid_rf, cv=cv)

 grid.fit(x, y)

 clf = grid.best_estimator_

 clf.fit(x,y)

 yp = clf.predict(xt).reshape(yt.shape)

 confu = CONFUSION_MATRIX()

 confu.compute_confusion_matrix(yp,yt)

 AC_rf.append(confu.OA)

62

 KAPPA_rf.append(confu.Kappa)

 CONFU_rf[r,:,:]=confu.confusion_matrix

 del x,xt,y,yt,model,model_sffs,confu,nc,ns,t

 r+=1

 # SAVE RESULTS

 sp.savez('res_gmm_2012_lev' + str(roilev) + raster_type

+'_2012',OA=AC_gmm,Kappa=KAPPA_gmm,confu=CONFU_gmm,ids=IDS)

 sp.savez('res_gmm_sffs_2012_lev' + str(roilev) + raster_type

+'_2012',OA=AC_gmm_sffs,Kappa=KAPPA_gmm_sffs,confu=CONFU_gmm_sffs,ids=IDS_s

ffs)

 sp.savez('res_svm_2012_lev' + str(roilev) + raster_type

+'_2012',OA=AC_svm,Kappa=KAPPA_svm,confu=CONFU_svm)

 sp.savez('res_rf_2012_lev' + str(roilev) + raster_type

+'_2012',OA=AC_rf,Kappa=KAPPA_rf,confu=CONFU_rf)

Prediction on all the pixels of the SITS to produce thematic maps

To produce the classification maps, the following function (predict_image.py) has been

implemented:

from osgeo import gdal

import scipy as sp

import get_samples_from_roi as fun

from accuracy_index import *

from sklearn.svm import SVC

from sklearn.cross_validation import KFold

from sklearn.grid_search import GridSearchCV

from sklearn.ensemble import RandomForestClassifier

from npfs import *

def

predict_image(raster_name,roi_name,classif_name,classifier_name,mask_name=N

one):

 '''

 The function classifies the whole raster images, using block per

block image analysis.

 Inputs:

 raster_name: the name of the raster image that should be

classified, could be any file that GDAL can open

 roi_name: the name of the image which has referenced pixels

 classif_name: the name of the output image (which will contain

zeros where there is no data for classification and number of the class for

each pixel)

 classifier_name: the name of the classifier that is used for

classification of the raster images. It can be 'NPFS','SVM' and 'RF'

 mask_name: the name of the mask which is equal to one for the

pixels that shoud be classified. This mask is intersection between mask

with the non-forest areas and

 mask which is equal to one if there are information for all the

dates in the raster image .

63

 The pixels which for some dates have an information and for some

dates do not have any information will not be taken into account (the value

of the mask for these pixels is zero)

 Each classifier is learned with all the referenced pixels and

prediction is done with raster pixels (selected with respect to the mask)

 '''

 # Parameters

 block_sizes = 512

 sig = 2.0**sp.arange(-5,5)

 penalty = 10.0**sp.arange(0,5)

 param_grid_svm = dict(gamma=sig, C=penalty)

 n_estimators=sp.arange(10,500,50)

 param_grid_rf = dict(n_estimators=n_estimators)

 # Open Raster and get additionnal information

 raster = gdal.Open(raster_name,gdal.GA_ReadOnly)

 if raster is None:

 print 'Impossible to open '+raster_name

 exit()

 roi = gdal.Open(roi_name,gdal.GA_ReadOnly)

 if roi is None:

 print 'Impossible to open '+roi_name

 exit()

 # If provided, open mask

 if mask_name is None:

 mask=None

 else:

 mask = gdal.Open(mask_name,gdal.GA_ReadOnly)

 if mask is None:

 print 'Impossible to open '+mask_name

 exit()

 # Check size

 if (raster.RasterXSize != mask.RasterXSize) or (raster.RasterYSize !=

mask.RasterYSize):

 print 'Image and mask should be of the same size'

 exit()

 X,Y = fun.get_samples_from_roi(raster_name,roi_name)

X = standardize(X)[0]

 X,M,S = standardize(X) ## Changed by MF

 # Get the size of the image

 d = raster.RasterCount

 ncols= raster.RasterXSize

 nlines = raster.RasterYSize

 C = int(Y.max())

 # TO DO: update capital and small X,Y

 Y.shape=(Y.size,)

 cv = KFold(Y.size, n_folds=5)

 # Get the geoinformation

 GeoTransform = raster.GetGeoTransform()

 Projection = raster.GetProjection()

 # Set the block size

64

 x_block_size = block_sizes

 y_block_size = block_sizes

 ## Initialize the output

 driver = gdal.GetDriverByName('GTiff')

 dst_ds = driver.Create(classif_name, ncols,nlines, 1, gdal.GDT_UInt16)

 dst_ds.SetGeoTransform(GeoTransform)

 dst_ds.SetProjection(Projection)

 out = dst_ds.GetRasterBand(1)

 if classifier_name is 'NPFS':

 # Learn the model

 model = GMM()

 model.learn_gmm(X,Y)

 model.ids,loo =

model.forward_selection(X,Y,maxvar=10,delta=0.05,v=5)

 nvar = len(model.ids)

 elif classifier_name is 'SVM':

 # Learn the model

 grid = GridSearchCV(SVC(), param_grid=param_grid_svm, cv=cv)

 grid.fit(X,Y)

 clf = grid.best_estimator_

 clf.fit(X,Y)

 else:

 # Learn the model

 grid = GridSearchCV(RandomForestClassifier(),

param_grid=param_grid_rf, cv=cv)

 grid.fit(X,Y)

 clf = grid.best_estimator_

 clf.fit(X,Y)

 ## Perform the classification

 for i in range(0,nlines,y_block_size):

 if i + y_block_size < nlines: # Check for size consistency in Y

 lines = y_block_size

 else:

 lines = nlines - i

 for j in range(0,ncols,x_block_size): # Check for size consistency

in X

 if j + x_block_size < ncols:

 cols = x_block_size

 else:

 cols = ncols - j

 # Load the data

 Xb = sp.empty((cols*lines,d))

 for ind in range(d):

 Xb[:,ind] = raster.GetRasterBand(ind+1).ReadAsArray(j, i,

cols, lines).reshape(cols*lines)

 Xb = standardize(Xb,M,S) ## Update Xb in the following

 # Do the prediction

 if classifier_name is 'NPFS':

 if mask is None:

 yp = model.predict_gmm(Xb)[0].astype('uint16')

 else:

 mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, cols,

lines).reshape(cols*lines)

 t= sp.where(mask_temp>0)[0]

65

 yp=sp.zeros((cols*lines,))

 if t.size>0:

 yp[t]=

model.predict_gmm(Xb[t,:],ids=model.ids)[0].astype('uint16')

 elif classifier_name is 'SVM':

 # Do the prediction

 if mask is None:

 yp =clf.predict(Xb)

 else:

 mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, cols,

lines).reshape(cols*lines)

 t= sp.where(mask_temp>0)[0]

 yp=sp.zeros((cols*lines,))

 if t.size>0:

 yp[t] = clf.predict(Xb[t,:]).astype('uint16')

 else:

 # Do the prediction

 if mask is None:

 yp =clf.predict(Xb)

 else:

 mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i,

cols, lines).reshape(cols*lines)

 t= sp.where(mask_temp>0)[0]

 yp=sp.zeros((cols*lines,))

 if t.size>0:

 yp[t] = clf.predict(Xb[t,:]).astype('uint16')

 out.WriteArray(yp.reshape(lines,cols),j,i)

 out.FlushCache()

 del Xb,yp

 # Clean/Close variables

 raster = None

 dst_ds = None

The following program, (thematic_map_consecutive_years.py), was used to find the most

frequent species and its frequency for each pixel looking at the classification maps obtained
for four years.

from osgeo import gdal

import scipy as sp

from scipy.stats import mode

'''

 The function finds the most frequent species and its frequency within

the raster image.

 Inputs:

 raster_name: the name of the raster image which consists of

classification maps from several consecutive years from the same

classifier, the same level of classification and the same way of SITS

creation. Each band in the raster image corresponds to the classificatin

map from one year.

66

 mask_name: the name of the mask which is equal to one for the pixels

that are classified in each of the classification maps.

 Output:

 classif_name: the name of the output image. It consists of two bands.

First band presents the most frequent class for each pixel and its

frequency can be found in the second band.

'''

raster_name =

'/home/veliborka/Documents/Bands_concatenation/classification_maps_all_year

s_level1_SB_SVM.tif'

mask_name =

'/home/veliborka/Documents/Bands_concatenation/mask_final_all_years.tif'

classif_name='/home/veliborka/Documents/Bands_concatenation/final_classific

ation_map_level1_SVM.tif'

Open Raster

raster = gdal.Open(raster_name,gdal.GA_ReadOnly)

if raster is None:

 print 'Impossible to open '+raster_name

 exit()

Open forest/nonforest mask

mask = gdal.Open(mask_name,gdal.GA_ReadOnly)

if mask is None:

 print 'Impossible to open '+mask_name

 exit()

Check size

if (raster.RasterXSize != mask.RasterXSize) or (raster.RasterYSize !=

mask.RasterYSize):

 print 'Image and mask should be of the same size'

 exit()

Get the size of the image

d = raster.RasterCount

ncols= raster.RasterXSize

nlines = raster.RasterYSize

block_sizes = 512

Get the geoinformation

GeoTransform = raster.GetGeoTransform()

Projection = raster.GetProjection()

Set the block size

x_block_size = block_sizes

y_block_size = block_sizes

Initialize the output

driver = gdal.GetDriverByName('GTiff')

dst_ds = driver.Create(classif_name, ncols,nlines, 2, gdal.GDT_UInt16)

dst_ds.SetGeoTransform(GeoTransform)

dst_ds.SetProjection(Projection)

Find the most frequent appearing species and its frequency for each

pixel

for i in range(0,nlines,y_block_size):

 if i + y_block_size < nlines: # Check for size consistency in Y

 lines = y_block_size

67

 else:

 lines = nlines - i

 for j in range(0,ncols,x_block_size): # Check for size consistency in X

 if j + x_block_size < ncols:

 cols = x_block_size

 else:

 cols = ncols - j

 # Load the data

 Xb = sp.empty((cols*lines,d))

 for ind in range(d):

 Xb[:,ind] = raster.GetRasterBand(ind+1).ReadAsArray(j, i, cols,

lines).reshape(cols*lines)

 # Do the prediction

 if mask is None:

 yp = mode(Xb,axis=1)

 else:

 mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, cols,

lines).reshape(cols*lines)

 t= sp.where(mask_temp>0)[0]

 yp=sp.zeros((cols*lines,))

 fr=sp.zeros((cols*lines,))

 if t.size>0:

 yp[t] = mode(Xb[t,:],axis=1)[0] # the most frequent

appearing species

 fr[t] = mode(Xb[t,:],axis=1)[1] # its frequency

 out = dst_ds.GetRasterBand(1)

 out.WriteArray(yp.reshape(lines,cols),j,i)

 out.FlushCache()

 out = dst_ds.GetRasterBand(2)

 out.WriteArray(fr.reshape(lines,cols),j,i)

 out.FlushCache()

 del Xb,yp,fr

Clean/Close variables

raster = None

dst_ds = None

The following box presents the main part of the implemented SFFS algorithm

(forward_selection_sffs.py):

def forward_selection_sffs(self,x,y,delta=0.1,maxvar=None,v=5,ncpus=None):

 """ Function that selects the most discriminative variables according

 to a sequential floating forward search method (SFFS)

 Inputs:

 x,y: the training samples and their labels

 delta: the minimal improvement in percentage when a variable

 is added to the pool, the algorithm stops if the improvement is

 lower than delta. Default value 0.1%

 maxvar: maximum number of extracted variables. Default value:

 20% of the original number of features

 v: number of folds for the cross-validation.

 Outputs:

 ids: the selected subset of features for SFFS method

 OA: the accuracy estimated for each subset ids by v-fold cv for

 SFFS method

68

 """

 ## Get some information from the variable

 C = int(y.max(0)); # Number of classes

 n = x.shape[0] # Number of samples

 d = x.shape[1] # Number of variables

 if ncpus is None:

 ncpus=mp.cpu_count()# Get the number of core

 ## Initialization

 r=0 # Initialization of the counter

 r1=0

 variable = sp.arange(d) # At step zero: d variables available

 variable1 = sp.arange(d)

 ids=[] # and no selected variable

 ids1=[]

 OA=[] # list of the evolution the OA estimation

 OA1=[]

 if maxvar is None:

 maxvar = sp.floor(d/5) # Select at max 20 % of the original number

of variables

 cv=CV() # Initialize the CV sets

 cv.split_data_class(y,v=5) # Generate split indices

for the data

 ## Pre-update the models

 model_pre_cv = []

 for i in range(v):

 model_pre_cv.append(GMM(size=C,d=d))# List of updated GMM models

 X,Y=x[cv.iT[i],:], y[cv.iT[i]]

 nu = float(Y.size)

 for j in range(C): #Update the model for each

class

 k = sp.where(Y==(j+1))[0]

 nu_c = float(k.size)

 mean_t = sp.mean(X[k,:],axis=0)

 cov_t = sp.cov(X[k,:],bias=1,rowvar=0)

 model_pre_cv[i].ni[j] = self.ni[j]-nu_c

 model_pre_cv[i].prop[j]= model_pre_cv[i].ni[j]/(n-nu)

 model_pre_cv[i].mean[j,:] = (self.ni[j]*self.mean[j,:]-

nu_c*mean_t)/(self.ni[j]-nu_c)

 model_pre_cv[i].cov[j,:] = (self.ni[j]*self.cov[j,:,:] -

nu_c*cov_t - nu_c*self.ni[j]/model_pre_cv[i].ni[j]*sp.outer(self.mean[j,:]-

mean_t,self.mean[j,:]-mean_t))/model_pre_cv[i].ni[j]

 del k,nu_c,mean_t,cov_t

 del X,Y,nu

 ## Start the sequential forward floating search

 while (r<maxvar and len(variable)>0):

 # Step 1, SFFS inclusion the most significant feature,

initialization with two the most significant features

 err = sp.zeros(variable.size)

 pool = mp.Pool(processes=ncpus)

 processes = [pool.apply_async(compute_v_cv_gmm,

args=(variable,model_pre_cv[i],x[cv.iT[i],:],y[cv.iT[i]],ids)) for i in

xrange(v)]

 pool.close()

 pool.join()

 for p in processes:

 err += p.get()

69

 err /= v

 del processes,pool

 ## Select the variable that provides the highest loocv

 t = sp.argmax(err)

 OA.append(err[t])

 ids.append(variable[t])

 variable = sp.delete(variable,t)

 r += 1

 # Step 2: Conditional Exclusion

 if r>2:

 # The least significant feature in the subset ids

 worst_feat, worst_feat_val, crit_func_max =

find_worst_feature(model_pre_cv,x,y,cv,ids,OA,v)

 if worst_feat_val != None: # and worst_feat != (r-1):

 variable = sp.append(variable,ids[worst_feat])

 del ids[worst_feat]

 r -= 1

 condition = True # Go to step 3 if r is higher than 2

 if r == 2:

 OA[r-1] = crit_func_max

 del OA[r]

 else:

 condition = False # If worst feature value doesn't exist

got to step 1

 # Step 3

 while (r>2 and condition):

 # The least significant feature in the subset ids

 worst_feat1, worst_feat_val1, crit_func_max1 =

find_worst_feature(model_pre_cv,x,y,cv,ids,OA,v,r)

 if worst_feat_val1 != None:

 variable = sp.append(variable,ids[worst_feat1])

 del ids[worst_feat1]

 r -= 1

 crit_func_max = crit_func_max1

 if r == 2:

 OA[r-1] = crit_func_max

 del OA[r:]

 else:

 OA[r-1] = crit_func_max

 del OA[r:]

 condition = False # If worst feature value doesn't exist

got to step 1

 ## Return the final values

 return ids,OA

The following function, find_worst_feature.py, is used within the previous SFFS algorithm

to find the worst feature from the set of original features.

def find_worst_feature(model_cv,x,y,cv,ids,oa,v,ncpus=None):

 """ Function that finds the least significant feature in the subset of

 features ids.

 Inputs:

 model_cv: contains the models built with all the features

 x,y: the training samples and their labels (out of all

 referenced pixels)

70

 ids: the subset of the features

 cv: contains training samples indices for training and testing

 each model, cv.iT contains indices for testing each model

 oa: the accuracy estimated for each subset ids by v-fold cv

 v: number of folds for the cross-validation

 Output:

 worst_feat: the indice of the worst feature in the subset ids

 worst_feat_val: the value of the worst feature

 crit_func_max: the new overall accuracy estimated for ids

 without worst feature, if worst feature exists, otherwise it

 will not be changed

 Used in GMM.forward_selection_sffs()

 """

 r = len(ids)

 if ncpus is None:

 ncpus=mp.cpu_count() # Get the number of core

 worst_feat_val = None

 worst_feat = None

 crit_func_eval = []

 for i in range(0,len(ids)):

 ids_i = sp.delete(ids,i)

 pool = mp.Pool(processes=ncpus)

 processes = [pool.apply_async(compute_v_cv_gmm_sffs,

args=(model_cv[j],x[cv.iT[j],:],y[cv.iT[j]],ids_i)) for j in

xrange(v)]

 pool.close()

 pool.join()

 crit_func_eval_i = 0

 for p in processes:

 crit_func_eval_i += p.get()

 crit_func_eval_i /= v

 crit_func_eval.append(crit_func_eval_i)

 del processes,pool

 crit_func_eval = sp.asarray(crit_func_eval)

 t1 = sp.argmax(crit_func_eval) # get the indice of the

maximum of loocv

 crit_func_eval_max = crit_func_eval[t1] # add the value

to loo

 crit_func_max = oa[r-2]

 if crit_func_eval_max > crit_func_max:

 worst_feat, crit_func_max = t1, crit_func_eval_max

 worst_feat_val = ids[worst_feat]

 return worst_feat, worst_feat_val, crit_func_max

71

Appendix 3
The results for years 2011, 2012 and 2014 after applying function find_optimal_lamda.py are

presented in Figures A3.1, A3.2 and A3.3:

Figure A3.1. Histograms for Generalized and Ordinary Cross-Validation errors for different values of λ
for year 2011

Figure A3.2. Histograms for Generalized and Ordinary Cross-Validation errors for different values of λ
for year 2012

Figure A3.3. Histograms for Generalized and Ordinary Cross-Validation errors for different values of λ

for year 2014

72

The classification results obtained for years 2011, 2012 and 2014 are presented in Tables

A3.1, A3.2 and A3.3.

Level 1 (classification based on 2 classes)
 NDVI (12 features) SB (48 features) SB+NDVI (60 features)
 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

NPFS_sfs

NPFS_sffs

RF

SVM

97.7 ± 0.01

97.7 ± 0.01

98.6 ± 0.00

98.8 ± 0.00

94.5 ± 0.05

94.6 ± 0.03

96.6 ± 0.02

97.1 ± 0.02

97.3 ± 0.01

97.8 ± 0.01

97.6 ± 0.01

99.5 ± 0.00

93.7 ± 0.05

94.8 ± 0.04

94.3 ± 0.04

98.7 ± 0.01

98.0 ± 0.01

98.4 ± 0.01

97.9 ± 0.01

99.6 ± 0.00

95.2 ± 0.05

96.2 ± 0.03

95.0 ± 0.05

99.0 ± 0.01

Level 2 (classification based on 4 classes)
 NDVI (12 features) SB (48 features) SB+NDVI (60 features)

 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

95.1 ± 0.01

95.4 ± 0.01

96.5 ± 0.01

97.0 ± 0.01

91.5 ± 0.04

92.1 ± 0.04

94.0 ± 0.03

94.8 ± 0.03

96.3 ± 0.01

96.5 ± 0.01

95.7 ± 0.01

97.6 ± 0.01

93.7 ± 0.04

94.0 ± 0.03

92.6 ± 0.04

95.9 ± 0.03

96.3 ± 0.02

96.5 ± 0.01

96.8 ± 0.01

97.9 ± 0.01

93.7 ± 0.05

94.0 ± 0.02

94.5 ± 0.04

96.4 ± 0.03

Level 3 (classification based on 14 classes)
 NDVI (12 features) SB (48 features) SB+NDVI (60 features)
 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

84.8 ± 0.05

85.6 ± 0.05

86.4 ± 0.03

89.7 ± 0.03

83.1 ± 0.06

83.9 ± 0.06

84.9 ± 0.04

88.6 ± 0.03

90.4 ± 0.04

90.3 ± 0.04

90.9 ± 0.03

95.3 ± 0.01

89.4 ± 0.05

89.2 ± 0.06

89.9 ± 0.03

94.8 ± 0.01

90.3 ± 0.03

90.4 ± 0.03

91.6 ± 0.02

96.2 ± 0.01

89.2 ± 0.04

89.3 ± 0.04

90.7 ± 0.02

95.8 ± 0.01

Table A3.1. Overall accuracy and Kappa statistics for three defined levels of classification using NDVI
indices, spectral bands (SB) and NDVI indices and spectral bands together for the year 2011. NPFS_sfs
denotes NPFS GMM based classifier computed with a set of features that were chosen using standard
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over
the 50 repetitions in percentages. The best results for each level are reported in bold face.

73

Level 1 (classification based on 2 classes)
 NDVI (13 features) SB (52 features) SB+NDVI (65 features)

 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

97.0 ± 0.01

96.8 ± 0.01

99.4 ± 0.00

99.3 ± 0.00

92.9 ± 0.04

92.2 ± 0.06

98.5 ± 0.01

98.3 ± 0.01

98.3 ± 0.01

98.6 ± 0.00

99.3 ± 0.00

99.7 ± 0.00

95.9 ± 0.03

96.7 ± 0.02

98.4 ± 0.01

99.2 ± 0.00

98.4 ± 0.01

98.8 ± 0.00

99.4 ± 0.00

99.6 ± 0.00

96.1 ± 0.03

97.1 ± 0.02

98.6 ± 0.01

99.1 ± 0.00

Level 2 (classification based on 4 classes)

 NDVI (13 features) SB (52 features) SB+NDVI (65 features)

 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

95.8 ± 0.01

95.7 ± 0.01

97.8 ± 0.01

97.6 ± 0.01

92.8 ± 0.03

92.5 ± 0.03

96.2 ± 0.02

95.9 ± 0.02

97.1 ± 0.01

97.2 ± 0.01

98.1 ± 0.00

99.0 ± 0.00

94.9 ± 0.02

95.2 ± 0.02

96.8 ± 0.02

98.2 ± 0.01

97.4 ± 0.01

97.8 ± 0.01

98.5 ± 0.01

98.9 ± 0.00

95.5 ± 0.03

96.2 ± 0.02

97.4 ± 0.02

98.1 ± 0.01

Level 3 (classification based on 14 classes)
 NDVI (13 features) SB (52 features) SB+NDVI (65 features)
 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

87.4 ± 0.03

86.6 ± 0.03

89.3 ± 0.02

90.2 ± 0.02

86.0 ± 0.03

85.1 ± 0.03

88.1 ± 0.03

89.1 ± 0.02

91.4 ± 0.03

91.8 ± 0.03

94.4 ± 0.04

97.9 ± 0.01

90.5 ± 0.03

90.8 ± 0.04

93.7 ± 0.05

97.6 ± 0.01

91.4 ± 0.03

92.1 ± 0.04

94.8 ± 0.02

98.0 ± 0.01

90.4 ± 0.03

91.3 ± 0.04

94.2 ± 0.03

97.7 ± 0.01

Table A3.2. Overall accuracy and Kappa statistics for three defined levels of classification using NDVI
indices, spectral bands (SB) and NDVI indices and spectral bands together for the year 2012. NPFS_sfs
denotes NPFS GMM based classifier computed with a set of features that were chosen using standard
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over
the 50 repetitions in percentages. The best results for each level are reported in bold face.

74

Level 1 (classification based on 2 classes)
 NDVI (15 features) SB (60 features) SB+NDVI (75 features)

 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

94.5 ± 0.02

94.0 ± 0.03

97.8 ± 0.01

98.5 ± 0.00

86.8 ± 0.12

85.3 ± 0.19

94.8 ± 0.03

96.4 ± 0.02

97.7 ± 0.01

98.2 ± 0.01

98.6 ± 0.00

99.5 ± 0.00

94.6 ± 0.05

95.6 ± 0.03

96.6 ± 0.03

98.8 ± 0.01

97.8 ± 0.01

98.2 ± 0.01

98.6 ± 0.00

99.6 ± 0.00

94.9 ± 0.05

95.6 ± 0.03

96.8 ± 0.02

99.1 ± 0.01

Level 2 (classification based on 4 classes)

 NDVI (15 features) SB (60 features) SB+NDVI (75 features)

 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

91.7 ± 0.02

91.2 ± 0.02

95.4 ± 0.01

97.2 ± 0.01

85.6 ± 0.06

84.8 ± 0.07

92.1 ± 0.04

95.2 ± 0.02

96.6 ± 0.01

97.4 ± 0.01

97.5 ± 0.01

98.8 ± 0.00

94.2 ± 0.04

95.5 ± 0.02

95.7 ± 0.02

98.0 ± 0.01

97.0 ± 0.01

97.2 ± 0.01

97.7 ± 0.01

98.7 ± 0.00

94.9 ± 0.04

95.1 ± 0.02

96.0 ± 0.02

97.8 ± 0.01

Level 3 (classification based on 14 classes)
 NDVI (15 features) SB (60 features) SB+NDVI (75 features)
 OA (%) Kappa OA (%) Kappa OA (%) Kappa

NPFS_sfs

NPFS_sffs

RF

SVM

89.8 ± 0.02

89.1 ± 0.02

91.9 ± 0.01

94.7 ± 0.01

88.6 ± 0.03

87.9 ± 0.03

91.0 ± 0.01

94.1 ± 0.01

94.7 ± 0.01

94.6 ± 0.02

95.9 ± 0.01

98.6 ± 0.00

94.1 ± 0.02

94.0 ± 0.03

95.5 ± 0.02

98.4 ± 0.00

94.8 ± 0.01

94.7 ± 0.01

95.8 ± 0.01

98.8 ± 0.00

94.2 ± 0.02

94.1 ± 0.01

95.3 ± 0.01

98.6 ± 0.00

Table A3.3. Overall accuracy and Kappa statistics for three defined levels of classification using NDVI
indices, spectral bands (SB) and NDVI indices and spectral bands together for the year 2014. NPFS_sfs
denotes NPFS GMM based classifier computed with a set of features that were chosen using standard
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over
the 50 repetitions in percentages. The best results for each level are reported in bold face.

75

The confusion matrices obtained for year 2011 are presented in Tables A3.4-A3.9.

 Predicted class

Actual class Conifer Broadleaf
Conifer 94.02 5.98

Broadleaf 1.20 98.80

Table A3.4. Confusion matrix for level 1, year 2011. Classification was based on spectral bands and
GMM classifier. The results are computed and averaged over 50 repetitions and presented in
percentages.

 Predicted class

Actual class Conifer Broadleaf
Conifer 98.84 1.16

Broadleaf 0.26 99.74

Table A3.5. Confusion matrix for level 1, year 2011. Classification was based on spectral bands and SVM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.55 0.02 0.38 0.05

Evergreen 0.24 98.24 1.47 0.06

Pine 1.59 0.14 92.41 5.86
Other conifer 1.62 0.00 14.65 83.73

Table A3.6. Confusion matrix for level 2, year 2011. Classification was based on spectral bands and
GMM classifier. The results are computed and averaged over 50 repetitions and presented in percentages

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.95 0.00 0.05 0.00

Evergreen 0.65 98.71 0.65 0.00

Pine 1.28 0.00 95.54 3.19

Other conifer 2.81 0.00 9.68 87.51

Table A3.7. Confusion matrix for level 2, year 2011. Classification was based on spectral bands and SVM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

76

Predicted class

Actual class
Silver

fir
Oak

Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 93.84 0.80 1.44 3.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.08

Oak 0.00 94.52 0.48 0.14 2.71 0.43 0.00 0.95 0.43 0.05 0.00 0.14 0.14 0.00

Black pine 4.14 5.00 76.71 6.00 0.00 0.43 4.86 0.14 1.00 0.00 0.14 1.43 0.00 0.14

Douglas fir 23.33 3.17 3.33 45.5 0.00 0.00 5.67 0.00 0.00 0.00 0.17 17.17 0.00 1.67

Silver birch 0.00 2.64 0.00 0.00 96.08 0.88 0.00 0.08 0.32 0.00 0.00 0.00 0.00 0.00

European
ash

0.00 14.86 0.00 0.00 0.86 79.29 0.00 0.43 4.29 0.29 0.00 0.00 0.00 0.00

Maritime
pine

0.00 0.00 4.86 6.14 0.00 0.00 77.14 0.14 0.00 0.00 0.00 8.14 0.00 3.57

Black locust 0.00 30.67 0.17 0.00 0.00 0.50 0.00 65.33 3.33 0.00 0.00 0.00 0.00 0.00

Aspen 0.00 2.26 0.00 0.00 0.37 0.00 0.00 0.11 97.26 0.00 0.00 0.00 0.00 0.00

Red oak 0.00 3.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 96.82 0.00 0.00 0.00 0.00

Eucalyptus 0.00 0.06 0.00 0.24 0.00 0.00 0.00 0.00 0.06 0.00 99.00 0.06 0.06 0.53

Corsican
pine

0.86 1.71 1.71 18.43 0.00 0.00 2.71 0.00 0.29 0.00 0.71 70.14 0.00 3.43

Willow 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00 2.46 0.00 0.00 0.00 95.85 0.31

Austrian
black pine

0.00 0.00 0.00 0.21 0.00 0.00 1.24 0.00 0.00 0.00 0.48 0.62 0.00 97.45

Table A3.8. Confusion matrix for level 3, year 2011. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over

50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

77

Predicted class

Actual class Silver fir Oak
Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 96.48 0.40 0.80 2.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 96.33 0.00 0.00 2.48 0.38 0.00 0.76 0.00 0.00 0.00 0.05 0.00 0.00

Black pine 0.00 4.71 89.57 1.43 0.00 0.29 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Douglas fir 18.00 1.83 0.33 55.17 0.00 0.00 9.00 0.00 0.00 0.00 0.00 15.67 0.00 0.00

Silver birch 0.00 1.60 0.00 0.00 98.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

European
ash

0.00 4.57 0.00 0.00 0.86 94.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maritime
pine

0.00 0.00 5.29 1.43 0.00 0.00 89.86 0.00 0.00 0.00 0.00 3.43 0.00 0.00

Black locust 0.00 5.17 0.00 0.00 0.00 0.00 0.00 94.33 0.50 0.00 0.00 0.00 0.00 0.00

Aspen 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 99.40 0.00 0.00 0.00 0.00 0.00

Red oak 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.59 0.00 0.00 0.00 0.00

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 98.88 0.00 0.65 0.06

Corsican
pine

2.57 1.00 0.43 13.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 78.00 0.00 0.00

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 99.54 0.00

Austrian
black pine

0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 99.93

Table A3.9. Confusion matrix for level 3, year 2011. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over 50
repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

78

The confusion matrices obtained for year 2012 are presented in Tables A3.10-A3.15.

 Predicted class

Actual class Conifer Broadleaf
Conifer 94.93 5.07

Broadleaf 0.22 99.78

Table A3.10. Confusion matrix for level 1, year 2012. Classification was based on spectral bands and
GMM classifier. The results are computed and averaged over 50 repetitions and presented in
percentages.

 Predicted class

Actual class Conifer Broadleaf
Conifer 99.03 0.97

Broadleaf 0.06 99.94

Table A3.11. Confusion matrix level 1, year 2012. Classification was based on spectral bands and SVM
classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.90 0.02 0.04 0.04

Evergreen 0.59 99.06 0.35 0.00

Pine 4.06 0.14 91.59 4.20
Other conifer 3.46 0.00 6.92 89.62

Table A3.12. Confusion matrix for level 2, year 2012. Classification was based on spectral bands and
GMM classifier. The results are computed and averaged over 50 repetitions and presented in percentages

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.97 0.00 0.03 0.00

Evergreen 0.00 100.00 0.00 0.00

Pine 1.01 0.00 98.17 0.81

Other conifer 1.68 0.00 4.59 93.73

Table A3.13. Confusion matrix for level 2, year 2012. Classification was based on spectral bands and
SVM classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

79

Predicted class

Actual class
Silver

fir
Oak

Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 93.20 1.04 0.48 5.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00

Oak 0.00 95.19 0.38 0.14 1.14 0.52 0.00 0.86 1.67 0.05 0.00 0.00 0.05 0.00

Black pine 3.14 8.71 77.57 4.00 0.00 0.00 1.43 0.00 0.00 0.14 0.00 5.00 0.00 0.00

Douglas fir 19.33 3.67 3.83 61.83 0.00 0.00 1.33 0.00 0.33 0.00 0.00 9.67 0.00 0.00

Silver birch 0.00 3.92 0.00 0.00 95.60 0.08 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00

European
ash

0.00 14.57 0.00 0.00 2.00 78.14 0.00 0.14 5.14 0.00 0.00 0.00 0.00 0.00

Maritime
pine

0.57 0.29 4.86 4.14 0.00 0.00 85.00 0.00 0.00 0.00 0.00 5.00 0.00 0.14

Black locust 0.00 18.33 0.00 0.00 0.00 1.00 0.00 78.17 1.50 0.17 0.00 0.00 0.83 0.00

Aspen 0.00 4.63 0.00 0.00 0.06 0.06 0.00 0.10 95.14 0.00 0.00 0.00 0.00 0.00

Red oak 0.00 1.94 0.00 0.00 0.00 0.00 0.00 0.00 0.18 97.88 0.00 0.00 0.00 0.00

Eucalyptus 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 99.65 0.00 0.18 0.00

Corsican
pine

1.43 1.71 3.00 8.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 84.29 0.00 0.00

Willow 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 4.15 0.00 0.31 0.00 94.92 0.00

Austrian
black pine

0.21 0.41 2.00 2.00 0.00 0.00 0.97 0.00 0.55 0.00 2.62 0.34 0.21 90.69

Table A3.14. Confusion matrix for level 3, year 2012. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over

50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

80

Predicted class

Actual class Silver fir Oak
Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 96.32 0.40 0.80 2.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 98.38 0.10 0.00 0.38 0.90 0.00 0.19 0.05 0.00 0.00 0.00 0.00 0.00

Black pine 0.00 4.71 93.57 0.00 0.00 0.00 1.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Douglas fir 10.67 0.67 2.17 84.67 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00

Silver birch 0.00 2.16 0.00 0.00 97.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

European
ash

0.00 1.71 0.00 0.00 1.14 97.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maritime
pine

0.00 0.00 4.00 0.86 0.00 0.00 92.00 0.00 0.00 0.00 0.00 3.14 0.00 0.00

Black locust 0.00 0.67 0.00 0.00 0.00 0.00 0.00 99.33 0.00 0.00 0.00 0.00 0.00 0.00

Aspen 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 99.43 0.00 0.00 0.00 0.00 0.00

Red oak 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.88 0.00 0.00 0.00 0.00

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

Corsican
pine

0.00 0.00 2.29 0.29 0.00 0.00 1.14 0.00 0.00 0.00 0.00 96.29 0.00 0.00

Willow 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 99.70 0.00

Austrian
black pine

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Table A3.15. Confusion matrix for level 3, year 2012. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over
50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

81

The confusion matrices obtained for year 2014 are presented in Tables A3.16-A3.21

 Predicted class

Actual class Conifer Broadleaf
Conifer 95.43 4.57

Broadleaf 1.25 98.75

Table A3.16. Confusion matrix for level 1, year 2014. Classification was based on spectral bands and
GMM classifier. The results are computed and averaged over 50 repetitions and presented in
percentages.

 Predicted class

Actual class Conifer Broadleaf
Conifer 99.31 0.69

Broadleaf 0.41 99.59

Table A3.17. Confusion matrix for level 1, year 2014. Classification was based on spectral bands and
SVM classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.78 0.00 0.20 0.02

Evergreen 1.65 95.35 2.41 0.59

Pine 4.20 0.78 91.51 3.51
Other conifer 3.41 0.05 6.86 89.68

Table A3.18. Confusion matrix for level 2, year 2014. Classification was based on spectral bands and
GMM classifier. The results are computed and averaged over 50 repetitions and presented in percentages

Predicted class

Actual class Deciduous Evergreen Pine Other conifer
Deciduous 99.88 0.00 0.12 0.00

Evergreen 0.18 97.06 2.76 0.00

Pine 0.43 0.20 98.93 0.43

Other conifer 1.24 0.11 4.49 94.16

Table A3.19. Confusion matrix for level 2, year 2014. Classification was based on spectral bands and
SVM classifier. The results are computed and averaged over 50 repetitions and presented in percentages.

82

Predicted class

Actual class
Silver

fir
Oak

Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 95.68 0.00 1.04 2.72 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.08 0.00 0.24

Oak 0.00 97.90 0.00 0.05 0.52 0.62 0.00 0.38 0.1 0.14 0.05 0.24 0.00 0.00

Black pine 2.29 1.14 85.29 10.71 0.29 0.00 0.14 0.00 0.00 0.00 0.14 0.00 0.00 0.00

Douglas fir 16.17 3.00 1.17 71.17 0.00 0.00 2.50 0.00 1.17 0.00 0.50 4.33 0.00 0.00

Silver birch 0.00 3.52 0.00 0.00 95.68 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00

European
ash

0.00 5.29 0.00 0.29 0.00 91.57 0.00 0.71 1.43 0.00 0.71 0.00 0.00 0.00

Maritime
pine

0.00 2.71 3.00 3.29 0.00 0.00 91.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Black locust 0.00 15.33 0.00 0.50 0.00 5.67 0.00 77.33 0.50 0.00 0.50 0.00 0.00 0.17

Aspen 0.00 1.09 0.00 0.00 0.00 0.00 0.00 0.00 98.91 0.00 0.00 0.00 0.00 0.00

Red oak 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.06 0.00 0.00 0.00 0.00

Eucalyptus 0.12 0.12 0.06 0.06 0.00 0.06 0.06 0.06 0.82 0.00 97.76 0.00 0.24 0.65

Corsican
pine

0.43 5.00 0.43 3.86 0.00 0.14 0.00 0.00 0.00 0.00 0.00 90.14 0.00 0.00

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 99.85 0.00

Austrian
black pine

0.14 0.07 0.07 0.69 0.00 0.00 0.00 0.00 0.62 0.00 4.21 0.07 0.14 94.00

Table A3.20. Confusion matrix for level 3, year 2014. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over

50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

83

Predicted class

Actual class Silver fir Oak
Black
pine

Douglas
fir

Silver
birch

European
ash

Maritime
pine

Black
locust

Aspen Red oak Eucalyptus
Corsican

pine
Willow

Austrian
black pine

Silver fir 98.72 0.00 1.20 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 98.71 0.00 0.00 0.00 0.81 0.00 0.10 0.00 0.00 0.00 0.38 0.00 0.00

Black pine 3.14 0.00 94.57 2.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Douglas fir 9.83 2.67 0.50 82.50 0.00 0.00 0.33 0.00 0.00 0.00 0.00 4.17 0.00 0.00

Silver birch 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

European
ash

0.00 2.57 0.00 0.00 0.00 97.29 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00

Maritime
pine

0.00 0.71 0.43 0.00 0.00 0.00 98.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Black locust 0.00 1.33 0.00 0.00 0.00 0.00 0.00 98.87 0.00 0.00 0.00 0.00 0.00 0.00

Aspen 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

Red oak 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.71 0.00 0.00 0.29

Corsican
pine

0.00 0.43 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.43 0.00 0.00

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 99.85 0.00

Austrian
black pine

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 0.00 0.00 98.90

Table A3.21. Confusion matrix for level 3, year 2014. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over
50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour.

84

The most frequently selected dates for year 2011 for each level are presented in Figures A3.4,
A3.5 and A3.6.

Figure A3.4. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for
level 1 and year 2011. The selection rate is 1 when the image is selected systematically (50/50).

Figure A3.5. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for
level 2 and year 2011. The selection rate is 1 when the image is selected systematically (50/50).

85

Figure A3.6. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for

level 3 and year 2011. The selection rate is 1 when the image is selected systematically (50/50).

The most frequently selected dates for year 2012 for each level are presented in Figures A3.7,
A3.8 and A3.9.

Figure A3.7. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for
level 1 and year 2012. The selection rate is 1 when the image is selected systematically (50/50).

86

Figure A3.8. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for

level 2 and year 2012. The selection rate is 1 when the image is selected systematically (50/50).

Figure A3.9. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for
level 3 and year 2012. The selection rate is 1 when the image is selected systematically (50/50).

87

The most frequently selected dates for year 2014 for each level are presented in Figures

A3.10, A3.11 and A3.12.

Figure A3.10. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for
level 1 and year 2014. The selection rate is 1 when the image is selected systematically (50/50).

Figure A3.11. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for

level 2 and year 2014. The selection rate is 1 when the image is selected systematically (50/50).

88

Figure A3.12. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for

level 3 and year 2014. The selection rate is 1 when the image is selected systematically (50/50).

89

Appendix 4

Some simulations were necessary to estimate the influence of the regularization parameter on
SITS smoothing and to find the optimal value for regularization parameter λ. Signal without
noise x is generated as a sum of sine and cosine functions. Afterwards, white noise with the
variance of 0.8 was added to the original signal x to get noisy signal samples z. As a
consequence, the noisy signal z will have the same mean as signal x, but also a different
variance.

Basic result of the simulations was that with the increase of the smoothing parameter
λ, the curve will get smoother (Figure A4.1).

 Figure A4.1. The influence of the regularization parameter on smoothing of the
simulated data with a second-order penalty (d=2) for several values of the parameter λ

Figure A4.2 illustrates Generalized and Ordinary Cross-Validation errors for simulated data
for different values of λ.

90

Figure A4.2. Generalized and Ordinary Cross-Validation errors for different values of λ

The optimal values and errors for smoothing parameter λ using Generalized and
Ordinary Cross-Validation (Figure A4.1) and simulated data (Figure A4.2) were:

59.0)(,00035.0

57.0)(,00017.0

==

==

OCVOCV

GCVGCV

OCV

GCV

λλ

λλ

When comparing smoothing results obtained using optimal λGCV and λOCV (Figure A4.3),
Generalized Cross-Validation method has a lower error, but in general smoothing results
obtained by both methods are almost the same.

Figure A4.3 Smoothing the simulated data with GCVλ (on the left) and OCVλ (on the right)

91

References

[1] C. B. Field, V. R. Barros, K. Mach and M. Mastrandrea, "Climate change 2014:
impacts, adaptation, and vulnerability," 639 Contribution of Working Group II to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 640,
2014.

[2] Food and Agriculture Organization of the United Nations, "Global forest resources
assessment: Main report", 2010.

[3] Y. Xie, Z. Sha and M. Yu, "Remote sensing imagery in vegetation mapping: a
review," Journal of Plant Ecology, vol. 1, pp. 9-23, 2008.

[4] D. S. Boyd and F. M. Danson, "Satellite remote sensing of forest resources: three
decades of research development," Progress in Physical Geography, vol. 29, no. 1,
pp. 1-26, 2005.

[5] P. M. Mather and M. Koch, Computer Processing of Remotely-Sensed Images: An

Introduction, Fourth edition, Wiley Blackwell, 2011

[6] P. Meyer, K. Staenzb and K. I. Ittena, "Semi-automated procedures for tree
species identification in high spatial resolution data from digitalized colour infrared-
aerial photography," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 51,
no. 1, pp. 5-16, 1996.

[7] A. Carleer and E. Wolff, “Exploitation of very high resolution satellite data for
tree species identification,” Photogrammetric Engineering & Remote Sensing, vol. 70,
no. 1, pp. 135 – 140, 2004.

[8] M. Immitzer, C. Atzberger, and T. Koukal, “Tree species classification with
random forest using very high spatial resolution 8-band worldview satellite data,”
Remote Sensing, vol. 4, no. 9, pp. 2661 – 2693, 2012.

[9] H. Nagendra, “Using remote sensing to assess biodiversity,” International Journal

of Remote Sensing, vol. 22, no. 12, pp. 2377–2400, 2001.

[10] M. Dalponte, L. Bruzzone, and D. Gianelle, “Tree species classification in the
southern alps based on the fusion of very high geometrical resolution
multispectral/hyperspectral images and lidar data,” Remote Sensing of Environment,
vol. 123, no. 0, pp. 258 – 270, 2012.

[11] A. Ghiyamat, H.Z.M. Shafri, G.A. Mahdiraji, A.R.M. Shariff, and S. Mansor,
“Hyperspectral discrimination of tree species with different classifications using
single- and multiple-endmember,” International Journal of Applied Earth

Observation and Geoinformation, vol. 23, no. 0, pp. 177 – 191, 2013.

[12] J.G. Mickelson, D.L. Civco, and J.A. Silander, “Delineating forest canopy
species in the northeasternunited states using multi-temporal tm imagery,”
Photogrammetric Engineering & Remote Sensing, vol. 64, no. 9, pp. 891 – 904, 1998.

92

[13] T. Key, T.A. Warner, J.B. McGraw, and M.A. Fajvan, “A comparison of
multispectral and multitemporal information in high spatial resolution imagery for
classification of individual tree species in a temperate hardwood forest,” Remote

Sensing of Environment, vol. 75, no. 1, pp. 100 – 112, 2001.

[14] R. A. Hill, A.K. Wilson, M. George, and S.A. Hinsley, “Mapping tree species in
temperate deciduous woodland using time-series multispectral data,” Applied

Vegetation Science, vol. 13, no. 1, pp. 86–99, 2010.

[15] P. J. Sellers, "Canopy reflectance, photosynthesis and transpiration. II. The role
of biophysics in the linearity of their interdependence," International Journal Remote

Sensing of Environment., vol. 6, pp. 1335–1372, 1987.

[16] J. Weier and D. Herring, "Measuring Vegetation (NDVI & EVI)," Earth

Observatory, NASA, USA, 2000.

[17] D. Sheeren, M. Fauvel, C. Planque, J. Willm and J. F. Dejoux, "Tree species
discrimination in temperate woodland using high spatial resolution Formosat-2 time
series," 8th IEEE International Workshop on the Analysis of Multitemporal Remote

Sensing Images, Annecy, France, 2015.

[18] C. Atzberger and P. H. C . Eilers, "Evaluating the effectiveness of smoothing
algorithms in the absence of ground reference measurements," International Journal

of Remote Sensing, vol. 32, no. 13, pp. 3689-3709, 2011.

[19] S. N. Goward, B. Markham, D. G. Dye, W. Dulaney, J. Yang, "Normalized
difference vegetation index measurements from the advanced very high resolution
radiometer," Remote Sensing of Environments, vol. 35, pp. 257-277, 1991.

[20] P. H. C. Eilers, "A Pefect Smoother," Analytical Chemistry, vol. 75, no. 14, pp.
3631-3636, 2003.

[21] A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by
simplified least squares procedures," Analytical Chemistry, vol. 36, pp. 1627-1639,
1964.

[22] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Springer series in statistics,
Springer, 2001.

[23] M. Fauvel, A. Zullo, and F. Ferraty, "Nonlinear parsimonius feature selection for
the classification of hyperspectral images," in 6th Workshop on Hyperspectral image

and signal processing: evolution in remote sensing, Lausanne, Switzerland, 2014.

[24] P. Pudil, J. Novovicova, and J. Kittler, "Floating search methods in feature
selection," Pattern Recognition Letters, vol. 15, pp. 1119-1125, 1994.

93

[25] S. B. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral
images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2,
pp. 484-495, 2007.

[26] A. W. Whitney, "A direct method of nonparametric measurement selection,"
IEEE Trans. Computers, vol. 20, pp. 1000-1003, 1971.

[27] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning (Adaptive computation and machine learning), The MIT Press, 2005.

[28] T. Marill and D. M. Green, "On the effectiveness of receptors in recognition
systems," IEEE Trans. Information Theory, vol. 9, pp. 11-17, 1963.

[29] A. K. Jain, R. P. W. Duin and J. Mao, "Statistical Pattern Recognition: A
Review," IEEE Transanction on Pattern Analysis and Machine Intelligence, vol. 22,
no. 1, 2000.

[30] A. K. Jain and D. Zongker, "Feature selection: Evaluation, application, and small
sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, pp. 153-158,
1997.

[31] M. Kudo and J. Sklansky, "Comparison of algoithms that select features for
patten classifiers," Pattern Recognition, vol. 33, pp. 25-41, 2000.

[32] A. R. Webb, Statistical Pattern Recognition, Second Edition, John Wiley &

Sons, 2003.

[33] M. C. Peel, B. L. Finlayson, and T. A. McMahon, "Updated world map of the
Köppen–Geiger climate classification," Hydrol. Earth Syst. Sci., vol. 11, pp. 1633-
1644, 2007.

[34] J. G. Boureau, "Manuel d’interprétation des photographies aériennes: application
aux milieux forestiers et naturels," Inventaire Forestier National, 267 p., 2008.

[35] O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A.
Meygret, "Correction of aerosol effects on multi-temporal images acquired with
constant viewing angles: Application to formosat-2 images," Remote Sensing of

Environment, vol. 112, no. 4, pp. 1689-1701, 2008.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine
learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830,
2011.

94

[37] J. B. Féret and G. P. Asner, "Tree species discrimination in tropical forests using
airborne imaging spectroscopy," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1,
2013.

[38] P. Somol, P. Pudil, Jana Novovicova and P. Paclik, "Adaptive floating search
methods in feature selection," Pattern Recognition Letter, vol. 20, pp. 1157-1163,
1999.

[39] E. Vyzas and R. Picard, "Offline and online recognition of emotion expression
from phys-iological data," In Emotion-Based Agent Architectures Workshop

(EBAA’99) at 3rd Int. Conf. on Autonomous Agents, pp. 135–142, Seattle, WA, USA,
1999.

[40] J. Healey and R. Picard, "Smartcar: Detecting driver stress," In Proc. of the 15th

Int. Conf. on Pattern Recognition (ICPR’2000), pp. 218–221, Barcelona, Spain, 2000.

[41] K. Wiltschi, A. Pinz and T. Lindeberg, "An automatic assessment scheme for
steel quality inspection," Machine Vision and Applications, vol. 12, pp. 113–128,
2000.

[42] J. Reunanen, "Overfitting in making comparisons between variable selection
methods," The Journal of Machine Learning Research, vol. 3, pp. 1371-1382, 2003.

[43] M. Immitzer, C. Atzberger and T. Kaukal, "Tree species classification with
Random Forest using high spatial resolution 8-band WorldView-2 satellite data,"
Remote Sensing, vol. 4., pp. 2661-2693, 2012.

