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Abstract 
 
Assessment and mapping of the tree species distribution is an important technical task for 
forest ecosystem services and habitat monitoring. Since traditional methods (e.g. field 
surveys) used for the mapping of the tree species tend to be time consuming, date lagged and 
too expensive, a technology of remote sensing might potentially offer a practical solution for 
the problem of tree species mapping, especially over large areas.  
 
The main purpose of this study was to investigate the potential of Formosat-2 multi-spectral 
image time series for classification of the tree species in temperate woodlands. Since 
phenological variations might increase spectral separability of the trees species, additional 
aim of the study was to assess the possibility of using multispectral-image time series as an 
alternative to hyper-spectral data for forest type mapping. Noise from the Formosat-2 images 
was removed with the Whittaker smoother algorithm, which performed quite well although 
some additional work might be needed during the selection of the optimal regularization 
parameter. Several supervised classification methods, Support Vector Machines (SVM), 
Random Forest (RF) and Gaussian Mixture Model (GMM), were used to discriminate tree 
species from the image time series. All of the classifiers performed reasonably well, with 
classification accuracies from 88.5 % to 99.2 % (Kappa statistic), although SVM model was 
the most accurate, while GMM was the most efficient in terms of computing time. High 
classification accuracy also indicated that the multi-spectral image time series and remote 
sensing might be a useful method for the mapping of tree species. 
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1 Introduction 

1.1 General introduction  

 
Forest is one of dominant terrestrial ecosystem types, providing essential services to the 
human society, e.g. wood production, climate control, habitat for animal and plant species, 
carbon sink, water, human recreation [1]. Since the total area under forests is vast, around 4 
billion hectares or 31% of the total land area [2], assessment of the forests current and future 
states is very important.  
 
To correctly estimate the forest state in one area it is necessary to first produce distribution 
map of the tree species in the study area. Traditionally, distributions of the species were 
estimated by ground based surveys during forest inventories. However, it is usually better to 
have tree species distribution maps already during the planning phases of the forest inventory 
in order to allocate resources and train ground based crews in time. Ground survey is still by 
far the most accurate and detailed way of forest monitoring, although it is very elaborate, 
time consuming, and expensive. One of the possible alternatives for consistent and 
continuous monitoring is to use remote sensing and automated image analysis techniques [3]. 
Therefore, remote sensing approach for mapping tree species has been researched for a very 
long time [4]. Nevertheless, accurate estimation of the tree species distributions from remote 
sensing data is still a very difficult problem, since there are many factors influencing spectral 
response of species, e.g. tree age, vegetation phase, tree vitality, presence or absence of the 
understory. 
 

1.2 Remote sensing and forest 

 
Remote sensing is a scientific discipline which analyses and interprets measurements of 
electromagnetic radiation (EMR) that is reflected from or omitted by a target and observed or 
recorded from a vantage point by an observer or instrument that is not in contact with the 
target. Remote sensing can be active or passive, depending on whether the acquired signal 
was transmitted from a natural source like the sun or it was emitted from an artificial source 
such as sensors. It is often used for earth observation, which is done by interpreting and 
understanding EMR measurements of objects on the Earth’s land, ocean or ice surfaces and 
which are usually made by satellite, together with making relationships between these 
measurements and the nature of phenomena on the Earth’s surface [5]. 
 
Several satellite sensors were launched to collect useful data from Earth's surface in the last 
decades. Satellite sensors have different spatial, spectral and temporal resolution depending 
on their function and orbit. The spatial resolution defines the minimum size of an object that 
can be detected in an image, which determines the pixel size of the images covering the Earth 
surface. The spectral resolution defines the ability of a satellite to distinguish between two 
neighbouring wavelengths. Therefore, it depends on the number of spectral bands of the 
image. Depending on the number of spectral bands, three types of images can be defined: 
panchromatic (one black-and-white band), multi-spectral images (approximately 3 to 7 
bands), and hyper-spectral images (over 100 bands). The higher the spectral resolution is, the 
higher will be the precision of the spectral signature of an object and it is likely that it will be 
well discriminated. The temporal resolution is the ability of a satellite sensor to revisit the 
same area after certain period of time. The temporal resolution is one of the most important  
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characteristics of the satellites for remote sensing environmental applications. In fact, it is 
necessary to monitor Earth’s surface changes or short time varying phenomena, caused 
mainly by human factors or natural evolution of vegetation. Furthermore, the number of 
acquisitions that could be exploited may be really small because of the bad weather 
conditions e.g. clouds or cloud shadows, which limit the view of the Earth's surface. 
Therefore, this can be the reason for not obtaining even one usable image over, for example, 
several months of acquisition time if the satellite has very low revisiting frequency. 
 
In the past, many attempts to discriminate the tree species were based on the spatial 
resolution of the data. Tree species classification was performed using aerial photography [6] 
or high spatial resolution imagery [7], [8]. However, the results showed a limited success 
with potentially high confusion rates [9]. With only few spectral bands in the multispectral 
images accuracy of the species discrimination is diminished. Therefore, several studies 
explored the ability of hyperspectral imagery to identify the tree species. Using LiDAR data 
or a combination of multiple sources [10], [11], much higher accuracies were obtained, but 
due to the limited availability and high cost of the hyperspectral imagery, the operational use 
of these data remains difficult. Thus, several studies have addressed the problem of tree 
species classification using satellite image time series (SITS). These studies were based on 
the assumption that phenological variations from the start of the growing season to the 
senescence should increase the spectral separability of the deciduous tree species [12], due to 
the dependence of vegetation multispectral reflectance on it’s phenological phases. However, 
most of the studies looking into SITS potential were based on Landsat time series composed 
of a limited number of acquisition dates, sometimes from different years, and with only 
partial coverage of the key phenological periods. Only few studies demonstrated the potential 
of dense SITS acquired through entire growing season, but all of them were based on 
airborne images [13], [14]. 
 
Currently, it is possible to obtain large dataset with very high temporal resolution using 
MODIS. However, the spatial resolution of these images is relatively small: 250m (and even 
500m or 1km), which is not enough to discriminate different tree species. Until this year the 
only satellite that could provide SITS with high spatial resolution is FORMOSAT-2. Main 
issue with this source is the high cost, which is the main reason for relatively few studies 
using FORMOSAT-2 images. In the future, there is a potential to use Sentinel-2 images to 
obtain SITS with high spatial resolution. This satellite will provide a global coverage of the 
Earth's land surface with high spatial resolution optical imagery and high temporal resolution 
(every 10 days with one satellite and 5 days with 2 satellites) and it will be free of charge. 
 
The red band (600 nm to 700 nm) and the near-infrared band (700 nm to 1100 nm) are the 
most commonly used to characterize the vegetation. From these bands, it is possible to create 
different indices of vegetation, or to estimate biophysical variables.  
 
Although there are several vegetation indices, one of the most widely used is the Normalized 
Difference Vegetation Index (NDVI) [15]. Advantages of the NDVI for monitoring various 
phenology phases of the vegetation during and between the seasons is that NDVI is very well 
correlated with the photosynthetic activity and chlorophyll contents, can be easily computed, 
and it is mostly independent from soil type and current climate conditions. Calculation of the 
NDVI is based on two properties of the leaf cells of the green plants: 1) chlorophyll pigment 
found in these cells strongly absorbs in the red and blue part of the visible light, while 
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reflecting most of the green, and 2) leaf cell structures reflect around 50% of the near-infrared 
light (700-1100 nm) that hits them (Figure 1.1). Therefore, presence of the plants is indicated 
by the reflection of near-infrared light, while plant vitality, if there are any plants present, is 
indicted by visible light absorption. 
 

NDVI is calculated from the visible (red) and near-infrared light reflected by vegetation using 

following equation: 

 
REDNIR

REDNIR
NDVI

++++

−−−−
====  (1.1) 

 

 
 

Figure 1.1. Basic principle of NDVI. The healthy vegetation absorbs more Red light (left) than the 
unhealthy vegetation (right). Source: http://earthobservatory.nasa.gov. 

 
From the following NDVI values vary from -1 to 1. Since the reflection in near-infrared band 
for green vegetation is always higher than in the red band, NDVI values for the vegetation are 
always higher than 0. Bare ground and water have very low reflectance in the near-infrared 
band and thus their NDVI values are lower or equal to 0.1. NDVI values from the interval 
[0.2 – 0.5] indicate the presence of sparse vegetation of grassland and shrubs. NDVI values 
higher than 0.5 indicate the presence of green leaves (values close to 1 are related to the high 
density of green leaves) [16].  Finally, it should be noted that NDVI is mostly stable for the 
conifer species, while it can vary for the broadleaf species. 
 

1.3 Working laboratory and study objectives  

 
My internship was done within the Joint Research Unit DYNAFOR, that is attached to the 
French National Institute for Agricultural Research (INRA). This public institute was 
established in 1946. and it is under the joint authority of the Ministries of Research and 
Agriculture. INRA is composed of 13 departments in order to complete all tasks that are 
entrusted to it.  
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DYNAFOR is a JMU (Joint Research Unit) which was established in 2003. Its mission is 
mainly part of the 6th research area of the INRA center of Toulouse. This unit brings together 
researchers from two INRA departments: SAD (Science pour l’Action et le Développement) 
and EFPA (Ecologie des Forêts, Prairies et milieux Aquatiques) with teaching-researchers 
from ENSAT (Ecole Nationale Supérieure Agronomique de Toulouse) integrated into the 
National Polytechnic Institute of Toulouse, and teaching-researchers from the EI Purpan 
(Ecole d’Ingénieurs de Purpan). DYNAFOR activities are focused on the sustainable 
management of forest resources and rural areas as part of landscape ecology. The main 
objective of DYNAFOR is to understand and model the relationships between ecological 
processes, biotechnical processes and socio-economic processes in the management of 
renewable natural resources. It addresses the current issues in rural and forest areas, induced 
by global changes that are affected together by the climate, the land use, the biodiversity and 
the human activities. Finally, another purpose of this JMU is to develop ecological 
engineering of rural areas so that they could ensure their sustainability and capacity for 
providing the products and services that are expected by the company. 
 
The organization of DYNAFOR is divided into three main areas:  
 

• Area 1: ecosystem services in landscape,  

• Area 2: data, space, geomatics and modelling, 

• Area 3: biodiversity of rural forests and natural environments.  
 

My work was mainly based on Area 2, with an objective to discriminate tree species from the 
multi-spectral satellite image time series (SITS) collected in the time period of four 
consecutive years (2011, 2012, 2013, 2014). In fact in this study the ability of mapping forest 
species using a dense high resolution multispectral Formosat-2 image time-series was 
explored. A couple of supervised classification methods were performed and compared in 
order to find the most convenient method for tree species discrimination. Feature selection 
algorithm was used to extract the most important features from SITS which represent the best 
dates for the tree species discrimination. Finally, the thematic maps were produced over the 
study area for each of the processing years. Thematic maps from different years were then 
compared to find the most accurate classified species and to assess the robustness of the 
classifications. This work was initiated by work [17]. It was assumed that phenological 
variations increase the spectral separability of the deciduous tree species. However, several 
parts from [17] needed to be improved. Thus, the main tasks of my work were to: 
 

I. Apply smoothing filter to SITS in order to reconstruct pixels contaminated with 
clouds and cloud shadows in the time series data. In the previous work [17], images 
that were affected by clouds or cloud shadows were not used for SITS creation. 
However, since the tree species discrimination was based on the assumption that 
phenological variations increase the spectral separability of the deciduous tree species 
it was very important to use all of the available images. Some of the images, affected 
by bad weather conditions and thus not used in the previous work [17], were acquired 
during key growing and senescing periods of the year, which may have limited 
discrimination potential of the study [17]. Therefore, it was expected that adding these 
images, after smoothing filter application, could significantly improve the 
identification of the most informative dates for the image acquisition. 
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II. Perform three supervised classification methods on smoothed SITS created for four 
years. Instead of using only NDVI indices as the spectral features, and in order to see 
if it is possible to get a better solution, classification was performed on SITS created 
from all of the spectral bands and from both NDVI indices and spectral bands 
together.  

 
III. Implement a new algorithm for feature selection, the Sequential Floating Forward 

Selection (SFFS), in order to improve the standard feature selection algorithm which 
was used in the study [17], the Sequential Forward Selection (SFS) algorithm. 

 
IV. Produce thematic maps for each year and compare the results in order to draw 

conclusions about the robustness of the applied classification methods and to find the 
spatial distribution of the tree species, which were the most frequently assigned to the 
same class for the consecutive years. 

 
During the internship period, I had interactions with a Master student Marc Lang and a PhD 
student Mailys Lopez, who worked in the same laboratory on the grassland classification 
using the same SITS.  
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2 Theoretical background 
 
This chapter presents a detailed description of the algorithms used for the purposes of this 
work. 
 

2.1 Background of smoothing filter 

 
High reliability of the analysed image time series is required for all applications, i.e. the 
image time series has to be closely related to the observed land surfaces [18]. However, this 
is not often the case since optical image time series are usually affected by clouds and cloud 
shadows which add noise to the recorded signal [19]. Therefore, the SITS needs to be 
smoothed in order to fill data gaps which appeared due to this noise.  

 
In this study, the smoothing of the image time series was performed by Whittaker smoother 
algorithm [20]. This algorithm is chosen because, compared to other  smoothing filters, e.g. 
[21], it gives continuous control over the smoothness, adapts automatically to the boundaries, 
deals well with missing values by introducing the vector containing 0 and 1 weights and 
gives automatic choice for the smoothing parameter due to the fast cross-validation.  
 

Basic Whittaker smoother algorithm, which assumes equally spaced data, is described in 
Section 2.1.1. Section 2.1.2 describes how basic algorithm can be modified to be applicable 
on unequally spaced data. The algorithm for selecting the optimal regularization parameter is 
presented in Section 2.1.3. 

 

2.1.1 Whittaker smoother for equally spaced data 

 
The following notations are used in Section 2.1. Each recorded pixel time series is denoted as 

N-dimensional vector NRz ∈ , where N is the number of  the time samples: 
 

 

















=

)(

)( 1

Ntz

tz

Mz  (2.1.1) 

 
Suppose this pixel is contaminated with noise. We can represent each noisy pixel sample as 

z(ti) = x(ti) + b(ti), where [ ]Ni ,...,1∈ , x(ti) is a pixel sample we want to retrieve from the 

noisy sample z(ti) and b is a white noise. Therefore our goal is to find the smooth pixel vector 
x: 

 
















=

)(

)( 1

Ntx

tx

Mx  (2.1.2) 



  

7 

The basic Whittaker smoother algorithm  

To describe the basics of the Whittaker smoother we need to assume equally spaced data.  

Whittaker smoother is based on penalized least squares method with basic principle that 
smoothing of the noisy/incomplete time series is a compromise between 1) fidelity to the data 
and 2) roughness of the reconstruction. Whittaker smoother finds the smooth series x that 
minimizes a function combining these two conflicting goals. 

The measure of the roughness Rd  can be expressed as a squared sum of the differences i

d
x∆ , 

where i

d
x∆  represents a d order difference of xi: 

 ∑
=

∆=
N

i

i

d

d xR
1

2)(  (2.1.3) 

The 1st order difference is: 

  
1−−=∆ iii xxx  (2.1.4) 

General expression for dth order difference is: 

 )( 1

i

d

i

d
xx

−∆∆=∆ . (2.1.5)  

For example the 2nd and 3rd order differences are: 

 21211

2 2)()()( −−−−− +−=−−−=∆∆=∆ iiiiiiiii xxxxxxxxx  (2.1.6) 

 
32132121

23 33)2()2()( −−−−−−−− −+−=+−−+−=∆∆=∆ iiiiiiiiiiii xxxxxxxxxxxx   (2.1.7) 

Deviation of the smooth pixel x from the observed pixel z can be expressed as the sum of the 
squared differences between observed samples zi and smooth samples xi:  

 2

1

)(∑
=

−=
N

i

ii xzS  (2.1.8) 

The function which combines these two measures is: 

 dRSQ λ++++====  (2.1.9) 

Parameter λ in equation (2.1.9) is a smoothing parameter that has to be defined by the user. 
With increasing parameter λ, influence of the roughness in x will be stronger and the 
deviation of x from the observation z will also increase. Some examples showing this effect 
are given in Appendix 4. The aim of the penalized least squares is to find series x that 
minimizes the final function Q. 

To simplify the equations, the function Q will be expressed using matrices and vectors as: 
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  xDDxxzxzxDxz d

T

d

TT

dQ λλ ++++−−−−−−−−====++++−−−−==== )()(
22

 (2.1.10) 

In equation (2.1.10) ∑=
i ia

22
a  is a quadratic norm of any vector a and Dd is a matrix such 

that xΔxD d

d ==== . E.g. for the first order difference and N=6, matrix 1D  is a ( ) NN ×−1 given 

by: 

 























−

−

−

−

−

=

110000

011000

001100

000110

000011

1D  (2.1.11) 

Finding partial derivatives of the final function Q and equating them to 0, we get the solution 
for the pixel vector x: 

 

zDDIx

xDDxz
x

1)(

02)(2

−−−−++++====

⇒⇒⇒⇒====++++−−−−−−−−====
∂∂∂∂

∂∂∂∂

d

T

d

d

T

d

Q

λ

λ
 (2.1.12) 

In equation (2.1.12) I is NN × identity matrix. 

 

 
Dealing with missing data 

The previous algorithm for smoothing can be easily modified to smooth the observations with 
missing values. In this case the vector of weights w is introduced of the length equal to the 

length of z (in our case N). Vector w can take values iw =0 for missing data elements and 

1=iw for non-missing data elements. With missing values in the data, deviation of the 

smooth pixel x from the observed pixel z is changed to: 

 ∑
=

−−=−=
N

i

T

iii xzwS
1

2 )()()( xzWxz  (2.1.13) 

Where W is NN × matrix with vector w on its diagonal. 

 

The measure of the roughness Rd is calculated in the same way as in equation (2.1.3). 

The final function Q changes to: 

 xDDxxzWxz d

T

d

TT
Q λ++++−−−−−−−−==== )()(  (2.1.14) 



  

9 

In the same way as in equation (2.1.12) a solution for the smooth pixel x is calculated as: 

 

WzDDWx

xDDxzW
x

1)(

02)(2

−+=

⇒=+−−=
∂

∂

d

T

d

d

T

d

Q

λ

λ
 (2.1.15) 

 

2.1.2 Whittaker smoother for unequally spaced data 

 
It is often necessary to adapt basic Whittaker smoother algorithm to the algorithm for 
smoothing unequally spaced data since the period between two consecutive image 
acquisitions is usually not constant. 
 
Deviation of the smooth pixel from the observed pixel (S) is estimated as for the equally 
spaced data with missing values (equation 2.1.13). 
 
The measure of the roughness of x, Rd , is given as: 

 2

1

))((∑
=

∆=
N

i

i

d

d txR = xDDxxD d

T

d

T

d ====
2

 (2.1.16) 

The equation (2.1.16) looks the same as the equation (2.1.3) but for unequally spaced data the 
difference will change and therefore the measure of the roughness will also change e.g. for 
d=1, the difference and the measure of the roughness for unequally spaced data will be: 

 

2

2 1

1
1

1

1 )()()()(
)( ∑∑∑∑

==== −−−−

−−−−

−−−−

−−−−









−−−−

−−−−
====⇒⇒⇒⇒

−−−−

−−−−
====

N

i ii

ii

ii

ii

i
tt

txtx
R

tt

txtx
tx∆  (2.1.17) 

Thus, matrix D1 is given as: 



























−

−

−

=



















−

−

−



























=
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δδ

δδ

δδ

δδ

δδ

δδ
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00

0
11

0

00
11

1100
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0011
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00

0
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0

00
11

33

22
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1

L

MOOOM

L

L

L

MOOOM

L

L

L

MOOOM

L

L

D
  (2.1.18)  

where 1−−= iii tttδ . Size of the matrix D1 is NN ×− )1( . 

The second order difference is: 

 
2

12 )()(
)(

−

−

−

∆−∆
=∆

ii

ii
i

tt

txtx
tx  (2.1.19) 

Thus, the matrix D2 can be written as: 
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44234342

33223232
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1
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1
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0
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 (2.1.20) 

  

where δ2ti = ti - ti-2 and Δ2 is: 
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
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2

11
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0
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0
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L
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L

L

Δ
 (2.1.21) 

 

And finally, a dth order difference is: 
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i

d
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 (2.1.22) 

To find matrix Dd the following recursion is used: 

 1−−−−==== ddd DΔD  (2.1.23) 

with 
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L
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L

Δ
 (2.1.24) 

where δdti = ti - ti-d . 

Thus, the derivative matrix of order d is obtained using the recursive formula: 

 121... DΔΔΔD −−−−==== ddd  (2.1.25) 
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Replacing deviation of the smooth from the observed pixel and roughness in the function Q 
and finding partial derivatives (see equation 2.1.12) a solution for the smooth pixel x is 
obtained as: 

 WzDDWx d
1)( −−−−++++====

T

dλ  (2.1.26) 

 

2.1.3 Choosing a value for smoothing parameter λ  

 
 
Value for the smoothing parameter λ can be iteratively chosen until we obtain a visually 
satisfactory result. However, more objective and automatic choice for λ can be made using 
cross-validation [20].  

The procedure is done by leaving out one of the non-missing elements of the pixel time series 

zi for { }Ni ...,,1∈ , then applying Whittaker smoother to the remaining elements and 

predicting the left out element. Cross-validation error is found by doing this procedure for all 
non-missing elements of the pixel z. Regularization parameter is chosen so that prediction is 
as good as possible, i.e. error of the prediction is minimum. 

Ordinary Cross-Validation 

The Ordinary Cross-Validation mean square error is defined as: 

 ( )∑
∑ =

−−=
N

i

i

i

ii

i

i

wtxtz
w

OCV
1

2))((
1

)(λ  (2.1.27) 

In equation (2.1.27), i

itx
−)(  is the estimation of the value )( itz  after removing the th

i element 

of z. 

For the chosen interval for λ, the Ordinary Cross-Validation Estimate of λ is: 

 )(minarg λλ
λ

OCV
R

OCV
+∈

=  (2.1.28) 

 
Using the equation (2.1.26) and introducing the hat matrix H follows: 
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T

dλ
 (2.1.29) 

 
 
 
 
 
Each of the elements of the vector x is calculated as: 
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After removing the th
i element of the vector z, estimation i
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Replacing i

itx
−)(  in equation (2.1.27), OCV of the parameter λ is: 
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Generalized Cross-Validation 

To compute Generalized Cross-Validation error, iih  is replaced by the mean of the diagonal 

elements of the matrix H: 
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As for Ordinary Cross-Validation, for chosen interval of the parameter λ, the Generalized 
Cross-Validation Estimate of λ is selected as: 

 )(minarg λλ
λ
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=  (2.1.34) 
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2.2 Background of feature selection 

 
Image classification is used for producing the thematic maps which provide an informative 
description of the study area, i.e. the thematic maps show spatial distribution of the tree 
species inside area of interest. Furthermore, classification was used in this project for 
selecting the best features, which in this case represent the most useful images to discriminate 
tree species and better define the image acquisition plan. 
 
In this study, discrimination of the tree species from the multi-temporal images was 
performed with three supervised learning methods: Support Vector Machines (SVM) [22, 
Chapter 12], Random Forest (RF) [22, Chapter 15] and Gaussian Mixture Model (GMM) 
classifier. Nonlinear Parsimonious Feature Selection (NPFS) package was used to learn 
GMM model. NPFS was presented in [23] and represents feature selection algorithm which is 
used in this study for indentifying the most important dates for discriminating the tree 
species.  

The basics of the NPFS algorithm are described in Section 2.2.1. Section 2.2.2 presents the 
Sequential Floating Forward Selection (SFFS) algorithm as the replacement for the standard 
feature selection algorithm in the NPFS. 

 

2.2.1 Non Linear Parsimonious Feature Selection (NPFS) 

Nonlinear Parsimonious Feature Selection (NPFS), compiles a pool of selected features by 
iteratively selecting a spectral feature from the original set of features. This pool is used to 
learn a Gaussian Mixture Model (GMM). Successive features will be selected according to 
their classification rate, until the stopping criterion is reached. The estimation of the 
classification rate is done using k-fold Cross-Validation (k-CV). 

Fast GMM parameterization when k-CV is computed is crucial for the efficient 
implementation of the NPFS. From the following, it is possible to quickly perform k-CV and 
forward selection by using parameter update rules and the marginalization properties of the 
Gaussian distribution. 
 
 
Gaussian Mixture Model 
 
Let (((( )))){{{{ }}}}n

iii yS
1

,
====

==== x  be a set of training pixels, where xi is a D-dimensional pixel vector, 
D

i R∈∈∈∈x  and { }Cyi ,...,1∈  its class. C is the number of classes, n is the number of training 

pixels and nc is the number of training pixels belonging to the class c. 
 
A Gaussian mixture model is a probabilistic model, which assumes that each pixel vector is 
generated from a mixture of a finite number of the Gaussian distributions as: 
 

 ∑
=

=
C

c

c cpp
1

)/()( xx π   (2.2.1) 
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In equation (2.2.1) cπ  is a prior probability for each class ( 10 ≤≤ cπ  and 1
1

=∑
=

C

c

cπ ) and 

p(x/c) is a prior class conditional probability function for pixel vector x given as a D-
dimensional Gaussian distribution: 
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 (2.2.2) 

 
 

where μc is the mean vector of the class c and, Σc and cΣ are the covariance matrix of the 

class c and its determinant. 
 
According to Bayes rule, the posterior probability of the class c when given the pixel vector x 
is: 
 

 
)(

)/(
)/(

x
x

x
p
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=       (2.2.3) 

 
 

Using the maximum a posteriori rule, pixel vector is classified to the class c if 

[ ]Cjjpcp ,...1),/()/( ∈∀≥ xx . 

 
Since in equation (2.2.3) p(x) is a constant which does not affect the final result, the 
maximum a posteriori rule is given by: 

 Assign x to class c if )/(maxarg
,...,1

jpc j
Cj

xπ
=

=  (2.2.4) 

 
After replacing the eq. (2.2.2) in eq. (2.2.4) and by taking the log of eq. (2.2.4) the final 
decision rule is given as: 
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The estimators of the model parameters are obtained using standard maximization of the log-
likelihood as: 
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The Sequential Forward Feature Selection (SFS) 
 
The main goal of feature selection is to select a subset of k features from the given set of D 
measurements, k<D, without significantly degrading the performance of the recognition 
system [24]. Feature selection techniques usually need a criterion for evaluating a 
performance of the model and an optimization procedure for finding the subset of features 
that maximizes/minimizes the criterion [25]. 
 

Let { }YxkixX iik ∈≤≤= ,1:  be the set of k features selected from the complete set of 

measurements {{{{ }}}}DiyY i ≤≤≤≤≤≤≤≤==== 1: , where D is the number of available features. 

 
The basic Sequential Forward Selection (SFS) method can be split in several steps [22, 
Chapter 3] [26]: 
 

• Start with an empty set of selected features, Xk = Ø 

• Iteratively add the most significant feature with respect to Xk from the set of available 
features Y- Xk 

• Stop if the increase of the estimated classification rate is too low or if the maximum 
number of the features is reached  

 
Classification rate was estimated with stratified k-fold cross-validation. The set of training 
pixels S was divided into k subsets of equal size. Each subset contains approximately the 
same percentage of the pixels which belong to the same class as the initial set S. One of the k-
subsets was used for model testing, while remaining subsets were used as a training data. 
Since each of the k subsets needs to be used exactly once for validation, this procedure was 
repeated exactly k times. The k test errors were computed and then averaged to compute the 
mean test error. 
 
Fast estimation of the GMM sub-models parameters during the Cross-validation 
process 
 
Suppose the number of the pixels used for validation during the Cross Validation procedure is 
v. Parameters of the model Sn-v can be estimated from the full learned GMM model using 
update rules. Classification rate can be estimated with subset of features using 
marginalization properties of the Gaussian distribution parameters. Therefore, GMM model 
needs to be learned only once during the entire training step. 
 
The update rules after removing v samples for validation: 
 
Rule 1 (Class proportion): 

 
vn

vn c

n

cvn
c

−

−
=

∧

−
∧ π
π  (2.2.7) 

In equation (2.2.7) 
n

c

∧

π  and 
vn

c
−

∧

π  are the proportions of the class c computed over n and (n-
v) samples, respectively and vc is the number of the removed pixels which belong to the class 

c. Note that ∑
=

=
C

c

c vv
1

. 
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Rule 2 (Mean vector): 
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In equation (2.2.8) 
cn

c

∧∧∧∧

μ and 
cc vn

c

−−−−∧∧∧∧

μ are the mean vectors of the class c computed over nc and nc - 
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μ is the mean vector of the class c computed over vc removed 

samples. 
 
Rule 3 (Covariance matrix): 
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In equation (2.2.9), cn

cΣ  and cc vn

c

−−−−Σ  are the covariance matrices of the class c computed over 

nc and nc - vc training samples, respectively. 
 
 
Marginalization of Gaussian distribution 
 
To get the GMM model over a subset of the original feature set, it is only necessary to 
exclude non-selected features from the mean vector and the covariance matrix [27]. 
 

If initial set of features is represented as: [ ]nss xxx ,= , where xs and xns are selected and non-

selected feature sets, respectively, then mean vector and covariance matrix computed over the 
full model can be written as: 

 ],[ nss μμμ ====
∧∧∧∧

  (2.2.10) 
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ΣΣ

ΣΣ
Σ  (2.2.11) 

 
From the marginalization of Gaussian distribution follows that xs is also a Gaussian 
distribution with mean vector μs and covariance matrix Σs,s. Therefore, when full model is 
learned, all of the sub-models built with a subset of the original variables will be available at 
no additional computational cost. 
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2.2.2 The Sequential Forward Floating Selection algorithm (SFFS)  

 
Sequential forward selection algorithm (SFS), described in Section 2.2.1, suffers from the so-
called "nesting effect", which means that features once selected can not be excluded later 
from the pool of the selected features. This can lead to the sub-optimal subset of the chosen 
features. Since there is rather widely accepted belief [24, 29, 30, 31] that floating search 
methods (Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating 
Selection (SBFS)) [24] are superior to the simple sequential ones, SFS and SBF [28], SFFS 
algorithm [24][32, Chapter 9] is implemented in this study as a modification of the original 
SFS algorithm in order to avoid its “nesting effect”.  
 
If the k features have already been selected and form the subset Xk with its criterion function 
J(Xk), the values of the criterion function J(Xi) have to be stored for all the previously subsets 
of size i =1,2,...(k-1). As in the SFS algorithm, in this project, J represents the estimated 
classification rate. 
 
The SFFS algorithm also starts from the empty set of features (k=0 and X0=Ø). For the 
selection of the first two features original SFS method is applied. Then the algorithm 
continues with the step 1. 
 

• Step 1: Inclusion. Using the basic SFS method, select the most significant feature 
xk+1 with respect to Xk from the set of available measurements, Y- Xk, and add it to 
the subset Xk. The most significant feature is obtained as: 

 [ ])((maxarg
)(

1 xXJx k
XYx

k

k

+=
−∈

+  (2.2.12) 

 
 Thus the new formed feature set is Xk+1 = Xk+ xk+1.  
 
• Step 2: Conditional exclusion.  
 Find the least significant feature in the set Xk+1 as: 

 [ ])((maxarg 1

1

xXJx k
Xx

r

k

−= +
∈ +

 (2.2.13) 

1. If the least significant feature is the one just added in the first step, xr = xk+1, 

keep it, set the number of selected features to k=k+1 and return to step 1. 
 

2. If xr is the least significant feature and kr ≤≤1 , exclude it from the set Xk+1 to 
form the new subset X'k = Xk+1 - xr. Note that now J(X'k) > J(Xk). If k=2 set 
Xk= X'k, J(Xk ) = J(X'k) and return to step 1, otherwise continue with the step 
3. 

 

• Step 3: Continuation of conditional exclusion.  
 In the same way as in the Step 2, find the least significant feature xs in the set X'k . 
 

1. If J(X'k - xs) ≤ J(Xk-1) set Xk= X'k, J(Xk )=J(X'k ) and return to Step 1. 
 

2. If J(X'k - xs) > J(Xk-1) then exclude xs
 from X'k to form new set X'k-1 = X'k - xs. 

Set k=k-1. If k=2 set Xk= X'k , J(Xk )=J(X'k ) and return to step 1, otherwise 
repeat Step 3. 
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• The algorithm stops when the maximum number of features is selected. 
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3 Study area and data collection 

3.1 Study area 

 
The study area is located in southwest of France, in Midi-Pyrénées region, about 30 km west 
of Toulouse (Figure 3.1). Climate of the area is characterized by mild and rainy winters and 
dry and hot summers, i.e. Cfb climate type as classified by Köppen-Geiger climate 
classification system [33]. Annual mean air temperature is higher than 13°C while mean 
annual precipitation is 656 mm. Forests are found on 10 % of the area, while the most 
prevalent tree species is Oak (Quercus spp.). Non-forest part of the area consists of 
grasslands and crops (combination of wheat, sunflower and maize). 
 

 
Figure 3.1 Map of France with highlighted study area and typical landscape for study area 

 

3.2 Field data collection 

 
Since supervised classification methods were used for tree species discrimination, it was 
necessary to use ground truth data, which was collected by the DYNAFOR lab. during three 
surveys in November 2013, January 2014 and May 2014. In total, 1038 sample points of the 
dominant broadleaf and conifer tree species were collected from the study area. Two 
observers were used to record each plot covering approximately an area of 576 m2, which is 
equivalent to nine contiguous FORMOSAT-2 pixels of 8m x 8m. Each plot was 
homogeneous in terms of tree species. GPS coordinates of plots were estimated with Garmin 
GPSMap 62st receiver and all the plots were distributed over the whole study area. Plots were 
later converted to polygons of one pixel size to use them in the classification (Figure 3.2). 
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Three thematic levels based on the Forest National Inventory [34] were defined from the 
collected ground truth data (Table 3.1). The first one classifies the forest into broadleaf and 
coniferous species (level 1). The second level splits level 1 forest groups into two sub-
categories. Broadleaf forests are for the most part deciduous, except for the evergreen 
Eucalyptus, while conifer forests can be pine forest or other.  Finally, third level includes all 
the fourteen tree species. Sample size per species varied from 35 pixels for Black locust and 
Douglas fir to 209 pixels for Aspen.  
 

Level 1 Level 2 Level 3 Sample size 

Broadleaf 
Broadleaf 
Broadleaf 
Broadleaf 
Broadleaf 
Broadleaf 
Broadleaf 
Broadleaf 

Deciduous 
Deciduous 
Deciduous 
Deciduous 
Deciduous 
Deciduous 
Deciduous 
Evergreen 

Silver birch (Betula pendula) 
Pedunculate/Pubescent/Sessile oak (Quercus robur/pubescens/petraea) 
Red oak (Quercus rubra) 
European ash (Fraxinus excelsior) 
Aspen (Populus tremula) 
Black locust (Robinia pseudoacacia) 
Willow (Salix) 
Eucalyptus (Eucalyptus) 

75 
125 
100 
40 

209 
35 
39 

100 

Conifer 
Conifer 
Conifer 
Conifer 
Conifer 
Conifer 

Pine 
Pine 
Pine 
Pine 
Other conifer 
Other conifer 

Corsican pine (Pinus nigra subsp. laricio) 
Maritime pine (Pinus pinaster) 
Black pine (Pinus nigra subsp. salzmannii) 
Austrian black pine (Pinus nigra var. austriaca) 
Douglas fir (Pseudotsuga menziesii) 
Silver fir (Abies alba) 

40 
40 
40 
85 
35 
75 

 
Table 3.1. The number of the reference pixels for 14 tree species analyzed in the study 

 
 

 
 
 

Figure 3.2. Reference pixels distributed over the study area. Aerial photograph (left) and zoomed part of 
the reference pixels (right). 
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3.3 Remote sensing data 

 
This study uses images acquired by FORMOSAT-2, Taiwanese high resolution satellite, as a 
source of the remote sensing data. The Remote Sensing Instrument (RSI) onboard 
FORMOSAT-2 has multispectral sensors (sensitive to blue, green, red and near-infrared 
wavelengths) and a panchromatic sensor which is sensitive to all wavelengths from visible to 
near-infrared, processed as a gray-level image. Image spatial resolution is 2 m for 
panchromatic FORMOSAT images and 8 m for multispectral images. Scene coverage is 
24x24 km. Table 3.2 lists spectral bands and wavelengths for each spectral band.  
 

 

Band Colour Wavelength (µm) Resolution  
Band 1 Blue  0.45-0.52 8x8m 
Band 2 Green  0.52-0.60 8x8m 
Band 3 Red 0.63-0.69 8x8m 
Band 4 Near-infrared 0.76-0.90 8x8m 
Band 5 Panchromatic 0.45-0.90 2x2m 

  
Table 3.2. Characteristics of the Formosat-2 satellite sensor (Site Airbus Defence and Space) 

 
 
Due to their technical limitations, optical sensors do not capture the signals from objects 
located under clouds and cloud shadows. Thus, it was necessary to use masks to exclude 
samples which belong to the cloudy area (the corresponding values in the masks are higher 
than zero) (Figure 3.3).  
 
The mask is defined by the numbers in bits where each bit is specified in the following way: 
 
 

Bit 0 (1) All clouds (except thin ones) or shadows 

Bit 1 (2) All clouds (except thin ones) 

Bit 2 (4) Cloud detected through absolute threshold 

Bit 3 (8) Cloud detected through multi-t threshold 

Bit 4 (16) Very thin clouds  

Bit 5 (32) High clouds detected with 1.38 µm band (LANDSAT 8 only) 

Bit 6 (64) Cloud shadows matched with a cloud 

Bit 7 (128) Cloud shadows in the zone where clouds could be outside the image 

 
Table 3.3. Meaning of the bits in the mask of clouds and cloud shadows  

 
 
All the multi-spectral images used in the study, together with cloud masks for each date, were 
provided by CESBIO (Centres d'Etudes Spatiales de la Biosphère). Table 3.4 shows the 
number and dates of the available images and masks for each year processed in the project. 
All the images were acquired with a constant viewing angle to reduce the within-species 
spectral variation. Operational pre-processing chain was used for orthorectification, 
atmospheric correction and cloud detection including cloud shadows and to obtain surface 
reflectance time-series data [35]. 
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Figure 3.3. Multispectral image and cloud mask acquired on 12/01/2012 
 
 
 

Year 2011  
(12 images) 

Year 2012 
(13 images) 

Year 2013 
(17 images) 

Year 2014 
(15 images) 

January 25 

April 15 

May 09 

May 20 

May 24 

Jun 21 

July 08 

September 06 

September 27 

October 06 

October 22 

December 10 

 

January 12 

February 18 

March 07 

March 27 

May 03 

Jun 20 

July 07 

July 17 

August 10 

August 22 

November 01 

December 15 

December 31 

February 16 

March 03 

May 06 

May 26 

Jun 06 

Jun 26 

July 06 

July 20 

July 30 

August 11 

August 22 

September 01 

September 21 

October 12 

October 27 

November 28 

December 20 

 

March 02 

March 28 

April 23 

May 05 

May 16 

Jun 05 

July 16 

August 10 

August 24 

September 07 

September 17 

September 27 

October 23 

November 02 

November 19 

 

 
Table 3.4. Formosat-2 imagery, available dates and number of acquired images for each year 
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3.4 Ancillary data 

 
Ancillary map was used to mask non-forest areas of the images (Figure 3.4). This mask 
provides information about forest/non-forest areas within Haute-Garonne department with a 
minimum forest area size of 2.25 hectares. It was obtained from the French National Forest 
Inventory database (IGN BD Foret®, v.1) produced in 1996.  
 
 

 
 
 

Figure 3.4. Forest/non-forest map for the Haute-Garonne department and for the study area (zoomed 
part). Area covered by forest is presented in green colour. 
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4 Methodology 

4.1 General procedure 

 
Simplified method used in this study consists of two main parts: pre-processing and 
classification with accuracy assessment (Figure 4.1). Pre-processing part uses as inputs 
multi-spectral images from one year together with cloud masks for each image. Output of the 
pre-processing is Satellite Image Time Series, which is used together with the map containing 
reference pixels as an input to the second part of the project. The final result of the project 
consists of the classification accuracies and the thematic maps across the study area. 
 
 

 
 

Figure 4.1 Simplified flow-chart of the project  

 

4.2 Pre-processing 

 
This part of the project had the aim to obtain Satellite Image Time Series (SITS) from the 
available images and prepare it for classification (Figure 4.2).  
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Figure 4.2. Simplified flow-chart of the pre-processing part of the project 

 
 
Pre-processing part of the project was divided into two steps: 
 
 
Step 1. The Satellite Image Time Series creation 
 
The SITS were created from the available multi-spectral images using OTB (Orfeo Toolbox) 
applications package and Shell Programming. Two steps were necessary for the SITS 
creation: the creation of the spectral features and concatenation. Spectral features were 
generated firstly from the NDVI indices, then from spectral bands and finally from both the 
NDVI indices and the spectral bands. Once the spectral features were generated for each 
multi-spectral image, all the spectral features were concatenated into one multi-temporal 
image, referred to as SITS. SITS were created for each of the four years separately, as well as 
for each of the four years from NDVI indices, from spectral bands and from spectral bands 
and NDVI indices together. 
 
In this part of the project, masks containing clouds and cloud shadows were also 
concatenated into one multi-temporal mask, Mask Time Series. Same as the SITS, Mask 
Time Series were created for each of the four years. 
 
An example of the shell scripts that were made for the purposes of this part of the project is 
given in Appendix 2 (script_sits.sh). 
 
Step 2. Smoothing 
 
Smoothing function applies Whittaker smoother for unequally spaced data on each pixel in 
the SITS along temporal axis. Before executing smoothing function, it was necessary to build 
temporal axis which consisted of the days of the year for each acquisition (e.g. image 
acquired on 18/02/2012, corresponds to the 49th day of the year).  
  



  

26 

At the beginning of the smoothing function each pixel time sample from the SITS under 
clouds or cloud shadows was marked as the missing value. This was done by setting the 

values of the vector w to iw = 0 if the corresponding pixel time sample in the Mask Time 

Series is higher than zero and 1=iw if it is equal to zero. The size of the vector w was 

different for each year and equal to the number of multi-spectral images (time acquisitions) 
for that year.  
 
Order of the Whittaker smoother d was set to two, since this value showed to be a good 
balance between satisfactory smoothing results and computational complexity. 
Regularization parameter λ varied across the years. To find the optimal λ for each SITS pixel, 
belonging to the forest area, Generalized and Ordinary Cross-Validations were computed for 

{{{{ }}}}150 10,...,10====λ . Then, for each of these pixels, the optimal λ was chosen so that ordinary 

and generalized cross-validations had minimum values. Optimal λ for smoothing the whole 
SITS of one year was set to the value which appeared most frequently.  
 
At the end of the pre-processing part of the project, the output image contains the filtered data 
where each pixel has the same number of samples.  
 
Functions for generating the temporal axis (create_TimeStamp.py), smoothing function 
(smooth_image.py) and the program which finds the optimal regularization parameter 
(find_optimal_lamda.py), were implemented in Python and these codes are reported in 
Appendix 2.  

4.3 Classification and accuracy assessment.  

 
This part of the general procedure was based on three steps: 
 
Step 1. Extracting the training/validation samples from the SITS generated in the pre-
processing part of the project 
 
Reference Map was used in order to get reference pixels, one part of which was used for 
training the model and the rest for the model evaluation. Training samples were provided in 
vector format (.shp). In order to use it, the vector data had to be converted to raster data. After 
rasterization, raster image has the same dimension and size for the pixels as the images in 
SITS. In this image, each pixel which has non-zero value is a reference pixel, and its value 
corresponds to its class. 
 
The OTB function was used for converting a vector data to a raster image. OTB function, 
alongside the function for extracting training/validation samples which was implemented in 
Python (get_samples_from_roi.py), is presented in Appendix 2. 
 
Step 2. Learning the classifier and computing its performance (classification accuracy) 
 
In order to learn GMM classifier with NPFS algorithm, both the SFS and SFFS algorithms 
were used for feature selection. Stratified 5-fold CV was used to estimate the classification 
accuracy. Maximum number of features for SFFS algorithm was set to 15. The SFS algorithm 
stops either if the increase in classification accuracy is lower than 0.01% or the maximum 
number of 15 features is reached.  
 

David Sheeren
Texte surligné 
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SVM and RF classifiers were learned and predicted using the scikit-learn Python library [36]. 
SVM was used with a Gaussian Radial Basis Function (RBF) kernel due to its good 
performance in comparison with other kernel functions [37] and low number of hyper-
parameters that should be fitted: the regularization parameter C and the width of the RBF 
kernel function γ. They were fitted using grid search for the range of the regularization 

parameter { }510,...,10,1=C  and { }55 2,...,2−=γ . Optimal number of the classification trees in 

RF algorithm was found using the range from 10 to 500 trees with the step of 50 trees. In 
both cases, 5-fold CV was used to estimate the classification accuracy and fitted values were 
chosen to produce the best cross-validated classification accuracy.  
 
Classification was based on three different levels. On the first level we tried to discriminate 
between Broadleaf and Conifer species. On the second level discrimination was based on 4 
classes (deciduous broadleaves, evergreen broadleaves, pines or other conifers). On the third 
level of classification discrimination was based on thirteen possible tree species (Table 3.1). 
 
All of the classifiers were trained with 2/3 randomly selected reference pixels per class, and 
the remaining pixels were used for the validation of the classifiers. To assess the 
classification accuracy, the confusion matrix, kappa statistics and overall accuracy were 
computed for 50 iterations and then averaged. 
 
The number of the spectral features was different depending on the creation of SITS and 
depending on the year. If SITS were generated from the NDVI indices the number of the 
spectral features was equal to the number of acquisitions in the processing year (Table 3.4). If 
SITS were generated from the spectral bands the number of the spectral features was equal to 
the number of acquisitions multiplied by four (the number of spectral bands for each multi-
spectral image). 
 
The main program which applies all of the classifiers to SITS (script_classif_formosat.py) is 
presented in Appendix 2. This program implements RF and SVM classifiers using the scikit-

learn Python library. The implementation of SFFS algorithm is also presented in Appendix 2 
(forward_selection_sffs.py). 
 
Step 3.  Prediction on all the pixels of the SITS to produce thematic maps 
 
The last part of the project was to create thematic maps across the study area using three 
classifiers described before. In order to learn the classifiers for this case, the entire set of the 
available reference pixels was used. Prediction was done for each pixel from SITS which 
corresponds to the forest-part of the study area, which was presented in Section 3.4. The main 
function  which was implemented for this part of the project is presented in Appendix 2 
(predict_image.py). 
 
 
After thematic maps were produced for each year and for each of the classifiers, the most 
frequently discriminated species for each pixel was found, as well as the frequency of 
classifying the same pixel to the same class. This function is also presented in Appendix 2 
(thematic_map_consecutive_years.py). 
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4.4 Used software and implementation 

OTB (Orfeo Toolbox) applications and Shell Programming were used to create SITS. 
Smoothing function and all the classification methods were performed in Python with its 
GDAL library (Geospatial Data Abstraction Library). Moreover, QGIS software was used 
for the visualization of the images and rasterization of vector data. 
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5 Results and discussion 

5.1 Pre-processing 

 
Choosing optimal λ 
  
The optimal value for regularization parameter for year 2013, for the vast number of pixels 
obtained using Generalized Cross Validation was λ=10

0
. However, this value is very low and 

using it would make smoothing insensible. To remove the noise from SITS, only the values 
of λ that are higher than 1 were considered. Thus, the most frequent value for regularization 
parameter λ was 105 obtained from both Generalized and Ordinary Cross-Validation (Figure 
5.1). 
 

 

 
Figure 5.1. Generalized and Ordinary Cross-Validation errors for different values of λ for year 2013 

 
The same regularization parameter value λ=10

5 was obtained for year 2012. For year 2011 
the optimal value obtained with Generalized Cross Validation was λ=10

5 and with Ordinary 
Cross Validation was λ=10

6. However, the optimal value for that year was set to λ=10
5 , since 

it was visually noticed that the final results were better than the results obtained with the 
second value. The optimal value for year 2014 was selected in the same way as for year 2011. 
The figures for years 2011, 2012 and 2014 are given in Appendix 3 (Figures A3.1, A3.2 and 
A3.3). 
 

Temporal profiles before and after smoothing 
 
Clouds and cloud shadows have a significant impact on the image time series. When present, 
white clouds will add positive noise to the values in blue, green, red and infrared bands, 
whilst cloud shadows will add negative noise to the same bands. Clouds and cloud shadows 
have opposite effect on NDVI, i.e. there are sudden drops of NDVI values when the clouds 
are present and increase of NDVI values in the presence of cloud shadows. To illustrate how 
smoothing struggles due to these effects, several pixels were chosen and their temporal 
profiles before and after smoothing are presented together with the corresponding temporal 
profiles of the pixels from the mask containing the information about the cloud and cloud 
shadow presence (Figures 5.2, 5.3, 5.4 and 5.5). 
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Figure 5.2. Temporal profiles of the pixel in blue band before and after smoothing in case without clouds 

or cloud shadows detected. The temporal profiles are superimposed. 
 
Figure 5.2 shows the situation when there were no clouds or cloud shadows detected (values 
of the mask were equal to 0 for all dates). In this case, values before and after smoothing are 
almost the same. Figure 5.3 (left), shows an example with white cloud which added noise to 
the value in the blue band. Figure 5.3 (right), illustrates an example when there was cloud 
shadow which caused sudden drop of the value in infrared band before smoothing was 
applied. In both examples it can be seen that smoothing algorithm managed to fill in the 
missing values. Figure 5.4 shows that NDVI reacts differently on white clouds and that 
smoothing managed to correct this value. And finally Figure 5.5 shows the result of 
smoothing of the pixel time series in the red band affected by clouds presented on two dates. 
 
 

Figure 5.3. Temporal profiles of the pixel in blue band affected by cloud before and after smoothing (left) 
and temporal profiles of the pixel in infra-red band affected by cloud shadow before and after smoothing 

(right) 
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         Figure 5.4. Temporal profiles of the pixel containing NDVI values before and after 
smoothing affected by clouds 

 

 
Figure 5.5. Temporal profiles of the pixel in red band before and after smoothing affected by clouds 

present on two dates  
 
 
Whittaker smoother showed high potential to eliminate the negative effects of clouds and 
cloud shadows from SITS (Figures 5.2, 5.3, 5.4 and 5.5). Moreover, Whittaker smoother 
removed some of the noise not caused by the presence of the clouds or cloud shadows, which 
could have appeared due to the aerosols in the atmosphere (Figures 5.3 - right, 5.4 and 5.5). 
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Results of smoothing from the viewpoint of the images in the SITS 
 
When comparing images with present cloud cover before and after smoothing (Figure 5.6), 
the image obtained after smoothing reveals high ability of Whittaker smoother to eliminate 
the cloud cover effects. However, applied smoothing technique is not perfect since the area 
under clouds remained somewhat darker than the area which was not under cloud cover. 
 
 

         
 

Figure 5.6. The grey-scale images with the clouds present in top-right corner before (left) and after (right) 
smoothing 

 

5.2 Classification 

 
Unexpectedly, SFFS algorithm did not perform any better than SFS algorithm (Table 5.1). 
The results obtained with SFFS algorithm were sometimes even worse than the results 
obtained with SFS algorithm. The test classification accuracies indicate that the original 
SFFS algorithm has a minor drawback. During backtracking after the number of variables 
was excluded, it may happen that including new variables could make the algorithm end up 
with the variable subset that is worse than a subset of the same size, which was found before 
backtracking. The problem is that the SFFS algorithm continues to follow this worse feature 
subset, although a better one has already been found (Figure 5.7). This drawback can be 
corrected by storing previous feature subsets and checking whether the SFFS algorithm 
follows wrong feature subset at each step. If SFFS algorithm follows wrong feature subsets 
than algorithm needs to change the current variable subset to the best one of the same size 
found earlier. This leads to the rather heavily increase of computational complexity both in 
terms of memory and time. Somol et al. [38] have observed this drawback of the original 
SFFS algorithm and proposed an updated version of the SFFS algorithm. Nevertheless, 
several experiments were performed where the original SFFS algorithm was applied on the 
hyper-spectral data sets with more reference samples and the results and discussion about 
these experiments are reported in Appendix 1. But for now the conclusion is that the original 
SFFS algorithm is not a good solution for a feature selection of Formost-2 image time series, 
because even when it gives better results than the SFS algorithm, these results are not 
significantly better when we take into considerations that slightly better results were achieved 
through the cost of significant increase in time complexity. 
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Level 1 (classification based on 2 classes) 
 NDVI (17 features) SB (68 features) SB+NDVI (85 features) 

 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%) 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

86.8 ± 0.03 

87.2 ± 0.04 

96.5 ± 0.01 

97.0 ± 0.01 

70.0 ± 0.10 

68.8 ± 0.35 

91.8 ± 0.04 

92.8 ± 0.06 

97.1 ± 0.01 

97.5 ± 0.01 

98.2 ± 0.00 

99.6 ± 0.00 

93.0 ± 0.06 

94.1 ± 0.06 

95.7 ± 0.02 

99.2 ± 0.01 

97.2 ± 0.01 

98.0 ± 0.00 

98.4 ± 0.00 

99.5 ± 0.00 

93.3 ± 0.08 

95.1 ± 0.03 

96.2 ± 0.02 

98.9 ± 0.01 

Level 2 (classification based on 4 classes) 

 NDVI (17 features) SB (68 features) SB+NDVI (85 features) 
 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

91.6 ± 0.02 

89.2 ± 0.08 

95.5 ± 0.01 

95.7 ± 0.01 

85.5 ± 0.05 

81.4 ± 0.24 

92.3 ± 0.04 

92.6 ± 0.03 

96.2 ± 0.02 

96.6 ± 0.01 

96.9 ± 0.01 

99.0 ± 0.00 

93.4 ± 0.05 

94.1 ± 0.04 

94.6 ± 0.03 

98.2 ± 0.01 

96.1 ± 0.01 

96.6 ± 0.01  

98.0 ± 0.01 

98.9 ± 0.00 

93.3 ± 0.05 

94.0 ± 0.03 

96.6 ± 0.03 

98.0 ± 0.01 

Level 3 (classification based on 14 classes) 

 NDVI (17 features) SB (68 features) SB+NDVI (85 features) 
 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

88.3 ± 0.03 

87.9 ± 0.09 

89.4 ± 0.02 

91.8 ± 0.02 

87.0 ± 0.03 

86.5 ± 0.12 

88.2 ± 0.03 

90.9 ± 0.02 

89.7 ± 0.14 

88.8 ± 0.64 

94.4 ± 0.01 

98.2 ± 0.00 

88.5 ± 0.17 

87.6 ± 0.77 

93.8 ± 0.01 

98.0 ± 0.00 

92.4 ± 0.08 

91.9 ± 0.10 

95.2 ± 0.01 

98.1 ± 0.00 

91.6 ± 0.1 

91.0 ± 0.13 

94.7 ± 0.02 

97.8 ± 0.01 

 
Table 5.1 Overall accuracy and Kappa statistics for three defined levels of classification using NDVI 
indices, spectral bands (SB) and NDVI indices and spectral bands together for year 2013. NPFS_sfs 
denotes NPFS GMM based classifier computed with a set of features that was chosen using standard 
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based 
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The 
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over 
50 repetitions in percentages. The best results for each level are reported in bold face. 
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Figure 5.7. Test classification accuracy for the different size of feature subsets selected using SFS or SFFS 
algorithms. Classification was based on the spectral bands together with the NDVI indices for level 2 of 

classification 
 

 
The results given in the Table 5.1 revealed a high ability of the classifiers to discriminate tree 
species using Formost-2 image time series. For the classification level 1 (discrimination 
between broadleaf and coniferous tree classes) the lowest overall accuracy was obtained for 
NPFS_sfs GMM based classifier when using only NDVI indices as the spectral features. The 
highest overall accuracy was obtained for SVM classifier using both NDVI indices and 
spectral bands together as the spectral features. Similar results have been obtained for the 
classification levels 2 and 3. In general, using only the NDVI indices as spectral features 
produced the lowest overall accuracy. Classifications based on spectral bands gave notably 
better results. Adding NDVI to spectral bands produced only slight improvements in 
classification accuracy, when compared to classifications based on spectral bands only. When 
compared to other classifiers, SVM classifier performed the best in terms of classification 
accuracy, while the NPFS_sfs GMM based algorithm is more than two times faster than 
SVM algorithm (The mean processing time for NPFS_sfs was 11 s while the mean 
processing time for SVM was 27 s). RF classifier performed the worst in terms of 
computational time with mean processing time of 59 s.  
 
The classification results for other years and each of the created SITS are given in Appendix 3 
(Tables A3.1, A3.2 and A3.3). For all of the years the results were consistent with the 
previously explained results obtained for year 2013. Table 5.2 reports the results in terms of 
overall accuracy and Kappa statistics for each of the four years based on only spectral bands, 
since for each of the years the spectral bands showed to be a satisfactory solution for the 
SITS creation. The classification accuracy for one year and for the same classifier decreases 
with increasing the number of classes that need to be discriminated i.e. going down from 
level 1 to level 3. For classification levels 1 and 2 the highest accuracy was obtained for year 
2012, while for level 3 the highest accuracy was obtained for year 2014. This is probably due 
to the variation of the image acquisition dates available for the SITS creation (Table 3.4). For 
year 2012 a lot of images were acquired during winter, spring and autumn, allowing the 
relatively easy discrimination between coniferous and broadleaf classes. For year 2014 there 
was a lot of images acquired during key phenological periods (March, April, September, 
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October, November), which might have helped discriminating between the species at level 3 
of classification. 
 

Level 1 (classification based on 2 classes) 

 NPFS_sfs RF SVM 
 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%) 

2011 
(48 features) 

97.3 ± 0.01 93.7 ± 0.05 97.6 ± 0.01 94.3 ± 0.04 99.5 ± 0.00 98.7 ± 0.01 

2012 
(52 features) 

98.3 ± 0.01 95.9 ± 0.03 99.3 ± 0.00 96.7 ± 0.02 99.7 ± 0.00 99.2 ± 0.00 

2013 
(68 features) 

97.1 ± 0.01 93.0 ± 0.06 98.2 ± 0.00 95.7 ± 0.02 99.6 ± 0.00 99.2 ± 0.01 

2014 
(60 features) 

97.7 ± 0.01 94.6 ± 0.05 98.6 ± 0.00 96.6 ± 0.03 99.5 ± 0.00 98.8 ± 0.01 

Level 2 (classification based on 4 classes) 
 NPFS_sfs RF SVM 

 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%) 
2011 

(48 features) 
96.3 ± 0.01 93.7 ± 0.04 95.7 ± 0.01 92.6 ± 0.04 97.6 ± 0.01 95.9 ± 0.03 

2012 
(52 features) 

97.1 ± 0.01 94.9 ± 0.02 98.1 ± 0.00 96.8 ± 0.02 99.0 ± 0.00 98.2 ± 0.01 

2013 
(68 features) 

96.2 ± 0.02 93.4 ± 0.05 96.9 ± 0.01 94.6 ± 0.03 99.0 ± 0.00 98.2 ± 0.01 

2014 
(60 features) 

96.6 ± 0.01 94.2 ± 0.04 97.5 ± 0.01 95.7 ± 0.02 98.8 ± 0.00 98.0 ± 0.01 

Level 3 (classification based on 14 classes) 

 NPFS_sfs RF SVM 
 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%) 

2011 
(48 features) 

90.4 ± 0.04 89.4 ± 0.05 90.9 ± 0.03 89.9 ± 0.03 95.3 ± 0.01 94.8 ± 0.01 

2012 
(52 features) 

91.4 ± 0.03 90.5 ± 0.03 94.4 ± 0.04 93.7 ± 0.05 97.9 ± 0.01 97.6 ± 0.01 

2013 
(68 features) 

89.7 ± 0.14 88.5 ± 0.17 94.4 ± 0.01 93.8 ± 0.01 98.2 ± 0.00 98.0 ± 0.00 

2014 
(60 features) 

94.7 ± 0.01 94.1 ± 0.02 95.9 ± 0.01 95.5 ± 0.02 98.6 ± 0.00 98.4 ± 0.00 

 
 
Table 5.2 Overall accuracy and Kappa statistics for three defined levels of classification for each of the 
four years. Only spectral bands were used as the spectral features. NPFS_sfs denotes NPFS GMM based 
classifier computed with a set of features that was chosen using standard feature selection algorithm 
described in Section 2.3.1. The results correspond to the mean value and variance of the overall accuracy 
(OA) and Kappa statistics over 50 repetitions in percentages. The best results for each level were reported 
in bold face. 
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As expected, SVM showed less confusion than GMM classifier for each of the four years 
(Tables 5.3-5.8 and A3.4-A3.21). Confusion matrices for level 1 of the both classifiers in the 
year 2013 indicate very high accuracies (Tables 5.3 and 5.4). For level 2 and the same year, 
confusion matrices show lower accuracies in comparison to the accuracies obtained for level 
1. For GMM classifier, Deciduous and Evergreen species showed high accuracies, while the 
confusions appeared with Pine, of which 5.48 % were assigned to Deciduous and 5.62 % to 
other conifer, and other conifer, of which 4.16 % were assigned to Deciduous and 6.22 % to 
Pine (Table 5.5). The highest confusions for SVM classifier appeared among two Conifer 
species, where 4.60 % of the Other conifers were wrongly assigned to Pine (Table 5.6). 
Confusion matrices for the third level in year 2013 had the lowest accuracies of all three 
levels (Tables 5.7 and 5.8). For GMM classifier, among conifer tree species the lowest 
accuracy is obtained for Douglas fir (59.83 %), where the highest confusion appeared with 
Silver fir (18.50 %) and Black pine (67.29 %) where the main confusion appeared with Oak 

(14.71 %). Higher accuracies were obtained for broadleaf species, with the lowest accuracy 
for Black locust (67.83 %), where 24.50 % confusions were with Oak, while Willow, Red oak 

and Aspen showed the highest accuracies (Table 5.7). For SVM classifier Douglas fir was 
again the most difficult to discriminate among coniferous tree species with the accuracy 
82.50 %, where the highest confusion was again with Silver fir (12.17 %), while other 
coniferous tree species as well as all of the broadleaf species showed high accuracies, of 
which Silver birch, Eucalyptus, Willow and Red oak had the highest (Table 5.8), while the 
lowest accuracy was obtained for Black locust. As expected, a decrease in classification 
accuracy was observed with increase of the number of classes, i.e. the classification accuracy 
decreased going from level 1 to level 3. Results for other years indicate similar accuracies as 
for year 2013 (Tables A3.4-A3.21). 
 
 
Results obtained for level 2 showed that both GMM and SVM models had more confusions 
among conifer tree species. The reason for this might be that there were significantly less 
reference pixels available for coniferous tree species (315) than the number of reference 
pixels available for broadleaf tree species (723) but also the fact that phenology is less 
informative for coniferous than for deciduous tree species. Results obtained for level 3 
showed that for both GMM and SVM models the lowest classification accuracies among all 
of the conifer tree species was obtained for Douglas fir which had the lowest number of 
reference pixels of all the conifer tree species (Table 3.1). The same conclusion can be made 
after looking at the results for Broadleaf tree species. Again, for both SVM and GMM 
classifiers, among all of the Broadleaf tree species, the lowest accuracy was obtained for 
Black locust. The reason for this may be the same, since Black locust also had the lowest  
number of reference samples among broadleaf tree species (35) which is very small 
compared to the available reference samples for Aspen (209).  
 
 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 92.86 7.14 

Broadleaf 1.05 98.95 
 

Table 5.3. Confusion matrix for level 1, year 2013. Classification was based on spectral bands and GMM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
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 Predicted class 

Actual class Conifer Broadleaf 
Conifer 99.35 0.65 

Broadleaf 0.23 99.77 
 

Table 5.4. Confusion matrix for level 1, year 2013. Classification was based on spectral bands and SVM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 

 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.59 0.01 0.40 0.00 

Evergreen 0.35 99.00 0.41 0.24 

Pine 5.48 0.64 88.26 5.62 
Other conifer 4.16 0.11 6.22 89.51 

 
Table 5.5. Confusion matrix for level 2, year 2013. Classification was based on spectral bands and GMM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.93 0.00 0.07 0.00 

Evergreen 1.06 98.65 0.29 0.00 

Pine 0.52 0.00 98.81 0.67 

Other conifer 1.35 0.05 4.60 94.00 
 
Table 5.6. Confusion matrix for level 2, year 2013. Classification was based on spectral bands and SVM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
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Predicted class 

Actual class 
Silver 

fir 
Oak 

Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 91.36 0.64 2.72 4.24 0.00 0.00 0.08 0.00 0.00 0.00 0.24 0.40 0.00 0.32 

Oak 0.00 90.05 1.05 0.29 1.86 1.81 0.05 1.28 1.95 0.09 0.24 0.62 0.09 0.62 

Black pine 6.57 14.71 67.29 4.29 0.00 0.14 3.29 0.00 0.00 0.00 1.57 1.57 0.00 0.57 

Douglas fir 18.50 6.33 3.50 59.83 0.00 0.33 3.00 0.00 0.17 0.00 3.00 4.00 0.00 1.33 

Silver birch 0.00 6.00 0.00 0.00 92.40 0.00 0.00 0.00 0.16 0.24 0.00 0.00 0.00 1.20 

European 
ash 

0.00 15.00 0.00 0.00 0.00 80.43 0.00 1.57 2.86 0.00 0.00 0.00 0.00 0.14 

Maritime 
pine 

0.14 1.71 4.29 6.14 0.00 0.00 84.43 0.00 0.00 0.00 0.71 0.29 0.00 2.29 

Black locust 0.00 24.50 0.00 0.00 0.33 5.17 0.00 67.83 1.83 0.00 0.00 0.00 0.00 0.33 

Aspen 0.00 2.74 0.00 0.00 0.03 0.14 0.00 0.03 96.17 0.14 0.00 0.00 0.17 0.57 

Red oak 0.00 1.88 0.00 0.00 0.00 0.00 0.00 0.00 0.65 97.18 0.06 0.00 0.00 0.24 

Eucalyptus 0.12 1.47 0.41 0.71 0.00 0.82 0.12 0.06 0.06 0.00 95.41 0.06 0.00 0.76 

Corsican 
pine 

1.00 4.71 1.86 2.71 0.00 0.14 0.14 0.00 0.00 0.00 0.14 88.71 0.00 0.57 

Willow 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.77 1.08 

Austrian 
black pine 

0.00 0.07 0.48 2.14 0.00 0.00 4.21 0.00 0.00 0.00 3.24 0.07 0.00 89.79 

 
Table 5.7. Confusion matrix for level 3, year 2013. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over 50 

repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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Predicted class 

Actual class Silver fir Oak 
Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 96.72 0.00 1.60 1.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oak 0.00 98.24 0.00 0.00 0.57 0.10 0.05 1.05 0.00 0.00 0.00 0.00 0.00 0.00 

Black pine 0.57 2.57 96.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Douglas fir 12.17 0.83 1.50 82.50 0.00 0.00 0.67 0.00 0.00 0.00 0.50 1.83 0.00 0.00 

Silver birch 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

European 
ash 

0.00 1.29 0.00 0.00 0.00 98.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maritime 
pine 

0.00 0.00 3.57 0.00 0.00 0.00 94.86 0.00 0.00 0.00 0.00 0.14 0.00 1.43 

Black locust 0.00 3.17 0.00 0.00 0.00 1.00 0.00 95.83 0.00 0.00 0.00 0.00 0.00 0.00 

Aspen 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 99.91 0.00 0.06 0.00 0.00 0.00 

Red oak 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.18 99.59 0.00 0.00 0.00 0.00 

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.94 0.00 0.00 0.06 

Corsican 
pine 

0.00 1.29 0.29 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.00 0.00 0.00 

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 99.69 0.00 

Austrian 
black pine 

0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.00 0.00 0.00 0.00 0.00 0.00 98.97 

 
 

Table 5.8. Confusion matrix for level 3, year 2013. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over 50 
repetitions and presented in percentages. The main confusion for each species is reported in pink colour.
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To identify the most important dates for discriminating among tree classes for all three levels, 
the nonlinear parsimonious feature selection approach (NPFS) was used. The selection rate of 
the used dates over 50 iterations for year 2013 is shown in Figures 5.8, 5.9 and 5.10. Images 
that were acquired during May had the highest selection rate (43/50) for discriminating at 
level 1. Furthermore, images from December were also frequently chosen (with the selection 
rate of 40/50). This was expected since the images that were acquired during spring and 
winter should be the one of the best for separating broadleaf and coniferous species. Winter 
images together with the images acquired in July were the most frequently selected for the 
classification at level 2. At level 3, among many different dates which were frequently 
selected, the highest selection rate is obtained for the images acquired in winter, May and 
mid-summer. Contrary to our expectations, images acquired during growing and senescing 
seasons were not very useful for discriminating among tree species, possibly because only 
few images were acquired during key phenological periods. The most frequently selected 
dates for the other years are given in Appendix 3 (Figure A3.4-A3.12). 
 

 
 

Figure 5.8. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for level 
1 and year 2013. The selection rate is 1 when the image is selected systematically (50/50). 
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Figure 5.9. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for level 
2 and year 2013. The selection rate is 1 when the image is selected systematically (50/50). 

 
 

 

 
 

Figure 5.10. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 
level 3 and year 2013. The selection rate is 1 when the image is selected systematically (50/50). 
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Classification maps for each level obtained with GMM and SVM classifiers for year 2013 are 
presented in Figures 5.11, 5.12 and 5.13. Classification maps obtained here should be 
verified in the future with ground surveys, although confusion matrices indicate that the 
results obtained with GMM classifier were noisier (with higher confusions) than with the 
SVM classifier. 
 
Figures 5.14, 5.15 and 5.16 represents the frequency maps which show the number of time 
that each pixel was classified with the same label looking at the classification maps obtained 
for four year. Pixels having a frequency value of 4 indicated high consistency between four 
classifications. A lower frequency indicated more differences between the years and most 
likely more uncertainty on the classification accuracy, since it is unlikely that species 
composition changed through the four studied years. For levels 1 and 2, most of the pixels 
had a frequency value of 4 or 3, suggesting high stability of the classification between the 
years. Higher instability is indicated for level 3, since most of the pixels had the frequency 
value of 2. One of the reasons for the different positioned classification errors for consecutive 
years could be explained by the difference in the dates of the images acquisition between the 
years (Table 3.4). These maps should be analysed more deeply in the future. 
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Figure 5.11. Classification maps for level 1 based on spectral bands with GMM (left) and SVM (right) 

 
  

Figure 5.12. Classification maps for level 2 based on spectral bands with GMM (left) and SVM (right) 
 

 
 

Figure 5.13. Classification maps for level 3 based on spectral bands with GMM (left) and SVM (right) 
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Figure 5.14. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 1 based on spectral 

bands with GMM (left) and SVM (right) 
 

 

  
Figure 5.15. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 2 based on spectral 

bands with GMM (left) and SVM (right) 
 

 
Figure 5.16. Frequency maps obtained for years 2011, 2012, 2013 and 2014 for level 3 based on spectral 

bands with GMM (left) and SVM (right) 
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6 Conclusion and future work 
 
The main aim of this study was to investigate the ability of Formosat-2 image time series to 
discriminate different tree species. It was assumed that phenological variations of the tree 
species during the year could potentially increase the spectral separability between different 
species. The main conclusions of the study were: 
 

• The Whittaker smoothing filter showed to be a good solution for smoothing the image 
time series. However, the optimal regularization parameter obtained with generalized 
cross-validation sometimes gave the results which were under-smoothed whilst 
ordinary cross validation gave the results which were over-smoothed. In these cases 
the optimal regularization parameter value was chosen to give visually good results. 

 

• All of the classifiers produced high classification accuracies for each of the 
considered years which indicate the importance of phenological information for 
discriminating various tree species. However, SVM classifier performed the best in 
terms of classification accuracy whilst NPFS performed the best in terms of 
computing time. In fact, NPFS algorithm usually extracted only a few features (lower 
than 5% of the total number) and was therefore much faster and more efficient than 
the other two classifiers, while giving comparable classification accuracy. RF 
classifier gave lower classification accuracy than SVM algorithm and better accuracy 
than GMM classifier but used more processing time. Therefore, RF algorithm might 
not be a good solution for tree species discrimination from SITS. The accuracies 
obtained in this study were higher than the accuracies obtained in the comparable 
studies. For example, Table 11 from the study [43] gives an overview of different 
studies that were based on tree species discrimination using data sensors with 
different spatial and spectral resolution. Wide range of the classification methods was 
applied and the reported accuracies varied between 45 % and 96 %. The highest 
values were obtained for discriminating between only a few tree species (96 % was 
the highest obtained accuracy when classification was based on only 3 tree species). 
In comparison, results of this study on level 3 of classification (discrimination 
between 14 tree species), for year 2014 with SVM classifier, indicate overall accuracy 
of 98.6 % which is significantly better result with significantly more species. 

 

• The experimental results of this study indicate that SFFS algorithm might not be 
superior to the SFS algorithm. The same conclusion was made in the study [42]. 
However, this conclusion contradicts widely-held belief that floating search methods 
are superior to the simple sequential ones. For example, Jain et al. [29] claim that “in 
almost any large feature selection problem, floating search methods [SFFS and SBFS] 
perform better than the straightforward sequential searches, SFS and SBS.” This 
claim together with many others [24, 30, 31] persuade many people to use floating 
variable selection methods instead of simple algorithms [39, 40, 41], although 
according to the results of this study these simple algorithms may give equally good 
results in significantly less time.  
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When it comes to the future work, further development is needed to improve the way of 
choosing optimal regularization parameter for smoothing. Additional reference data could be 
also collected to improve the classification accuracy for the species which showed the lowest 
classification results, at least for the species with the lowest number of reference pixels 
(Douglas fir and Black locust). As the post-processing and the next step of this study spatial 
smoothing could be applied to the classification maps in order to eliminate isolated classified 
pixels and to produce more compact classes (homogeneous regions).  
 
 
Personal contributions of the internship 

 
This internship was of remarkable importance to me because I have immensely improved my 
previous knowledge during these 5 months. 
 
During the academic year I took a course in Remote Sensing, where we studied about basics 
of remote sensing with the implementation of different classification approaches and the 
analysis of the temporal profiles of the NDVI vegetation index. Also, I took a course in 
Classification and Pattern Recognition where we studied about different classification 
methods. This internship helped me a lot to improve my previous knowledge and to apply the 
theoretical knowledge obtained through these two courses in practice. 
 
Through this internship I have also improved my programming skills with the Python 
programming language and Shell Programming, previously completely unknown to me, and I 
also worked for the first time with the GIS software QGIS. 
 
I have learned a lot about forests and their importance for our environment. This subject was 
very interesting to me since it is related to a very important issue. 
 
I have also discovered the world of the research though many interactions with other people 
from the lab, which is also very significant experience for me. 
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Appendix 1 
 
Several additional experiments were performed on real hyper-spectral data sets to explore the 
ability of implemented SFFS algorithm to find a superior subset of features in comparison to 
SFS algorithm using data sets with more spectral bands and more reference pixels. Four data 
sets were used for this purpose. The first data set has been acquired in the region surrounding 
the volcano Hekla in Iceland by the AVIRIS sensor. It contains 157 spectral channels from 
400 to 1840 nm. The total number of reference pixels was 10227 for which 12 classes have 
been defined. The second data set has been acquired during a flight campaign over Pavia, 
northern Italy, with 103 spectral channels recorded from 430 to 860 nm. The number of 
reference pixels was 42776 for 9 defined classes. The third data set has been acquired by the 
NASA AVIRIS instrument over the Kennedy Space Centre (KSC), with 176 spectral bands 
from 400 to 2500 nm used for the analysis, and 13 classes for a total of 361753 pixels.  
 
For each data set, two thirds of the pixels were randomly selected per class as training pixels 
and the remaining reference pixels were used for validation. 50 repetitions were performed 
and new training set generated for each repetition. In order to compare SFFS and SFS 
algorithms the maximum number of extracted features was set to 15. Each variable has been 
standardized before the processing in order to get zero mean and unit variance. 
 
Stratified 5-fold cross validation was used to estimate the mean test classification accuracy. 
As described in Section 2.1, parameters of the GMM sub-models have been estimated using 
update rules. The mean test classification accuracy with a subset of selected features has been 
estimated using the marginalization properties of the Gaussian distribution parameters.  
 
Figure A1.1 presents the estimated mean test classification accuracies during the training 
procedure for each size of selected feature subsets until the size of 15 best features is reached. 
For each data set SFFS performed better than SFS for the smaller size of feature set. 
Moreover, by increasing the number of features in the feature set SFFS performance was 
becoming similar to the performance of the SFS algorithm. 
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Figure A1.1. The test classification accuracy for Hekla data set (top left), KSC (top right) and Pavia 
(bottom left)  

 
Table A1.1 shows the mean value of the overall accuracy (OA) and Kappa statistics averaged 
over 50 repetitions for each data set. From there, it can be seen that SFFS performed the same 
as SFS for Hekla data set, whilst for the other sets it gave slight improvements. However, 
each data set needed a lot of backtracking to be done, i.e. much more time was spent to obtain 
these slightly better results (Figure A1.2 and Table A1.2). This is the general problem of the 
SFFS algorithm independently of the data on which it is applied, since it is not possible to tell 
in advance for how long the algorithm is going to run. The complexity will be similar to the 
complexity of the SFS algorithm if data set is such that no backtracking needs to be done, but 
then the result will not be improved. On the other hand, if a lot of backtracking is needed, the 
results will be slightly better, but more time will be needed to obtain it. 
 
 

SFS algorithm SFFS algorithm 
Data sets 

OA (%) Kappa (%) OA (%) Kappa (%) 

Hekla 98.3  98.1  98.3  98.1  
Pavia 93.4  91.3  93.5  91.4  
Ksc 94.9  94.4  95.1  94.6  

 
Table A1.1.  Mean values of the overall accuracies and Kappa statistics for each data set 
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Figure A1.2. Learning time needed to extract 15 best features for each iteration for Hekla data set (top 
left), KSC (top right) and Pavia (bottom left)  

 
 
 

Learning time [s] Prediction time [ms] 
Data sets 

SFS SFFS SFS SFFS 

Hekla 54.75 126.2 51.8 50.5 
Pavia 107.41 217.18 168.73 177.7 
Ksc 42.87 115.14 28.21 29.95 

 
Table A1.2 The mean processing time for learning and prediction for each data set 
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Two more things related to SFFS algorithm were noticed: 
 

• Even though the original SFFS algorithm sometimes gave the results which were 
superior during the training phase in terms of estimated classification accuracy, this 
does not always translate to better results for unseen data. 

 

• The SFS algorithm will stop when the maximum number of variables is reached or if 
the increase of estimated classification accuracy is lower than a predetermined 
threshold. In this way, SFS sometimes finds a subset of features with the size of only 
5% of the original feature set size and which gives very high classification accuracy 
and thus performs very fast in terms of computational time. On the contrary, stopping 
criterion for the SFFS algorithm should be defined only with the maximum number of 
features since introducing the threshold for the test classification rate can stop the 
algorithm before backtracking. For example, it can stop the algorithm when only a 
few features were selected, although the algorithm may find better feature subset of 
the same size, after it finishes with the higher feature subset backtracking. 
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Appendix 2 
 
This chapter presents one part of the code that I have implemented for the purposes of this 
work. Most of them I implemented in Python whilst the SITS creation I did using highly 
specialized tool, OTB. SITS creation could also be done in Python, but this way was faster 
and easier.  
 
Pre-processing 
 
SITS creation 
 
Follows an example for using OTB applications and Shell Programming for creating SITS from 
NDVI indices for year 2012. 

 
The file with the images was in the following format: 

 
SudouestKalideos_20120112_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120218_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120307_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120327_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120503_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120620_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120707_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120717_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120810_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20120822_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20121101_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20121215_MS_fmsat_ortho_surf_pente_8m.tif 
SudouestKalideos_20121231_MS_fmsat_ortho_surf_pente_8m.tif 

 

The script that was used to create SITS from NDVI indices is script_sits.sh  and is given as: 

 
# Creating SITS from NDVI indices, processing year 2012 

# Input parameter: $i - the year  

# Usage: ./sits_2012.sh 

 

for i in *8m.tif 

do  

    otbcli_BandMath -il $i -out ndvi_$i -exp "(im1b4-im1b3)/(im1b4+im1b3)" 

done 

otbcli_ConcatenateImages -il ndvi_*.tif -out sits_NDVI_$1.tif 

rm -v ndvi_*.tif 

 

The notation im1b4 refers to the forth band in the images which is for Formosat images near-infrared 

band whilst im1b3 refers to red band.  
 

For each image NDVI index was computed using OTB function otbcli_BandMath. The command 
$i will return the name of one file from the list. Thus, for loop will process every file and the name 

of the output will be the name of the original file where ndvi_ is added at the beginning. Then all the 

NDVI indices were concatenated into one image time series, in this case, sits_NDVI_2012.sh. The 

OTB function otbcli_ConcatenateImages was used for this purpose. And finally, to free the 

space, all the NDVI indices were removed, since they are in the file sits_NDVI_2012.sh. This was 
done using rm -v ndvi_*.tif. 
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Defining the temporal axis 
 
After SITS creation, the smoothing was performed. As the first step, temporal axis needed to be built. 
 
Temporal axis was defined using the function create_timestamp.py , which is presented in the 

following box: 
 

''' 

    The program builds temporal axis for one year.  

    TimeStamp will contain for each image its number in the year. 

''' 

from datetime import date # Import to menage the dates 

import glob # Import to menage the files 

import scipy as sp 

 

NAME = glob.glob('*8m.tif') 

NAME.sort() 

TimeStamp=[] 

 

# Build the temporal sampling 

for name in NAME: 

    # There are 17 characters before the date, which is written as year- 

 month-day 

    date_tp = date(int(name[17:21]),int(name[21:23]),int(name[23:25])) 

    TimeStamp.append(date_tp.timetuple().tm_yday) 

TimeStamp = sp.asarray(TimeStamp) 

 
If we consider year 2012 (the format of the images is given in previous example), the 
temporal axis will be:  
 
TimeStamp = [12, 49, 67, 87, 124, 172, 189, 199, 223, 235, 306, 350, 366]. 
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Smoothing SITS 
 
The following function, smooth_image.py , applies Whittaker smoother filter to SITS. 

 
import scipy as sp 

from osgeo import gdal 

 

import scipy as sp 

from osgeo import gdal 

 

def smooth_image(raster_name,mask_name,output_name,l,t): 

    ''' 

    The function applies a smoothing filter on all the pixels of the        

input image. 

    Input: 

    raster_name: the name of the original SITS 

    mask_name: the name of the Mask Time Series. Every pixel with value 

greater than 0 refers to the clouds or cloud shadows presence and the 

corresponding pixel from SITS is masked. 

    output_name: the name of the smoothed image 

    l: the regularization parameter 

    t: the temporal sampling (scipy array) 

    ''' 

    # Get  

    import smoother as sm 

 

    # Open Raster and get additionnal information 

    raster = gdal.Open(raster_name,gdal.GA_ReadOnly) 

    if raster is None: 

        print 'Impossible to open '+raster_name 

        exit() 

 

    # Open Mask and get additionnal information 

    mask = gdal.Open(mask_name,gdal.GA_ReadOnly) 

    if mask is None: 

        print 'Impossible to open '+mask_name 

        exit() 

 

    # Check size 

    if (raster.RasterXSize != mask.RasterXSize) or (raster.RasterYSize != 

mask.RasterYSize) or (raster.RasterCount != mask.RasterCount): 

        print 'Image and mask should be of the same size' 

        exit()  

     

    # Get the size of the image 

    d  = raster.RasterCount 

    nc = raster.RasterXSize 

    nl = raster.RasterYSize 

 

    # Get the geoinformation     

    GeoTransform = raster.GetGeoTransform() 

    Projection = raster.GetProjection() 

 

    # Get block size 

    band = raster.GetRasterBand(1) 

    block_sizes = band.GetBlockSize() 

    x_block_size = block_sizes[0] 

    y_block_size = block_sizes[1] 

    del band 

 



  

54 

    # Initialize the output 

    driver = gdal.GetDriverByName('GTiff') 

    dst_ds = driver.Create(output_name, nc,nl, d, gdal.GDT_Float64) 

    dst_ds.SetGeoTransform(GeoTransform) 

    dst_ds.SetProjection(Projection) 

 

    for i in xrange(0,nl,y_block_size): 

        if i + y_block_size < nl: # Check for size consistency in Y 

            lines = y_block_size 

        else: 

            lines = nl - i 

        for j in xrange(0,nc,x_block_size): # Check for size consistency in 

X 

            if j + x_block_size < nc: 

                cols = x_block_size 

            else: 

                cols = nc - j 

 

            # Get the data 

            X = sp.empty((cols*lines,d)) 

            M = sp.empty((cols*lines,d),dtype='int') 

            for ind in xrange(d): 

                X[:,ind] = raster.GetRasterBand(int(ind+1)).ReadAsArray(j, 

i, cols, lines).reshape(cols*lines) 

                M[:,ind] = mask.GetRasterBand(int(ind+1)).ReadAsArray(j, i, 

cols, lines).reshape(cols*lines) 

            # Put all masked value to 1 

            M[sp.isnan(M)]=0  

            M[M>0]=1 

            X[M>0]=0 

             

            # Do the smoothing 

            Xf = sp.empty((cols*lines,d)) 

            for ind in xrange(cols*lines): 

                smoother = sm.Whittaker(x=X[ind,:],t=t,w=1-

M[ind,:],order=2) 

                Xf[ind,:] = smoother.smooth(l) 

                     

            # Write the data 

            for ind in xrange(d): 

                out = dst_ds.GetRasterBand(ind+1) 

                out.WriteArray(Xf[:,ind].reshape(lines,cols),j,i) 

                out.FlushCache() 

 

            # Free memory 

            del X,Xf,M,out 

 

    # Clean/Close variables 

    raster = None 

    mask = None 

    dst_ds = None 
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Before the function for smoothing was applied, it was necessary to find the optimal value for 
regularization parameter. Follows the function for finding the optimal regularization 

parameter, find_optimal_lamda.py  : 
from osgeo import gdal 

import matplotlib.pyplot as plt 

import sys 

import smoother as sm 

import scipy as sp 

import random 

from scipy.stats import mode 

import time 

 

''' 

    The program finds an optimal regularization parameter for smoothing.  

    Generalized and ordinary cross-validation are calculated for each of 

the pixels which correspond to the forest area for a range values of 

regularization parameter. 

    Then for each of the pixels finds lamda, for which the ordinary and 

genealized cross validations have min values. 

    For the optimal lamda takes the value which appears most frequently. 

    Inputs: 

     sits_name: the name of the original SITS. 

     cloud_mask_name: the name of Mask Time Series.  

     mask_forest_name: the mask containing the information about     

 forest/nonforest parts of the images. 

    Outputs: 

 lamda_gcv: the optimal lamda obtained using Generalized Cross-

 Validation 

 lamda_ocv: the optimal lamda obtained using Ordinary Cross-Validation 

  

 ''' 

 

## Open Raster 

sits_name = 'sits_2012.tif' 

sits = gdal.Open(sits_name,gdal.GA_ReadOnly) 

 

if sits is None: 

    print 'Impossible to open '+sits_name 

    exit() 

 

## Open mask with clouds 

cloud_mask_name ='mask_clouds_2012.tif' 

cloud_mask = gdal.Open(cloud_mask_name,gdal.GA_ReadOnly) 

 

if cloud_mask is None: 

    print 'Impossible to open '+cloud_mask_name 

    exit() 

     

## Some tests 

if (sits.RasterXSize != cloud_mask.RasterXSize) or (sits.RasterYSize != 

cloud_mask.RasterYSize) or (sits.RasterCount != cloud_mask.RasterCount): 

    print 'SITS and mask with clouds should be of the same size' 

    exit() 

     

mask_forest_name = mask_final_2012.tif' 

mask_forest = gdal.Open(mask_forest_name,gdal.GA_ReadOnly) 

 

if mask_forest is None: 

    print 'Impossible to open '+mask_forest_name 

    exit() 
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## Get the number of variables and the size of the images 

d  = sits.RasterCount 

nc = sits.RasterXSize 

nl = sits.RasterYSize 

 

rangeX = (0, nc) # The actual range in x values of the raster 

rangeY = (0, nl) # The actual range in y values of the raster 

 

l=10.0**sp.arange(0,15,1) 

 

lamda_gcv = [] 

lamda_ocv = [] 

 

mask_forest_array = mask_forest.GetRasterBand(1).ReadAsArray() 

t = sp.nonzero(mask_forest_array) 

n = t[0].size 

 

gcv = sp.empty((n,len(l)),dtype=float64) 

ocv = sp.empty((n,len(l)),dtype=float64) 

 

start_time = time.time() 

 

for i in range(n): 

    mask_forest_final = 

mask_forest.GetRasterBand(1).ReadAsArray(t[1][i],t[0][i],1, 1) 

    if mask_forest_final>0: 

        X = sp.empty(d) 

        M = sp.empty(d) 

        for ind in xrange(d): 

            X[ind] = sits.GetRasterBand(int(ind+1)).ReadAsArray(t[1][i], 

t[0][i], 1, 1) 

            M[ind] = 

cloud_mask.GetRasterBand(int(ind+1)).ReadAsArray(t[1][i], t[0][i], 1, 1) 

     

        M[M>0] = 1 

        M[sp.isnan(M)]=0 

         

        smoother = sm.Whittaker(x=X,t=TimeStamp,w=1-M,order=2) 

        gcv[i,:]= smoother.GeneralizedCrossValidation(l) # Value for each l 

        ocv[i,:] = smoother.OrdinaryCrossValidation(l)  

        ind1 = gcv[i,:].argmin() 

        ind2 = ocv[i,:].argmin() 

        lamda_gcv.append(l[ind1]) 

        lamda_ocv.append(l[ind2]) 

         

time_duration = time.time() - start_time  

            

print mode(lamda_gcv)[0][0] 

print mode(lamda_ocv)[0][0] 

 

plt.figure() 

plt.hist(sp.log10(lamda_gcv),100) 

plt.figure() 

plt.hist(sp.log10(lamda_ocv),100) 

plt.show() 
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Classification and accuracy assessment  
 
Extracting training/validation samples 
 
The training/validating samples were extracted from SITS using the following function, 

get_samples_from_roi.py : 

 
from osgeo import gdal 

import scipy as sp 

 

def get_samples_from_roi(raster_name,roi_name): 

    ''' 

    The function get the set of pixels given in the thematic map. 

    Data is read per block. 

    Input: 

        raster_name: the name of the raster file, could be any file that 

  GDAL can open 

        roi_name: the name of the thematic image: each pixel whose values 

  is greater than 0 is returned 

    Output: 

        X: the sample matrix. A nXd matrix, where n is the number of 

referenced pixels and d is the number of variables. Each  

            line of the matrix is a pixel. 

        Y: the label of the pixel 

    '''  

     

    ## Open Raster 

    raster = gdal.Open(raster_name,gdal.GA_ReadOnly) 

    if raster is None: 

        print 'Impossible to open '+raster_name 

        exit() 

 

    ## Open ROI 

    roi = gdal.Open(roi_name,gdal.GA_ReadOnly) 

    if roi is None: 

        print 'Impossible to open '+roi_name 

        exit() 

         

 

    ## Some tests 

    if (raster.RasterXSize != roi.RasterXSize) or (raster.RasterYSize != 

roi.RasterYSize): 

        print 'Images should be of the same size' 

        exit() 

 

    ## Get block size 

    band = raster.GetRasterBand(1) 

    block_sizes = band.GetBlockSize() 

    x_block_size = block_sizes[0] 

    y_block_size = block_sizes[1] 

    del band 

     

    ## Get the number of variables and the size of the images 

    d  = raster.RasterCount 

    nc = raster.RasterXSize 

    nl = raster.RasterYSize 

 

 

    ## Read block data 
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    X = sp.array([]).reshape(0,d) 

    Y = sp.array([]).reshape(0,1) 

    for i in range(0,nl,y_block_size): 

        if i + y_block_size < nl: #Check for size consistency in Y 

            lines = y_block_size 

        else: 

            lines = nl - i 

        for j in range(0,nc,x_block_size): #Check for size consistency in X 

            if j + x_block_size < nc: 

                cols = x_block_size 

            else: 

                cols = nc - j 

 

            # Load the reference data 

            ROI = roi.GetRasterBand(1).ReadAsArray(j, i, cols, lines) 

            t = sp.nonzero(ROI) 

            if t[0].size > 0: 

                Y = 

sp.concatenate((Y,ROI[t].reshape((t[0].shape[0],1)).astype('uint8'))) 

                # Load the Variables 

                Xtp = sp.empty((t[0].shape[0],d)) 

                for k in xrange(d): 

                    band = raster.GetRasterBand(k+1).ReadAsArray(j, i, 

cols, lines) 

                    Xtp[:,k] = band[t] 

                try: 

                    X = sp.concatenate((X,Xtp)) 

                except MemoryError: 

                    print 'Impossible to allocate memory: ROI too big' 

                    exit() 

     

    # Clean/Close variables 

    del Xtp,band     

    roi = None # Close the roi file 

    raster = None # Close the raster file 

 

    return X,Y 
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Learning the classifier and computing its performance (classification accuracy) 
 

The main program, script_classif_formosat.py , for performing classification with described 

classifiers is given in the following box.  
from npfs import * 

import sys 

from osgeo import gdal 

import pdb 

import get_samples_from_roi as fun 

from accuracy_index import * 

from sklearn.svm import SVC 

from sklearn.cross_validation import KFold 

from sklearn.grid_search import GridSearchCV 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.cross_validation import StratifiedKFold 

from script_classif_whole_sits import * 

  

## ADDITIONAL FUNCTIONS 

def standardize(x,M=None,S=None,REVERSE=None): 

    ''' Function that standardize the data 

        Input: 

            x: the data 

            M: the mean vector 

            V: the standard deviation vector 

        Output: 

            x: the standardize data 

            M: the mean vector 

            V: the standard deviation vector 

    ''' 

    if not sp.issubdtype(x.dtype,float): 

        do_convert = 1 

    else: 

        do_convert = 0 

    if REVERSE is None: 

        if M is None: 

            M = sp.mean(x,axis=0) 

            S = sp.std(x,axis=0) 

            if do_convert: 

                xs = (x.astype('float')-M)/S 

            else: 

                xs = (x-M)/S 

            return xs,M,S 

        else: 

            if do_convert: 

                xs = (x.astype('float')-M)/S 

            else: 

                xs = (x-M)/S 

            xs = (x-M)/S 

            return xs 

    else: 

        return S*x+M 

 

 

 

## LOAD DATA 

rt = ['sits_NDVI', 'sits_bands', 'sits_bands_NDVI'] 

 

for raster_type in rt: 

    for roilev in range(1,4): 

        raster_name = raster_type +'_2012.tif' 
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        roi_name = 'raster_ref_level' + str(roilev) + '.tif' 

         

        ## PARAMETERS 

        REP,r = 50,0 

        SPLIT = 2.0/3 

        AC_gmm = list() 

        KAPPA_gmm = list() 

        AC_gmm_sffs = list() 

        KAPPA_gmm_sffs = list() 

        AC_svm = list() 

        KAPPA_svm = list() 

        AC_rf = list() 

        KAPPA_rf = list() 

        IDS = list() 

        IDS_sffs = list() 

 

        sig = 2.0**sp.arange(-5,5) 

        penalty = 10.0**sp.arange(0,5) 

        param_grid_svm = dict(gamma=sig, C=penalty) 

 

        n_estimators=sp.arange(10,500,50) 

        param_grid_rf = dict(n_estimators=n_estimators) 

         

        X,Y = fun.get_samples_from_roi(raster_name,roi_name) 

        X = standardize(X)[0] 

        n,d=X.shape 

        C = int(Y.max()) 

 

        CONFU_gmm = sp.zeros((REP,C,C)) 

        CONFU_gmm_sffs = sp.zeros((REP,C,C)) 

        CONFU_svm = sp.zeros((REP,C,C)) 

        CONFU_rf = sp.zeros((REP,C,C)) 

                       

        ## START 

        while r < REP: 

            print r 

            # Random selection of the sample 

            x = sp.array([]).reshape(0,d) 

            y = sp.array([]).reshape(0,1) 

            xt = sp.array([]).reshape(0,d) 

            yt = sp.array([]).reshape(0,1) 

 

            sp.random.seed(r) 

            for i in range(C):             

                t = sp.where((i+1)==Y)[0] 

                nc = t.size 

                ns = int(nc*SPLIT) 

                rp = sp.random.permutation(nc) 

                x = sp.concatenate((X[t[rp[0:ns]],:],x)) 

                xt = sp.concatenate((X[t[rp[ns:]],:],xt)) 

                y = sp.concatenate((Y[t[rp[0:ns]]],y)) 

                yt = sp.concatenate((Y[t[rp[ns:]]],yt)) 

 

            y.shape=(y.size,) 

            cv = KFold(y.size, n_folds=5) 

         

            ## GMM 

            # Learn the model 

            model = GMM() 

            model.learn_gmm(x,y) 
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            model.ids,loo = 

model.forward_selection(x,y,maxvar=15,delta=0.001,v=5) 

            IDS.append(model.ids) 

         

            # Predict 

            yp = model.predict_gmm(xt,ids=model.ids)[0] 

 

            # Confusion matrix 

            confu = CONFUSION_MATRIX() 

            confu.compute_confusion_matrix(yp,yt) 

            AC_gmm.append(confu.OA) 

            KAPPA_gmm.append(confu.Kappa) 

            CONFU_gmm[r,:,:]=confu.confusion_matrix 

         

            # GMM_sffs 

            # Learn the model 

            model_sffs = GMM() 

            model_sffs.learn_gmm(x,y) 

            model_sffs.ids,loo_sffs = 

model_sffs.forward_selection_sffs(x,y,maxvar=15,v=5) 

         

            t = sp.argmax(loo_sffs) 

         

            model_sffs.ids = model_sffs.ids[0:(t+1)] 

            IDS_sffs.append(model_sffs.ids) 

         

            # Predict 

            yp = model_sffs.predict_gmm(xt,ids=model_sffs.ids)[0] 

 

            # Confusion matrix 

            confu = CONFUSION_MATRIX() 

            confu.compute_confusion_matrix(yp,yt) 

            AC_gmm_sffs.append(confu.OA) 

            KAPPA_gmm_sffs.append(confu.Kappa) 

            CONFU_gmm_sffs[r,:,:]=confu.confusion_matrix 

 

            # SVM 

            grid = GridSearchCV(SVC(), param_grid=param_grid_svm, cv=cv) 

            grid.fit(x,y) 

            clf = grid.best_estimator_ 

            clf.fit(x,y) 

            yp = clf.predict(xt).reshape(yt.shape) 

            confu = CONFUSION_MATRIX() 

            confu.compute_confusion_matrix(yp,yt) 

            AC_svm.append(confu.OA) 

            KAPPA_svm.append(confu.Kappa) 

            CONFU_svm[r,:,:]=confu.confusion_matrix 

         

            ## RF 

            grid = GridSearchCV(RandomForestClassifier(), 

param_grid=param_grid_rf, cv=cv) 

            grid.fit(x, y) 

            clf = grid.best_estimator_ 

            clf.fit(x,y) 

            yp = clf.predict(xt).reshape(yt.shape) 

            confu = CONFUSION_MATRIX() 

            confu.compute_confusion_matrix(yp,yt) 

            AC_rf.append(confu.OA) 
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            KAPPA_rf.append(confu.Kappa) 

            CONFU_rf[r,:,:]=confu.confusion_matrix 

 

            del x,xt,y,yt,model,model_sffs,confu,nc,ns,t 

            r+=1 

 

        # SAVE RESULTS 

        sp.savez('res_gmm_2012_lev' + str(roilev) + raster_type 

+'_2012',OA=AC_gmm,Kappa=KAPPA_gmm,confu=CONFU_gmm,ids=IDS) 

        sp.savez('res_gmm_sffs_2012_lev' + str(roilev) + raster_type 

+'_2012',OA=AC_gmm_sffs,Kappa=KAPPA_gmm_sffs,confu=CONFU_gmm_sffs,ids=IDS_s

ffs) 

        sp.savez('res_svm_2012_lev' + str(roilev) + raster_type 

+'_2012',OA=AC_svm,Kappa=KAPPA_svm,confu=CONFU_svm) 

        sp.savez('res_rf_2012_lev' + str(roilev) + raster_type 

+'_2012',OA=AC_rf,Kappa=KAPPA_rf,confu=CONFU_rf) 
 

 

 
 
 
Prediction on all the pixels of the SITS to produce thematic maps 
 

To produce the classification maps, the following function ( predict_image.py )  has been 

implemented: 
 
from osgeo import gdal 

import scipy as sp 

import get_samples_from_roi as fun 

from accuracy_index import * 

from sklearn.svm import SVC 

from sklearn.cross_validation import KFold 

from sklearn.grid_search import GridSearchCV 

from sklearn.ensemble import RandomForestClassifier 

from npfs import * 

 

def 

predict_image(raster_name,roi_name,classif_name,classifier_name,mask_name=N

one): 

    ''' 

        The function classifies the whole raster images, using block per 

block image analysis. 

        Inputs: 

        raster_name: the name of the raster image that should be 

classified, could be any file that GDAL can open 

        roi_name: the name of the image which has referenced pixels 

        classif_name: the name of the output image (which will contain 

zeros where there is no data for classification and number of the class for 

each pixel) 

        classifier_name: the name of the classifier that is used for 

classification of the raster images. It can be 'NPFS','SVM' and 'RF' 

        mask_name: the name of the mask which is equal to one for the 

pixels that shoud be classified. This mask is intersection between mask 

with the non-forest areas and 

        mask which is equal to one if there are information for all the 

dates in the raster image .  
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        The pixels which for some dates have an information and for some 

dates do not have any information will not be taken into account (the value 

of the mask for these pixels is zero) 

        Each classifier is learned with all the referenced pixels and 

prediction is done with raster pixels (selected with respect to the mask) 

    ''' 

    # Parameters 

    block_sizes = 512 

    sig = 2.0**sp.arange(-5,5) 

    penalty = 10.0**sp.arange(0,5) 

    param_grid_svm = dict(gamma=sig, C=penalty) 

 

    n_estimators=sp.arange(10,500,50) 

    param_grid_rf = dict(n_estimators=n_estimators) 

     

    # Open Raster and get additionnal information 

    raster = gdal.Open(raster_name,gdal.GA_ReadOnly) 

    if raster is None: 

        print 'Impossible to open '+raster_name 

        exit() 

         

    roi = gdal.Open(roi_name,gdal.GA_ReadOnly) 

    if roi is None: 

        print 'Impossible to open '+roi_name 

        exit() 

     

    # If provided, open mask 

    if mask_name is None: 

        mask=None 

    else: 

        mask = gdal.Open(mask_name,gdal.GA_ReadOnly) 

        if mask is None: 

            print 'Impossible to open '+mask_name 

            exit() 

             

    # Check size 

    if (raster.RasterXSize != mask.RasterXSize) or (raster.RasterYSize != 

mask.RasterYSize): 

        print 'Image and mask should be of the same size' 

        exit()  

             

    X,Y = fun.get_samples_from_roi(raster_name,roi_name) 

#    X = standardize(X)[0] 

    X,M,S  = standardize(X) ## Changed by MF 

     

    # Get the size of the image 

    d  = raster.RasterCount 

    ncols= raster.RasterXSize 

    nlines = raster.RasterYSize 

    C = int(Y.max()) 

         

    # TO DO: update capital and small X,Y 

         

    Y.shape=(Y.size,) 

    cv = KFold(Y.size, n_folds=5)     

     

    # Get the geoinformation     

    GeoTransform = raster.GetGeoTransform() 

    Projection = raster.GetProjection() 

     

    # Set the block size  
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    x_block_size = block_sizes   

    y_block_size = block_sizes 

     

    ## Initialize the output 

    driver = gdal.GetDriverByName('GTiff') 

    dst_ds = driver.Create(classif_name, ncols,nlines, 1, gdal.GDT_UInt16) 

    dst_ds.SetGeoTransform(GeoTransform) 

    dst_ds.SetProjection(Projection) 

    out = dst_ds.GetRasterBand(1) 

     

    if classifier_name is 'NPFS': 

        # Learn the model 

        model = GMM() 

        model.learn_gmm(X,Y) 

        model.ids,loo = 

model.forward_selection(X,Y,maxvar=10,delta=0.05,v=5) 

        nvar = len(model.ids) 

         

    elif classifier_name is 'SVM': 

        # Learn the model 

        grid = GridSearchCV(SVC(), param_grid=param_grid_svm, cv=cv) 

        grid.fit(X,Y) 

        clf = grid.best_estimator_ 

        clf.fit(X,Y)  

         

    else: 

        # Learn the model 

        grid = GridSearchCV(RandomForestClassifier(), 

param_grid=param_grid_rf, cv=cv) 

        grid.fit(X,Y) 

        clf = grid.best_estimator_ 

        clf.fit(X,Y) 

         

    ## Perform the classification 

    for i in range(0,nlines,y_block_size): 

        if i + y_block_size < nlines: # Check for size consistency in Y 

            lines = y_block_size 

        else: 

            lines = nlines - i 

        for j in range(0,ncols,x_block_size): # Check for size consistency 

in X 

            if j + x_block_size < ncols: 

                cols = x_block_size 

            else: 

                cols = ncols - j 

             

            # Load the data 

            Xb = sp.empty((cols*lines,d)) 

            for ind in range(d): 

                Xb[:,ind] = raster.GetRasterBand(ind+1).ReadAsArray(j, i, 

cols, lines).reshape(cols*lines) 

            Xb = standardize(Xb,M,S)     ## Update Xb in the following 

             

            # Do the prediction 

            if classifier_name is 'NPFS': 

                if mask is None: 

                    yp = model.predict_gmm(Xb)[0].astype('uint16') 

                else: 

                    mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, cols, 

lines).reshape(cols*lines) 

                    t= sp.where(mask_temp>0)[0] 
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                    yp=sp.zeros((cols*lines,)) 

                    if t.size>0: 

                        yp[t]= 

model.predict_gmm(Xb[t,:],ids=model.ids)[0].astype('uint16') 

             

            elif classifier_name is 'SVM': 

                 

                # Do the prediction 

                if mask is None: 

                    yp =clf.predict(Xb) 

                else: 

                    mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, cols, 

lines).reshape(cols*lines) 

                    t= sp.where(mask_temp>0)[0] 

                    yp=sp.zeros((cols*lines,)) 

                    if t.size>0: 

                        yp[t] = clf.predict(Xb[t,:]).astype('uint16') 

            else: 

                 

                 # Do the prediction 

                 if mask is None: 

                     yp =clf.predict(Xb) 

                 else: 

                     mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, 

cols, lines).reshape(cols*lines) 

                     t= sp.where(mask_temp>0)[0] 

                     yp=sp.zeros((cols*lines,)) 

                     if t.size>0: 

                         yp[t] = clf.predict(Xb[t,:]).astype('uint16') 

         

            out.WriteArray(yp.reshape(lines,cols),j,i) 

            out.FlushCache() 

            del Xb,yp 

 

    # Clean/Close variables     

    raster = None 

    dst_ds = None 
 
 

 
 

The following program, ( thematic_map_consecutive_years.py ), was used to find the most 

frequent species and its frequency for each pixel looking at the classification maps obtained 
for four years. 
 
from osgeo import gdal 

import scipy as sp 

from scipy.stats import mode 

 

''' 

    The function finds the most frequent species and its frequency within 

the raster image. 

    Inputs: 

    raster_name: the name of the raster image which consists of 

classification maps from several consecutive years from the same 

classifier, the same level of classification and the same way of SITS 

creation. Each band in the raster image corresponds to the classificatin 

map from one year. 
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    mask_name: the name of the mask which is equal to one for the pixels 

that are classified in each of the classification maps.  

    Output: 

    classif_name: the name of the output image. It consists of two bands. 

First band presents the most frequent class for each pixel and its 

frequency can be found in the second band. 

''' 

 

raster_name = 

'/home/veliborka/Documents/Bands_concatenation/classification_maps_all_year

s_level1_SB_SVM.tif' 

mask_name = 

'/home/veliborka/Documents/Bands_concatenation/mask_final_all_years.tif' 

classif_name='/home/veliborka/Documents/Bands_concatenation/final_classific

ation_map_level1_SVM.tif' 

 

# Open Raster 

raster = gdal.Open(raster_name,gdal.GA_ReadOnly) 

if raster is None: 

    print 'Impossible to open '+raster_name 

    exit() 

 

# Open forest/nonforest mask 

mask = gdal.Open(mask_name,gdal.GA_ReadOnly) 

if mask is None: 

    print 'Impossible to open '+mask_name 

    exit() 

         

# Check size 

if (raster.RasterXSize != mask.RasterXSize) or (raster.RasterYSize != 

mask.RasterYSize): 

    print 'Image and mask should be of the same size' 

    exit()  

 

# Get the size of the image 

d  = raster.RasterCount  

ncols= raster.RasterXSize 

nlines = raster.RasterYSize  

  

block_sizes = 512 

 

# Get the geoinformation     

GeoTransform = raster.GetGeoTransform() 

Projection = raster.GetProjection() 

 

# Set the block size  

x_block_size = block_sizes   

y_block_size = block_sizes 

 

## Initialize the output 

driver = gdal.GetDriverByName('GTiff') 

dst_ds = driver.Create(classif_name, ncols,nlines, 2, gdal.GDT_UInt16) 

dst_ds.SetGeoTransform(GeoTransform) 

dst_ds.SetProjection(Projection) 

 

     

## Find the most frequent appearing species and its frequency for each 

pixel 

for i in range(0,nlines,y_block_size): 

    if i + y_block_size < nlines: # Check for size consistency in Y 

        lines = y_block_size 
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    else: 

        lines = nlines - i 

    for j in range(0,ncols,x_block_size): # Check for size consistency in X 

        if j + x_block_size < ncols: 

            cols = x_block_size 

        else: 

            cols = ncols - j 

         

        # Load the data 

        Xb = sp.empty((cols*lines,d)) 

        for ind in range(d): 

            Xb[:,ind] = raster.GetRasterBand(ind+1).ReadAsArray(j, i, cols, 

lines).reshape(cols*lines) 

         

        # Do the prediction 

        if mask is None: 

            yp = mode(Xb,axis=1) 

        else: 

            mask_temp=mask.GetRasterBand(1).ReadAsArray(j, i, cols, 

lines).reshape(cols*lines) 

            t= sp.where(mask_temp>0)[0] 

            yp=sp.zeros((cols*lines,)) 

            fr=sp.zeros((cols*lines,)) 

            if t.size>0: 

                yp[t] = mode(Xb[t,:],axis=1)[0] # the most frequent 

appearing species 

                fr[t] = mode(Xb[t,:],axis=1)[1] # its frequency 

 

        out = dst_ds.GetRasterBand(1)         

        out.WriteArray(yp.reshape(lines,cols),j,i) 

        out.FlushCache() 

        out = dst_ds.GetRasterBand(2) 

        out.WriteArray(fr.reshape(lines,cols),j,i) 

        out.FlushCache() 

        del Xb,yp,fr 

         

 

# Clean/Close variables     

raster = None 

dst_ds = None 

 
The following box presents the main part of the implemented SFFS algorithm 

( forward_selection_sffs.py ): 

 
def forward_selection_sffs(self,x,y,delta=0.1,maxvar=None,v=5,ncpus=None): 

    """ Function that selects the most discriminative variables according 

   to a sequential floating forward search method (SFFS) 

        Inputs: 

            x,y: the training samples and their labels 

            delta:  the minimal improvement in percentage when a variable 

  is added to the pool, the algorithm stops if the improvement is 

  lower than delta. Default value 0.1% 

            maxvar: maximum number of extracted variables. Default value: 

  20% of the original number of features 

            v: number of folds for the cross-validation.                            

        Outputs: 

            ids: the selected subset of features for SFFS method 

            OA: the accuracy estimated for each subset ids by v-fold cv for 

  SFFS method             
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    """ 

    ## Get some information from the variable 

    C = int(y.max(0));  # Number of classes 

    n = x.shape[0]      # Number of samples 

    d = x.shape[1]      # Number of variables 

    if ncpus is None: 

        ncpus=mp.cpu_count()# Get the number of core 

     

    ## Initialization 

    r=0                 # Initialization of the counter 

    r1=0 

    variable = sp.arange(d) # At step zero: d variables available 

    variable1 = sp.arange(d) 

    ids=[]              # and no selected variable 

    ids1=[]  

    OA=[]              # list of the evolution the OA estimation     

    OA1=[]         

    if maxvar is None: 

        maxvar = sp.floor(d/5)  # Select at max 20 % of the original number 

of variables 

 

    cv=CV()                                 # Initialize the CV sets 

    cv.split_data_class(y,v=5)                    # Generate split indices 

for the data 

     

    ## Pre-update the models 

    model_pre_cv = [] 

    for i in range(v): 

        model_pre_cv.append(GMM(size=C,d=d))# List of updated GMM models 

        X,Y=x[cv.iT[i],:], y[cv.iT[i]] 

        nu = float(Y.size) 

        for j in range(C):                  #Update the model for each 

class 

            k = sp.where(Y==(j+1))[0] 

            nu_c = float(k.size) 

            mean_t = sp.mean(X[k,:],axis=0) 

            cov_t = sp.cov(X[k,:],bias=1,rowvar=0) 

                 

            model_pre_cv[i].ni[j] = self.ni[j]-nu_c 

            model_pre_cv[i].prop[j]= model_pre_cv[i].ni[j]/(n-nu) 

            model_pre_cv[i].mean[j,:] = (self.ni[j]*self.mean[j,:]-

nu_c*mean_t)/(self.ni[j]-nu_c)  

            model_pre_cv[i].cov[j,:] = (self.ni[j]*self.cov[j,:,:] - 

nu_c*cov_t - nu_c*self.ni[j]/model_pre_cv[i].ni[j]*sp.outer(self.mean[j,:]-

mean_t,self.mean[j,:]-mean_t))/model_pre_cv[i].ni[j] 

            del k,nu_c,mean_t,cov_t 

        del X,Y,nu 

         

    ## Start the sequential forward floating search  

    while (r<maxvar and len(variable)>0): 

        # Step 1, SFFS inclusion the most significant feature, 

initialization with two the most significant features 

        err = sp.zeros(variable.size) 

        pool = mp.Pool(processes=ncpus)      

        processes = [pool.apply_async(compute_v_cv_gmm, 

args=(variable,model_pre_cv[i],x[cv.iT[i],:],y[cv.iT[i]],ids)) for i in 

xrange(v)] 

        pool.close() 

        pool.join() 

        for p in processes: 

            err += p.get() 
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        err /= v 

        del processes,pool                 

        ## Select the variable that provides the highest loocv 

        t = sp.argmax(err)  

        OA.append(err[t])     

        ids.append(variable[t])  

        variable = sp.delete(variable,t) 

        r += 1  

            

        # Step 2: Conditional Exclusion 

        if r>2: 

            # The least significant feature in the subset ids 

            worst_feat, worst_feat_val, crit_func_max = 

find_worst_feature(model_pre_cv,x,y,cv,ids,OA,v) 

            if worst_feat_val != None: # and worst_feat != (r-1): 

                variable = sp.append(variable,ids[worst_feat]) 

                del ids[worst_feat] 

                r -= 1  

                condition = True # Go to step 3 if r is higher than 2 

                if r == 2: 

                    OA[r-1] = crit_func_max 

                    del OA[r] 

            else:  

                condition = False # If worst feature value doesn't exist 

got to step 1 

             

        # Step 3   

        while (r>2 and condition):  

            # The least significant feature in the subset ids 

            worst_feat1, worst_feat_val1, crit_func_max1 = 

find_worst_feature(model_pre_cv,x,y,cv,ids,OA,v,r)        

            if worst_feat_val1 != None: 

                variable = sp.append(variable,ids[worst_feat1])  

                del ids[worst_feat1] 

                r -= 1 

                crit_func_max = crit_func_max1 

                if r == 2: 

                    OA[r-1] = crit_func_max 

                    del OA[r:] 

            else: 

                OA[r-1] = crit_func_max 

                del OA[r:] 

                condition = False # If worst feature value doesn't exist 

got to step 1 

                     

    ## Return the final values 

    return ids,OA 

 
 

The following function, find_worst_feature.py,   is used within the previous SFFS algorithm 

to find the worst feature from the set of original features. 
 
def find_worst_feature(model_cv,x,y,cv,ids,oa,v,ncpus=None): 

    """ Function that finds the least significant feature in the subset of 

   features ids. 

        Inputs: 

            model_cv: contains the models built with all the features 

            x,y: the training samples and their labels (out of all  

  referenced pixels) 
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            ids: the subset of the features 

            cv: contains training samples indices for training and testing 

  each model, cv.iT contains indices for testing each model 

            oa: the accuracy estimated for each subset ids by v-fold cv 

            v: number of folds for the cross-validation 

        Output: 

            worst_feat: the indice of the worst feature in the subset ids 

            worst_feat_val: the value of the worst feature 

            crit_func_max: the new overall accuracy estimated for ids  

  without worst feature, if worst feature exists, otherwise it 

  will not be changed 

     

        Used in GMM.forward_selection_sffs() 

    """ 

    r = len(ids) 

     

    if ncpus is None:         

        ncpus=mp.cpu_count()    # Get the number of core 

         

    worst_feat_val = None 

    worst_feat = None 

    crit_func_eval = [] 

     

    for i in range(0,len(ids)): 

        ids_i = sp.delete(ids,i)  

        pool = mp.Pool(processes=ncpus)      

        processes = [pool.apply_async(compute_v_cv_gmm_sffs, 

args=(model_cv[j],x[cv.iT[j],:],y[cv.iT[j]],ids_i)) for        j in 

xrange(v)] 

        pool.close() 

        pool.join() 

                                     

        crit_func_eval_i = 0 

        for p in processes: 

            crit_func_eval_i += p.get() 

        crit_func_eval_i /= v 

        crit_func_eval.append(crit_func_eval_i) 

        del processes,pool 

                             

    crit_func_eval = sp.asarray(crit_func_eval)             

    t1 = sp.argmax(crit_func_eval)                # get the indice of the 

maximum of loocv 

    crit_func_eval_max = crit_func_eval[t1]                # add the value 

to loo 

                                         

    crit_func_max = oa[r-2]  

    if crit_func_eval_max > crit_func_max: 

        worst_feat, crit_func_max = t1, crit_func_eval_max 

        worst_feat_val = ids[worst_feat] 

     

    return worst_feat, worst_feat_val, crit_func_max 
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Appendix 3 
The results for years 2011, 2012 and 2014 after applying function find_optimal_lamda.py  are 

presented in Figures A3.1, A3.2 and A3.3: 

Figure A3.1. Histograms for Generalized and Ordinary Cross-Validation errors for different values of λ 
for year 2011 

Figure A3.2. Histograms for Generalized and Ordinary Cross-Validation errors for different values of λ 
for year 2012 

 
 

 
Figure A3.3. Histograms for Generalized and Ordinary Cross-Validation errors for different values of λ 

for year 2014 
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The classification results obtained for years 2011, 2012 and 2014 are presented in Tables 

A3.1, A3.2 and A3.3. 
 

Level 1 (classification based on 2 classes) 
 NDVI (12 features) SB (48 features) SB+NDVI (60 features) 
 OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%) 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

97.7 ± 0.01 

97.7 ± 0.01 

98.6 ± 0.00 

98.8 ± 0.00 

94.5 ± 0.05 

94.6 ± 0.03 

96.6 ± 0.02 

97.1 ± 0.02 

97.3 ± 0.01 

97.8 ± 0.01 

97.6 ± 0.01 

99.5 ± 0.00 

93.7 ± 0.05 

94.8 ± 0.04 

94.3 ± 0.04 

98.7 ± 0.01 

98.0 ± 0.01 

98.4 ± 0.01 

97.9 ± 0.01 

99.6 ± 0.00 

95.2 ± 0.05 

96.2 ± 0.03 

95.0 ± 0.05 

99.0 ± 0.01 

Level 2 (classification based on 4 classes) 
 NDVI (12 features) SB (48 features) SB+NDVI (60 features) 

 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

95.1 ± 0.01 

95.4 ± 0.01 

96.5 ± 0.01 

97.0 ± 0.01 

91.5 ± 0.04 

92.1 ± 0.04 

94.0 ± 0.03 

94.8 ± 0.03 

96.3 ± 0.01 

96.5 ± 0.01 

95.7 ± 0.01 

97.6 ± 0.01 

93.7 ± 0.04 

94.0 ± 0.03 

92.6 ± 0.04 

95.9 ± 0.03 

96.3 ± 0.02 

96.5 ± 0.01 

96.8 ± 0.01 

97.9 ± 0.01 

93.7 ± 0.05 

94.0 ± 0.02 

94.5 ± 0.04 

96.4 ± 0.03 

Level 3 (classification based on 14 classes) 
 NDVI (12 features) SB (48 features) SB+NDVI (60 features) 
 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

84.8 ± 0.05 

85.6 ± 0.05 

86.4 ± 0.03 

89.7 ± 0.03 

83.1 ± 0.06 

83.9 ± 0.06 

84.9 ± 0.04 

88.6 ± 0.03 

90.4 ± 0.04 

90.3 ± 0.04 

90.9 ± 0.03 

95.3 ± 0.01 

89.4 ± 0.05 

89.2 ± 0.06 

89.9 ± 0.03 

94.8 ± 0.01 

90.3 ± 0.03 

90.4 ± 0.03 

91.6 ± 0.02 

96.2 ± 0.01 

89.2 ± 0.04 

89.3 ± 0.04 

90.7 ± 0.02 

95.8 ± 0.01 

 
Table A3.1. Overall accuracy and Kappa statistics for three defined levels of classification using NDVI 
indices, spectral bands (SB) and NDVI indices and spectral bands together for the year 2011. NPFS_sfs 
denotes NPFS GMM based classifier computed with a set of features that were chosen using standard 
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based 
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The 
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over 
the 50 repetitions in percentages. The best results for each level are reported in bold face. 
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Level 1 (classification based on 2 classes) 
 NDVI (13 features) SB (52 features) SB+NDVI (65 features) 

 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

97.0 ± 0.01  

96.8 ± 0.01 

99.4 ± 0.00 

99.3 ± 0.00 

92.9 ± 0.04 

92.2 ± 0.06 

98.5 ± 0.01 

98.3 ± 0.01 

98.3 ± 0.01 

98.6 ± 0.00  

99.3 ± 0.00 

99.7 ± 0.00  

95.9 ± 0.03 

96.7 ± 0.02 

98.4 ± 0.01 

99.2 ± 0.00 

98.4 ± 0.01 

98.8 ± 0.00 

99.4 ± 0.00 

99.6 ± 0.00 

96.1 ± 0.03 

97.1 ± 0.02 

98.6 ± 0.01 

99.1 ± 0.00 

Level 2 (classification based on 4 classes) 

 NDVI (13 features) SB (52 features) SB+NDVI (65 features) 

 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

95.8 ± 0.01 

95.7 ± 0.01 

97.8 ± 0.01 

97.6 ± 0.01 

92.8 ± 0.03 

92.5 ± 0.03 

96.2 ± 0.02 

95.9 ± 0.02 

97.1 ± 0.01 

97.2 ± 0.01 

98.1 ± 0.00 

99.0 ± 0.00 

94.9 ± 0.02 

95.2 ± 0.02 

96.8 ± 0.02 

98.2 ± 0.01 

97.4 ± 0.01 

97.8 ± 0.01 

98.5 ± 0.01 

98.9 ± 0.00 

95.5 ± 0.03 

96.2 ± 0.02 

97.4 ± 0.02 

98.1 ± 0.01 

Level 3 (classification based on 14 classes) 
 NDVI (13 features) SB (52 features) SB+NDVI (65 features) 
 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

87.4 ± 0.03 

86.6 ± 0.03 

89.3 ± 0.02 

90.2 ± 0.02 

86.0 ± 0.03 

85.1 ± 0.03 

88.1 ± 0.03 

89.1 ± 0.02 

91.4 ± 0.03 

91.8 ± 0.03 

94.4 ± 0.04 

97.9 ± 0.01 

90.5 ± 0.03 

90.8 ± 0.04 

93.7 ± 0.05 

97.6 ± 0.01 

91.4 ± 0.03 

92.1 ± 0.04 

94.8 ± 0.02 

98.0 ± 0.01 

90.4 ± 0.03 

91.3 ± 0.04 

94.2 ± 0.03 

97.7 ± 0.01 

 
Table A3.2. Overall accuracy and Kappa statistics for three defined levels of classification using NDVI 
indices, spectral bands (SB) and NDVI indices and spectral bands together for the year 2012. NPFS_sfs 
denotes NPFS GMM based classifier computed with a set of features that were chosen using standard 
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based 
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The 
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over 
the 50 repetitions in percentages. The best results for each level are reported in bold face. 
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Level 1 (classification based on 2 classes) 
 NDVI (15 features) SB (60 features) SB+NDVI (75 features) 

 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

94.5 ± 0.02 

94.0 ± 0.03 

97.8 ± 0.01 

98.5 ± 0.00 

86.8 ± 0.12 

85.3 ± 0.19 

94.8 ± 0.03 

96.4 ± 0.02 

97.7 ± 0.01 

98.2 ± 0.01 

98.6 ± 0.00 

99.5 ± 0.00 

94.6 ± 0.05 

95.6 ± 0.03 

96.6 ± 0.03 

98.8 ± 0.01 

97.8 ± 0.01 

98.2 ± 0.01 

98.6 ± 0.00 

99.6 ± 0.00 

94.9 ± 0.05 

95.6 ± 0.03 

96.8 ± 0.02 

99.1 ± 0.01 

Level 2 (classification based on 4 classes) 

 NDVI (15 features) SB (60 features) SB+NDVI (75 features) 

 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

91.7 ± 0.02 

91.2 ± 0.02 

95.4 ± 0.01 

97.2 ± 0.01 

85.6 ± 0.06 

84.8 ± 0.07 

92.1 ± 0.04 

95.2 ± 0.02 

96.6 ± 0.01 

97.4 ± 0.01 

97.5 ± 0.01 

98.8 ± 0.00 

94.2 ± 0.04 

95.5 ± 0.02 

95.7 ± 0.02 

98.0 ± 0.01 

97.0 ± 0.01 

97.2 ± 0.01 

97.7 ± 0.01 

98.7 ± 0.00 

94.9 ± 0.04 

95.1 ± 0.02 

96.0 ± 0.02 

97.8 ± 0.01 

Level 3 (classification based on 14 classes) 
 NDVI (15 features) SB (60 features) SB+NDVI (75 features) 
 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

NPFS_sfs 

NPFS_sffs 

RF 

SVM 

89.8 ± 0.02 

89.1 ± 0.02 

91.9 ± 0.01 

94.7 ± 0.01 

88.6 ± 0.03 

87.9 ± 0.03 

91.0 ± 0.01 

94.1 ± 0.01 

94.7 ± 0.01 

94.6 ± 0.02 

95.9 ± 0.01 

98.6 ± 0.00 

94.1 ± 0.02 

94.0 ± 0.03 

95.5 ± 0.02 

98.4 ± 0.00 

94.8 ± 0.01 

94.7 ± 0.01 

95.8 ± 0.01 

98.8 ± 0.00 

94.2 ± 0.02 

94.1 ± 0.01 

95.3 ± 0.01 

98.6 ± 0.00 

 
Table A3.3. Overall accuracy and Kappa statistics for three defined levels of classification using NDVI 
indices, spectral bands (SB) and NDVI indices and spectral bands together for the year 2014. NPFS_sfs 
denotes NPFS GMM based classifier computed with a set of features that were chosen using standard 
feature selection algorithm described in Section 2.3.1. Similarly, NPFS_sffs denotes NPFS GMM based 
classifier computed with a set of features chosen using SFFS algorithm described in Section 2.3.2. The 
results correspond to the mean value and variance of the overall accuracy (OA) and Kappa statistics over 
the 50 repetitions in percentages. The best results for each level are reported in bold face. 
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The confusion matrices obtained for year 2011 are presented in Tables A3.4-A3.9. 

 

 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 94.02 5.98 

Broadleaf 1.20 98.80 
 

Table A3.4. Confusion matrix for level 1, year 2011. Classification was based on spectral bands and 
GMM classifier. The results are computed and averaged over 50 repetitions and presented in 
percentages. 
 
 
 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 98.84 1.16 

Broadleaf 0.26 99.74 
 
Table A3.5. Confusion matrix for level 1, year 2011. Classification was based on spectral bands and SVM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.55 0.02 0.38 0.05 

Evergreen 0.24 98.24 1.47 0.06 

Pine 1.59 0.14 92.41 5.86 
Other conifer 1.62 0.00 14.65 83.73 

 
Table A3.6. Confusion matrix for level 2, year 2011. Classification was based on spectral bands and 
GMM classifier. The results are computed and averaged over 50 repetitions and presented in percentages 
 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.95 0.00 0.05 0.00 

Evergreen 0.65 98.71 0.65 0.00 

Pine 1.28 0.00 95.54 3.19 

Other conifer 2.81 0.00 9.68 87.51 
 
Table A3.7. Confusion matrix for level 2, year 2011. Classification was based on spectral bands and SVM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
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Predicted class 

Actual class 
Silver 

fir 
Oak 

Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 93.84 0.80 1.44 3.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.08 

Oak 0.00 94.52 0.48 0.14 2.71 0.43 0.00 0.95 0.43 0.05 0.00 0.14 0.14 0.00 

Black pine 4.14 5.00 76.71 6.00 0.00 0.43 4.86 0.14 1.00 0.00 0.14 1.43 0.00 0.14 

Douglas fir 23.33 3.17 3.33 45.5 0.00 0.00 5.67 0.00 0.00 0.00 0.17 17.17 0.00 1.67 

Silver birch 0.00 2.64 0.00 0.00 96.08 0.88 0.00 0.08 0.32 0.00 0.00 0.00 0.00 0.00 

European 
ash 

0.00 14.86 0.00 0.00 0.86 79.29 0.00 0.43 4.29 0.29 0.00 0.00 0.00 0.00 

Maritime 
pine 

0.00 0.00 4.86 6.14 0.00 0.00 77.14 0.14 0.00 0.00 0.00 8.14 0.00 3.57 

Black locust 0.00 30.67 0.17 0.00 0.00 0.50 0.00 65.33 3.33 0.00 0.00 0.00 0.00 0.00 

Aspen 0.00 2.26 0.00 0.00 0.37 0.00 0.00 0.11 97.26 0.00 0.00 0.00 0.00 0.00 

Red oak 0.00 3.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 96.82 0.00 0.00 0.00 0.00 

Eucalyptus 0.00 0.06 0.00 0.24 0.00 0.00 0.00 0.00 0.06 0.00 99.00 0.06 0.06 0.53 

Corsican 
pine 

0.86 1.71 1.71 18.43 0.00 0.00 2.71 0.00 0.29 0.00 0.71 70.14 0.00 3.43 

Willow 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00 2.46 0.00 0.00 0.00 95.85 0.31 

Austrian 
black pine 

0.00 0.00 0.00 0.21 0.00 0.00 1.24 0.00 0.00 0.00 0.48 0.62 0.00 97.45 

 
Table A3.8. Confusion matrix for level 3, year 2011. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over 

50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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Predicted class 

Actual class Silver fir Oak 
Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 96.48 0.40 0.80 2.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oak 0.00 96.33 0.00 0.00 2.48 0.38 0.00 0.76 0.00 0.00 0.00 0.05 0.00 0.00 

Black pine 0.00 4.71 89.57 1.43 0.00 0.29 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Douglas fir 18.00 1.83 0.33 55.17 0.00 0.00 9.00 0.00 0.00 0.00 0.00 15.67 0.00 0.00 

Silver birch 0.00 1.60 0.00 0.00 98.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

European 
ash 

0.00 4.57 0.00 0.00 0.86 94.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maritime 
pine 

0.00 0.00 5.29 1.43 0.00 0.00 89.86 0.00 0.00 0.00 0.00 3.43 0.00 0.00 

Black locust 0.00 5.17 0.00 0.00 0.00 0.00 0.00 94.33 0.50 0.00 0.00 0.00 0.00 0.00 

Aspen 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 99.40 0.00 0.00 0.00 0.00 0.00 

Red oak 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.59 0.00 0.00 0.00 0.00 

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 98.88 0.00 0.65 0.06 

Corsican 
pine 

2.57 1.00 0.43 13.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 78.00 0.00 0.00 

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 99.54 0.00 

Austrian 
black pine 

0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 99.93 

 
 

Table A3.9. Confusion matrix for level 3, year 2011. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over 50 
repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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The confusion matrices obtained for year 2012 are presented in Tables A3.10-A3.15. 

 
 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 94.93 5.07 

Broadleaf 0.22 99.78 
 

Table A3.10. Confusion matrix for level 1, year 2012. Classification was based on spectral bands and 
GMM classifier. The results are computed and averaged over 50 repetitions and presented in 
percentages. 
 
 
 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 99.03 0.97 

Broadleaf 0.06 99.94 
 
Table A3.11. Confusion matrix level 1, year 2012. Classification was based on spectral bands and SVM 
classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.90 0.02 0.04 0.04 

Evergreen 0.59 99.06 0.35 0.00 

Pine 4.06 0.14 91.59 4.20 
Other conifer 3.46 0.00 6.92 89.62 

 
Table A3.12. Confusion matrix for level 2, year 2012. Classification was based on spectral bands and 
GMM classifier. The results are computed and averaged over 50 repetitions and presented in percentages 
 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.97 0.00 0.03 0.00 

Evergreen 0.00 100.00 0.00 0.00 

Pine 1.01 0.00 98.17 0.81 

Other conifer 1.68 0.00 4.59 93.73 
 
Table A3.13. Confusion matrix for level 2, year 2012. Classification was based on spectral bands and 
SVM classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
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Predicted class 

Actual class 
Silver 

fir 
Oak 

Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 93.20 1.04 0.48 5.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 

Oak 0.00 95.19 0.38 0.14 1.14 0.52 0.00 0.86 1.67 0.05 0.00 0.00 0.05 0.00 

Black pine 3.14 8.71 77.57 4.00 0.00 0.00 1.43 0.00 0.00 0.14 0.00 5.00 0.00 0.00 

Douglas fir 19.33 3.67 3.83 61.83 0.00 0.00 1.33 0.00 0.33 0.00 0.00 9.67 0.00 0.00 

Silver birch 0.00 3.92 0.00 0.00 95.60 0.08 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 

European 
ash 

0.00 14.57 0.00 0.00 2.00 78.14 0.00 0.14 5.14 0.00 0.00 0.00 0.00 0.00 

Maritime 
pine 

0.57 0.29 4.86 4.14 0.00 0.00 85.00 0.00 0.00 0.00 0.00 5.00 0.00 0.14 

Black locust 0.00 18.33 0.00 0.00 0.00 1.00 0.00 78.17 1.50 0.17 0.00 0.00 0.83 0.00 

Aspen 0.00 4.63 0.00 0.00 0.06 0.06 0.00 0.10 95.14 0.00 0.00 0.00 0.00 0.00 

Red oak 0.00 1.94 0.00 0.00 0.00 0.00 0.00 0.00 0.18 97.88 0.00 0.00 0.00 0.00 

Eucalyptus 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 99.65 0.00 0.18 0.00 

Corsican 
pine 

1.43 1.71 3.00 8.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 84.29 0.00 0.00 

Willow 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 4.15 0.00 0.31 0.00 94.92 0.00 

Austrian 
black pine 

0.21 0.41 2.00 2.00 0.00 0.00 0.97 0.00 0.55 0.00 2.62 0.34 0.21 90.69 

 
Table A3.14. Confusion matrix for level 3, year 2012. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over 

50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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Predicted class 

Actual class Silver fir Oak 
Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 96.32 0.40 0.80 2.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oak 0.00 98.38 0.10 0.00 0.38 0.90 0.00 0.19 0.05 0.00 0.00 0.00 0.00 0.00 

Black pine 0.00 4.71 93.57 0.00 0.00 0.00 1.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Douglas fir 10.67 0.67 2.17 84.67 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 

Silver birch 0.00 2.16 0.00 0.00 97.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

European 
ash 

0.00 1.71 0.00 0.00 1.14 97.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maritime 
pine 

0.00 0.00 4.00 0.86 0.00 0.00 92.00 0.00 0.00 0.00 0.00 3.14 0.00 0.00 

Black locust 0.00 0.67 0.00 0.00 0.00 0.00 0.00 99.33 0.00 0.00 0.00 0.00 0.00 0.00 

Aspen 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 99.43 0.00 0.00 0.00 0.00 0.00 

Red oak 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.88 0.00 0.00 0.00 0.00 

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 

Corsican 
pine 

0.00 0.00 2.29 0.29 0.00 0.00 1.14 0.00 0.00 0.00 0.00 96.29 0.00 0.00 

Willow 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 99.70 0.00 

Austrian 
black pine 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 

 
 

Table A3.15. Confusion matrix for level 3, year 2012. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over 
50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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The confusion matrices obtained for year 2014 are presented in Tables A3.16-A3.21 

 
 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 95.43 4.57 

Broadleaf 1.25 98.75 
 

Table A3.16. Confusion matrix for level 1, year 2014. Classification was based on spectral bands and 
GMM classifier. The results are computed and averaged over 50 repetitions and presented in 
percentages. 
 
 

 Predicted class 

Actual class Conifer Broadleaf 
Conifer 99.31 0.69 

Broadleaf 0.41 99.59 
 
Table A3.17. Confusion matrix for level 1, year 2014. Classification was based on spectral bands and 
SVM classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.78 0.00 0.20 0.02 

Evergreen 1.65 95.35 2.41 0.59 

Pine 4.20 0.78 91.51 3.51 
Other conifer 3.41 0.05 6.86 89.68 

 
Table A3.18. Confusion matrix for level 2, year 2014. Classification was based on spectral bands and 
GMM classifier. The results are computed and averaged over 50 repetitions and presented in percentages 
 
 
 

Predicted class 

Actual class Deciduous Evergreen Pine Other conifer 
Deciduous 99.88 0.00 0.12 0.00 

Evergreen 0.18 97.06 2.76 0.00 

Pine 0.43 0.20 98.93 0.43 

Other conifer 1.24 0.11 4.49 94.16 
 
Table A3.19. Confusion matrix for level 2, year 2014. Classification was based on spectral bands and 
SVM classifier. The results are computed and averaged over 50 repetitions and presented in percentages. 
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Predicted class 

Actual class 
Silver 

fir 
Oak 

Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 95.68 0.00 1.04 2.72 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.08 0.00 0.24 

Oak 0.00 97.90 0.00 0.05 0.52 0.62 0.00 0.38 0.1 0.14 0.05 0.24 0.00 0.00 

Black pine 2.29 1.14 85.29 10.71 0.29 0.00 0.14 0.00 0.00 0.00 0.14 0.00 0.00 0.00 

Douglas fir 16.17 3.00 1.17 71.17 0.00 0.00 2.50 0.00 1.17 0.00 0.50 4.33 0.00 0.00 

Silver birch 0.00 3.52 0.00 0.00 95.68 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 

European 
ash 

0.00 5.29 0.00 0.29 0.00 91.57 0.00 0.71 1.43 0.00 0.71 0.00 0.00 0.00 

Maritime 
pine 

0.00 2.71 3.00 3.29 0.00 0.00 91.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Black locust 0.00 15.33 0.00 0.50 0.00 5.67 0.00 77.33 0.50 0.00 0.50 0.00 0.00 0.17 

Aspen 0.00 1.09 0.00 0.00 0.00 0.00 0.00 0.00 98.91 0.00 0.00 0.00 0.00 0.00 

Red oak 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.06 0.00 0.00 0.00 0.00 

Eucalyptus 0.12 0.12 0.06 0.06 0.00 0.06 0.06 0.06 0.82 0.00 97.76 0.00 0.24 0.65 

Corsican 
pine 

0.43 5.00 0.43 3.86 0.00 0.14 0.00 0.00 0.00 0.00 0.00 90.14 0.00 0.00 

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 99.85 0.00 

Austrian 
black pine 

0.14 0.07 0.07 0.69 0.00 0.00 0.00 0.00 0.62 0.00 4.21 0.07 0.14 94.00 

 
Table A3.20. Confusion matrix for level 3, year 2014. Classification was based on spectral bands and GMM classifier. The results are computed and averaged over 

50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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Predicted class 

Actual class Silver fir Oak 
Black 
pine 

Douglas 
fir 

Silver 
birch 

European 
ash 

Maritime 
pine 

Black 
locust 

Aspen Red oak Eucalyptus 
Corsican 

pine 
Willow 

Austrian 
black pine 

Silver fir 98.72 0.00 1.20 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oak 0.00 98.71 0.00 0.00 0.00 0.81 0.00 0.10 0.00 0.00 0.00 0.38 0.00 0.00 

Black pine 3.14 0.00 94.57 2.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Douglas fir 9.83 2.67 0.50 82.50 0.00 0.00 0.33 0.00 0.00 0.00 0.00 4.17 0.00 0.00 

Silver birch 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

European 
ash 

0.00 2.57 0.00 0.00 0.00 97.29 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 

Maritime 
pine 

0.00 0.71 0.43 0.00 0.00 0.00 98.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Black locust 0.00 1.33 0.00 0.00 0.00 0.00 0.00 98.87 0.00 0.00 0.00 0.00 0.00 0.00 

Aspen 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 

Red oak 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 

Eucalyptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.71 0.00 0.00 0.29 

Corsican 
pine 

0.00 0.43 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.43 0.00 0.00 

Willow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 99.85 0.00 

Austrian 
black pine 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 0.00 0.00 98.90 

 
 

Table A3.21. Confusion matrix for level 3, year 2014. Classification was based on spectral bands and SVM classifier. The results are computed and averaged over 
50 repetitions and presented in percentages. The main confusion for each species is reported in pink colour. 
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The most frequently selected dates for year 2011 for each level are presented in Figures A3.4, 
A3.5 and A3.6. 

 
 

Figure A3.4. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 
level 1 and year 2011. The selection rate is 1 when the image is selected systematically (50/50). 

 
 

 
 
 

Figure A3.5. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 
level 2 and year 2011. The selection rate is 1 when the image is selected systematically (50/50). 
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Figure A3.6. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 

level 3 and year 2011. The selection rate is 1 when the image is selected systematically (50/50). 
 
The most frequently selected dates for year 2012 for each level are presented in Figures A3.7, 
A3.8 and A3.9. 
 

 

 
 

Figure A3.7. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 
level 1 and year 2012. The selection rate is 1 when the image is selected systematically (50/50).  
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Figure A3.8. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 

level 2 and year 2012. The selection rate is 1 when the image is selected systematically (50/50). 

 
 

 
 

Figure A3.9. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 
level 3 and year 2012. The selection rate is 1 when the image is selected systematically (50/50). 
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The most frequently selected dates for year 2014 for each level are presented in Figures 

A3.10, A3.11 and A3.12. 

 
 

  
 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

Figure A3.10. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 
level 1 and year 2014. The selection rate is 1 when the image is selected systematically (50/50). 

 
 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
Figure A3.11. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 

level 2 and year 2014. The selection rate is 1 when the image is selected systematically (50/50). 
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Figure A3.12. The most frequently selected dates over 50 repetitions obtained using NPFS classifier for 

level 3 and year 2014. The selection rate is 1 when the image is selected systematically (50/50). 
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Appendix 4 

Some simulations were necessary to estimate the influence of the regularization parameter on 
SITS smoothing and to find the optimal value for regularization parameter λ. Signal without 
noise x is generated as a sum of sine and cosine functions.  Afterwards, white noise with the 
variance of 0.8 was added to the original signal x to get noisy signal samples z. As a 
consequence, the noisy signal z will have the same mean as signal x, but also a different 
variance.  

Basic result of the simulations was that with the increase of the smoothing parameter 
λ, the curve will get smoother (Figure A4.1). 

 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure A4.1. The influence of the regularization parameter on smoothing of the 
simulated data with a second-order penalty (d=2) for several values of the parameter λ 

 
 

Figure A4.2 illustrates Generalized and Ordinary Cross-Validation errors for simulated data 
for different values of λ.  
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Figure A4.2. Generalized and Ordinary Cross-Validation errors for different values of λ 

 
The optimal values and errors for smoothing parameter λ using Generalized and 
Ordinary Cross-Validation (Figure A4.1) and simulated data (Figure A4.2) were: 
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When comparing smoothing results obtained using optimal λGCV and λOCV (Figure A4.3), 
Generalized Cross-Validation method has a lower error, but in general smoothing results 
obtained by both methods are almost the same. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4.3 Smoothing the simulated data with GCVλ  (on the left) and OCVλ (on the right) 
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