
ALMA MATER STUDIORUM - UNIVERSITY OF

BOLOGNA

ENGINEERING AND ARCHITECTURE SCHOOL

DEPARTMENT OF ELECTRICAL,ELECTRONIC AND INFORMATION

ENGINEERING – “GUGLIELMO MARCONI” - DEI

 AUTOMATION ENGINEERING

GRADUATION THESIS

in

Industrial Robotics for Automation

Development of a twisted-string actuator for a cable-driven

haptic interface

Candidate: Paolo Capello Supervisor:

 Chiar.mo Prof. Claudio Melchiorri

 Co-supervisor:

Dott. Alberto Pepe

Academic Year 2016/2017

Session II

1

2

Dedicated to my mom and my father

3

4

Abstract

Il seguente lavoro di tesi ha avuto lo scopo di analizzare dal punto
di vista della progettazione software le procedure ed i protocolli di
scambio di informazioni tra i vari componenti di una nuova concezione
di Interfaccia Aptica guidata da 4 tendini che muovono un braccialetto
centrale collegato al braccio di un operatore cośı da fornirgli un feed-
back di forza. In particolare ci si é focalizzati sullo sviluppo di un
firmware applicabile ai 4 motori che muovono la struttura centrale
della interfaccia. Il firmware deve essere in grado di ricevere da una
piattaforma Ros, usata da un operatore, pacchetti di dati contenenti
i set point per i vari motori e il tipo di controllo , posizione o forza,
che gli attuatori devono effettuare grazie ad uno schema PID. Inoltre
l’invio di feedback all’operatore é stato previsto in modo da permettere
una maggiore supervisione dell’intero funzionamento.

La realizzazione di un Ros Bridge tra l’utente e il sistema da co-
mandare é stato implementato con la formula della programmazione
ad oggetti in cui varie classi sono dedicate a compiti differenti come
l’impacchettamento di dati da mandare ai motori e la contemporanea
ricezione dei feedback.

Per completare tutta l’architettura si é anche sviluppato un sistema
di trasformazione dei set point provenienti dall’operatore espressi nello
spazio di lavoro Cartesiano in riferimenti per i singoli motori e ció é
stato possibile sfruttando la matrice Jacobiana.

Una particolare attenzione é stata data all’aspetto di comunicazione
dei dati e per fare ció si é dovuta usare una architettura di codice a
multithread e un protocollo UDP.

La realizzazione di questo difficile ma soddisfacente lavoro é stata
ottenuta grazie alla collaborazione con il laboratorio LAR della Facoltá
di Ingegneria dell’Universitá di Bologna.

5

6

Contents

1 Chapter: Teleoperation in robotic applications 9
1.1 Introduction to robotics . 9
1.2 Types of environment . 10

1.2.1 Structured environments 10
1.2.2 Unstructured environments 12
1.2.3 The importance of human skills and perception in un-

structured environments 15
1.3 Teleoperation in robotics . 16

1.3.1 Brief overview of teleoperated systems 16
1.3.2 Structure of a teleoperation system: master and slave

robots . 19
1.3.3 Haptic interfaces as a master device in teleoperated

systems . 21
1.4 Range of application . 22

2 Chapter: Haptic interfaces 25
2.1 Introduction . 25
2.2 Commercial haptic devices . 25
2.3 Cable-driven haptic devices 27
2.4 Twisted string transmission vs standard transmissions 27

3 Chapter: Goal of the project and system description 31
3.1 Goal of the project . 31
3.2 Overall physical system description 31
3.3 Kinematic model . 37
3.4 TSA module . 40

3.4.1 Mechanics of TSA . 40
3.4.2 Tendons . 41

3.5 System architecture: TSA controller 45
3.5.1 Arduino Nano . 45
3.5.2 I/O description . 48
3.5.3 Driver . 50
3.5.4 Communication protocol 51
3.5.5 TSA firmware . 53

3.6 System architecture: Workstation 57
3.6.1 What is Ros . 57

7

3.6.2 Why Ros in haptic project 60
3.6.3 Development of UBHaptic-ros-bridge 61

4 Chapter: Control of TSA module 67
4.1 General description . 67

4.1.1 Timer . 71
4.1.2 Sample time . 72
4.1.3 Anti-wind up technique 73

4.2 Position control of TSA module 74
4.2.1 Position feedback . 74
4.2.2 Position controller . 75

4.3 Force control of TSA module 75
4.3.1 Force sensor . 75
4.3.2 Calibration setup . 77
4.3.3 Calibration procedure 79
4.3.4 Force controller . 82

5 Chapter: Experimental results 87
5.1 Matlab-Simulink environment and its connection with Arduino

Nano . 87
5.2 Position control results . 90
5.3 Force control results . 92

6 Chapter: Implementation of kinematic model 97
6.1 Rviz graphical Ros environment 97
6.2 Vicon technology . 98

6.2.1 Role of Vicon in haptic interface 102
6.3 Theoretical implementation of transpose jacobian matrix . . . 108
6.4 Practical implementation of transpose jacobian matrix 111

6.4.1 Code generation for pseudoinverse of jacobian 114
6.5 Tendons’ forces results . 117
6.6 Singular configuration in haptic interface 119

7 Chapter: Conclusions 125
7.1 Summary of thesis activity . 125
7.2 Future developments . 125

Bibliography 129

8

1 Chapter: Teleoperation in robotic applica-

tions

1.1 Introduction to robotics

Nowadays the role of robots is increasing exponentially in our lives. Al-
though the evolution of industry 4.0 has allowed to reach the use of more
sophisticated robots which are capable to dialogue one to each other in-
side the industrial environment, it cannot be possible any more to talk only
about those ones which are present in the firms. Their usual work is to help
to make components and devices through long assembly lines but this is a
limited possibility for the technologies which are available.

As a matter of fact the presence of incredibly useful but complex machines
like robots can help to face up to specific works of everyday life. Agricul-
ture, aerospace explorations, underwater divings, military missions but also
domotics and human safety are some of the huge variety of tasks that robot
are able to do.

Figure 1.1: Example of domestic robot

The principal problem of robotic field is their programming phase aimed
to control the motion and the actions that robots have to bring to comple-
tion. Some strategies have been developed in order to reach a completely
autonomous robot during the years. For example it is common to see rovers
that have to make explorations on other planets or with the goal of going in

9

the deep ocean to find out some missing object on the sea bottom. They are
studied to keep in touch with human user as less as possible. This interac-
tion could be seen from the point of view of sending to him informations as
feedback but it should not be present in the opposite direction which consists
in controlling directly the robot by some form of guidance.

Although the progresses in the autonomous-robots creation are being
made, the result of obtaining a complete interaction avoidance between de-
vice and ”creator” is only an utopia. Of consequence it is still relevant to talk
about one of the most interesting technique for what concerns the control of
robots: Teleoperation.

1.2 Types of environment

In order to understand better the required features of teleoperated robots
it is interesting to know the difference between the various environment in
which they have to work and perform their tasks.

As a matter of fact the huge variety of advanced technological robotic
machines can meet some favorable or unfavorable situations and they have
to be equipped with the proper tools to face up to them. Moreover depending
on the external environment a different grade of keeping in touch with the
operator must be provided.

Usually in robotic field the best division of the working environments is
done between Structured and Unstructured ones.

1.2.1 Structured environments

Starting the analysis from the structured type, it can be said that this seems
to be an ”easy” and ideal ambient to perform various tasks.

As a matter of fact its principal feature is that of having all the things
and objects in precise positions and rarely they are moved in other space
points. In practise there is a sort of clear configuration in which the robot
can orient himself in the best way.

The first example of a structure environment is for sure the industrial
ambient. This is generally composed by many objects which are seen by the
robot as obstacles but the good aspect of the matter is that they are always
is the same spatial configuration. Something like huge shelves, big pallets
and machineries occupy the same portion of space and this allows the robot
to reach a better knowledge of the ambient.

10

Figure 1.2: Example of structured environment

One main objection that the reader can do is that in the firms there is
also the presence of people which introduces an aspect of randomness.

This is for sure true but it is not the relevant element because the workspace
in which the robot performs the tasks is ”protected” by the possible inter-
vention of the human.

One more example of this kind of environment is the supermarket con-
struction. In this case the help of robots is not so widespread but it is be-
ginning and so they can face up to a structured environment where products
has to be moved or the ground has to be clean.

Talking about the equipment and complexity of the robot that has to
work in this type of ambient, this deals with the union of actuation and
sensing part.

As far as actuation is concerned, this has to show motion velocity feature
and for sure precision. Just think about the rhythms of work inside the
industries and the explanation of the previous sentence is given.

For what concerns the sensors, the exteroceptive type, so that interfacing
with external environment, has not to be really performing. As a matter
of fact the precise disposition of objects and obstacles allows the robot to
complete tasks without sophisticated recognition algorithms or navigation.

One main task is for example an obstacle avoidance but in structured
environments this can be performed simply by a gradient based algorithm
which takes into consideration the a priori knowledge of the ambient and
calculates the forces which drives the robot to the goal avoiding whatsoever
thing in the middle.

11

Figure 1.3: Navigation with obstacle avoidance

1.2.2 Unstructured environments

This type of environment differs a lot from the previous one both in terms of
patterns that the robot can recognize and of consequence of tasks that can
be performed.

Starting from the first consideration, an unstructured environment presents
some element of ”confusion”. This is related to the casual disposition of ob-
jects, and so real obstacles from robot’s perspective, inside the space.

One easy example is the city environment where positions of people, cars
and objects can vary continuously and without a pattern that can be evalu-
ated with simple rules. In addition the presence of many lights of different
kinds can make the robot become ”crazy”.

Another typical bad situation in which robots can perform their tasks is a
work done in an outdoor ambient like mountain or wood that can be usually
faced up to by military robots.

In this situation not only the presence of obstacles can make the robot’s
life harder but also the harsh and rough ground with many steps and latches
can reduce the operation possibilities.

12

Figure 1.4: Example of unstructured environment

Finally it must be reminded that robots are taking a role of primary
importance also in houseworks and old people-taking care. The house is
for sure an unstructured one because the room changes are frequent and
the people’s presence is so important to justify the membership to the this
category.

For sure in these complex situations the robot has to react in the best way
it can do and to make this possible it must be built with the most advanced
tools.

The principal distinction which can be made is still between performances
of actuators and sensors. But differently from the structured ambient, in an
unstructured one from the point of view of actuation a robot has to work well
but not mandatorily with high velocities. In fact the tasks that the robot
has to do in these conditions don’t require any specific time but for sure
they have to be taken to a final result. Also precision is not a fundamental
requirement in these cases but this does not mean that it must be forgotten.

The precision is reached by the use of ad-hoc-made end effector which
have to resists also to the worst atmospheric conditions, substances to touch
and heaviest weights to lift.

For what concerns the sensors, the delicate aspect deals with the extero-
ceptive ones. Some examples are cameras or force sensors and not those that
are useful for internal control of joints motion or in general to monitoring
internal aspects of robots.

These exteroceptive sensors with which the robot has to be equipped

13

must be calibrated perfectly and have to provide accurate and reliable mea-
surements.

Figure 1.5: Dog military robot

The robot shown in the Figure 1.5 is the most complex robot built for
hard workings in an unstructured ambient and it is equipped by the most
advances sensorial instruments.

Dealing with the various tasks that can be performed in situations like
the previously described ones, they can be of different type: motion planning,
grasping objects, lifting weights and many more.

Motion planning for robots with many degrees of freedom is provably
computationally difficult, even in highly structured environments, due to the
high-dimensional configuration space.

Unstructured environments impose a number of additional difficulties for
motion generation, when compared to the classical motion planning problem.
In unstructured environments, a robot can only possess partial knowledge of
its surroundings, objects can change their state unbeknownst to the robot,
and manipulation tasks may require the end effector to move on a constrained
trajectory rather than simply to reach a specific location. Each of these
difficulties make the motion generation problem more difficult.

In unstructured environments, moreover, position and orientation are
more difficult to be controlled, assumptions about colours and shades are
difficult to justify, and the range of possible objects the robot can encounter
is intractable.

14

Figure 1.6: Example of vision task

To solve partially this last problem and to address perception in complex
environment, robots must be able to reduce the state space that needs to be
analysed.

1.2.3 The importance of human skills and perception in unstruc-
tured environments

After this analysis of the unstructured environment it is evident that it can-
not be possible (and for sure not convenient) to work with a completely
autonomous robot especially in some situations.

This is due to the fact that complex applications in unstructured envi-
ronment still require the advanced decisional capacities of human operator.

But it is not all because also the most sophisticated robot cannot compete
with the incredibly developed sensory capabilities of humans, as well as with
the various possibilities of grasping and manipulating objects of all natures
and strange forms.

From these considerations it is born the necessity to build always more
autonomous robot but the component of communication with the operator
must be maintained.

So the role of a particular technique called teleoperation is still fundamen-
tal because it allows to control and monitor the robot’s work from remote
and to overcome the issues that can happen.

15

1.3 Teleoperation in robotics

1.3.1 Brief overview of teleoperated systems

Teleoperation is a simple-to-see but really complex way to control devices or
more specifically to make a robot moving and making actions to satisfy the
assigned task.

By definition, teleoperation is the most standard term, used both in re-
search and technical communities, for referring to operation at a distance.
It could be applied to the most various devices but in particular to robot.
An opposite concept is the ”telepresence”, a less standard term, which might
refer to a whole range of existence or interaction that includes a remote
connotation.

Historically talking the first approach to a sort of teleoperation method
can be traced back even in late 1800 when the beginnings of radio com-
munication were imputed to Nikola Tesla. He developed some of the first
principles and systems to perform teleoperation.

Coming back to our days the history of modern teleoperation began at
the end of the 1940s when the first master - slave manipulator was devel-
oped in the Argonne National Laboratory for chemical and nuclear material
handling. After that, the development of teleoperation was fast. Adapta-
tion of video technology to teleoperation made the first telepresence systems
possible. Computer technology brought the advanced control loops into the
remote end of the system, and finally brought virtual reality into teleopera-
tion.

Figure 1.7: Example of haptic exoscheleton

16

The mechanical manipulators were soon replaced by electro mechanical
servos. In 1954, Goertzs team developed the first electro mechanical manip-
ulator.

One of the first areas where teleoperation techniques were utilized was
deep-sea exploration. The deep oceans are even today regarded as so hos-
tile that most of the deep-sea operations are made with remote controlled
submarines.

Despite progress in advanced technologies, the traditional concept under
teleoperation was based on the idea that the human operator would at all
times be available to exercise more or less direct control.

Thinking of the most immediate example of this type of control, a tele-
operation interface can be as simple as a common MMK (monitor-mouse-
keyboard) interface. While this is not immersive, it is inexpensive. Those
are usually driven by internet connections. A valuable modification to MMK
is a joystick, which provides a more intuitive navigation scheme for planar
robot movement.

Figure 1.8: Simple example of teleoperation

Dealing with something more complex, examples of teleoperation can be
found also in situation where antropomorphic robot have to be guided.

17

Figure 1.9: Example of teleoperated anthropomorphic robot

Two different branches which are based on the standard teleoperation are
being developed nowadays: the shared technique and the supervisor one. For
what concerns the shared approach the robot is considered semi-autonomous
because it can do some tasks without human intervention while some other
tasks can be only computed with the control of the user. These are usually
applications with complex trajectories or those in which a not standard envi-
ronment is expected. Talking about the supervisor technique, it can be used
when robot should be completely autonomous and only a role of supervision
or at most a sporadic correction of trajectory can be applied by the operator.

Detailing more the first technique it can be divided into two main cate-
gories depending on the grade of remote control from operator and the type
of commands that he sends to the teleoperated device:

• Closed loop control (Direct teleoperation): The operator controls the
actuators of the commanded device by direct (analog) signals. This
is possible only when the delays in the control loop are minimal. A
typical example of this is a radio controlled car.

• Coordinated teleoperation: The operator again controls the actuators,
but now there is some internal control loop in the teleoperated robot.
However, there is no autonomy included in the remote side. The remote
loops are used only to close those control loops that the operator is
unable to control because of the delay. A typical example of this is a
teleoperated device for whom the speed control has a remote loop and,
instead of controlling the throttle position, the operator gives a speed

18

set point. Digital closed loop control systems almost always fall into
this category.

1.3.2 Structure of a teleoperation system: master and slave robots

For what concerns the more technical aspects, the basic concept under all
these techniques is the communication which have to be established between
the device and a remote controller which sends commands to it.

In practise there’s a relationship of master-slave between the operator
and the controlled device. The system is formed by two parts, the control
module, called cockpit and the telemanipulator, the slave robot at the remote
location.

This last one has to receive packets of informations containing command
as the desired trajectory to be followed or the coordinates of objects to be
grasped and manipulated.

Those data are in general represented by set points for the motors present
in the joints which have to move all the hardware links and this is an example
of coordinated teleoperation discussed in the previous section.

Controlling commands are sent usually electrically by wire or radio/wireless.
When the connection between the manipulator and operator is mechanical,
the term ”remote manipulation” means mechanical manipulation. In tele-
manipulation, the connection is electrical.

Detailing more the most widespread ways of keeping in touch with the
robot they are transmission lines, radio wave, wireless, internet. Beside the
different environments, a choice has to be made between communication
protocols.

19

Figure 1.10: Teleoperation concept

In the figure above the part between operator and transmission is present
in local environment while the remaining portion of the scheme is performed
in remote environment which can be really far away from the operator.

The communication between the teleoperator and the teleoperated device
is focused on the use of customised packages of informations depending on
the particular application that the user has to encounter. Obviously one
of the great problem in this type of control is the delay 1 between sending
packets to the device and their reception. In other words the real time aspect
is really difficult to be reached.

So this mechanism creates a sort of lag between the instant of sending
command and the real output motion of the controlled device, fact that could
take to an improper work of this one.

Another important and common issue of this technique is the correctness
of the transmission. In fact not always the received packets are equal to
those sent by remote controller because some information is missing. The
necessary consequence is the increase of danger for environment and people
around robot due to the fact that the commands result to be wrong and so
the performed trajectories could be unpredictable.

1Transmission latency of the system

20

In practise packet loss is an inherent problem with most packet-switched
networks due to several factors such as transmission time-outs, transmis-
sion errors and limited buffer size. Several reconstruction algorithms which
address the issue take into consideration passivity perspective, that is, re-
constructing lost samples while preserving passivity. Three policies can be
applied in case packets are lost:

• using null packet replacement

• using previous packet

• using passive interpolation

1.3.3 Haptic interfaces as a master device in teleoperated systems

As discussed in previous sections, teleoperation is a useful and practical way
of keeping in touch from remote with a device, or in particular with a robot,
to which the operator sends command in order to control it and makes this
to perform various tasks.

A fundamental addition to teleoperation system is represented by the
feedback returned on the operator of what the robot is sensing during its
activity.

Normally the feedback type is a force one and so thanks to a complex
system of actuators and cables linking the control device to the operator
body, it is possible to make him having a perception of the objects grasped
or of the insidious environment that robot is facing up.

Figure 1.11: Haptic concept

21

In practise an haptic interface is a controlling device in terms of motion
or manipulation action which also provides in the meanwhile the capability
of obtaining a force feedback.

It realises a complete experience of being in the robot universe but from
operator’s ”home” and not only the visual sense is taken into consideration
but also the force one which can have a great importance in evaluating the
best solutions to adopt in problematic situations or difficult tasks.

Those interfaces act as master in a master-slave action conception and a
precise communication protocol has to be used depending on the particular
robot’s work.

As a matter of fact there are two big aspects which an haptic builder has
not to forget and that are children of the same macro-problem: the delay of
information sharing.

This is an already known Achilles heel from teleoperation but here the
situation is even worse because the amount of data is doubled and so if a
robust communication protocol is not provided, the sent informations could
not arrive in time and problems of stability may happen. The second aspect
is the precision of action that passes through the knowledge of operator of
what the robot is sensing and so if data packages are lost due to a bad
connection, serious consequences may be generated.

1.4 Range of application

The importance of teleoperation and haptic technologies in Robotics field is
demonstrated by the fact that they cover a lot of possible applications where
the presence of human can be thwarted by the harsh environment.

The principal fields in which the presence of teleoperated devices is re-
quired are:

• Exploration in Universe: robotic planetary exploration programs use
spacecraft that are programmed by humans at ground stations, essen-
tially achieving a long-time-delay form of telerobotic 2 operation. Re-
cent noteworthy examples include the MER(Mars Exploration Rover)
and the Curiosity rover.

2The shared or supervisor approach dedicated to robot is called telerobotics

22

Figure 1.12: Curiosity robot

• Telemedicine: nowadays a lot of minimally invasive surgical interven-
tions are made by the help of robots that can be more precise and
avoid the problem of human hand tremor which can be really dan-
gerous. Robots with optimal control can stay in the delicate part of
patient without moving also for a long time.

Figure 1.13: Example of telemedicine

Obviously the most fundamental issue to be faced up is the previously
cited lag time between command and real operation of the robot. So
these applications enter in the hard real time category.

• Applications in radioactive environment: in this case the teleoperation
control allows to avoid the presence of an operator in those workplaces
which can damage seriously its healthy.

23

Figure 1.14: Example teleoperated robotic hand working in nuclear ambient

The precision required in this type of application is really high due to
the dangerous materials to be manipulated and so special tool equips
the robots.

24

2 Chapter: Haptic interfaces

2.1 Introduction

The role of Haptic interfaces is always more determinant in robots control
field and the most various applications are performed with the use of this
particular flexible tool.

But like the variability also the technical aspects’ differentiation in terms
of shapes, actuation and motion possibilities is interesting to be studied.

In the section below some types of haptic interfaces will be shown and
their features will be evaluated.

2.2 Commercial haptic devices

A complete and common haptic interface usually includes one or several
electromechanical transducers like sensors and actuators which are in contact
with the operator in order to apply mechanical signals to distinct areas of the
body creating the force feedback, and to measure other mechanical signals
at the same distinct areas of the body to send informations to controlled
devices. Whether these signals should refer to forces, displacements, or a
combination of these, is still the object of debate. Another important part
of a complete interface is the computational system driving the transducers.
The function of this computational system is to provide haptic rendering
capabilities.

Usually those fundamental components of haptic interfaces are mixed in
a sort of multi-degree serial structure with many links and joints like that
reported in Figure 2.1. This system allows to control perfectly a complex
device which needs to have all possibilities of motion in workspace.

25

Figure 2.1: Example of haptic system for robotics

Another example of standard haptic device is the exoscheleton which can
have big dimensions and embrace large part of human body but there could
be smaller systems like those of simple hands.

Figure 2.2: Example of haptic glove

In all these examples the common detail is the presence of an actuation
made by electrical motors or hydraulic/pneumatic pistons.

Despite the constant spread of this kind of motion standard transmis-
sion, nowadays the market of haptic Interfaces has seen the birth of a new
conception of transmission: the tendons.

Concerning the encumbrance that this type of transmission provides it is
evident that some advantages are obtained with respect to standard solutions.
Moreover the force-weight ratio guarantees a solid, useful and secure structure
with a lot of potentiality in terms of flexibility of application.

26

2.3 Cable-driven haptic devices

Cable-based interfaces are promising candidates to solve limitations related
to workspace, inertia and cost, at the expense of limited stiffness. The cable
transmission minimizes the actuators contribution to the end-point inertia
and encumbrance, providing a considerable force-weight ratio. The usage of
cable transmissions is not a new concept in haptic interfaces design, as some
wire-based haptic displays have been proposed in the literature.

Figure 2.3: Example of haptic glove

Some existing technologies are wearable haptic interfaces based on parallel
wires in an underactuated configuration which can help to address blind
people and it is the basis of the three-cable haptic interface development.

A 4-wire driven 3-DoF planar haptic device exists, while other solutions
with a 4 strings 3D spatial interface are very widespread. Over-actuated
solutions for 6 DoF with 9 and 8 strings have the advantages of low-inertia,
low-cost, and high safety.

2.4 Twisted string transmission vs standard transmis-
sions

The smartest solution in terms of tendons transmission consists in twisting
two or more strings of a particular material in order to obtain a compact and
lightweight piece of rope. The created tendon is usually linked from one end
to a small motor in order to obtain the twisting of the strands and in the
opposite end the motion of the load.

27

There are many examples of use of this transmission typology. Just think
about an application where heavy loads need to be taken from one side to
another with a linear motion or where pulleys give motion to some device but
they are put into motion by the displacement induced by strings’ shortening.

But many other examples can be treated. In case of anthropomorphic
robots this particular system of transmission is usually used to recreate the
muscular system. As a matter of fact if a tendon is seen as linked to a
sort of biceps 3 and another tendon is linked to triceps, it is easy to make
the rotation of an artificial arm due to the combination of shortening and
elongation of fibers like shown in Figure 2.4.

Figure 2.4: Example of artificial arm created by twisted string actuation

Moreover many cases of robotics hands are being developed because of
the same strands’ principle of twisting and shortening.

3the muscles are motors in the application

28

Figure 2.5: Example of artificial hand created by twisted string actuation

With respect to standard solutions of transmissions and those made by
normal tendons, the main advantages of twisted string actuation system are
very significant and justify its increasing use.

The most important ones are:

• the use of very small high-speed motors

• a direct connection between the motor and the tendon without any
intermediate mechanisms such as gearboxes, pulleys, or ballscrews

• a direct conversion from rotational to linear motion

• nearly absent friction contribute(only an axial bearing is needed)

• a high reduction ratio

29

30

3 Chapter: Goal of the project and system

description

3.1 Goal of the project

The thesis project wants to go in deep of teleoperation field with the final
goal of developing some specific parts of an haptic Interface. In particular
the project’s aspects that have been deepen are:

1. The communication protocols analysis and the development of a firmware
by which a motor can take informations and set points from PC and
move the structure while sending back adequate force feedback.

2. The calibration of TSA actuator’s force sensor.

3. The coding of the transpose Jacobian JT to pass from workspace of
robot to joint space with the aim of knowing which forces the TSA
actuators have to apply in order to have the required force applied in
the real environment.

4. The graphical description of the haptic system to let the user be aware
of singularity positions of robot and so avoiding them with the motion
of the haptic structure

3.2 Overall physical system description

One of the main project’s aspects is to design an haptic interface able to
move its end effector freely in the space under the intention of the operator
and at the same time apply reaction forces in the Cartesian space along the
three linear directions.

31

Figure 3.1: Cad rendering of cable driven haptic interface

The aim of this particular device is the control of a remote robot and the
recreation of some force feedback sensation on the user body which represent
the interaction forces of the telemanipulated robot directly to the working
environment.

To make these feedback be sensed by the operator it is necessary that
this one is in contact with the haptic system and to have this result a central
bracelet where the forearm is inserted is designed. The device takes shape
by three gimbals one mounted into the other and fixed by some orthogonal
pivots. Thanks to this already described structure the bracelet can rotate by
all three axes of rotations and so the operator is free to orient as he wants
the wrist. Moreover this mechanical device leaves to him the freedom to use
the hand to accomplish other tasks, such as teleoperating a robotic gripper.

32

Figure 3.2: Operator forearm inside central bracelet

The central bracelet is then linked to a physical metallic structure that
can be described as a large tetrahedron. But how to reach the connection?

This is possible thanks to the fact that some tendons are present and
link the various extremities of the bracelet to those of the metallic structure.
Of consequence the operator forearm is free to move in all space directions
because it is suspended in the air and its unique constraints are the lengths
of the tendons.

The large metallic scaffolding helps to sustain the whole tetrahedral ar-
chitecture.

Talking about the useful workspace for the system it has to be underlined
that due to the presence of tendons and that of the central structure in which
the bracelet is inserted, the 6 DoF are achieved and so the whole workspace is
touchable. However the number of motors is four because the central bracelet
is moved by tendons themselves. In a situation like this, a minimum number
of n + 1 actuators is necessary to control motion and forces in a n-dimensional
space. For the project purpose it is interesting to control only movements
and forces along the three Cartesian directions and so four actuators are
enough. In particular the knowledge of the force feedback is available for the
three Cartesian axis and this is the main result that the user wants to have
for a complete and satisfying force sensation.

Tendons are responsible to create the sense of force feedback on the user
due to their capacity of elongating and shortening themselves so producing
a resistance on human forearm inserted in the bracelet.

33

The whole central structure and the bracelet were created by a 3D print
using ABS plastic material also for a design matter in terms of weight.

Dealing with one single tendon(but it is the same for all the other) it can
be noted that its extremities are linked to one anchor point of the bracelet
at first side while on the second side a connection to the output shaft of the
motor’s module is provided.

The bracelet is obviously a mobile frame while the modules are considered
as fixed frames because of their integration with the global scaffolding.

In reality the motion of the motors can be forgotten in total because
they need to follow that of central bracelet to which they are linked. In
practise their motion need to be only of rotation type thanks to the system
architecture.

Figure 3.3: Connections between haptic interface mechanical parts

To allow the motor’s module to be always aligned with the fixing points
on the frame and the corresponding point on the mobile frame, an universal
joint has been used to fix the TSA modules to the frame.

34

Figure 3.4: 2 Dof module joint

For the sake of completeness it must be said that the choice of putting
the modules on the structure’s extremities would allow to reach the whole
available workspace if also all the tendons were connected to a single central
anchor point in the bracelet. Moreover that idea would reduce to zero the
torques generated on the bracelet by the tendons themselves.

Unfortunately that configuration is not practically implementable since
the mobile frame has to hold at its middle the forearm.

For this reason there’s the necessity to shift down the three connection
points corresponding to the ones of the tetrahedron.

The real haptic structure is shown in the figure below

35

Figure 3.5: Real haptic interface structure and connections

After having described the overall structure of haptic system and focused
on the mechanical features of the TSA module it is necessary a forward step:
how the motor can perform its work and which data it has to process in order
to realize position and force control.

The sequence of devices that have to talk each other is not really complex
but some more details are provided in this section.

Starting from the haptic side, for sure the central bracelet is the main
object to be controlled and to make it moving four tendons are present.

Focusing on one tendon, this is linked into the other extremity to the
DC motor which is able to make it elongating or shortening by a wrapping
action.

The motor needs the help of an H-bridge driver to take the necessary
energy to perform its motion.

From its side the driver take as input some signals like PWM laws given
by a dedicated controller (and of course there’s one controller for each motor).

Now the chain is almost at the end because the information that the
controller has to receive to perform its implemented position and force control
algorithm, are the one transmitted by an upstream PC.

In this central workstation the Ros environment runs and the position

36

or force operational modalities can be set by an operator and sent to the
motor’s controller.

Figure 3.6: Scheme of talking devices

In practice the right-to-left sequence is used to transmit commands for
the motor and to move haptic’s end effector, while the opposite flux of infor-
mation is used to let the operator know the bracelet’s feedbacks.

3.3 Kinematic model

After having described the physical structure of the haptic interface it is
important to evaluate the possibilities of motion and in order to do that the
kinematic model needs to be derived from geometric considerations.

But to deal with this complex problem a general overview about the most
common robot structure has to be done.

A robot is a system composed by many links connected by joints and the
goal is to move an end-effector positioned at the terminal part of the chain
by imposing some forces of actuation to the various joints. To know how
the system can move and so how to position in a precise manner the end
effector or having this applying a certain force on the environment, it can
be possible to realize a full kinematic model which relates the motions of
the links. A common approach is to use the Denavit-Hartenberg convention
that ideally fixes some frames to the various links exploiting precise rules.
Then, analysing how the frames have been positioned and which coordinates’
transformations there are between the links due to the joints’ movements, the
kinematic model is computed.

37

Figure 3.7: Denavit-Hartenberg to create kinematic model

This tool can be used to perform a direct computation of end-effector
position variables in terms of joints coordinates but also the inverse passage
and so, given the coordinates to which taking the end effector, computing
the joints’ variables.

Dealing with the actual problem of haptic interface, this system can be
seen as a real robot because it shows all the fundamental components of a
normal robot. In particular the end effector is the bracelet inserted in gimbals
while the various joints are the TSA motors. Starting from their motions the
central end effector can be positioned where ever the operator wants.

Now the real question is how to build the kinematic model form.
In order to answer a simple overlook on the haptic interface must be done.

As a matter of fact it can be easily noted that the central bracelet is flying in
the air because it is linked to four motors by twisted string concept as said
in the previous chapters of system description. The tendons are attached to
the base of the bracelet itself and on the other extremity to the final pin of
the motors’ module.

In this way it can be possible to notice that those linking extremities form
two points in the space and the distance between them can be computed.

38

Figure 3.8: Crucial points to compute tendons’ lengths

Considering only one motor and naming the meeting point of axes by
which its module can rotate, a and the extremity in which the tendon is
linked to the bracelet’s base c, also called anchor point, these points have
respectively coordinates [xa, ya, za] and [xc, yc, zc]. They are obviously re-
lated to a central world frame Fw present on the structure as shown well in
Figure 3.8.

In particular the fixed base points are expressed directly to the World ref-
erence frame while the anchor ones are expressed firstly in a Mobile reference
frame called Fm integral to the bracelet but thanks to an Homogeneous
transformation of coordinates it is possible to easily pass from the mobile
frame to the world one.

How to take information online about those coordinates will be explained
in next chapters.

So finally, basing on these tendons’ information the inverse kinematic
model is derived because knowing the desired position to which taking c, the
tendon’s length results to be:

l =
√

(xc− xa)2 + (yc− ya)2 + (zc− za)2 − s (1)

where s is the length of the motor’s module expressed in meters.
The direct kinematic model can be derived by inversion of Equation (1).

Anyway, for the purposes of this work, the computation a closed form di-

39

rect kinematic expression is not needed since the end-point position will be
estimated by a motion tracking system.

3.4 TSA module

3.4.1 Mechanics of TSA

The tendons which are linked to the central structure of the haptic Interface
can be moved by some DC motors inserted in special box made by ABS
plastic material and created by a 3D rapid prototyping.

This small frame is customized for the purpose of accomodate the motor
and provides some other adroitness in order to obtain a fully working system.
One of them is the bearing between the end of the electrical machine and
the plastic frame so that a reduced friction contribution is achieved during
rotation of shaft and the possibility of damaging the motor during force
transmission becomes low. Another important part of the whole box is the
backward part which allows to connect the frame to the fixed scaffolding by
the use of some prismatic and revolute joints.

Figure 3.9: Actuator box

The particular device that jumps out from the union of the small motor
and the tendon is called TSA 4 and represent a specific category of actuator
not because of some particularity in the electrical machine itself but for the
transmission type it provides.

4Twisted-String-Actuator called in this way for the particular link that the motor has
with tendons able to shorten themselves

40

Figure 3.10: Twisted String Actuator principle

As a matter of fact, from the first point of view, they are simple DC ma-
chines of about 12 Watt with the normal feature of torque increasing with the
square of armature current. In general haptic Interfaces with TSA actuation
system use very small-dimensions motors which provides high speed and low
torque.

One of the main TSA’s strength point is the possibility to make the
tendon twisting and so shortening. This fact allows the load attached to the
other extremity of the string to move in the direction in which the tendon is
shortening.

So the motion is linear but originally achievable through the rotation of
the shaft of DC motor. In practise the system works thanks to a transforma-
tion between rotational and linear motion and considering also the forces at
stake there’s a significant reduction ratio which plays the role of increasing
the torque sensed by the load reducing the speed. The result is obtained suc-
cessfully without using mechanical parts like gears which would weigh down
the entire actuation.

This last aspect is the real point of strength of the twisted string devices
and it is the reason for which they are hugely spreading for many applications.

3.4.2 Tendons

Each 0.24 mm diameter tendon present in haptic structure is composed prin-
cipally by two parallel filaments made of Dyneema material which is the
world’s strongest fiber. As a matter of fact it is made from Ultra High
Molecular Weight Polyethylene (UHMWPE) and offers maximum strength
with minimum weight.

41

Figure 3.11: Table of comparison between fibers

This feature is really useful in a structure like that of haptic interface
because firstly tendons have to face up to the internal stress in reaction to
the high traction force imposed by the rapid twisting. Secondly they need
to be light and flexible due to their action of linking the central structure
and the motor so due to the need of flying in the air. As a matter of fact
being more heavy would require thicker fibers and so the possibility of easily
twisting would be lost.

The revolutionary features of this particular material can be used not
only in ”light” applications like that of moving a small structures as in case
of haptic Interfaces but also in huge and ”heavy” works. It is the case of
marine applications or industrial environment where loads have to be lifted
or moved in total safety for the operator.

Talking about the heavy marine sector, mooring lines made with Dyneema
have proven to be a very workable solution. They are much lighter and easier
to handle than other types. They are as strong as steel-wire lines of the same
diameter while they are less than one-seventh the weight. Furthermore taking
into account the thickness of the fibers, comparing those with same strength
it is evident the convenience to use Dyneema because it ensures 40 per cent
less diameter and 70 per cent less weight.

42

Figure 3.12: Properties of various fiber

In the industrial environment the material is used in ropes for lifting
applications. In particular lightweight slings with Dyneema are ideal for
repetitive ones. They can be easily handled and quickly placed around the
load, enabling faster, more productive lifting.

For what concerns the mechanics of this particular way of power transmis-
sion, it is evident that the principal analysis will be focused on the kinematic
and dynamics of the twisting phase of the two sections of tendon.

Figure 3.13: Shortening of tendons linked to TSA actuators

These considerations need to take into account respectively the position
of the load moved by the shortening principle of the fibers and the axial force
produced by TSA device.

Dealing with the motion of the load it is a linear one achieved by the
conversion from the rotative one of the associated DC motor.

43

Figure 3.14: Kinematic of tendons

Calling θ the motor angular position and L the total length of the un-
twisted strand, the position p of the load is computed inverting the relation:

L =
√
θ2 ∗ r2 + p2 (2)

In practise the solution is given by a simple geometric approach using
Pitagora’s theorem

Figure 3.15: Dinamics of tendons

Referring to Figure 3.15, taking into account the forces acting on the
system, the resulting total axial force Fz acting on the transmission system
is:

Fz = n ∗ Fi ∗ cosα =
τl

r ∗ tanα
(3)

44

where n is the number of the strand which link the motor and the load,
Fi is the force acting on each fiber and α is the angle of twisting.

Until now one important assumption has been done: the absence of stiff-
ness of the fibers. But in order to have a more complete analysis of mechanics
of tendons, this needs to be considered. The strands are assumed to act as
linear springs, with the capability of resisting to tensile forces only and not
compressive forces, as in standard cable-based transmission systems. An im-
portant fact is that the total length of a strand L changes with respect to
the unloaded length L0, depending on the fiber tension Fi and the strand
stiffness K. In conclusion the force acting on each strand is computed as:

Fi =
K

L0

∗ (L− L0) (4)

where L is obtained by the kinematic analysis.

3.5 System architecture: TSA controller

3.5.1 Arduino Nano

An Arduino is an open-source control platform based on flexible, easy-to-
use hardware. It can be used for a huge variety of projects in which a
system has to be controlled. So it can be said that for most of custom
control applications or activity researches it is the most indicated and flexible
architecture available on the market.

Arduino is programmed using its specific IDE which is Arduino IDE. It
provides to the user many libraries for the most various projects starting
from the simple goal of making a LED blinking to the complex application
of controlling a kinematic structure with many links. So it is a very general
purpose controller which can exploit many libraries. For this specific thesis
project the most useful ones are Ethernet.h and UDP.h for the communi-
cation creation with the central PC and the PID.h one to control tendons
and making the bracelet moving.

One more library that has been introduced for this particular project is
Thread.h. This allows to divide the code in as many threads as the user
wants temporizing each one to have a better division of computation by the
Arduino CPU. For our purposes using this library is very useful because
it allows to divide the two parts of the code devoted respectively to the

45

packet interpretation while saving important data for motor and that where
feedbacks are sent to PC.

This division aspect takes to a major reduction of lag between the gen-
eration of packet and motor real actuation because there is no interference
with the opposite direction of data transmission.

Going more in detail about the particular platform of Arduino controller
family that is used in the haptic project, this is an Arduino Nano.

Nano controller is called so due to its small dimensions that provide the
same functionalities and computational capabilities of their ”brothers” con-
troller of bigger dimensions.

Figure 3.16: Arduino Nano dimensions

Obviously due to its practical feature it can be mounted on the single
motor present in the haptic system and so there are four Arduino Nano in
total, each of these mounted on its respective actuator.

One fundamental aspect to consider is that the basic unit of transmission
using UDP protocol on Ethernet is the byte so all the data involved in this
communication are sent as bytes packets. In case there would be some dif-
ferent type data like float or double, they have to be converted in an array
of bytes.

Arduino Nano acts as slave controller and receives packets of informations
directly from PC. This is made possible by an Ethernet connection with
computer through assembling Arduino with a special EthernetShield which
enables the device to receive and send information through Ethernet way of
communication.

46

Figure 3.17: Ethernet Shield

The aim of this small platform is to implement the real control of the
motor to which it is associated. As a matter of fact the system needs four
different motors and of consequence four associated controllers to create the
tetrahedron structure.

Each controller has developed inside the same PID scheme but obviously
with different Kp,Ki,Kd gains depending on the particular hardware on
which it is working on. In case of haptic project the four TSA differ a bit
in some parameters and for this reason there’s the necessity to calibrate
rigorously each controller to obtain similar outputs in terms of time response
and precision at steady state.

Figure 3.18: Scheme of PID control

As usual the proportional term is the first responsible of the set-point’s
tracking and it allows to have a certain quantity of robustness to noise. Using
only this term creates oscillations until they are cancelled by the damping
properties of the controlled system. To obtain a better response it is useful to
use also derivative and integral terms. The derivative term is used to reach

47

the steady state in as less time as possible with a good transient while the
integrator is useful for the principal aim of the control which is tracking the
reference with zero error at steady state.

In particular this last term is fundamental in the control of TSA actuators
because the bracelet’s force or positioning and of consequence of the whole
controlled robotic device, needs to be really precise.

For what concerns the error on which the controller has to act, it is com-
puted as the negative feedback sum between outputs of the motor and a
specific set point. The provenance of the output signals is given by a mea-
surement of sensors like the encoder for the position and an optoelectronic
sensor for the force, while the set points are made available directly from the
PC to which Arduino is linked using Ethernet.

The code for the PID creation is a little portion of the Arduino firmware
while the greatest part is devoted to two main goals. Firstly to receive the
packet from the user definition and to handle it in a manner that useful data
are used by PID function while secondly to manage signals of encoder and
force sensor measurements to be used in feedback control loop and sent back
to PC.

3.5.2 I/O description

As mentioned until now the main work of Arduino controller is that of receiv-
ing packets of information from the Ros workstation, implementing position
and force control algorithm and sending the feedback to the operator. The
passage and transfer of data between the various devices is allowed by the
presence of Ethernet communication which is possible due to the link of
Arduino with the Ethernet cable present in the laboratory.

This cable can be seen as an input for Arduino but a more interesting
aspect to be analysed is the real I/O pin system provided by this controller.

It has many pins of input-output to perform the standard functionalities
of receiving feedback measurements, elaborate them to compute a control
law and to produce an output.

48

Figure 3.19: Arduino Nano pinout

The main division between pins are in digital and analogic ones. The first
category is used to manage signals which can be put in a discrete range of
values while the second one allows to treat continuous signals of which it is
important to evaluate all the temporal flux and not only some ”steps”.

Figure 3.20: Arduino Nano electrical links

For this reason it is understandable why one digital pin (in particular
number 3) has been chosen to acquire position feedback data thanks to en-
coder sensor. As a matter of fact this last one gives the result as ”encoder
tics” which are discrete finite values.

On the other hand the Arduino’s acquisition of the force data sensor is
performed by an analogic pin because of the necessity to evaluate all the
variations in time of the signal.

These already described are the main inputs of the controller but in reality
one more pin has to be described: the so called V in. This is responsible to
take in entrance the required energy to work properly. This is quantified in 5
volts and not the unique 3 volts that the connection with an external device
through the USB port can give.

49

In the provisional setup built to validate the position and force control,
the necessary quantity of energy taken by Arduino Nano is given by a second
linked Arduino, the Due model, which is directly connected to an energy
source.

For what concerns the output pins they are principally:

• the PWM 5 law computed by the control algorithm and used to drive
the motor’s shaft

• the direction command to let the motor rotating in the logical direction
depending on the positive or negative value of the PWM law

The first output is of analogic type and set on pin 5 while the second one
is of digital type and set on pin 6.

Those outputs are useful to make the motor working properly thanks to
the presence of driver which takes the command in terms of duty cycle 6 from
the computed law and transform it in a current signal for the TSA actuator.

3.5.3 Driver

The driver which effectively gives current to the TSA is composed by an
electronic card, model MC33887 which is an integrated circuit of NXP.

Figure 3.21: Scheme of MC 33887 driver

5Pulse-Width-Modulation
6Percentage of on and off pulsing signal

50

Figure 3.22: Features of MC 33887 driver

By its configuration of H-bridge it receives a voltage reference modulated
at PWM and gives to the DC motor the current needed to reach the wanted
position or force. The voltage reference is computed by the PID schemes
implemented in the controller of motors.

3.5.4 Communication protocol

The first idea of communication creation between the various members of
haptic Interface was a bit complicated and saw a lot of hardware involved:
a principal PC, on which Ros 7 programming environment can run, had to
dialogue with a central controller called Arduino Uno which was the master
distributer of information to single slave motors controlled by their Arduino
Nano. The operator had to insert some data like operational mode and set
points for the motors in a piece of Ros code which needed to be sent to
central Arduino by a Ethernet way of communication using UDP protocol.
Then this device interpreted the package and sort it to the corresponding
motor by a I2C transmission which is a serial one and allows to send only
byte after byte.

Obviously in order to have a useful and complete supervision of the system
work by an external operator, each single motor needed to give feedbacks of
position and force to the central PC and also these informations followed the
same path of transmission but in the contrary versus so firstly from Arduino
Nano to Uno by I2C and then from Uno to PC by UDP sockets.

The previously described setup and way of communication was good until
a not minor detail had to take into account: the work speed of the central
Arduino. As a matter of fact if we focus on the transmission of only one

7Robot-Operating-System

51

package to and from a single motor there could be not so many problems.
The unique one can be the capability of sending and receive informations of
the I2C which works as a serial line and so it can be not so fast to handle
both versus of communication if packages are sent from PC at several dozens
of HZ and feedbacks are received at the same frequency. Just for this reason
an idea of changing setup was already met. Moreover there is the real serious
problem: how to handle by a central single controller the data mass of four
motors at a high rate? .

For sure lots of lag would be present in the communication due to the
fact that the master have to interpret each single packet and decide to which
slave sending and last but not least the serial communication would be very
slow.

Thinking about a possible solution to this problematic it has been selected
the idea of eliminating the central controller and to address data packets
directly to respective motors in order to avoid a transmission passage. At this
point the UDP protocol on Ethernet takes on a role of primary importance
because it is the unique responsible of making PC and motors talking one to
each other.

For the sake of completeness it must be remembered that there exist two
principal communication protocols: TCP and UDP.

They are quite similar from point of view of informations’ transport but
differ one from the other by means of two features. The first is the possibility
for UDP to loose some informations because it doesn’t have the feedback
return to communicate that the whole transmission has been successful. The
second consists in the transport velocity: UDP are very fast because they
have to transmit small information quantity while TCP are slower due to
higher quantity involved.

For the previously described aspects the choice was made on UDP com-
munication.

In order to obtain the new setup some EthernetShield specific for Arduino
Nano has been bought and mounted on each slave controller. Obviously a
targeted communication opening must be created between computer and
each Arduino but it will be discussed later.

In practise the final communication and control system in haptic Interface
is made by the presence of the four slave motors commanded by relative Ar-
duino Nano controllers which talk directly to central PC thanks to Ethernet
communication.

This last one enables to exchange with PC the operational modes and

52

set points in one direction while transmitting feedbacks in the other opposite
direction.

In the next section it will be discussed in details how all this system can
work and arrive to have a precise control of motors in order to realize the
robot application and to simulate the force feeling on human body.

3.5.5 TSA firmware

For the thesis purpose Arduino Nano is used principally for three goals:

• Receiving set points from the user which wants the TSA to follow the
desired reference trajectory

• Implementing the PID schemes in order to have a precise and robust
control of the tendons and of consequence of the central structure of
the haptic system.

• Sending feedback to PC to be visualized as video prints.

From the point of view of operational modes, these are basically repre-
sented each one by a number and allows to change the type of control which
Arduino Nano has to apply on the tendons and of consequence to the bracelet
of haptic structure.

The three possible operational mode are:

• 0: OFF Control

• 1: POSITION Control

• 2: FORCE Control

For a matter of completeness it is useful to underline that the most used
control is the force one. This can be explained by the fact that the usual
haptic Interface’s goal is to realize the force perception and to arrive to target
it is important to create vibrations on human body. The way to do this is
controlling in force the motors which apply to central bracelet four tensions
able to generate that feeling.

In order to detail better how the informations are managed by firmware
code, it is useful to remember that Arduino can use the library Thread.h. So
in order to divide the two main tasks of receiving packets while interpreting

53

them and that of sending feedback, the firmware is split into two main threads
running at different rates.

One thread is the main loop() and inside it the handling of packet in-
terpretation to extract useful information is coded while for what concerns
feedback sending part it is created a threadCallback() function which runs
at a custom rate decided by user.

One note which has to be made is that instead at first sight controlling
the device could result the highest priority task, in reality the feedback check
by the operator should be more important to have a better supervision of
what robot is sensing and facing up during its work. For this reason normally
the feedback calculation and sending thread must be run with higher rate.

Starting to describe in detail the firmware code it is not possible to avoid
to talk about setup() part. In this section the useful actions to initialize
the whole project are computed. First of all there is the creation of two
main UDP sockets: UDP_Receiver is dedicated to transmit packet from PC
to Arduino while UDP_Sender is aimed to send feedback in the opposite
direction so from Arduino to the user. The opening of this two sockets is
possible by the specification of the IP address of the controller and the PC
but principally the ports on which they have to listen on. These must be
specified in some part of the code, usually at the top as it was made in this
case.

The ports are the essential means by which to TCP and UDP protocols
to manage multiple data streams through a single physical connection to the
data transmission network like Ethernet.

By comparison with real life we imagine to send a letter to a friend. If the
recipient lived in a single house and it was the only tenant on the envelope
would simply indicate its address. This situation, however, is rather unusual
because, more likely, he will live in a building with other tenants or share
the house with other relatives. Each of these can receive mail at the same
address and then to uniquely identify the recipient you will also need to use
the full name which is composed by the address plus port. Likewise we will
indicate on the envelope information about the sender in order to receive a
reply.

A similar thing happens for network communications through the TCP
/ IP protocol. Each machine will be identified on the network by an IP
address, but due to the fact that usually the same machine can provide
different services, it is necessary to find a method for separating the individual
data streams and direct them towards the correct management program.

54

The problem is solved through the ports, in comparison with the previous
example, take the place of the name of the sender and recipient. Streams
of separate data within the same machine are characterized from different
ports.

After this UDP sockets’ opening the setup provides also the physical
connection of Arduino’s pins to motor’s connector in order to apply the PID
control and read correctly the encoder. Moreover in setup the enabling of
interrupts is made.

Now it’s time to talk about the core of the firmware which is composed
by the two previously cited threads. Going in detail of loop() it sees the
succession of :

1. Reception of the incoming packet

2. Interpretation of the packet

3. Use of some data for the PID law computation

The part of code devoted to reception is principally made by two stan-
dard library function of Arduino: UDP.parsepacket() which checks for the
presence of a UDP packet, and reports the size and UDP.read() which saves
the packet in a buffer of adequate dimension.

Packet dimension is 20 bytes and it is composed by:

• character ′M ′

• 1 byte for operational mode

• character ′C ′

• 4 bytes of command which is the set point and originally is of float type

• character ′G′

• 4 bytes for each gain of PID so in total 12 bytes

Then this packet is passed inside a loop finalized to check each character.
The loop take each byte of the packet and passes it as parameter to a function
called handleCommand() which, depending on the character ′M ′, ′C ′, ′G′,
run a custom FSM.

55

This finite state machine is coded inside a function called handleData()
which provides various states in which the useful bytes of packet are stored
in an array of dimension 17 bytes called data_array. This array must have
smaller dimensions with respect to the original one because some information
like those of the characters are not useful to build up a control algorithm of
the motor but they are only used to pass from one state to another inside
the FSM.

Obviously the user can have built the package in a wrong way so inside
the loop of check of bytes a sort of safety mechanism is present. In particular
by the variable isV alidPacket, set true every time a new packet arrives and
false in a particular State_Error, it is possible to exit from the loop because
if a character is wrong the state becomes that of error and in this last one
the variable is set to false, condition for which the while condition of the
loop is no more true so no other interpretation can be carried on.

Once the whole packet has been interpreted it is passed finally to a func-
tion called update_mode() where the magic happens. As a matter of fact
thanks to the standard library function memcpy to which parameters of des-
tination variable, source array and length of data are passed ,update_mode()
is able to copy the values of different bytes length from the location pointed
to by source, directly to the memory block pointed to by destination. In
practise this tool is useful to take the interpreted array data_array and save
some bytes as setPoint and Kp,Ki,Kd fields depending on which byte of
mode it has been chosen by the user.

Finally those new variables are passed to a PID constructor which instan-
tiate an object of PID type in order to apply the control to the motor.

Because of the PID class needs also the feedback output value of the
motor to compute the error

e = setpoint− feedback (5)

it is necessary to compute feedback. This is made in apart functions
which have to run independently from the two threads.

This in not meant to have a third active thread but only a single functions
which work as ISR 8 and so exploit the concept of interrupts. When one
of them happens, the function performs the calculation implemented inside
it. Then the value is converted in rounds of the shaft by using a term of
resolution of encoder.

8Interrupt-Service-Routine

56

This final value is used by the PID object as term of feedback and so the
constructor is complete and ready to compute the control law.

Previously a second thread called threadCallback() has been cited. It is
used not to compute any calculation or interpretation of data but its goal is
uniquely that of sending back feedbacks of position, force and current to the
PC which is a fundamental task, too. In order to be able to do so, three other
functions memcpy are used to pass to a buffer destination the three feedbacks
stored in three variables: the position one pos_feedback computed by one
ISR and the other two force_feedback and curr_feedback. Each of these
is 4 bytes large so the total dimension of feedback il 13 bytes because there’s
the adding of a char character which identifies the number of motor to which
feedback are related.

The final buffer is sent using the UDP_Sender instance which performs
the successive standard functions UDP.beginPacket(), UDP.write() and
UDP.endPacket.

Now a simple but basic question can be made: how the packet is prepared
and sent by PC? The answer is in the next section.

3.6 System architecture: Workstation

3.6.1 What is Ros

Ros 9 is the principal helper for software developers which are able to cre-
ate their own applications to be run on robots or in general on automated
devices. Despite its name it doesn’t provide the functionalities of a real and
proper operating system but it can be better analysed as a programming
environment for the creation of robotic custom control algorithm.

Ros provides to the user many helpful libraries and various features like
hardware abstraction, device drivers, libraries, visualizers, message-passing,
package management. For its possibility and flexibility of interfacing with all
kind of robots it is for sure the most widespread environment in the field of
robot programming.

The Ros’ principle of usage is based on the presence of two main categories
of tools: nodes and topics.

Nodes are the most various pieces of code where some robotic application
are developed, while topics are a sort of particular channel through which

9Robot-Operating-System

57

nodes can share informations. Of consequence Ros can be seen as a peer-to-
peer middleware package. As a matter of fact it acts as a linker of some nodes
that want to establish a communication based on an exchange procedure of
many different types of messages.

In the figure below it is represented a procedure of communication es-
tablishing and it must be underlined the presence of a special node called
Ros Master which need to be launched before the other nodes. In fact it is
responsible of managing the linking initial phase between programs.

Figure 3.23: Establishing communication between nodes

Figure 3.24: Established communication between nodes

Usually the total robot functionality is performed by using different nodes
because each single smaller goal is developed in a different node. Of course

58

they have to talk to each other and this is possible by the presence of topics
channels but they remain separate entities. For example two distinct nodes
can run on different computers but communicate over the same topic or over
various topics. On the other hand nodes can run on the same terminal which
talk to the controlled robot and this situation is really frequent in robotic
field.

The dialogue provided by topics between different machines is possible
thanks to TCP or UDP protocols. They are quite similar from information
transport point of view but differ one from the other by means of two features.
The first is the possibility for UDP to loose some information because it
doesn’t have the feedback return to communicate that the whole transmission
has been successful. The second consists in the transport velocity: UDP are
very fast because they have to transmit small information quantity while
TCP are slower due to higher quantity involved.

As it was previously reported, the main aim of nodes inside Ros environ-
ment is that of performing some piece of global application by exchanging
information with other nodes and providing computation. This work is made
under a general scheme of publisher-subscriber relationship: usually a node
is a publisher of some result of computations or service that it has brought
to completion and the other nodes listen to it firstly waiting for informations
and then sharing them. But it is not all because there are some examples in
which many subscribers can listen to lots of publishers on a single topic.

But for sure one of the most used tool that Ros environment provides is
Ros service. It is a specific publisher-subscriber mechanism in which a node
(client) sends a request of operation to another node (server) and receives a
response in return.

Figure 3.25: Client-Server mechanism

A service is called with a request structure and, in return, a response
structure is created. This is quite similar to Remote Procedure Call (RPC).

59

Ros provides some standard services but a custom use of services is often
required especially when working on personal robots.

3.6.2 Why Ros in haptic project

When the use of Arduino controller was presented, it was said that obviously
in order to work by a feedback regulation, it needs some references on which
basing to close the controlling loop. These set-points informations must come
from the user and so from outside the Arduino device itself. So the idea was
to exploit the idea of information managing and transmission of Ros based
on nodes and topics to provide Arduino the adequate information it requires.

In practise the concept of nodes is particularly useful in case of the de-
velopment of haptic interface. As a matter of fact it has been possible to
create a package called UBHaptic_ros_bridge in which representing all the
functionalities of the haptic system.

Inside the package some nodes are present and they dialogue one to each
other.

The first node called UBHaptic_ros_test is the one with the goal of
implementing the two principal activities of the system: sending commands
and receiving feedbacks of force and, less important, of position. So it can be
said that it regulates two main threads in which the overall goal is divided.

The second node represents the physical structure of haptic system and
so it is implemented as a class called UBHaptic with some attributes and
methods.

There are other three main nodes which are the attributes of the global
class UBHaptic but in turn they are implemented as classes because they
must provide their own methods and attributes.

60

Figure 3.26: Haptic Ros Nodes

In conclusion, from the point of view of sending commands, the general
structure of code is devoted to send informations through the use of one
method of UBHaptic_ros_test and these commands will become the set-
points for the Arduino controller basing on which it will compute the PID
control scheme. From the point of view of feedback reception the second
thread will be exploited.

3.6.3 Development of UBHaptic-ros-bridge

In this chapter the main features and details of the various haptic classes
will be presented. In particular the various methods of each node will be
specified.

The whole Ros code implementation has been developed thanks to the
Netbeans IDE.

The upper level class of the whole chain for the reception of feedback and
the command sending is the UBHaptic_ros_test class. It can be considered
the father node because it handles the definition of commands to be sent to
the system and manages the video print of the feedback information from
the robot.

The code of UBHaptic_ros_test is mainly divided into two parts: the
feedback reception function and the ”Main”. Going in further details it is

61

important to be noticed that the receivePublishFeedback is the responsible
of taking information from the system by the methods of the child class
UBHaptic and of printing them to video. This passage is really important
because despite the command sending must be made correctly, the acquisition
of returning feedback allows the operator to be aware of what robot is sensing
and this is for sure the main goal of an haptic Interface. For this reason the
receive_rate frequency of this function must be set in a way to have as many
information as possible and it depends principally from the computation
capacity of Arduino controller to elaborate data.

The second part of code of this class is the Main and in this section there
is the constructor of the object haptic from the class UBHaptic because it
must be used by the UBhaptic_ros_test father class. The creation of the
object is made by the code haptic = newUBHaptic(ip, Port, IDs). The
parameter passage is fundamental in order to let the object know to which
motor sending commands and receiving information.

Then the parameters which have to compose the final packet sent from
PC to Arduino are declared: mode, cmd, Kp, Ki, Kd are the necessary
ones to drive the system. They are passed to haptic object by the function
declaration

haptic− > sendCmd(haptic− > actuator_1− > ID,mode, cmd,Kp,Ki,Kd).
Detailing more each of them it can be seen that mode is an indication for
the relative motor of which control algorithm applying: position, force, or
current one. Due to the fact that the most important indication for an hap-
tic user is the force feedback it is an obvious consequence that there will be
a preference for the force control. The set-point value is sent through the
variable cmd and indicates the quantity to which the regulator has to bring
the motor. Depending on the value of field mode it can be the force to be
apply or the position to be reached.

For what concerns the last three parameters to be set, they are the three
gains which create the resulting control law computed by a specific algorithm
inside the controller. They need to be passed to the UBHaptic class in order
to have an online setting of the control law by the operator directly from
remote and not just in the Arduino firmware itself.

But the most fundamental function for the whole software project is for
sure

boost::thread thread_receive(receivePublishFeedback, rate_receive_thread).
This allows to spawn a second thread and this is responsible to receive at a
certain rate the feedback information from the robot. As it has been already

62

said the idea of dividing the two aspects of sending commands and receiving
information is very smart and useful because the operator can check what
the robot is sensing at a different rate with respect to the rate of sending
commands and moreover can check robot’s data whenever he wants which is
an incredibly advantage for a good haptic teleoperation.

Last important portion of code of this class is the check about the opening
and closing of communication between Ros and system. Of consequence there
is the presence of if condition made on the getUdpsender and getUdpreceiver
methods of UBHaptic class.

The class that has the aim of describing the functionalities of the whole
system is UBhaptic. What about the code to render the idea of the haptic
actions? This is organized in three main parts.

The first section is devoted to the creation of the objects of protocol,
actuators and Udp channel used. So the constructors of these objects are
present. In particular it has to be underlined that these are all attributes
of UBHaptic class but they are all classes themselves and provide their own
methods and attributes.

For what concerns the definition of the constructors the parts of code are
presented below:

• this− > actuator_n = newtsa_Actuator(actuatorsID[n− 1]) where
n = 1, 2, 3, 4;

• udpSender = newUDPNode(this− > IP, this− > Port);udpReceiver =
newUDPNode(LOCAL_PORT);

• this− > protocol = newtsa_protocol;

Obviously the class presents the two principal methods to send commands
and receive feedbacks.

Analysing the part of the code aimed to send commands it is easy to
understand that the function definition takes as arguments the ID of the
motor to which the set-point is addressed, the mode of robot operation, the
command value that represents the set point to be tracked and finally the
three gains Kp Ki Kd by which building a PID control:

sendcmd(id,mode, cmd,Kp,Ki,Kd). The passage of parameters is fun-
damental because it allows to dialogue with the father upper level class
UBHaptic_ros_test which handles all the interaction with the user. These
parameters are then passed to a method buildTsaPackage of the tsa_protocol

63

class which is one of the attribute of UBHaptic. The goal of that method
is to build the real package to be sent to the robot in a manner that will be
described later. For this reason one more parameter needs to be passed be-
cause it must be returned by the method of the tsa_protocol class and this
parameter is called pack which is an array of dimension 22 bytes. In practise
pack is built correctly and by a certain protocol rule in the previously cited
class and it is returned to the UBHaptic class where it is sent via Ethernet
to controller.

One more detail must be considered: the real package that is sent by
the haptic Ros node is not pack but PackToSend which is another array
of dimension 20 bytes. This differentiation is useful in order to make the
communication easier and faster because the information package is lighter
and it doesn’t give any problem because the correct motor to which sending
proper data is addressed not by the ID itself but only by the network IP
address. So it is a matter of UDP socket which is opened by the node’s code
with a certain IP address corresponding to a precise EthernetShield card
mounted on each motor.

Talking about the other main method of UBHaptic class, this is called
readFeedback. Thinking about its name it is easy to understand that its
goal is to receive data. It does its job by saving in a proper struct called
fbData the fields of position, force and current feedback coming from the
controlled system. In order to make this service, firstly it needs to call a
method decodeTsaFeedbackPacket() of the attribute class tsa-protocol.
In this piece of code the interpretation of the feedback from Arduino is
present and returned to the UBHaptic class. This returning packet is saved
in the previously cited data struct and so exploiting some small methods
of UBHaptic class like getID, getActualPosition(), getActualForce() and
getActualCurrent() it is possible to read the fields of number of motor,
position, force and current feedback and to pass them to the upper class
UBHaptic_ros_test. Here a video print is present and this is really useful
in order obtain a clearer supervision of the situation by the operator.

For a matter of completeness the full description of the tsa_protocol

is reported. It is one of the three attributes of the general class UBHaptic
together with the UDPNode one and tsa_actuator but the description of
those ones doesn’t improve the comprehension of the whole process of the
haptic system.

As a matter of fact in the actuator class there’s only the association of
the passed field ID to the variable ID.

64

For what concerns the class of UDP use, it presents in the first part of
code the declarations of objects useful for UDP creation. In the second part
methods like receive(data,data_length) and send(data,data_length)

are present and they are those which allows the interaction with UBHaptic
class.

Detailing more the first cited attribute so the tsa_protocol one, this
class is the lowest level one because it is responsible of the real work of data
packing for sending thread and data unpacking for feedback reception.

The creation of sending packet is made by the method
buildTsaPackage(mode, cmd,Kp,Ki,Kd, pack) which takes the passed

parameters from UBHaptic class and saves them in the cells of array pack.
This is made directly for data like mode which are integer type and so they
can be easily saved, differently from the case of other data which are all
floats and so they need to be saved by many for cycles, one for each data.
This aspect is crucial because the array is of char type which has the same
dimension of byte. Floats have a four times dimension with respect to char
and the used protocol doesn’t expect to work with floats but only with byte
or char data types because of the communication via Ethernet. So with for
cycles the float data are saved inside the cells of pack array.

Feedback reception and display to video work conversely. As a matter
of fact the video printed information need to be numbers of float type but
from Arduino a sequence of byte arrives. For this reason in the method
decodeTsaFeedbackPacket the use of union struct is necessary. Knowing
that the feedback sequence from the each motor is composed by the first byte
of ID, then four bytes of position feedback, then four bytes of force feedback
and the last four bytes of current feedback, the sequence of passages is the
following:

• by a for cycle the passed byte array is saved in three smaller arrays of
dimension four bytes, each for one type of feedback

• each array is converted in the corresponding float value by the union

• each float value is saved in the corresponding field of a data struct
called data

This struct data is returned to the class UBHaptic and saved in turn to
the struct fbData with the same fields of data. Finally by the previously

65

cited get() methods each field of fbData is read and video printed in the
father class UBHaptic_ros_test.

66

4 Chapter: Control of TSA module

4.1 General description

From the controller point of view, TSA actuators provide two main loops:
position and force. As a matter of fact TSA has two main sensors basing on
which closing the feedback schemes of control. The first sensor is an optical
encoder with 200 frames, positioned at the bottom part of the device and it
is useful to give measurements of TSA rotor’s angle of rotation of in order to
close the position loop.

The second sensor take trace of the traction force that the tendons is
transmitting to the load and so its use is dedicated to close the force loop.

The two sensors need to be calibrated really precisely because the sensi-
bility of the system must be very high and a fast control has to be applied
due to the delicate tasks which can be performed.

The feedbacks are brought back to the Ardino dedicated controller which
has to implement two different PID schemes depending on which type of
control the user wants to be applied.

In practise the useful information that Arduino needs to manage in order
to control each related motor are the set-point, the three PID gains and last
but not least the operational mode. One more parameter is the feedback of
position or force depending on the type of quantity which the operator wants
to control.

Figure 4.1: PID feedback control

67

How these parameters are kept together is a matter of the PID class which
is present inside the standard libraries of Arduino.

The most important piece of code of this library is for sure the con-
structor of the objects PID. As a matter of fact the goal of creating a real
PID algorithm is made possible by the call of the class PID which takes as
arguments:

• Set-point of position or force from Ros

• Gains Kp, Ki, Kd for PID tuning from Ros

• Feedbacks of position or force from sensors mounted of motor block

The PID class comprehends some methods useful to compute correctly
the control law. In particular they are able to process the gains data from the
operator sending packet and to calculate the sum of the three proportional,
integral and derivative terms.

Moreover the PID class allows to set the saturation of the controller in
order not to have an overloaded work of the actuator.

Due to the fact that the main idea of the haptic interface is to have two
types of controls firstly it is necessary to instantiate two objects:

• PID_pos to realize the position control

• PID_force to realize the force control

Obviously thanks to the inheritance principle, these objects have the same
attributes and methods of the general PID class.

Two of the most used methods which are present in the Setup portion of
code of Arduino firmware are SetOutputLimits(min,max) and SetMode(mode).
These respectively establish the saturation limits of the output control law
computed by the controller and switch on or off the computation algorithm.
In particular talking about the second method it is important to underline
that if the algorithm is switched on, there’s the necessity of initialize inter-
nally all the processed variables to the 0 value a part from the gains. This
aspect is useful because it allows to delete all the previously memorized values
which can damage the right behaviour of the system.

SetTunings(Kp,Ki,Kd) is the method of the PID class responsible to
pass to the real control law computing algorithm the gains which are sent

68

to Arduino by the external Ros node. The method is called in the setup
because there the gains are put to 0 value for the first initialization. Then
it is re-called each time in the principal loop due to the presence of online
tuning of the PID control. As a matter of fact in the main loop the procedure
of reading the incoming packet and its interpretation are present so also the
gains must be read correctly and the processed. After that they are saved
as new gains for the calculation of control law. In practise the operator is
able to tune directly from Ros nodes the Arduino controller in order to have
a good tracking.

But the magic happens in the Compute() method. In this part of code
the final computation of control law is done. This last one is expressed
in terms of PWM signal which creates a duty cycle able to drive the H-
Bridge which creates the current flowing inside the motor windings. The
PWM is one of the main modulations of signals which allows to generate
continuously a different output depending on the frequency of the PWM wave
so it is a modulation technique used to encode a message into a pulsing signal.
Although this modulation technique can be used to encode information for
transmission, its main use is to allow the control of the power supplied to
electrical devices because the global driver for an motors is always composed
by electrical bridges able to take the voltages as inputs and to give some
current as outputs. How to modulate the voltage and to change its value?
PWM answers to this questions: the average value of voltage (and current)
fed to the load is controlled by turning the switch between supply and load
on and off at a fast rate. The longer the switch is on compared to the off
periods (duty cycle), the higher the total power supplied to the load.

69

Figure 4.2: PWM example

The resulting output value in terms of PWM is computed inside the
previously cited method but the final value written on the analogic output
pin 6 by means of the function analogWrite(PWMvalue, pin) needs one
more treatment passage.

In fact the computed value can be either positive or negative but always
bonded in two thresolds -255 and +255.

Depending on the fact that the result is positive or negative the direction
of motor’s rotation is set respectively to clockwise or anti-clockwise and this
is another information to pass to driver by means of the pin 7 which is a
digital output pin where a boolean value true or false is written.

But how to compute effectively the final control law?
Firstly the error expressed as difference between the set point and the

feedback is built and then multiplied for Kp gain to create proportional
term.

Then it is necessary to compute the integral term. This time the concept
is quite more tricky. As a matter of fact in order to express a continuous
integration in terms of discrete successive sums, there the necessity to sum
a new value to the one computed in the previous cycle. So the code is
Iterm+ = Ki ∗ error.

For what concerns the derivative term, it needs to be built not in relation
to the tracking error but to the difference between the actual feedback and

70

that measured in the previous sample time. This procedure choice is mainly
justified by a stability reason.

One last detail about the output law useful to control the motor deals
with the function SetPwmFrequency(pin, divisor) present if the Arduino
firmware.

This is responsible to change the working frequency of the pin where the
PWM law is written by the previously cited function analogWrite().

This aspect is not of secondary importance because it allows to make the
driver to work with a correct value of duty cycle and not an higher or lower
one.

In general the Arduino Nano standard frequency for pin 6, where usually
PWM is written, is 62KHz but in nominal condition of work it must be set
to almost 1KHz and this is valid for most Arduino boards (those with the
ATmega168 or ATmega328P).

For this reason the divisor is chosen at 64.

4.1.1 Timer

Timers are very useful tools in the programming field because of their prop-
erty of temporizing certain pieces of code to which they are related and decide
when the code must be performed.

They are created principally in two different ways.
The first sees the setting of some registers of the controller and at each

clock cycle registers increases until they reach an overflow condition and put
a flag to true value.

The second allows the operator to be more involved in some critical de-
cisions like when the flag has to change value. As a matter in this second
way of using timers, it is necessary to calculate the number of counts that
the registers have to perform before triggering the flag change. This number
results to be equal to

counts = (function_period/timer_resolution)− 1 (6)

where timer resolution depends on the nominal clock frequency while the
function period is the inverse of the frequency at which the operator wants
to change the flag value.

But the most interesting fact in the use of a timer and the reason for

71

which it is really widespread, is that if the flag changes a related ISR 10is
performed. When the flag is triggered, an interrupt is sent to the CPU
which stops immediately all the computations that it was doing previously
and starts to manage the particular piece of code. So in this way if the
operator wants to perform a calculation at a certain frequency, he has to do
nothing but not using the second method and setting this frequency for the
parameter 1/function_period. Doing this the timers is learned to increase
the registers of as many counts as said before and when the value is reached
the flag changes value and the interrupt is sent to the CPU.

For what concerns the project of haptic Interface timers are used both for
force sensor data acquisition and control loop timing. Detailing more about
this last one, it has been decided to perform the ISR of control precisely at
1 ms. Obviously the control loop has the possibility of computing the PWM
law from one of the two main PID objects which are linked respectively to a
position or force control loop.

As a matter of fact the two constructors have the same output variable
called output and so it takes as consequence that only one of them can be
active at a time so only one PID.Compute can work in order to avoid risks
of overwriting the same variable.

4.1.2 Sample time

In order to calculate rightly the integral and derivative terms it is necessary
to use the time informations. As a matter of fact the conditions to have
an integral or derivative contributions is to modulate them by the sample
time. This last one is taken into consideration obviously if the magnitudes
are discrete in time while, if continuous integral and derivative terms are
present, their computation is made considering infinitely small time ranges.

In case of projects where real controllers are involved, the presence of a
central CPU which has to perform many computations being temporized by
clock cycles, allows to build the integral and derivative terms considering the
sample time interval t− (t+ T).

For what concerns the integral contribution, it is computed by multiplying
the error for the sample time. This happens because theoretically an integral
is the sum of the infinitely small rectangles in which the horizontal dimension
is the magnitude with respect to which integrating and in this case time. As

10Interrupt-Service-Routine

72

said before in real projects the idea of infinite is not considerable because
CPU thinks in discrete ranges.

Dealing with the derivative term, roughly speaking, it represents the op-
posite concept with respect to integral because it considers the values of
variables at a precise instant of time. For this reason the calculation hap-
pens taking into account the error and dividing it by the sample time.

But now the question comes up spontaneously: what about the value of
the sample time?

This is an important issue because it needs to be high enough to compute
rightly the variables but it must be get as low as possible with the aim of
making free the CPU fast to perform other calculations. After some tries the
value has been fixed to 1 ms.

4.1.3 Anti-wind up technique

The last aspect which has to be treated about the PID class is the presence
of the anti-wind up term in the PID.Compute() method. This contribution
permits to circumscribe the final control law in good range without increasing
a lot.

The wind-up phenomenon happens when the value of the control law can’t
increase due to the saturation of actuator but in the meanwhile the error is
not zero. For this reason the integral term continues to increase ”charging”
itself but without producing an increment of the controller output value.
Moreover it makes the controller working badly even the error decreases or
becomes negative because the integral term needs to ”uncharge” and so the
control law can return to the linear part of actuator’s characteristic curve.

Figure 4.3: Wind-up phenomenon

The anti-wind up techniques could be mainly two: the first is called Inter-

73

nal Model Principle 11 which is based on the hypothesis of process knowledge
(which is the actuator in this particular application) and the copy of its dy-
namic inside the controller.

The second technique consists in the cancellation of the integral term
if the PWM law becomes higher than the saturation values admitted by
controller hardware. In the context of the project this solution has been
chosen for its simplicity of codification and for the simple idea behind.

4.2 Position control of TSA module

4.2.1 Position feedback

The role of feedback in a closed loop control is for sure determinant and of
consequence the treatment of this particular signal must be accurately done.

In case of TSA control algorithm one of the two feedbacks is that of
position provided by an optical relative rotary encoder.

A general optical transducers like this uses a light shining onto a photodi-
ode through slits in a metal or glass disc. In particular the optical encoder’s
disc is made of glass or plastic with transparent and opaque areas. A light
source and photo detector array reads the optical pattern that results from
the disc’s position at any one time. This code can be read by a controlling
device, such as Arduino micro-controller to determine the angle of the shaft.

The difference and main aspect of disadvantage of this technology is that
differently from the absolute one an ”incremental” encoder accurately records
changes in position, but does not power up with a fixed relation between
encoder state and physical position. So devices controlled by incremental
encoders may have to ”go home” 12 to a fixed reference point to initialize
the position measurement or in case of TSA actuators they have to take as
0 position the start one when the firmware begin to run.

For the haptic project there’s one main exploited feature of this encoders’
type: an incremental encoder works by providing an A and a B pulse out-
puts that create no usable count information in their own right. Rather,
the counting is done in the external electronics and in this case in Arduino
firmware.

In particular to sense the motor’s shaft motion it is sufficient to set as
input the pin in which B pulse is generated and this is done in the initial

11commonly called IMP in literature
12Homing procedure

74

setup function of Arduino’s firmware.
But the most important setting deals with an ”attachment” of the soft-

ware interrupts signals of Arduino to one special function called count()
dedicated to perform the interpretation of the previously cited pattern of
lights-shadows.

To detail more this aspect it must be said that in practise the function
count() makes an enc_count variable increasing or decreasing at each in-
terrupt signal. This interrupt happens every rising edge of A pulse and the
increment or decrement depends respectively on the coincidence of rising
edge or descent front of B pulse with respect A.

In reality the calculation’s output is given in ”encoder tics” unit of mea-
sure which is very difficult to be treated for a successive control. The necessity
is to pass from this type of variable to a more convenient one expressed in
motor’s shaft roots.

To reach the result the resolution of the encoder is used and this is set at
256. So finally the useful position variable for a precise control is computed
as:

pos_feedback = enc_count/resolution (7)

4.2.2 Position controller

Now that also the position feedback has been calculated with the use of
interrupts tool, the position control can be performed.

In particular a PID class dedicated to the computation of PWM law is
created and this takes as arguments the pos_feedback variable, the output
derived from PID calculation and finally the setpoint_pos variables and
Kp,Ki,Kd gains sent from Ros central PC:

PID_pos(pos_feedback, output, setpoint_pos, Kp, Ki, Kd)

The output final result is the modulated signal to pass to H-bridge driver
which gives power to motor.

4.3 Force control of TSA module

4.3.1 Force sensor

In order to perform a force control the Arduino Nano needs a feedback to
close the loop. The measure of force given back to the algorithm is created

75

by an application of a certain load to the tendon and the sensing by a proper
force sensor which has the features of an optoelectronic transducer.

This is positioned and fixed in the upper part of the module thanks to a
simple cavity housing derived from a processing of ABS box material.

Figure 4.4: Real force sensor housing

As said before, this transducer is an optoelectronic device and so it takes
as input the light coming from the external environment and converts the
measure in the relative output applied force.

In order to let a different quantity of light hitting the forces sensor and
so a variable force measurement, there is the necessity to open a window of
various size in which the light can enter. To do this the elastic module have a
fundamental role because it is linked to a component which allows to modify
the previously cited window.

Figure 4.5: Force sensor

But now the question is how the component can move to let the window
change its size.

76

To answer it is sufficient to think about the particular material of which
the module is made.

Figure 4.6: Module force sensor detail

As a matter of fact, thanks to the plastic material of which it is made, the
module provides some compliant beams in the bottom part and they allow
to create the elasticity feature fundamental to move the component.

So when the tendon is put in traction by a load, the overall module
deforms itself and let the component moving so that the light can enter more
in the window.

4.3.2 Calibration setup

One of the most practical issues that the project has to face up is the calibra-
tion of the force sensor. This is used to measure the traction forces applied
on the twisted strings in order to close the control loop and to make the
motor rotating differently depending on the tension quantity to apply on the
each tendon.

Usually a good force sensor calibration is performed by exploiting the
combination of a linear motor and a load cell. The motor keeps in traction the
load and the load cell returns a certain real value of force. In the meanwhile
also the force sensor has returned a force quantity and so the next logical
step is to verify which mathematical relationship there’s between the two
measurements.

In the haptic project a simpler approach has been used but in order to
understand the overall procedure it is necessary to describe the calibration
setup.

77

Figure 4.7: Overall Calibration setup

First of all the a TSA module has been fixed to a metallic frame which is
robust and nondeformable under the weights that are needed in calibration
procedure. If the metallic bar would be flexible it had introduced a noise
component in the measurement due to high vibrations.

Than the pins of motor are linked to the breadboard where Arduino
controller is positioned in order to realize all the necessary electrical circuits.

As a matter of fact the breadboard is a practical construction base for
prototyping of electronics. This makes it easy to use for creating temporary
prototypes and experimenting with circuit design which is useful for didactic
purposes or research projects.

The breadboard instrument provides a lot of holes which are linked one
to each other in two different ways: those one for devices’ power supply are
linked in horizontal way while the biggest central area where a large number
of components can be housed to form a circuit are linked vertically.

78

Figure 4.8: Breadboard

Finally the most simple-to-understand but fundamental part of the setup
is the motor’s module put in vertical with the twisted string flying in the air.
This is due to the successive step of attaching to it various weights which
represent the load that a linear motor can simulate.

The overall module is surrounded by two masks, as shown in Figure 4.7
to avoid the light changes to affect a lot the measurements.

The already described setup is very useful to implement a good calibration
which is precise enough for a successive force control.

In reality the most obvious issues that a setup like this can generate are
the presence of noise in the measurement due to two main factors: the first is
for sure represented by the flying wires which can create electrical problems.
Moreover a little percentage of electromagnetic influence between the wires
is present.

The second most important issue is the light hitting the force optoelec-
tronic sensor. As a matter of fact this type of sensor takes as input light
and converts it in voltage output signal. Light can be a problem if there are
lot of changes in the environment and many shadows are present. Despite
the mask created to protect the sensor works good, the problem remains and
risks to damage the measurements. The real solution to this problem will be
explained in the next section where calibration procedure will be described.

4.3.3 Calibration procedure

The calibration procedure is based mainly on the necessity to create a sort
of mapping: as a matter of fact the actual quantities which are returned

79

by the sensor are expressed in Volt while the real forces are evaluated in
Newton unity of measurement. Because of the operator works with this last
one type, the calibration has the aim to provide to the control algorithm the
right feedback.

This mapping is made possible by building the special setup previously
described in which there’s only the motor plastic box which is put in vertical
and let the tendon being suspended in the air with the aim of hanging up a
metallic base. This is useful to charge the tendon with a series of half a kilo
weights.

Figure 4.9: Motor’s module for calibration

As said before, obviously the final unity of measurement is Newton but
the calibration is thought in terms of kilos. The passage between these types
of quantities is easy because there’s only the gravity acceleration parameter
in the middle:

Newton = Kilos ∗ m
s2

(8)

Exploiting the serial prints tool of the Arduino controller , it can be
possible to check the variation of the voltages quantity depending on the
increasing and decreasing of the weight charge on the tendon. The obtained
result in this project is really interesting because it comes out that there’s a
constant decreasing of measurement of 0.02 Volts for each half a kilo added.

For a matter of clearness of data measurement, during the experiment
it has been used a particular mathematical tool called mobile window filter.

80

This is a peculiarity of the calibration process because it permits to have more
stable measurements thanks to its property of computing the medium value
between a series of acquisitions (in this case the window is over 110 values).
This fact is important because during the process of adding weights there has
been a small quantity of noise but large enough to affect the calibration. The
noise is present because of the force sensor is an optoelectronic one so also
very little variations of light in the ambient can damage the measurements.
In this particular project there are not huge variation of voltages involved so
that also a noise of small entity can damage the measure, and a 0.02 Volt
variation corresponding to half a kilo added is small enough not to be safe
from noise. Of consequence a good filter like the mobile window one can help
the calibration.

The concept under the implementation of the filter is very simple and
exploits the array tool. As a matter of fact the first thing is to fill each cell of
the array and to compute the average between all the terms. After that the
acquisition of data measurements continues in a way to subscribe the oldest
value in the previous series with the new data obtained by the sensor. Than
another average is computed and this procedure of updating and average
computation is repeated continuously.

The introduction of the mobile window medium filter creates some prob-
lems in terms of timing. In fact depending on the number of cells in the array
the availability of a reliable force value changes. This is due to the fact that
if the real force value in terms of Kilograms, obtained in a certain acquisition
moment, differs from the previous one , it is inserted in the array’s series of
values but the medium value results to be affected more by the other values.
In order to have a significant change in the measurement all the cells need to
be filled by values similar to the new one and this happens after a quantity
of acquisitions equal to the array cells’ number.

Using this kind of filter a good procedure of calibration can be achieved:
increasing and decreasing the number of weights hanged on the tendon it can
be possible to save in an Excel LUT 13 the comparison between the voltage
measurement and the real Kilograms force value. Taking these data the
second passage is to exploit the standard function REGR.LIN() in order
to find the best linear function that could approximate them. In practise
considering as x-axis values the Kilograms real forces and as y-axis values
the voltages, it has been found a linear function of slope 0.0490.

13Look-Up-Table

81

Figure 4.10: Force sensor calibration

This value is the fundamental one in terms of calibration because it per-
mits to give to the force control loop the right mapped feedback to be put
in error with the set point of Newton force decided by the operator.

For the sake of completeness it must be said that this just described
procedure was not implemented in the principal firmware of Arduino but in
a specific program.

4.3.4 Force controller

For what concerns the general firmware to be used in the project, the mea-
surement of feedback from force sensor is coded thanks to the possibility of
inserting a second timer which sets different registers with respect to the
control loop timer. The force data measurement is made at regular intervals
of 1 ms. When time elapses an ISR is triggered in the way described in
Section 4.1.1.

The function dedicated to compute the feedback useful for control algo-
rithm shows the same mobile window filter and thanks to the set frequency
of the timer handler and the number of cells present in the mobile window
filter’s array, the value of the delay introduced by the filter can be computed.
As a matter of fact it is sufficient to multiply the number of cells for the
period of the timer because it is the time necessary to fill all the cells with
coherent values and to perform an adequate average to represent the real
force change on the tendon.

In this project case the filter’s window is 110 cells large so that the delay
is about ten microseconds which is an acceptable value which doesn’t affect

82

a lot the performances of the final force control loop.
The first acquisitions without the intervention of the filter give these

results

Figure 4.11: Force acquisition

The succession of the increasing weight has been chosen randomly and
shows a series of 0 Kg, 0.3 Kg, 0.8 Kg, 1.8 Kg, 2.3 Kg, 2.8 Kg

Going more in details of the graph and zooming it can be seen that there
is a ripple of about one hectogram and at a really high frequency which leads
to a incorrect and inaccurate control algorithm.

Figure 4.12: Ripple

The solution to filter these data is made by computing the medium value
over 110 acquisitions and to save it as the new force feedback.

83

For a matter of simplicity it is reported a feedback measurement obtained
by a reduced series of weights addition.

Figure 4.13: Final force feedback

During the force feedback measurements it has been taken into consider-
ation the possibility to insert also a sort of forcing of value to the previous
saved one if the new acquired differed less than 0.1 Kilos. This acts as a sort
of thresold and could be important if the system is mounted wrongly. As a
matter of fact an additive noise with respect to the unique light-related one
could be present if the tendon doesn’t move only in axial direction but also
in an horizontal one.

The introduction also of this technique to improve the measurement re-
sults wrong for two main reasons: the first deals exactly with the correct
structure building of the haptic system because the motors’ disposition per-
mits the traction of the weights only in the axial direction. The second reason
deals with the own concept of cutting. In fact the possibility to force the
feedback to a value that is decided by a thresold doesn’t guarantee to have
a continue smooth signal but takes to one with sudden changes so made by
a series of steps.

Obviously this fact can’t take to a good control law because of the ne-
cessity to compute it to react to these peaks and so there’s no possibility to
have a correct PWM law. This is why it has been decided not to use also
this technique to measure force feedbacks.

One last important fact needs to be clarified: the passage between the
sensor acquisition in volt and the translation in Kilos.

Exploiting the previously computed value of 0.0490 which is the slope of

84

regression linear function, it can be possible to compute the logical passage
but it is not sufficient. In fact if we think about a linear function, its formula
is

y = m ∗ x+ q (9)

In this case the y value is the force expressed in volt as the sensor naturally
returns, while the x is the force expressed in terms of Kilos. The aim is to
compute the x quantity given the related y one. To do this the m slope is
already available while the q offset has to be calculated.

The terms q is computed in the setup() function of the firmware doing a
series of 1000 acquisitions and making the medium value over them. This is
also called the bias term.

At this point the inverse formula to have the force feedback in Kg is:

x = (y − q)/m (10)

which in terms of code results to be:

force_feedback=(outvolt_average-intercept)/slope (11)

It is useful to remember that the value outvolt_average is the medium
value computed by the mobile window filter while the one used by the final
control algorithm is called force_feedback.

After the tricky work to have an almost clean feedback from the force
sensor, this signal is given in entrance to the PID class dedicated to the force
control.

As said in previous chapters other parameters that the class needs to have
to compute a correct and performing PWM law are the external reference to
be tracked and the gains of PID scheme:

85

86

5 Chapter: Experimental results

5.1 Matlab-Simulink environment and its connection
with Arduino Nano

Matlab-Simulink is a fundamental instrument in the engineering field because
it allows the user to perform tasks like system modelling and data analysis.
For what concerns the haptic project, it has been used principally for a
reason of plotting data which is possible thanks to its Ethernet tools present
in Simulink environment. These allows to receive packets of informations
from other devices but this is possible exploiting special IPs addresses.

These are the broadcasting IP addresses through which there’s the pos-
sibility to send contemporarily informations from one device to all the other
devices which are communicating on the same LAN network and this is done
between Arduino controller, central PC and an other PC in which Matlab
runs. Arduino has to send feedback informations to central PC in which Ros
has to run while, from its side, Ros has the aim to send packages with mode of
operation and set points. All these data can be plotted into a Simulink envi-
ronment to have a more intuitive and precise evaluation of what is happening
inside the system.

Talking more in detail, the principal block which permits the reception
of information transmitted by the network is the UDP-Receive block.

Figure 5.1: Udp Block

Thanks to this block the series of char data transmitted by Ros or by
Arduino can be taken and then plotted. It is important to set well the

87

block’s parameters because the correct plotting of the data depends on this
aspect.

Figure 5.2: Udp Block Parameters

The most important parameters to be set are the IP address and port
from which the data are sent, the number of data to be received and their
types. In this particular project the fundamental information’s type trans-
mitted through the LAN network is the char or byte one depending on the
presence of sign. As can be seen from the previous figure, 0.0.0.0 is the
IP dedicated to the reception of packages from every connected device so
that the specification of the port on which listening to is very important to
distinguish the devices one from each other.

From the sender side so the Arduino and Ros one, the broadcasting IP is
255.255.255.255.

One last consideration about the use of Matlab-Simulink environment is
that in reality the original type of information which are transmitted is float
a part from the operational mode that is byte. The float type is composed by
four chars so in order to plot the correct value it is necessary to put together
the four chars in which the original float was divided in, and to re-create the
signal.

This is possible by the use of a Matlab function called typecast.
The whole Simulink scheme useful to plot all the information is reported

88

below

Figure 5.3: Simulink scheme

In which the subsystem where the outputs of UDP-Receiver block goes,
can explode in a scheme with the previously cited Matlab functions. There
are three Matlab functions and so three typecast because feedbacks are of
three types and for each of them the reparcelling of bytes into float must be
provided.

Figure 5.4: Subsystem

The parameters of the simulation are set in order to have an ODE23t

89

variable step solver. The relevance tolerance is imposed to 0.01.
Due to the maximum and minimum step size present in the simulation,

this runs with time indication of 1 simulation second equal to 22 real seconds.

5.2 Position control results

Exploiting the acquisition possibilities given by the UDP tools in Simulink
environment, it is possible to obtain and plot some important results of the
position algorithm implemented inside the Arduino firmware.

The position control loop has the aim of taking the motor’s output in
terms of rotations of the shaft to be equal to a set point given by the operator.
This fact is important to position in a correct manner the central bracelets
with its linked gimbals.

One of the main uses of this particular control is for sure the possibility
to take the bracelet in an ”homing” position in order to initialise the whole
system.

After that procedure the nominal working phase can start with the goal
of transmitting to the operator the force sensations.

Figure 5.5: Position track with online tuning

As it can be seen by the previous plot the results of reference tracking
are really successful because the steady state error is approximately equal to
zero but this fact is reached after a long interval of time.

This happens because the tracking performances are obtained by an online
tuning of the PID controller. As a matter of fact the first approach is to
choose an high proportional gain which take the system to have an oscillating

90

response as it can be seen until the simulation second 1.45 or in the case of
set point change until second 3.45.

After those times the tuning of the controller’s parameters change because
the integral and derivative terms are added. The response changes instanta-
neously and the curve tends to the set point in a really fast way. Moreover,
as said before, the error tends to zero which guarantees an extreme precision.

Figure 5.6: Tracking error

The PWM law is reported below

Figure 5.7: PWM law

In order to prove that the chosen parameters permit a successful control
both in terms of steady state reaching time and precision of positioning, an
”ad hoc” node in Ros has been implemented. In this program a series of set

91

points is generated and published in the topic where the UBHaptic_Ros_test
node can read them and build the packet to be sent to Arduino. Those
references are a succession of steps of three units.

Figure 5.8: Series of references tracking

From the results the validation of the chosen gains is done and the con-
troller performances are really satisfying.

5.3 Force control results

For what concerns the control algorithm dedicated to the force reference
tracking, this is a similar problem with respect to the position loop but it
hides some ”dangerous” issues.

The loop of control is implemented in the same ISR where the position
control law is calculated but obviously the force one is triggered only when
the mode coincides with the number MODE2.

One of the note that has to be immediately done talking about this kind
of control is that the references to be tracked must be all positive because in
nature there couldn’t exist negative forces.

The second point to be touched consists in the possibility to perform
the experiment in a approximated setup, built for the sake of force sensor
calibration and controller tuning.

As a matter of fact the setup described in the previous chapter of cali-
bration topic really damages the accuracy of measurements and introduces
some noise. The continuous oscillations of the feedback signal is not a good
thing for both calibration and for sure control.

92

The noise is caused by the electrical signals inside the breadboard which
acts as an antenna and the flying connection between pins of Arduino con-
troller and those of motors. The problem has been solved quite at all by the
introduction of an efficient filter during the calibration phase but in the con-
trol one some spurious peaks of noise remain and they still has a significant
relevance.

The remaining oscillations are present because when the tendons pull the
attached load, some vibrations are induced in the setup and so some electrical
connections born.

This aspect is evident in the plots taken with the help of Matlab-Simulink
tools

Figure 5.9: P controller performance

In this case the control is realized by choosing only a P controller with
an high gain. Obviously this is not a good choice for two main reasons: the
first is the absence of the possibility to track reference with zero error. The
second is that the control results really nervous because it reacts immediately
to error but doing so it introduces the noise components previously cited.

93

Figure 5.10: PI controller performance

This second plot shows a better controller made by a PI type which results
to be less nervous, more precise but it doesn’t make zero all the noise. These
components of disturbance, even if sporadic, are really bad for a precise
control and take the motor to a condition of instability because it has to
react to these peaks.

Figure 5.11: Tracking error

The error of tracking is shown in the above figure and basing on this plot
it is possible to appreciate more the instability of behaviour.

Obviously also the PWM law becomes wrong and really nervous, thing
that can damage the hardware itself in terms of motor’s driver. One ex-
plicit moment of work in which it could be appreciated that the PWM law
becomes ”crazy” is between the fourth and fifth second of simulation which
corresponds to one minute and half of real work by the motor.

94

Figure 5.12: PWM law

In practise it could be said that there is a really high improvement in
the response of force control when a proportional control passes to a more
complex structure like a proportional - integral one. The improvement is
obviously evident in terms of precision at steady state and initial oscillations
like important overshoot. But the most interesting aspect is related to the
minor presence of noise components even if not totally absent.

For sure better results can be obtained with a final setup which encap-
sulates the motor and the controller embedded on it. This lets to avoid the
electrical issue due to the presence of the breadboard, which is only an ex-
perimental board, and the flying wires that connect Arduino controller and
the relative motor’s pins.

95

96

6 Chapter: Implementation of kinematic model

6.1 Rviz graphical Ros environment

One last but very important tool which is used in thesis work but in general
in many project that requires also graphical part, is Rviz. Its name is pretty
explanatory and, in fact, it is the Ros visualization environment.

This is based mainly on the message sharing from generic nodes to the
Rviz node through the topic tool. Thanks to this last one, the graphical
ambient is able to receive some standard Ros messages in terms of Cartesian
coordinates of objects created in user defined nodes and to plot them.

In particular the most used messages of Rviz are the so called TF and
Marker.

The first one is a detailed description of the coordinates transformation
between two frames in the space. A better explanation of what are this object
messages and which are their parameters will be proposed in the Section 6.2.

The second message is properly an object with dimensions, colour and
geometric scale.

It is a visualization :: Msg type and depending on the number of markers
that the user needs to graphic there’s the necessity of creating many objects
of that type.

If, for example, the user wants to visualize a cube object in Rviz the
parameters to be set are:

• The name of parent frame to which referring the coordinates of the
object: header.frame_id

• shape which will be set to CUBE

• the Cartesian coordinates positions.x, position.y, position.z where it
must be positioned

• orientation in terms of axis-angle orientation.x, orientation.y, orientation.z, orientation.w

• the Scale so the dimensions of each side.

Other useful parameters to be set to complete the object definition are for
sure its duration of life in the graphical environment and finally the colour
in terms of RGB gradation.

97

Figure 6.1: Rviz cube

The really interesting thing is that the two objects, TF and Marker can be
associated because in the definition of the marker’s parameters it is possible
to set x,y,z coordinates with respect to the TF’s frame_id and so, if they
have all 0 values, the object coincides with the origin of TF and moves with
the same Cartesian coordinates of this last one.

6.2 Vicon technology

Vicon technology is one of the most widespread tools for the aim of knowing
the rigid bodies’ position and orientation in the space. It tracks them with
a precision of tenth of millimeter.

In haptic project it is used to track the Cartesian coordinates of crucial
points with respect to a World reference frame.

A substitute method would have been that of computing the spatial coor-
dinates of the haptic’s objects by exploiting the relation between the motors’
rotations and the shortening of the various tendons. This for sure is a lacking
approach in terms of precision.

Obviously this last aspect is fundamental for haptic algorithm and bad
measurements happen if encoder and TSA model are used.

For this reason the introduction of a technology like the Vicon tracking
is required.

98

It is substantially a complex set of cameras displaced in various strate-
gic angles of an environment and that can record some data about system
that they are framing. In particular there exist three main types of motion
capture:

• Optical-Passive: this technique uses retroreflective markers that are
tracked by infrared cameras. It is the most flexible and common method
used in the industry.

• Optical-Active: this technique uses LED markers connected by wires
to the motion capture suit. A battery or charger pack must also be
worn by the subject.

• Video/Markerless: this technique does not require markers to be worn
and instead relies on software to track the subjects’ movement. Varying
tracking methods yield different results, but real-time and final data
error ranges tend to be larger than marker-based solutions.

For the specific project’s purpose the choice has been relapsed on the
first method mainly due to the flexibility feature and so there has been the
necessity to have a set of markers positioned on the objects to be tracked.

The cameras are infrared ones

Figure 6.2: Vicon camera

and thanks to the particular material of the markers, cameras can send
their light beam against them and receive as response beam a reflected light
to be taken and transformed in a position information.

99

Figure 6.3: Reflection of infrared to markers

Obviously the images that Vicon can process are in 3D stereo mode and
so all the spatial informations are taken accurately. One delicate aspect is the
resolution of the cameras which ensures a better quality. As a matter of fact
all motion capture systems’ fundamental accuracy starts with the resolution
and quality of the camera sensor. It is what ’describes’ the markers to the
system and essentially the higher the resolution of the sensor, the more detail
you obtain from the marker. This is particularly important in haptic interface
application that requires precision tracking of small markers or markers that
are close together.

Until now it has been described the hardware part of Vicon technology
and what it is necessary to obtain some accurate motion tracking. But there’s
the necessity to understand how the data of markers reflection are useful.

The strategic position of the cameras in the room or general environment
where the object to be tracked is present, allows to create a sort of World
Cartesian frame with respect to which acquiring position of the object. On
the other hand the markers are positioned on the object itself in a way to
describe another reference frame integral to the object itself which can be
called Mobile Cartesian frame.

And so the game is done.
Basing on the light’ reflection of the markers to the cameras it can be

possible to evaluate the position and orientation of the Mobile frame with
respect to the World frame and so points originally expressed in the first one
are then mapped in the second one. The transformation between the two
frames is given by the so called Homogeneous Transformation Matrix.

100

Figure 6.4: Homogeneous transformation matrix

in which the first 3x3 square matrix represents the orientation of each axes
of Mobile frame with respect to the World one while the last column vector
3x1 represents the displacement of the origin of first frame with respect to
the World one.

The motion data are taken by camera, elaborated and then sent to a
central PC in order to be published on a specific topic of Ros environment
and this communication is make available by an Ethernet transmission.

Figure 6.5: Global Vicon system

When the transformation between the frames is computed and shared
with the central computer, it must be encapsulated in a standard message
type of Ros in order to be published on /TF topic.

The message is composed by many fields like:

101

• Parent frame name and child frame name: this reveals to which couple
of frames is related the transformation

• Cartesian coordinates transformation in terms of position

• Coordinates transformation in terms of orientation

Figure 6.6: TF message fields

For the sake of completeness it must be said that the orientation infor-
mation is not the same of a 3x3 matrix line in an homogeneous matrix but
it is changed in an axis-angle computation.

The TF message is useful both for the computation of the Cartesian
position of the various elements which compose haptic interface and the their
graphical visualization.

6.2.1 Role of Vicon in haptic interface

All the features provided by Vicon are really useful when haptic interface
project is taken into consideration. As a matter of fact the position of the
crucial points like the motors’ modules a_i points and the c_i anchor ones
need to be known in space to compute the transpose Jacobian.

This last one is an useful mathematical tool to evaluate forces involved
in robotic systems and in case of haptic project it is used to understand the
relationship between workspace forces and tendons’ tensions so the set points
for the motors.

One first passage to obtain this result is to fix some markers to the central
bracelet. They represent the Mobile frame to be related to a World frame.

102

In particular this last one is a workspace reference frame Fw defined with the
origin placed at the midpoint of the segment connecting the TSA modules
a_0 and a_1 and its x-y plane including the three TSA modules a_0, a_1
and a_2 placed in the vertices of the tetrahedron’s base (Figure 3.8).

Figure 6.7: Couple of haptic markers in crucial points

For the sake of completeness it must be said the final haptic structure
is not already available and so a temporary set of markers representing the
World frame is dispose in the previously cited position as it can be seen in
the figure above.

The visualization of the two frames in Vicon’s environment is reported in
the figure below.

103

Figure 6.8: Vicon image of tracked object

In order to compute the strings’ lengths the informations about the mo-
tors’ crucial points and those about the anchor points have to be related to
the World frame.

In particular the first ones are known directly by structure building while
the second ones are known only with respect to the Mobile frame by the
bracelet design.

How to refer to the World frame the anchor points’ coordinates expressed
in the Mobile frame, is a matter of the Vicon transformation as said in the
previous section.

The two frames are figure out in the Rviz environment which is the one
dedicated to the graphical part of Ros. In particular there will be proposed
three couples of images related to different positions of the central bracelet
in the system.

The various configurations are reached by means of operator intervention
which inserts its wrist inside the bracelet and moves it around.

First position: bracelet at the center of haptic system

104

Figure 6.9: Configuration 1

Figure 6.10: Rviz Configuration 1

Second position: bracelet far from motor’s module 0

105

Figure 6.11: Configuration 2

Figure 6.12: Rviz Configuration 2

Third position: bracelet near to the motor’s module 0

106

Figure 6.13: Configuration 3

Figure 6.14: Rviz Configuration 3

In all the Rviz images the frames have a green x axis, red y axis and blue
z axis for what concerns the Mobile frame while the World reference frame
shows a red x axis, green y axis and blue z one.

The Mobile frame is called haptic_mobile while the World reference
frame positioned at the middle point of the ideal line between motors 0 and

107

1 is called vicon. pen is only a visual indication to know where motor 0 is
positioned in the structure.

The produced Vicon data in terms of transformation between frames
are stored in a TF message composed by the field explained in the pre-
vious section. In the figure below it is represented the TF associated to
haptic_mobile with respect to vicon one.

Figure 6.15: TF message example

6.3 Theoretical implementation of transpose jacobian
matrix

A Jacobian matrix is a fundamental tool in robotic field. As a matter of fact it
permits to have a linear mapping between the workspace and the jointspace’s
velocities and forces of a general robot and easily pass from one to the others.
In case of haptic interface it has a determinant role because it allows to
compute the tendons’ forces(joint world) given the desired ones(workspace)
which the operator wants to have on the central bracelet.

Basing on the kinematic model, the Jacobian matrix can be extract. In
fact it is nothing but no a series of partial derivatives of each component
of end effector vector with respect to each joint variation. In practise this
particular matrix says how the variation of end effector quantities is linked
to the jointspace variation.

For this reason the dimension of the Jacobian matrix is n rows equal to
the number of workspace coordinates and m columns equal to the number of

108

joints present on the particular robot for which the computation is performed.

Figure 6.16: Jacobian structure for a generic 6 Dof robot

As said before when the ambient is the velocity one, the created matrix
helps to pass from jointspace to workspace in direct analysis while the inverse
analysis is performed by computing the inverse of the Jacobian matrix.

But the problem is dual when forces are concerned. As a matter of fact
certain wrenches can be applied by the end effector due to some joint space
forces, so the torques applied to joints by the motorizations present on them,
and this mapping is obtained using not the Jacobian itself but only its inverse.
Otherwise, considering the inverse problem, which consists in finding those
joints’ forces to reach some user defined wrenches, the transpose matrix is
used.

Dealing the actual problem of haptic interface, this system can be seen
as a real robot because it shows all the fundamental components of a normal
robot. In particular the end effector is the bracelet inserted in gimbals while
the various joints are the TSA motors. Starting from their motions the
central end effector can be positioned where ever the operator wants.

This means that also for a complex system like it, a Jacobian matrix
can be computed but starting from the kinematic model already derived in
Section 3.3. The matrix can be computed relating to the lengths of the
tendons which are responsible to move the load.

The computation of the transpose Jacobian matrix passes through that of
transpose pseudoinverse Jacobian. This is straightforward if the unit vectors
associated with each of the four string are considered:

109

v̂i =
ci − ai
li

(12)

where i=0..3 because associated to the considered motor’s number.
The pseudoinverse transpose Jacobian matrix which can be obtained by

putting as column vectors those previously found unit vectors is the one
needed for the direct approach so that of finding the workspace wrenches
given the joints’ forces.

But the real aim of this project part is to obtain a tool useful to compute
tendons’ forces given a desired set of Cartesian forces to apply to the bracelet.
In order to have it, there’s the necessity to invert the previously found matrix
and this is not a simple task because in this particular case the matrix results
to be non-square.

In fact the n rows are three due to the fact that the vectors composing
the matrix are all position column vectors and so they have three Cartesian
components. On the other hand the m columns are four because there are
four motors(joints) in the system and so it is straightforward to know the
number of crucial points a and c.

The approach to invert a rectangular matrix consists in computing its
Moore-Penrose pseudoinverse form but it is necessary to choose between a
right or a left form and this depends on the structure of the matrix.

In this case the matrix to be inverted results to be an NxM with N ≤M
and rank(J) = N so a right inverse form is chosen

J+ = JT ∗ 1

J ∗ JT
(13)

The pseudoinverse of the originally found pseudoinverse transpose Jaco-
bian is proper the Jacobian transpose which is useful to do the inverse force
approach.

In conclusion, when this computation is performed, it is all ready to
compute the tendon’s forces knowing which wrenches to apply to bracelet.

t = JT ∗ f (14)

where t is the vector of tendons’ forces and f the vector of workspace
wrenches.

An ultimate adding is taken into consideration to have all mapping pos-
itive solutions because basing on physics it is a non-sense to obtain negative

110

forces. So a quantity depending on the base of null space of the already com-
puted matrix is added to the previous solution. This gives a proper thresold
to the solutions and the quantity is set to 1N.

6.4 Practical implementation of transpose jacobian ma-
trix

All these theoretical passages have been implemented in the UBHaptic_ros_bridge
packet by coding various functions in its nodes. An important note that has
to be done is the choice of Client-Server approach in order to compute the
tendons’ forces only when there is the necessity.

As a matter of fact the Service is a practical and very widespread tool in
informatics because of its flexibility. The client-server characteristic describes
the relationship of cooperating programs in an application. The server com-
ponent provides a function or service to one or many clients, which initiate
requests for such services. In practise a server acts as a resources tank for
the client which have to create a link with the server and to request for a
certain application.

Client does not have to be concerned with how the server performs while
fulfilling the request and delivering the response. It only has to understand
the response based on the well-known application protocol.

They talk one to the other through messages and both client and server
are processes running on the same system but not necessarily on the same
machine. In fact an interprocess-communication like this is usually exploited
to obtain results in different hardware machines.

So the client can run on a machine while the server which provides the
required functionalities may run in another machine. This is the case of
the well known World Wide Web which is an example of a communication
through a computer network. If a user wants to have access to a certain web
page defined over a predefined web address, the web browser(client) queries
a web server which returns the cited address and so the link to this is made
possible.

The possibility of having a Service over two or more different machines is
not exploited in this project because both Client and Service are present on
the same hardware where the haptic Bridge runs.

To understand what is the goal of the Service it must be remembered
that the results of the Jacobian use is that of computing the tendons’ forces

111

given the vector of Cartesian wrenches that the bracelet has to feel in the
workspace. So the Client will send to Server the Cartesian forces and receives
the TSA set points as response.

The Client is an apart node present in the UBHaptic_ros_bridge packet
and it is structured in two main parts.

The first is the proper requesting part in which the Client links to the
service(srv) j_forces of Jacobian type defined in the packet. To do this
a portion of Client initialization and definition of the various arguments to
pass to Server is implemented:

ros :: ServiceClientclient = n.serviceClient < UBHaptic_ros_bridge ::
Jacobian > (”j_forces”)

The passed arguments are:

• srv.request.Fx = atoll(argv[1])

• srv.request.Fy = atoll(argv[2])

• srv.request.Fz = atoll(argv[3])

To conclude the first code portion the real initialization of Service com-
munication is made by the call if(client.call(srv))

The second part of the Client node code consists in saving the Server
response in terms of the four tendons’ forces and in publishing them on a
certain topic called JointsReferences in the form of a message contain-
ing also operational mode information and gains to be passed to Arduino
firmware by the help of UBHaptic_ros_test node.

Now the Server has to be analysed. It is implemented in the global project
coordinator node UBHaptic_ros_test and its call is provided in the main
section:

ros :: ServiceServerservice = n.advertiseService(”j_forces”, JacobianT_compute).
It is important to notice that the name of the Service object j_forces is

the same of Client’s one.
The function JacobianT_compute() is the one which creates the magic.

As a matter of fact inside this there’s the initialization of two requests and
responses vectors. Obviously in the first vector the Cartesian forces sent by
the Client node are stored for a successive manipulation while in the second
vector will store the tendons’ forces obtained after a series of computation.
The two vectors are called respectively f_work and f_joints.

112

They are passed to a function jointsforces_compute implemented in
the UBHaptic class which is the real responsible of the calculation to arrive to
final tendons’ forces. In practise the call present in the JacobianT_compute

is haptic− > jointforces_compute(f_work,f_joints).
Of consequence now there’s the necessity to talk about the methods for

Jacobian computation and final jointspace force vector present in the UB-
Haptic class.

In this class there are four main methods of which the previously cited
one is the more external one while the others are recalled inside it. To have
a better comprehension of what is implemented inside those functions, the
various theoretical passages in order to obtain the transpose Jacobian and
so the tendons’ forces must be reminded.

The first method to be recalled is acquire_positions() in which the
storage of the various crucial points’ position coordinates in the haptic struc-
ture is present. This is made possible by exploiting a special instrument like
Vicon motion tracking technology in a manner that will be explained in the
next chapter.

The second method is called tendonslength_update() and its goal is
to compute the lengths of the various tendons by means of the previously
defined positions and exploiting the Equation (1).

The third method called jacobianT_compute (not to be confused with the
Service call present in the upper node) works a lot because it has to take the
previously computed lengths and fill the various cells of the pseudoinverse
transpose Jacobian which solves the direct force approach. But, as it has
been explained in the previous sections, the haptic project needs the inverse
approach to pass from workspace wrenches to joint space forces. For this
reason in the same method the pseudoinverse of the already found matrix is
performed.

Finally, using the Eigen library for Ros which provides to the user all the
functions for matrix operations, it is possible to arrive to

jacobianT = jacobian.transpose()∗(jacobian∗jacobian.transpose()).inverse()
(15)

where jacobian is the original pseuodoinverse transpose jacobian.
Looking better to this form it results the same thing of Equation (13).
It is important to precise better that all the variables that the various

methods can work on, are attributes of the UBHaptic class and so all the

113

functions can see every change.
For this reason the last but most important method jointsforces_compute

can perform the final calculation computing

f_joints=jacobianT*f_work+coefficient (16)

where the term coefficient is required to have all the positive tendons to
fulfill the coherence with physics laws.

The so computed f_joints are passed back to the JacobianT_compute

Service call in the UBHaptic_ros_test node and from this the Server gives
back to Client the four tendons as response.

6.4.1 Code generation for pseudoinverse of jacobian

One final note has to be made relatively to the Jacobian issue. In the prac-
tical implementation it has been said that the method jacobianT_compute

exploits the Eigen library functions in order to compute the pseudoinverse of
the matrix. This is for sure the best way to approach to the problem because
of the simplicity and clearness of code are reached easily. Calling functions
like .transpose() or .inverse() is a really efficient code implementation of
calculations.

But this result is a final one and it has been obtained after a first try
with the Code Generation approach.

What is Code Generation?
This is a practical tool provided by Matlab-Simulink environment which

allows to create a Simulink model and then to code it in terms of C or C++
language in order to be run on the most favourite platform.

The transformation between a Simulink model and a sequence of code
lines is possible after having set some parameters. One of them is for sure
the solver of the simulation which can think in terms of continuous time or
of discrete steps. One standard choice that was taken into consideration also
for haptic project is ode3, fixed-step.

Other parameters for a correct code generation are the machine’s operat-
ing system which will run the code and the maximum dimension available for
the new code. In case of the project those parameters was set in Linux(x64)
and 2e20 bytes.

The model used to implement the pseudoinverse of a matrix is

114

Figure 6.17: Overall pseudoinverse Simulink scheme

At first sight it seems to be a really simple model but when exploded it
shows a lot of matrix computations.

Figure 6.18: Detail of pseudoinverse Simulink scheme

The blocks are the standard ones for the inverse, transpose and multipli-
cation matrix operations and realize the right Moore-Penrose pseudoinverse
as required by the dimensions of the Jacobian matrix to be inverted.

One more detail about the previous scheme is that in order to create some
input and output global variables to be used in the code, the in and out pins
of the overall Simulink pseudoinverse block have been renamed.

115

Figure 6.19: Naming of the ”in” pin

When the programmer presses the button ”BuildModel” a set of files is
generated. The most important one is for sure the file .cpp in which the
various functions are reported in code implementation but there are other
files .h where the definitions of these functions and the variables to work with
are present.

To have a working code the header files have been included in the UBHaptic_ros_bridge
packet and the functions in the file .cpp exported in the UBHaptic class.

For the sake of simplicity here it is not reported the code to perform the
pseudoinverse because it is a only a series of operations between the various
cells of the input matrix.

The unique important thing to remember is that the global variables input
and output generated by the code generation are not matrices but column
vectors and so when the original pseudoinverse transpose jacobian for the
direct force problem has to be inverted it must be saved in a proper array
due to the passage from a 2D matrix to a 1D vector. This consideration is
valid also for output inverted matrix.

As said at the beginning part of code generation section, this approach
allows to arrive at the same result of the Eigen library exploiting method
and it is quite practical. On the contrary, it is for sure not very efficient
and reusable and this last one has been the major factor that has acted as
weighing needle for the decision of the approach to be followed.

Having a reusable code like a pattern to be inserted in various project is
determinant for a good project because if something has to be changed inside
the code, usually the global architecture doesn’t need to be revised and this
may save lot of precious time.

116

6.5 Tendons’ forces results

The overall procedure of taking position data from the Vicon system and the
successive computation of the transpose Jacobian drives to the computation
of the tendons’ lengths and set point forces.

For the sake of clearness the presented results will be those related to
the three configurations shown in the previous chapter: bracelet in central
position, bracelet far from the motor’s module 0, bracelet near the motor’s
module 0.

The results are obtained for all the couples c_i-a_i. This is possible by
initializing the coordinates of these fixed points directly in the World frame
while the anchor points are referred to Mobile frame and mapped into World
one by exploiting Vicon.

In order to perform the computations there’s the necessity to run both the
Client node and the Server one which is implemented in the UBHaptic_ros_bridge
itself.

It must be underlined that for the thesis project’s purpose both the results
of tendons’ length and joint forces are plotted a video but, in reality, during a
normal working procedure only the computed tendons’ forces are important
to be known. This is due to the fact that the operator needs to know what
are the motors’ set points and verify their coherence.

One last thing to remember is the numeration of the motors and of con-
sequence of related tendons: 0 is associated to the motor at right of World
frame, 1 to the motor at its left side, 2 to the motor in the back part of
haptic structure and 3 to the upper one.

Talking about the first position of the end effector it allows to have this
series of tendons’ lengths

Figure 6.20: First configuration lengths

In order to prove that the simulation results in terms of lengths are the
real one, a real measurement has been necessary even if of the unique tendon
0.

117

Figure 6.21: Validation by a real tendon’s length measurement

By these numbers the transpose Jacobian can be created and of conse-
quence be used to to pass from Cartesian workspace user defined forces to
those of joint space.

The next result will be obtained for a choice of workspace forces of 1
Newton along x axis, 4 Newton along y axis and 3 Newton along z axis.

Figure 6.22: First configuration tendons’ forces

The results in other configurations are reported below
In case of bracelet far from the motor 0 it is obtained

Figure 6.23: Second configuration lengths

with the subsequent forces

118

Figure 6.24: Second configuration tendons’ forces

In case of bracelet near from the motor 0 it is obtained

Figure 6.25: Third configuration lengths

with the subsequent forces

Figure 6.26: Third configuration lengths

6.6 Singular configuration in haptic interface

Generally, in robotic field, is common to take into consideration some special
configuration of robot which can create some problems to its motion. They
are the singularity configurations.

They happen in certain determinate conditions when joints are in ”bad”
positions.

For example in a manipulator with 2 revolute joints a singular config-
uration is created when the links are aligned and so in terms of angular
displacements the second joint has 0 or π degrees

119

Figure 6.27: Two joints manipulator

One more common example is the proper human body. As a matter of
fact it can be seen as a series of links (the bust and the legs) which are
connected by special joints(the knees).

The normal condition of standing up is a singular configuration for hu-
mans!

In practise there is a simple classification of the singularity configurations:

• at the borders of the reachable workspace: they are created when the
manipulator is all extended or all turned over on itself. In general
they don’t represent a serious problem because it is possible from the
programming phase to avoid those configurations

• inside the reachable workspace: they are typically generated by a two
or more motion axes alignment or in correspondence of particular spa-
tial postures. These represent an objective issue because being in the
workspace they can be reached even without the explicit intention.

But now the question is simple: why these singularities are so problem-
atic?

The answer deals with the possibilities of motion of the structure. In fact,
when in that condition, the robot looses a grade of mobility and a generic
trajectory cannot be followed by the end effector.

From a mathematical point of view a singularity born when the jacobian
matrix associated to that particular state of the robot becomes non-invertible
and this happens when its rows or columns are dependent. So the rank
decreases and this means that one degree of freedom is lost.

120

Moreover there’s the problem of the inverse dynamic which has infinite
solution in this case. This means that the system is not controllable at all
and some problems may occur.

Last but not least, in case of singularity also velocities and forces are
involved.

For what concerns velocities it can be noted that if a singular configura-
tion happens, slow motion of end effector can be related to very high(even
near to infinite) velocities of joints.

Talking about forces two things happen:

• discharge of forces: if a mechanical structure is in singularity with the
end effector facing the ground and it is sustaining a load, the torques of
joints are zero because this is a natural configuration of balancing the
gravity force. To understand better the situation just think about the
singularity position of human standing up which requires no fatigue

• control possibilities: when a manipulator is all stretched the control of
forces applied by end effector on the environment is problematic. As
usual just think of a precision of human forearm when it has to write
something on a paper far from the body

The analysed haptic interface is a proper robotic structure where the ten-
dons act as joints and the central bracelet as the end effector. So also for this
particular device it is necessary to talk about the singularity configurations.

They are reached when the bracelet touches one of the three lateral faces
and in particular when even one unique anchor point enters in the virtual
faces. These ones are outlined by three motors as vertices so the one at the
top of the tetrahedral structure and two in the basis.

If a singular configuration is reached the inverse dynamic can’t be com-
puted due to the fact that the jacobian matrix is not-invertible, so a control
problem happens.

Mathematically speaking there are problems when JT becomes singular
due to the orthogonality between the lower strings and the desired force.

To dimension the whole structure in order to avoid singularity configura-
tions some geometric considerations have to be done.

Firstly, it is necessary to build a virtual sphere of radius R1 with origin
in the tetrahedron’s centroid which represents the desired workspace where
the bracelet’s centre must freely move avoiding singular configurations. The

121

radius of R1 is chosen of 20 cm. Moreover a maximum sphere of radius R3
inscribed in the tetrahedron and tangent to its faces can be then computed.

Its radius is obtained as the sum of R1 one and the radius of R2 which
is the minimum sphere which circumscribes the bracelet comprehending the
anchor points.

Figure 6.28: Virtual spheres to evaluate singularities and reachable
workspace

Thanks to the knowledge of R3 the length of each tetrahedron’s side in
order to avoid singularities can be obtained.

L =
12√

6
∗R3 (17)

In order to let the operator knowing when he is approaching to a singular
configuration the Rviz visualization tool can be used.

As a matter of fact it can be possible to implement a node which allows
to publish a marker describing the bracelet which gradually changes colour
if this is touching the external faces.

122

Figure 6.29: Real singular configuration in haptic interface

Figure 6.30: Rviz singular configuration in haptic interface

Another choice that can be made is to let the faces colouring gradually
instead of the bracelet.

123

124

7 Chapter: Conclusions

7.1 Summary of thesis activity

In order to summarize all the aspects met during the thesis activity, it can
be said that the core of the project deals with the construction of a properly
working motor’s module in which both the mechanical and software part are
taken into consideration. By the use of four working module of the same
type mounted on the haptic structure, the operator is able to control 6 Dof
of position and orientation of a remote device while sensing 3 Cartesian Dof
forces. In particular the thesis work threats more in detail the software part
based on the implementation of both a position control and a force one.

To reach the results an initial overview of the already existing haptic
systems and a successive focus on the cable-driven one with TSA motors has
been done.

The central part of thesis work deals with the analysis of the mechanics
of each component of the haptic structure because the implementation of
a code able to realize a satisfying control in terms of speed, precision and
steady state error starts from this aspect.

Of consequence the core Chapters are the fourth and fifth one where the
used programming techniques are reported and the code implementation of
both the control algorithms is described deeply together with the plot results.

Some other important aspects of the thesis are shown in Chapter 6 where
the reader can have a global vision of the entire passage from the definition
of Cartesian set points by the operator and their transformations into joint
space references for each motor.

The importance to have a good communication between the various parts
and a precise control enable to avoid problem of stability and permits to
reach the required precision in terms of motion and manipulation tasks of
the teleoperated device.

7.2 Future developments

Despite the haptic system has been taken to a quite advanced step from the
software point of view, there’s a lot of remaining job to be carried on in order
to conclude the project. The developed parts represent the first programming
phase but ensure a base for the future full software.

The first passage to finish the project is to build the whole structure with

125

all the motors inside their proper modules and to dispose smartly the markers
on the central bracelet.

Another aspect to face up to is the precise calibration of all the four force
sensors.

Finally the validation of the firmware on the four controllers has to be
done and some experimental results in terms of position and force response
need to be taken out.

126

List of Figures

1.1 Example of domestic robot . 9
1.2 Example of structured environment 11
1.3 Navigation with obstacle avoidance 12
1.4 Example of unstructured environment 13
1.5 Dog military robot . 14
1.6 Example of vision task . 15
1.7 Example of haptic exoscheleton 16
1.8 Simple example of teleoperation 17
1.9 Example of teleoperated anthropomorphic robot 18
1.10 Teleoperation concept . 20
1.11 Haptic concept . 21
1.12 Curiosity robot . 23
1.13 Example of telemedicine . 23
1.14 Example teleoperated robotic hand working in nuclear ambient 24
2.1 Example of haptic system for robotics 26
2.2 Example of haptic glove . 26
2.3 Example of haptic glove . 27
2.4 Example of artificial arm created by twisted string actuation . 28
2.5 Example of artificial hand created by twisted string actuation 29
3.1 Cad rendering of cable driven haptic interface 32
3.2 Operator forearm inside central bracelet 33
3.3 Connections between haptic interface mechanical parts 34
3.4 2 Dof module joint . 35
3.5 Real haptic interface structure and connections 36
3.6 Scheme of talking devices . 37
3.7 Denavit-Hartenberg to create kinematic model 38
3.8 Crucial points to compute tendons’ lengths 39
3.9 Actuator box . 40
3.10 Twisted String Actuator principle 41
3.11 Table of comparison between fibers 42
3.12 Properties of various fiber . 43
3.13 Shortening of tendons linked to TSA actuators 43
3.14 Kinematic of tendons . 44
3.15 Dinamics of tendons . 44
3.16 Arduino Nano dimensions . 46
3.17 Ethernet Shield . 47

127

3.18 Scheme of PID control . 47
3.19 Arduino Nano pinout . 49
3.20 Arduino Nano electrical links 49
3.21 Scheme of MC 33887 driver 50
3.22 Features of MC 33887 driver 51
3.23 Establishing communication between nodes 58
3.24 Established communication between nodes 58
3.25 Client-Server mechanism . 59
3.26 Haptic Ros Nodes . 61
4.1 PID feedback control . 67
4.2 PWM example . 70
4.3 Wind-up phenomenon . 73
4.4 Real force sensor housing . 76
4.5 Force sensor . 76
4.6 Module force sensor detail . 77
4.7 Overall Calibration setup . 78
4.8 Breadboard . 79
4.9 Motor’s module for calibration 80
4.10 Force sensor calibration . 82
4.11 Force acquisition . 83
4.12 Ripple . 83
4.13 Final force feedback . 84
5.1 Udp Block . 87
5.2 Udp Block Parameters . 88
5.3 Simulink scheme . 89
5.4 Subsystem . 89
5.5 Position track with online tuning 90
5.6 Tracking error . 91
5.7 PWM law . 91
5.8 Series of references tracking 92
5.9 P controller performance . 93
5.10 PI controller performance . 94
5.11 Tracking error . 94
5.12 PWM law . 95
6.1 Rviz cube . 98
6.2 Vicon camera . 99
6.3 Reflection of infrared to markers 100
6.4 Homogeneous transformation matrix 101

128

6.5 Global Vicon system . 101
6.6 TF message fields . 102
6.7 Couple of haptic markers in crucial points 103
6.8 Vicon image of tracked object 104
6.9 Configuration 1 . 105
6.10 Rviz Configuration 1 . 105
6.11 Configuration 2 . 106
6.12 Rviz Configuration 2 . 106
6.13 Configuration 3 . 107
6.14 Rviz Configuration 3 . 107
6.15 TF message example . 108
6.16 Jacobian structure for a generic 6 Dof robot 109
6.17 Overall pseudoinverse Simulink scheme 115
6.18 Detail of pseudoinverse Simulink scheme 115
6.19 Naming of the ”in” pin . 116
6.20 First configuration lengths . 117
6.21 Validation by a real tendon’s length measurement 118
6.22 First configuration tendons’ forces 118
6.23 Second configuration lengths 118
6.24 Second configuration tendons’ forces 119
6.25 Third configuration lengths 119
6.26 Third configuration lengths 119
6.27 Two joints manipulator . 120
6.28 Virtual spheres to evaluate singularities and reachable workspace122
6.29 Real singular configuration in haptic interface 123
6.30 Rviz singular configuration in haptic interface 123

129

References

[1] https://www.researchgate.net/file.PostFileLoader.html

[2] https://pure.tue.nl/ws/files/4419568/656592.pdf

[3] http://hackaday.com/2015/01/17/twisted-string-actuators

[4] https://en.wikipedia.org/wiki/Telerobotics

[5] http://www.dexmart.eu/fileadmin/dexmart/public-
website/downloads/presentations/

[6] http://www.pelicanrope.com/pdfs/DyneemaSK75-Tech-Sheet.pdf

[7] http://www.cim.mcgill.ca/ haptic/pub/VH-ET-AL-SR-04.pdf

[8] G.Palli, C. Natale, C. May, C. Melchiorri, and T. Wurtz, Modeling and
control of the twisted string actuation system, IEEE/ASME Trans.on
Mechatronics, vol. 18, no. 2, pp. 664673, 2013.

[9] A.Pepe, M.Hosseini, U.Scarcia, G.Palli and C.Melchiorri, Development
of an Haptic Interface Based on Twisted String Actuators, Advanced
Intelligent Mechatronics, 2017

[10] G.Palli, Slides Corso Automation Software and Design Patterns, Unibo,
a.a 2016-2017

[11] https://en.wikipedia.org/wiki/Pulse-width-modulation

[12] https://en.wikipedia.org/wiki/Client/server-model

[13] http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/pro/pro10-b5-
navigazionerobot.pdf

[14] https://www.vicon.com/what-is-motion-capture

[15] https://en.wikipedia.org/wiki/Rotary-encoder

[16] https://www.arduino.cc/reference

[17] www.miro.ing.unitn.it/.../Robotica/Cinematica

130

