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ABSTRACT

We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling
of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from
the MaNGA DR 14 sample. Galaxies with different morphologies are found to be located on a
remarkably tight mass plane which is close to the prediction of the virial theorem, extending
previous results for ETGs. By examining an inclined projection (‘the mass—size’ plane), we
find that spiral and early-type galaxies occupy different regions on the plane, and their stellar
population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically
along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction.
Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light
ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as
their stellar populations age and become enriched chemically. The age and stellar mass-to-
light ratio gradients for low-mass galaxies in our sample tend to be positive (centre < outer),
while the gradients for most massive galaxies are negative. The metallicity gradients show a
clear peak around velocity dispersion log;p 0. & 2.0, which corresponds to the critical mass
~3 x 10" Mg of the break in the mass—size relation. Spiral galaxies with large mass and size
have the steepest gradients, while the most massive ETGs, especially above the critical mass
Meie 22 X 10" M@, where slow rotator ETGs start dominating, have much flatter gradients.
This may be due to differences in their evolution histories, e.g. mergers.

Key words: galaxies: evolution — galaxies: formation — galaxies: kinematics and dynamics —
galaxies: structure.

Davis 1987; Dressler et al. 1987), which describes the relationship
between velocity dispersion o, effective (half light) radius R, and
Early-type galaxies (ETGs) have been found to follow several scal- luminosity L (or surface brightness ). There are similar relation-
ing relations, for example the Fundamental Plane (Djorgovski & ships for the stellar mass plane (Hyde & Bernardi 2009) and the

mass plane (Cappellari et al. 2006; Bolton et al. 2007), in which the

luminosity is replaced by stellar mass and total mass, respectively.
* E-mail: hyli@nao.cas.cn These scaling relations are related to the viral theorem (Faber et al.
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1987). The edge-on views of these planes are thin, especially for
the mass plane (Auger et al. 2010; Cappellari et al. 2013a).

For the face-on view, however, galaxies with different properties
may be located in different regions. Graves, Faber & Schiavon
(2009) and Graves & Faber (2010) studied the age, metallicity, and
mass-to-light ratio of the galaxies on the Fundamental Plane using
the SDSS (York et al. 2000) single fibre spectrum of quiescent
galaxies, and found there are systematic variations of the stellar
populations across the Fundamental Plane. Springob et al. (2012)
performed a similar investigation using data from the 6dF galaxy
survey.

With integral field unit (IFU) data, e.g. ATLAS3P (Cappellari et al.
2011), CALIFA (Sanchez et al. 2012), MASSIVE (Ma et al. 2014),
SAMI (Bryant et al. 2015), and MaNGA (Bundy et al. 2015), one
can estimate the dynamical mass much more accurately and study
the mass plane relationship (e.g. Cappellari et al. 2013a). Cappellari
et al. (2013b) and McDermid et al. (2015) studied the distribution
of the mass-to-light ratio, angular momentum, stellar population,
and star formation history on the mass plane for the 260 ETGs in
the ATLAS?P survey. They found the ages, metallicity, elemental
abundance, and gas content of galaxies vary systematically on the
mass—size plane (see fig. 22 of Cappellari 2016).

Population gradients contain information on galaxy evolution,
e.g. accretion, merger (Di Matteo et al. 2009; Hopkins et al. 2009),
and radial migration (Roediger et al. 2012; Zheng et al. 2015). There
are many previous studies focused on the gradients of galaxies, e.g.
correlation between age, metallicity gradients, and galaxy proper-
ties such as stellar mass, colour, velocity dispersion (Mehlert et al.
2003; Sanchez-Blazquez et al. 2007; Koleva et al. 2009; MacArthur,
Gonzdlez & Courteau 2009; Spolaor et al. 2009; Kuntschner
et al. 2010; Rawle, Smith & Lucey 2010; Tortora et al. 2010; La
Barbera et al. 2012; Kuntschner 2015), and environments (Sanchez-
Blazquez, Gorgas & Cardiel 2006b; Roediger et al. 2011; Tortora
& Napolitano 2012; Goddard et al. 2017; Zheng et al. 2017).

In this paper, we use the galaxies from the MaNGA DR14 (Abol-
fathi et al. 2017) sample, Jeans anisotropic model (JAM) (Cappel-
lari 2008), and full spectrum fitting technique (ppxr, Cappellari &
Emsellem 2004) to study the distribution of the stellar population
properties (i.e. age, metallicity, stellar mass-to-light ratio, and their
gradient) on the mass—size plane (the projection along o direction of
the mass plane) for galaxies with different morphologies. The struc-
ture of the paper is as follows. In Section 2, we describe the MaNGA
data (Section 2.1), dynamical modelling (Section 2.2), and stellar
population synthesis model (Section 2.3). In Section 3, we show
our results concerning the mass plane relationship (Section 3.1),
the distribution of the global population properties (Section 3.2),
and the distribution of the population gradients on the mass—size
plane (Section 3.3). In Section 4, we summarize our results and
draw our conclusions. We make use of a flat ACDM cosmology
with Q,, = 0.315 and Hy = 67.3kms™! Mpc’l (Planck Collabora-
tion XVI 2014).

2 DATA AND MODELS

2.1 MaNGA data and galaxy sample

The galaxies in this study are from the MaNGA Product Launch 5
(MPLS5) catalogue (internal release, nearly identical to SDSS-DR 14,
Abolfathi et al. 2017), which includes 2778 galaxies of different
morphologies. We base our galaxy morphologies on the Galaxy Zoo
1 (Lintott et al. 2008, 2011) by first matching the MPL5 sample
with table 2 of Lintott et al. (2011). For galaxies with uncertain

flags or not in the table, we classify them by their Sérsic index
(Sérsic 1963) from the NASA-Sloan Atlas' (NSA) catalogue which
is based on SDSS imaging (Blanton et al. 2011). We take galaxies
with ngesic > 2.5 as ETGs and the remainder as spiral galaxies.
We then visually check all the galaxies to adjust any misclassified
galaxies and to exclude merging galaxies. Galaxies with low data
quality (with fewer than 100 Voronoi bins with signal-to-noise, S/N,
greater than 10) are also excluded. In total, we have 2110 galaxies
in our final sample, with 952 ETGs and 1158 spirals. In order to test
the effect of morphology classification, we also examine our results
using a subsample with intermediate Sérsic index (2 < nsgsic < 3)
excluded (932 spiral galaxies and 898 ETGs in this subsample), and
find that our conclusions remain unchanged.

IFU spectra are extracted using the MaNGA data reduction
pipeline (Law et al. 2016), and kinematical data are extracted using
the MaNGA data analysis pipeline (Westfall et al., in preparation).
The data analysis pipeline extracts the kinematic data from the IFU
spectra by fitting absorption lines using the ppxr software (Cappel-
lari & Emsellem 2004; Cappellari 2017) with a subset of the MILES
(Sanchez-Blazquez et al. 2006a; Falcon-Barroso et al. 2011) stellar
library, MILES-THIN. Before fitting, the spectra are Voronoi binned
(Cappellari & Copin 2003) to S/N = 10. Readers are referred to the
following papers for more details on the MaNGA instrumentation
(Drory et al. 2015), observing strategy (Law et al. 2015), spec-
trophotometric calibration (Smee et al. 2013; Yan et al. 2016a), and
survey execution and initial data quality (Yan et al. 2016b).

2.2 Dynamical modelling

We perform Jeans Anisotropic modelling (JAM, Cappellari 2008)
for all the galaxies in our sample. The modelling allows for
anisotropy in the second velocity moments. The total mass model
has two components, i.e. a stellar mass distribution and a dark halo.
For the stellar component, we first use the Multi-Gaussian Expan-
sion (MGE) method (Emsellem, Monnet & Bacon 1994) with the
fitting algorithm and pyTHON software? by Cappellari (2002) to fit
the SDSS r-band image. We then deproject the surface brightness
to obtain the luminosity density and assume a constant stellar mass-
to-light ratio to convert the light distribution to the stellar mass
distribution. For the dark matter halo, we assume a generalized
NFW (Navarro, Frenk & White 1996) halo profile

r\N /1 1N\
PDM(V)=Ps(F) (E‘FEF) . (D

From running JAM within an MCMC framework (emcee, Foreman-
Mackey et al. 2013), we find the best-fitting parameters which
give the model best matching a galaxy’s observed second veloc-
ity moment map. The model gives a robust total mass estimation as
demonstrated in Lablanche et al. (2012) and Li et al. (2016) using
numerical simulations. Details of the modelling procedures can be
found in Li et al. (2016, 2017).

Following Cappellari et al. (2013a), we calculate the size param-
eters R., R;““‘j, and ry,; from the MGE models, and scale the R.
and R™ by a factor of 1.35 (see fig. 7 of Cappellari et al. 2013a).
Here R, is the circularized effective radius, Ré"aj is the major axis of
the half-light isophote and r, is the three-dimensional half-light
radius. We define M, ), as the enclosed total mass within a spherical

Uhttp://www.nsatlas.org/data
2 Available from http://purl.org/cappellari/software
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Figure 1. Comparison of the log Age and [Z/H] profiles for seven galaxies with high S/N from the ATLAS3P survey. The blue symbols are the results of each
IFU bin from Kuntschner et al. (2010), using line indices based method. The red symbols are the results of each IFU bin using the full spectrum fitting method

described in Section 2.3.

radius ry/, from the best-fitting JAM models. The velocity disper-
sion o, is defined as the square-root of the luminosity-weighted
average second moments of the velocity within an elliptical aper-
ture of area A = 7R?2

S Fe(VE+ o)
O = —_— =
Zk Fy

where V; and o are the mean velocity and dispersion of the Gaus-
sian which best fits the line-of-sight velocity distribution in the k-th
IFU spaxel, and Fj is the flux in the k-th IFU spaxel. The sum is
within the elliptical aperture described above. The o, so defined
agrees quite closely with the velocity dispersion measured from a
single fit to the spectrum inside the same aperture (Cappellari et al.
2013a).

@

2.3 Stellar population synthesis (SPS)

We estimate the stellar population properties by fitting the MaNGA
IFU spectra with stellar population templates. Before spectrum fit-
ting, we remove spectra with signal-to-noise ratio (S/N) less than 5
and bad sky subtractions. The data cubes are then Voronoi binned

the fitting. The fitting is performed between ~3500 and ~7400 A.
During the spectrum fitting we do not mask the gas emission lines in
PPXF, but instead, we fit them simultaneously to the stellar templates
as Gaussians, while adopting the same kinematics for all the gas
emission lines. We include the emissions from the Balmer series,
the [Om], [N 1] doublet (with a fixed ratio 1/3), the [O1] doublet
(with a fixed ratio 3/1), the [O 1] and the [S u]. We fit every spec-
trum twice. In the first pass, we fit all the good pixels and obtain
the best-fitting model spectrum. In the second pass, we remove all
the pixels outside 3¢ from the first fitting. We use the results from
the second fitting in our following analysis.

We calculate the luminosity weighted log;o Age and metallicity
[Z/H] using the equation below:

N
> wiLjx;
=y a—
= wiL;
where w; is the weight of the jth template and L, is the corresponding
r-band luminosity of the SPS template. x; is the log,o Age (or [Z/H])

of the jth template when calculating luminosity weighted log;o Age
(or [Z/H]). The stellar mass-to-light ratio is calculated as

(x) = 3

(Cappellari & Copin 2003) to S/N = 30. We also used S/N = 60, . S0 wy M

and find that our results (age, metallicity, stellar mass-to-light ratio, M/L = W’ S
and their gradients) are nearly unchanged. The S/N for each spec- =t

trum is calculated as the ratio between the mean and the standard where M*** is the stellar mass of the jth template, which includes

deviation of the flux within a window from 4730 to 4780 A, which
does not include obvious emission and absorption lines. We use the
ppxF software (Cappellari & Emsellem 2004; Cappellari 2017) with
the MILES-based (Sanchez-Blazquez et al. 2006a) SPS models of
Vazdekis et al. (2010) and Salpeter (1955) initial mass function
(IMF). We use 25 ages uniformly spaced in log;o Age (yr) between
7.8 and 10.25 and six metallicities ([Z/H] = [—1.70, —1.30, —0.70,
—0.40, 0.00, 0.22]). We assume a Calzetti et al. (2000) reddening
curve and do not allow for any polynomial and regularization in

the mass in living stars and stellar remnants, but excludes the gas
lost during stellar evolution. The other symbols are the same as in
equation (3).

Having the log;o Age, [Z/H], and M*/L for each bin, we take
the luminosity weighted mean values within one effective radius
(an ellipse close to the half-light isophote) as the global population
properties. For the gradients of these properties, we first calculate
the radial profiles of those quantities by taking the median values
in different elliptical annuli, with the global ellipticity measured
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around 1R.. We then fit the profiles (log Age, [Z/H], and log;o M*/L
versus logio R/R.) between R, /8 and 1R, to obtain the linear slopes
as our gradients. A negative gradient means the central value is
larger than the outer one.

To test the robustness of our approach and to get a sense of the
possible systematics, we apply our full spectrum fitting method
on seven galaxies with high S/N from the ATLAS®® survey, and
compare our metallicity and log Age profiles with the results from
Kuntschner et al. (2010), which are based on a radically differ-
ent approach. The ATLAS?P results are in fact obtained by mea-
suring three line indices, correcting them to a uniform velocity
dispersion and then locating the values, in a x? sense, on a three-
dimensional grid of individual SPS model predictions by Schiavon
(2007), as a function of age, metallicity, and alpha enhancement.
The comparisons are shown in Fig. 1. As one can see, two methods
give comparable trends. Our results show small scatters since we
use full spectrum fitting rather than just line indices. At the cen-
tre, our metallicities are slightly lower because our templates do
not allow for non-solar abundances and in particular do not have
[Z/H] > 0.22 as in Kuntschner et al. (2010). Correspondingly, the
central ages are slightly higher. Although the measurements were
obtained with quite significant differences both in the SPS model
and in the fitting method, the agreement is quite good. In particular,
the trends in both the age and the metallicity gradients are consistent
between the two approaches.

Throughout this work, we use the ppxr software combined with
the MILES stellar template library to obtain the stellar popula-
tions in galaxies. As a cross-check, we have also used the BC03
(Bruzual & Charlot 2003) SSP templates combined with the ppxF.
With reasonable regularization, the BCO3 library gives similar re-
sults as the MILES template.

3 RESULTS

3.1 Mass plane
The mass plane relationship can be written as
log M/, =a + blog o. + clog R;““j, )

where M, », 0., and R;mj are described in Section 2.2. The expected
values from the virial theorem are b = 2 and ¢ = 1 (Faber et al.
1987). We fit this relationship separately for the ETGs and spi-
ral galaxies in our sample, using the LST_PLANEFIT procedure
described in Cappellari et al. (2013a) which combines the Least
Trimmed Squares robust technique of Rousseeuw & Van Driessen
(2006) into a least-squares fitting algorithm which allows for er-
rors in all variables and intrinsic scatter. In the fitting, we assume
6 per centerror in o', 6 per centin R™, and 10 per centerror in M,
(Cappellari et al. 2013a). The results and the best-fitting parameters
are shown in Fig. 2.

As one can see, both ETGs and spiral galaxies are on a remarkably
tight mass plane, with coefficients b and ¢ close to the prediction
from the virial theorem. This agrees with the results of b = 1.942,
¢=0.991, and A =0.077 in Cappellari et al. (2013b), and follow the
virial theorem slightly better than the results of b = 1.67, ¢ = 1.04,
A = 0.059 from Scott et al. (2015) and & = 1.857, § = —1.279
in Auger et al. (2010), with @ = 2, 8 = —1 being the prediction
from the virial theorem in their formalism. The observed scatter A
for spiral galaxies is 0.061, which is slightly larger than the value
0.047 for the ETGs. This is because the uncertainties in measuring
the velocity dispersion, effective radius, and dynamical mass are
larger for spiral galaxies due to the limited spectral resolution, the
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Figure 2. The edge-on view of the best-fitting mass plane for the ETGs
(top) and the spiral galaxies (bottom) in our sample. The coefficients of the
best-fitting plane a + b(x — xp) + ¢(y — yo) and the observed scatter A in
z are shown at upper left of each panel. The red dashed lines show the lo
(68 percent) and 2.60 (99 per cent). The outliers excluded from the fit by
the LTS_PLANEFIT (Cappellari et al. 2013a) procedure are shown with
green symbols.

asymmetry of the galaxy and perturbation of the spiral arms. In the
current data analysis pipeline for stellar kinematics, the extracted
velocity dispersions under 50 kms~! have larger scatters, and may
be slightly overestimated due to the uncertainties of the instrumen-
tal resolution. This may account for the slightly larger deviation of
the mass plane coefficients from the virial theorem for the spiral
galaxies. The intrinsic scatters ¢, for both ETGs and spiral galaxies
are consistent with being 0, until we reduce the error for the mea-
sured quantities in the fitting to 5 percent (o.), 5 percent (R;‘“‘j),
and 3 per cent (M| ). In the following sections, we use the ‘mass—
size plane’ to refer to the projection of the mass plane along the o
direction. We choose this projection because it is close to face-on
and the two axes have clear physical meanings (i.e. mass and size).

3.2 Stellar population on the mass—size plane

We estimate the stellar population properties for all the galaxies
in our sample using the full spectrum fitting method described in
Section 2.3. The distributions of the velocity dispersions, ages,
metallicities, and stellar mass-to-light ratios of these galaxies on the
mass—size plane are shown in Fig. 3. We use the PYTHON
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Figure 3. Velocity dispersion o, log Age, metallicity [Z/H], and stellar mass-to-light ratio M* /L (SDSS r band) distribution on the mass—size plane (Rg "
versus dynamical mass M 2). Colours indicate the parameters as labelled at the top of each column. The results for early-type, spiral, and all galaxies are
shown in the upper, middle, and bottom panels, respectively. In the bottom panels, coloured squares represent spiral galaxies and coloured circles represent
ETGs. In each panel, dashed lines show lines of constant velocity dispersion: 50, 100, 200, 300, 400, and 500 km s~ from left to right, as implied by the virial
theorem. The magenta curve shows the zone of exclusion defined in Cappellari et al. (2013b).

implementation® (Cappellari et al. 2013b) of the two-dimensional
Locally Weighted Regression (LOESS, Cleveland & Devlin 1988)
method to obtain smoothed distributions, which are shown in Fig. 4.
The velocity dispersions on the mass—size plane agree well with the
prediction from the virial theorem, as indicated by the black dashed
lines. The age, the metallicity, and the stellar mass-to-light ratio
change systematically on the mass—size plane for both ETGs and
spiral galaxies. The values increase roughly along the velocity dis-
persion direction, which trace the bulge mass fraction (Cappellari
2016). These systematic trends of the stellar population with veloc-
ity dispersion are consistent with a picture in which the bulge growth
makes the population more metal rich and increases the likelihood
for the star formation to be quenched (see fig. 23 of Cappellari
2016).

In a very recent work, Scottet al. (2017) showed similar results for
~1300 galaxies with different morphologies from the SAMI IFU
survey. Other than our sample being slightly larger (2110 versus
1300), our two studies differ in four aspects:

(i) Their stellar population properties are derived from line in-
dices, rather than full spectrum fitting as in our study.
(ii) They use stellar mass while we use dynamical mass.

3 Available from http://purl.org/cappellari/software

(iii) They study the galaxy global properties only while we study
both global properties and gradients in the stellar populations (see
Section 3.3).

(iv) Finally, the two studies are based on quite different sam-
ples, observed with different IFUs, and analysed with different data
pipelines.

The one-dimensional relationship between velocity dispersion
and age, metallicity, and stellar mass-to-light ratio are shown in
Fig. 5. We fit the relationship using the equation below for ETGs
and spiral galaxies

y =a+ b(x — xop), (6)

where xy is the median value of x. The best-fitting line and coeffi-
cients are shown in each panel of Fig. 5. The results from Scott et al.
(2017) for their galaxies in clusters are shown in Fig. 5 with black
dashed lines. Their fitting did not separate ETGs and spiral galaxies.
Unlike fig. 5 of Scott et al. (2017), our log Age—velocity dispersion
relation shows similar bimodality to the metallicity—velocity dis-
persion relation, and their [Z/H] reaches values as low as —2, while
in our results the values never go below —1.4.

3.3 Stellar population gradient on the mass—size plane

We use the method described in Section 2.3 to estimate the age,
metallicity, and stellar mass-to-light ratio gradients for the galaxies

MNRAS 476, 1765-1775 (2018)
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red and blue dots, respectively. The coloured solid lines show the best-fitting line a + b(x — xo) using the LTS_LINEFIT (Cappellari et al. 2013a) procedure.
The coefficients are shown in the lower right in each panel while the black dashed line shows the results from Scott et al. (2017) for their galaxies in clusters.

in our sample. Similar to Figs 3 and 4, we show the distribution
of these gradients on the mass—size plane in Figs 6 and 7. The
systematic trends for the gradients are not as simple as the global
properties which vary monotonically with the velocity dispersion
as in Fig. 3, but there are several special features for the distribution
of the population gradients on the mass—size plane:

(1) Many galaxies with small size and mass have positive age and
stellar mass-to-light ratio gradient (centre < outer), which may be
due to the star formation in galaxy centre (Huang et al. 1996; Ellison
et al. 2011; Oh, Oh & Yi 2012), while nearly all the galaxies with
logi02 x M;;; > 11.2 have negative age and stellar mass-to-light
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ratio gradients. The age and the stellar mass-to-light ratio gradients
for ETGs are correlated with galaxy mass.

(ii) The metallicity gradients for spiral galaxies increase (become
more negative) with mass and size, while for ETGs, the metallicity
gradients change with velocity dispersions. ETGs with higher and
lower velocity dispersions have slightly shallower gradients.

(iii) Spiral galaxies with large size and mass have the steepest
age, metallicity, and stellar mass-to-light ratio gradients. Although
these galaxies are close to the massive ETGs on the mass—size
plane, their gradient properties have significant differences. One
can see a clear boundary between these two galaxy populations in
Fig. 7, especially for the metallicity gradient. This may be due to
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Figure 6. Age, metallicity, and stellar mass-to-light ratio gradient (Alog Age, A[Z/H], and AM*/L) distribution on the mass—size plane. The gradients are
defined in Section 2.3. A positive A value indicates a positive gradient, i.e. the central value is higher. Other labels are the same as in Fig. 3.

the differences in their evolution histories, e.g. massive ETGs tend
to have more mergers (Cappellari 2016). This also agree with the
scenario that many of them are slow rotators (Graham et al. 2018),
which are thought to be formed by mergers (Naab et al. 2014;
Penoyre et al. 2017; Li et al. 2018).

Here we note that our stellar mass-to-light gradients are based
on the assumption of a constant Salpeter (1955) stellar IMF. The
results will not be affected by the global variation of the IMF (e.g.
Cappellari et al. 2012; Conroy & van Dokkum 2012; Liet al. 2017),
but by a gradient of the IMF within galaxies (e.g. van Dokkum
et al. 2017 for massive elliptical galaxies). The age and metallicity
gradients will not be affected by the IMF.

In Fig. 8, we plot the histogram of the age, metallicity, and stellar
mass-to-light ratio gradients and their relation with velocity disper-
sions. One can see that the age and the metallicity gradients peak
around logo. = 2.0 (especially for metallicity gradients), which
roughly corresponds to the critical mass ~3 x 10'°Mq of the
break in the mass—size relation (Cappellari 2016), below which no
fully passive ETGs exist. The same critical mass is also shown in
Kauffmann et al. (2003). This agrees well with the results in Spo-
laor et al. (2009), Tortora et al. (2010), Kuntschner et al. (2010),
and Kuntschner (2015), but is slightly different from the results in
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Goddard et al. (2017), which did not show a clear decrease of the
metallicity gradients with increasing stellar masses. The galaxies in
our sample occupy similar region of the metallicity—velocity dis-
persion relationship with the simulated galaxies in Hopkins et al.
(2009). We also construct Figs 6, 7, and 8 with intermediate Sérsic
index (2-3) galaxies excluded, and find no significant differences
from the main sample.

In Fig. 9, to visually illustrate and confirm the reality of the
statistical results of Figs 6 and 7, we show the metallicity profiles
between R./8 and 1R, of some galaxies with the best data qualities
on the mass—size plane. The selected galaxies have more than 400
Voronoi bins with S/N greater than 30 for the top four rows in
Fig. 9, and more than 200 Voronoi bins for the bottom row because
small galaxies have lower data qualities. The spiral galaxies with
large size and mass have very steep metallicity gradients, while the
gradients for massive elliptical galaxies are much shallower. The
morphology and the other measured properties for the galaxies in
our sample are listed in Table A1l.

4 CONCLUSIONS

JAM and full spectrum fitting have been used to study the mass plane
scaling relationship and the distribution of the stellar population

MNRAS 476, 1765-1775 (2018)
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Figure 7. The same as Fig. 6, but with LOESS-smoothed Alog Age, A[Z/H], and AM*/L.

properties on a inclined projection of the mass plane, i.e. the mass—
size plane. The galaxies used in this study are from the MaNGA
DR14 sample, which is currently the largest IFU sample including
both early- and late-type galaxies.

Below we summarize our main results:

(i) Both early-type and spiral galaxies are on a remarkably tight
mass plane, with the best-fitting coefficients close to the predicted
values from the virial theorem. This extends the previous result for
ETGs population to the whole galaxy population.

(i1) The stellar population properties (i.e. age, metallicity, and
stellar mass-to-light ratio) of the galaxies in our sample vary sys-
tematically on the mass—size plane along roughly the velocity dis-
persion direction. The stellar population of the galaxies with higher
velocity dispersion are older and more metal rich, which are consis-
tent with a picture in which the bulge growth makes the population
more metal rich and increases the likelihood for the star formation
to be quenched (Cappellari 2016).

(iii) The gradients of age and stellar mass-to-light ratio could be
positive (centre < outer) for low-mass galaxies, while most massive
galaxies have negative gradient.

(iv) The metallicity—velocity dispersion relation shows a clear
peck around logo. &~ 2.0, which corresponds to the critical mass

~3 x 10" Mg of the break in the mass—size relation (Cappellari
2016), below which no fully passive ETGs exist.

(v) The distribution of the population gradients on the mass—size
plane shows a clear boundary between massive spiral and early-type
galaxies. Spiral galaxies with large size and mass have the steepest
gradients. In contrast, the massive ETGs located in similar region
have shallower gradients. This may be due to differences in their
evolution histories, e.g. mergers.

The trends we see in this work, particularly the gradients shown in
Figs 6 and 7, are puzzling and warrant further studies. Observation-
ally, these trends are still subject to the age-metallicity degeneracy
and the scatters are still somewhat high. Theoretically, the spatial
resolutions in numerical simulations and the treatments of physical
processes, such as the chemical enrichment and feedback processes,
will affect the final predictions of the stellar populations and their
gradients. For example, according to Taylor & Kobayashi (2017)
the metallicity gradients are affected by the initial steep gradients
from gas-rich assembly, passive evolution by star formation and
accretion at outskirts and flattening by mergers (major and mi-
nor). In reality, all these processes may be operating at the same
time, and it will take further efforts to decode the information we
assembled here. More detailed comparisons with high-resolution
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cosmological simulations such as Illustris (Vogelsberger et al.
2014a,b) and EAGLE (Schaller et al. 2015) may be a fruitful next
step.
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APPENDIX : EXAMPLE DATA TABLE

MaNGAID  Morphology logigoe  logigMiyz  logiy Re”  logioAge [Z/H]  logioM*/L:  AlogigAge  A[Z/H]  Alogio M* /L,
kms™)  Mg) (kpe) (yr) M@ /Lor)

(1 () (3) “) ©) (©6) @) ®) © (10) an
1-320664 S 2.17 10.66 0.76 9.95 0.06 0.75 —0.15 0.14 —0.08
1-321069 E 237 11.48 1.07 9.80 0.14 0.66 —-0.12 —0.05 —0.12
1-235587 E 2.04 10.27 0.50 9.66 0.06 0.54 0.04 —0.33 —0.04
1-320677 E 227 11.41 1.14 9.70 0.12 0.60 —0.38 0.18 —0.30
1-235576 S 2.10 10.82 0.75 9.74 —0.57 0.68 —0.04 0.45 —0.14
1-235530 E 222 10.53 0.41 9.90 0.07 0.73 —0.33 —0.15 —0.28
1-235398 S 2.10 10.67 0.78 9.71 —-0.21 0.57 0.13 —0.10 0.06
1-320606 S 1.86 10.46 0.93 9.04 —0.86 0.21 —0.43 —0.55 —0.31
1-321074 E 227 11.04 0.83 9.64 0.15 0.56 —0.10 —0.09 —0.10
1-235582 E 1.84 9.92 0.58 9.33 0.07 0.30 0.31 —0.20 0.26
1-320584 E 2.47 11.70 1.08 9.94 0.12 0.77 —0.19 —0.06 —0.16
1-235611 S 2.06 11.00 1.11 9.56 —0.15 0.56 —0.68 —0.52 —0.39
1-320655 E 2.37 11.25 0.78 9.85 0.12 0.70 —0.23 0.00 —0.16
1-24092 E 2.13 10.37 0.35 9.01 —0.73 0.42 0.08 —0.28 0.35
1-23979 E 2.00 10.25 0.53 9.59 —0.10 0.53 0.02 —0.22 —0.01
1-24099 E 2.07 10.23 0.38 9.68 0.10 0.57 —0.11 —0.17 —0.08
1-23929 S 1.80 10.25 0.83 9.34 —-0.52 0.41 —0.41 —0.12 —0.08
1-24368 S 1.72 9.96 0.77 9.19 —0.76 0.20 —0.14 0.06 —0.33
1-24354 S 1.75 9.87 0.51 9.83 —-0.26 0.56 —0.14 0.10 —0.07
1-595027 S 2.05 10.72 0.90 9.24 —-0.75 0.48 —0.25 —0.72 —0.04
1-595093 S 2.17 10.99 1.03 9.66 —0.02 0.64 —0.40 —0.13 —0.19
1-24018 E 2.11 10.58 0.71 9.78 0.07 0.64 —0.11 —0.22 —0.14
1-23891 S 2.20 10.82 0.78 9.80 0.03 0.66 —0.26 0.06 —0.18
1-24148 S 2.10 10.61 0.71 9.81 0.05 0.69 —0.19 0.10 —0.13
1-25937 S 222 11.34 1.22 9.70 —0.00 0.60 —0.36 —0.39 —0.25
1-25911 E 2.37 11.57 1.14 9.72 0.09 0.59 —0.24 —0.09 —0.23
1-24124 S 1.68 9.74 0.53 9.43 0.04 0.43 0.06 0.07 —0.02
1-115062 E 2.12 10.02 0.00 9.80 0.11 0.65 —0.00 0.04 —0.02
1-114928 E 224 10.76 0.67 9.91 —-0.02 0.71 —0.12 —0.31 —0.19
1-115128 S 1.99 10.70 0.94 9.23 —0.59 0.34 —0.16 —0.50 —0.15

Column (1): The MaNGA ID of the galaxy. Column (2): Galaxy morphology. E for ETGs, S for spiral galaxies. Column (3): Velocity dispersion within
1R, as defined in equation (2). Column (4): Enclosed total mass within three-dimensional half-light radius from dynamical model, M;,>. Column
(5): Major axis of the half-light isophote for the best-fitting MGE model. Column (6): Mean logAge within the effective radius. Column (7): Mean
metallicity within the effective radius. Column (8): Mean stellar mass-to-light ratio within the effective radius in SDSS r band. Column (9): Age
gradient. Column (10): Metallicity gradient. Column (11): Stellar mass-to-light ratio gradient in SDSS r band. Please see the journal website for the

complete table.
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