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Abstract

Combing	PV	with	Thermoelectric	(TE)	would	be	dominant	because	it	can	employ	the	solar	fully	spectrum	to	produce	electricity.	But	the	TE	efficiency	is	significantly	 lower	than	PV	efficiency	and	the	coupling	effect

between	them	will	 limit	the	performance	of	PV	and	TE.	The	analyze	and	comparison	on	the	different	characteristics	among	the	hybrid	module,	the	PV	alone	and	TE	alone	is	significant	to	obtain	the	highest	the	electrical

efficiency.	In	this	paper,	the	attention	was	paid	to	the	inconsistent	phenomenon	of	thermoelectric	load	resistance	for	photovoltaic–thermoelectric	modules.	The	model	of	PV-TE	was	built	and	verified	based	on	two	types	of	PV

cells.	The	load	resistance	of	TE	for	the	maximum	power	output	was	also	analyzed	under	different	working	conditions	for	the	TE	alone,	TE	in	the	PV-TE	and	PV-TE.	The	results	showed	that	the	load	resistance	of	TE	for	the

maximum	power	output	of	the	TE	alone,	TE	in	the	PV-TE	and	PV-TE	are	all	different.	For	example,	the	PV-TE	module	based	on	the	c-Si	cell	attains	its	peak	value	at	the	load	electrical	resistance	of	TE	of	0.75 Ω,	while	the

internal	electrical	resistance	of	the	TE	is	0.47 Ω.	The	PV-TE	module	based	on	the	GaAs	cell	shows	a	maximum	efficiency	of	PV-TE	with	a	load	resistance	of	approximately	1.6 Ω,	while	the	internal	electrical	resistance	of	the	TE

is	2.0 Ω.	Referring	to	the	load	resistance	of	TE	alone	is	not	suitable	for	PV-TE	maximum	power	output.	In	addition,	the	TE	maximum	power	output	does	not	correspond	to	the	PV-TE	maximum	power	output	since	the	TE	load

resistances	in	these	two	conditions	are	also	different.	The	study	will	provide	the	reference	for	attaining	the	correct	load	resistance	for	the	actual	maximum	power	output	of	PV-TE	module.
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energy	that	passed	in	cold	side	of	the	TEG	(W)

thermal	resistance	of	convection	heat	transfer	between	heat	sink	and	ambient	air	(K/W)
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wind	speed	(m/s)
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Stefan-Boltzmann	constant	(W/(m2	K4))

emissivity	of	the	PV
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density	of	air	(kg/m3)

kinematic	viscosity	(m2/s)

1	Introduction
Photovoltaic	 (PV)	 is	 one	 of	 the	most	 common	 and	 commercialized	 ways	 for	 electrical	 generation	 [1].	With	 the	 PV	 technology	 development,	 PV	 efficiency	 has	 been	 increased	 significantly,	 but	 it	 is	 still	 limited	 since	 the

conventional	materials	can	only	effectively	convert	photons	of	energy	close	to	the	semiconductor	band	gap.	Therefore,	researchers	are	paying	more	attention	on	ways	of	utilizing	a	wider	solar	spectrum	to	produce	more	electricity.

Thermoelectric	(TE)	technology	can	directly	convert	heat	into	electricity	due	to	the	Seebeck	effect.	Similar	to	PV,	it	has	the	advantages	of	no	noise,	no	pollution,	no	moving	parts,	etc.	[2].	In	fact,	by	contrast	the	solar	energy

that	cannot	be	absorbed	by	PV	will	be	converted	into	the	heat	and	even	negatively	affect	PV	efficiency.	Thus	the	combination	the	PV	and	TE	may	be	a	good	way	to	produce	more	electricity	based	on	the	full	solar	spectrum.	Van	Sark

analyzed	the	feasibility	of	hybrid	PV-TE	modules,	and	found	the	overall	efficiency	and	annual	energy	yield	would	all	increase	[3].	Lamba	and	Kaushik	built	a	model	and	indicated	the	performance	of	a	concentrated	PV-TE	hybrid	power

generation	system	[4].	Wang	et	al.	designed	a	novel	PV–TE	hybrid	device	employing	the	dye-sensitized	solar	cell	(DSSC),	which	gave	rise	to	an	overall	conversion	efficiency	larger	than	13%	[5].

However,	it	is	also	possible	that	the	efficiency	of	the	PV-TE	is	lower	than	that	of	the	PV	alone	[6].	The	higher	temperature	will	increase	the	TE	efficiency	but	decrease	the	PV	efficiency,	so	the	coupling	relationship	between	the

PV	and	TE	is	complex,	which	can	affect	the	performance	of	PV	and	TE.	Pang	et	al.	studied	the	impacts	of	the	heat	sink	for	PV-TE	[7].	Zhu	et	al.	optimized	the	thermal	management	for	the	high-performance	photovoltaic-thermoelectric

hybrid	power	generation	 system	 [8].	Zhang	and	Chau	proposed	a	PV–TE	hybrid	 system	 for	 automobiles	 and	 optimized	 the	power	 output	with	maximum	power	point	 tracking	 (MPPT)	 technique	 [9,10].	 Zhang	 et	 al.	 described	 the

integration	of	polymer	solar	cell	and	TE	module	for	doubling	energy	harvesting	and	increasing	the	open-circuit	voltage	[11].	Park	et	al.	simulated	and	tested	a	lossless	hybrid	design	through	matching	the	internal	resistance	of	TE	to

convey	photocurrents	without	sacrificing	the	PV	fill	factor,	and	results	showed	an	increase	of	conversion	efficiency	by	∼30%	[12].

Generally	speaking,	for	the	TE	alone,	when	the	load	electrical	resistance	equals	to	or	is	slightly	higher	than	the	internal	electrical	resistance,	the	maximum	power	output	can	be	obtained	[13–15].	However,	for	the	hybrid	PV-TE

module,	it	may	be	different	from	the	TE	alone	operation,	and	the	optimized	working	temperature	may	not	match	the	load	resistance	as	the	same	as	that	with	which	the	TE	alone	has	the	maximum	power	output,	since	the	factors	of	PV

efficiency	and	 the	effect	each	other	need	 to	be	considered.	 In	addition,	 for	 the	PV-TE	module,	 even	 if	 the	 load	 resistance	matches	 the	TE	maximum	power	output,	 one	may	not	match	 the	PV-TE	maximum	power	output,	 and	 the
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inconsistent	phenomenon	of	the	TE	load	resistance	may	occur.	Therefore,	the	verification	of	the	inconsistent	phenomenon	and	the	analysis	on	it	would	be	of	befit	for	distinguishing	the	load	resistances	in	different	conditions,	and	for

obtaining	the	actual	PV-TE	maximum	power	output.	However,	at	present,	there	are	few	studies	on	the	inconsistent	phenomenon	of	the	load	resistances	in	the	hybrid	module.

Therefore,	 in	 this	 paper,	 the	 inconsistent	 phenomenon	 of	 TE	 load	 resistance	 for	 PV-TE	maximum	 power	 output	 is	 introduced.	 The	model	 of	 the	 PV-TE	 is	 built	 then	 the	 simulation	 outcome	 is	 verified	 and	 the	migration

phenomenon	is	indicated.	In	addition,	based	on	two	types	of	the	PV	cells,	the	migration	phenomenon	on	different	environmental	conditions	is	also	discussed.	The	paper	also	provides	the	reference	on	the	load	resistance	optimization	to

obtain	the	higher	efficiency	for	PV-TE	application.	

2	Mathematical	model
2.1	PV-TE	module	description

The	PV-TE	module	is	shown	in	Fig.	1.	The	sunlight	can	be	concentrated	by	the	solar	concentrator,	then	part	of	this	energy	will	be	absorbed	by	the	PV.	The	excess	energy	can	be	converted	into	the	heat	to	be	transferred	to	the

TE.	This	creates	a	temperature	gradient	across	the	TE	module,	thus	resulting	in	a	thermal	to	electrical	conversion.	At	last,	the	remaining	thermal	energy	will	be	dispatched	to	the	heat	sink.

This	study	is	intended	to	analyze	the	steady	state	performance	of	the	PV-TE	module,	and	the	following	assumptions	are	adopted	to	simplify	the	problem.

• The	energy	balance	equations	are	all	on	the	steady	state	conditions.

• The	analysis	is	based	on	the	one	dimensional	heat	transfer.

• The	solar	flux	distribution	and	temperature	distribution	on	the	PV	top	surface	are	uniform.

• The	energy	loss	through	around	the	side	of	the	module	is	ignored.

• The	internal	electrical	resistance	of	the	TE	is	considered	as	an	approximate	constant	[16–18].

2.2	Model
The	energy	transfer	process	of	the	PV-TE	module	is	shown	in	Fig.	2.	According	to	the	energy	balance,	the	energy	balance	equation	of	the	PV	can	be	expressed	as	below,

where	 is	the	solar	energy	absorbed	by	the	PV-TE	module.	 is	the	PV	electrical	output.	 is	the	radiation	heat	transfer	coefficient.	 is	 the	convective	heat	 transfer	coefficient.	 is	 the	 thermal	 energy	 transferred

from	the	PV	into	TE.

Fig.	1	Schematic	diagram	of	the	PV-TE	module.
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can	be	expressed	as

where	C	is	the	solar	concentration	ratio,	and	G	is	the	solar	radiation.	A	is	the	area	of	PV.	 is	the	absorptivity	of	PV.

The	electrical	output	is	given	by	[19],

where	 is	the	electrical	efficiency	at	the	standard	condition.	 is	the	temperature	coefficient.

can	be	defined	as	[20],

where	 is	the	wind	speed.

can	be	defined	as

where	 is	the	emissivity	of	the	PV.	 is	Stefan-Boltzmann	constant.	 is	temperature	of	the	PV	and	 is	the	temperature	of	ambient	air.

can	be	defined	as

The	energy	flow	from	the	PV	to	TE	can	be	expressed	as

where	 is	the	hot	side	temperature	of	the	TE.	 is	the	thermal	resistance	between	the	PV	and	TE.

For	the	TE,	the	open	circuit	voltage	 can	be	given	as

where	 is	the	Seebeck	coefficient.

The	electrical	current	can	be	obtained	by

where	 is	the	internal	electrical	resistance.	 is	the	load	resistance.

and	 are	the	energy	that	passed	in	hot	side	and	cold	side	of	the	TE	respectively,	which	can	be	given	as	below	[13],

Fig.	2	Energy	flow	of	the	PV-TE	module.
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where	 and	 are	the	temperature	of	the	hot	and	cold	sides	respectively.

is	thermal	conductivity	of	TE.

where	 is	the	thermal	resistance	between	the	TE	and	the	ambient	air.

where	 is	the	thermal	contact	resistance	between	the	TE	and	the	heat	sink;	 is	the	resistance	of	the	thermal	conduction	of	the	heat	sink;	 is	the	thermal	resistance	between	the	heat	sink	and	the	ambient	air.

can	be	expressed	as

where	 is	the	height	of	the	heat	sink,	 is	the	thermal	conductivity	of	the	fin	and	 is	the	cross	section	area	of	the	heat	sink.

In	order	to	attain	the	value	of	 which	is	the	thermal	resistance	of	convection	heat	transfer	between	fin	and	ambient	air,	the	convection	heat	transfer	coefficient	hcovf	can	be	obtained	[21].

where	 ,	 ,	 represent	velocity,	density	and	viscosity	coefficient	of	the	fluid	respectively.	x	is	the	characteristic	length	of	the	fin.	  = 1.1614	 ,	  = 1.846 ∗ 10−5	 .

where	 is	 the	 kinematic	 viscosity,	 is	 the	 local	 heat	 transfer	 coefficient	 along	 the	 length	 of	 the	 fin,	 kair	 is	 the	 thermal	 conductivity	 of	 air,	 is	 the	 specific	 heat	 capacity	 of	 air,	 is	 the	 heat	 diffusivity.	 =1.589 ∗ 10−5	

,	  = 1.007	 ,	  = 2.25 ∗ 10−5	 .

Thus	 can	be	obtained	as	below,

And	the	local	heat	transfer	coefficient	 is	obtained,

Therefore,
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After	finishing	calculated	tablet	on	the	air,	the	average	heat	transfer	coefficient	can	be	expressed	as:

Then	the	thermal	resistance	between	the	heat	sink	and	the	air	is:

where	 is	the	total	area	of	the	fin.

The	TEG	power	output	can	be	given	by

The	efficiency	of	the	TE	can	be	expressed	as

So	the	total	efficiency	of	the	PV-TE	can	be	expressed	as	below

3	Theoretical	model	validation
In	this	paper,	the	two	types	of	PV	cells	are	introduced	to	verify	the	validity	of	the	model,	including	c-Si	and	GaAs	cells.	The	simulation	parameters	are	shown	in	Table	1.

Table	1	Parameter	detail	of	the	simulation.

Parameter Based	on	c-Si Based	on	GaAs

Environment

Solar	radiation	 1000	W/m2 1000	W/m2

Prandtl	number	 0.707 0.707

Ambient	temperature	 298 K 298 K

Density	of	air	 1.1614 kg/m3 1.1614 kg/m3

Kinematic	viscosity	of	air	 1.589 * 10−5 m2/s 1.589 * 10−5 m2/s

Photovoltaic	cells

Area	of	PV	 40 * 40 mm2 6.4 * 6.4 mm2

Absorptivity	of	PV	 0.84 0.88

Emissivity	of	the	PV	 0.8 0.8
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Efficiency	at	standard	condition	 0.13 0.242

Solar	cell	temperature	coefficient	 0.0048/K 0.00275/K

TE

Seebeck	coefficient	 0.001 V/K 0.0077 V/K

Total	thermal	conductance	of	TEG	 0.0265 W/K 0.0132 W/K

The	figure	of	merit	 0.0085/K 0.0022/K

Thermal	contact	resistance	between	PV	cell	and	TEG	 0.0009 K/(m2 W) 0.00035 K/(m2 W)

Thermal	contact	resistance	between	TEG	and	heat	sink	 0.0001 K/W 0.0001 K/W

Heat	sink

Specific	heat	of	air	 1007	J/(kg K) 1007	J/(kg K)

Height	of	heat	sink	 0.005	m 0.0005	m

Thermal	conductance	of	heat	sink	 230 W/(m K) 230 W/(m K)

Length	of	heat	sink	 0.03	m 0.003	m

Internal	resistance	of	TEG	 0.44	 2.0	

Cross	section	area	of	the	heat	sink	 40 * 40 mm2 6.4 * 6.4 mm2

Total	area	of	the	fin	 0.019 m2 0.021 m2

The	simulation	and	the	verification	were	shown	in	Fig.	3.	The	total	efficiency	of	the	PV-TE	and	the	TE	efficiency	with	different	load	resistances	are	all	compared,	which	indicates	the	well	agreement.
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According	to	Ref.	[22],	for	the	PV-TE	module	based	on	the	c-Si	cell,	the	internal	electrical	resistance	of	the	TE	is	0.47 Ω.	But	actually,	when	it	is	combined	to	PV,	the	TE	maximum	electrical	output	is	corresponding	to	the	load

electrical	resistance	of	about	1.40 Ω,	while	the	PV-TE	attains	its	peak	value	at	the	load	electrical	resistance	of	TE	of	0.75 Ω.	When	the	PV-TE	module	has	the	highest	efficiency	or	the	TE	has	the	highest	efficiency,	the	load	electrical

resistance	has	the	different	values,	which	present	the	inconsistent	phenomenon	and	are	all	much	larger	than	internal	resistance	of	TE.

According	to	Ref.	[23],	for	the	PV-TE	module	based	on	the	GaAs	cell,	the	internal	electrical	resistance	of	the	TE	is	2.0 Ω.	But	for	PV-TE	module,	the	optimum	load	resistance	for	the	TE	maximum	power	generation	is	about	3.4 Ω,

and	the	hybrid	module	shows	a	maximum	efficiency	of	PV-TE	with	a	load	resistance	of	approximately	1.6 Ω.	It	is	clear	that	whatever	for	the	TE	maximum	power	output	in	a	PV-TE	module	or	for	the	PV-TE	maximum	power	output,	the	TE

external	load	resistances	are	all	different	from	the	internal	electrical	resistance	of	TE,	and	the	value	of	TE	internal	resistance	is	between	that	at	the	maximum	power	output	of	TE	in	the	PV-TE	module	and	that	at	the	maximum	power

output	of	PV-TE	module.

It	also	can	be	seen	that	for	different	types	of	PV	cells,	the	migration	phenomena	of	the	TE	load	resistance	for	PV-TE	module	maximum	power	output	all	occur.	These	all	may	exist	that	the	TE	load	resistance	for	PV-TE	maximum

power	output	is	larger	or	lower	than	the	TE	internal	resistance,	even	close	to	it	at	different	working	conditions.	And	the	value	of	it	is	also	different	from	that	at	the	TE	maximum	power	output	for	PV-TE	module.

4	Result	and	discussion
4.1	PV-TE	base	on	c-Si	cell

When	the	ambient	temperature	is	298 K	and	the	solar	concentration	ratio	is	one	sun,	the	variation	of	the	load	resistances	of	TE	is	small	(Fig.	4).	With	different	wind	speeds,	the	changes	of	the	TE	load	resistances	for	PV-TE

maximum	power	output	 and	TE	maximum	power	output	are	all	 small,	 but	 the	TE	 load	 resistance	 for	PV-TE	maximum	power	output	 and	 the	one	 for	TE	maximum	power	output	 in	PV-TE	are	all	 larger	 than	 the	 internal	 electrical

resistance	of	TE.	When	the	wind	speed	is	small,	these	values	are	all	slightly	higher	than	those	with	high	wind	speeds	which	may	because	of	the	low	heat	transfer	performance	on	the	cold	side.

Fig.	3	The	simulation	and	verification	of	the	total	efficiency	and	TE	efficiency	in	PV-TE	module	(a)	Based	on	c-Si	cell	(b)	Based	on	GaAs	cell.



With	the	increase	of	the	solar	concentration	ratio,	the	load	resistance	of	the	TE	for	PV-TE	maximum	power	output	has	the	similar	values	(Fig.	5).	For	the	TE	maximum	power	output	in	the	PV-TE	module,	the	load	resistances	of

the	TE	presents	a	tendency	to	slowly	rise.	On	the	contrary,	with	the	concentration	ratio	increases,	the	load	resistance	of	the	TE	for	the	PV-TE	maximum	power	output	has	a	slight	decrease	tendency.	But	all	of	them	are	higher	than	the

internal	resistance	of	TE	or	load	resistance	of	TE	for	TE	alone	significantly.

It	can	be	seen	from	Fig.	6	 that	 the	curve	of	 the	TE	 load	resistance	 for	TE	maximum	power	output	 in	PV-TE	has	a	 rising	 tendency	when	 the	environmental	 temperature	 increased,	which	 is	about	3	 times	 than	 the	 internal

resistance	of	TE.	The	value	of	the	TE	load	resistance	for	PV-TE	maximum	is	also	approximately	1.5	times	than	the	TE	internal	resistance.	And	the	variation	tendencies	of	the	TE	load	resistance	for	PV-TE	maximum	output	and	for	TE

alone	maximum	output	are	not	obvious	with	the	environmental	temperature	increase.

Fig.	4	Load	resistances	with	different	wind	speeds	(based	on	c-Si).

Fig.	5	Load	resistances	with	different	solar	concentration	ratios	(based	on	c-Si).



4.2	PV-TE	based	on	GaAs	cell
It	can	be	seen	that	for	PV-TE	module	based	on	GaAs	cell,	the	load	resistance	is	also	different	from	the	one	for	the	TE	alone.	From	the	Fig.	7,	it	can	be	indicated	that	the	internal	electrical	resistance	is	about	2.0 Ω.	But	when

combined	with	the	PV	cell,	the	load	resistance	would	be	close	to	about	3.4 Ω	for	the	TE	maximum	power	output	in	the	PV-TE.	This	is	about	1.6	times	than	the	internal	resistance	or	the	load	resistance	of	the	TE	alone	for	the	maximum

output.	And	with	the	wind	speed	increase,	the	load	resistance	of	the	TE	for	TE	maximum	output	in	the	PV-TE	becomes	slightly	larger.	However,	for	the	PV-TE	maximum	power	output,	the	internal	resistance	is	lower	than	those	for	TE

alone	maximum	power	output,	which	is	about	just	about	1.66 Ω.

It	is	clear	that	for	the	GaAs	cell,	the	high	concentration	ratio	will	enhance	the	PV	temperature.	As	shown	in	Fig.	8,	with	the	concentration	ratio	increase,	the	load	resistance	of	TE	for	the	maximum	power	output	in	the	PV-TE

module	has	a	rising	tendency.	But	for	the	PV-TE	maximum	power	output,	the	value	of	the	load	resistance	keeps	a	relative	stable	one.	So	in	the	PV-TE	module,	it	is	difficult	to	match	the	load	resistance	of	TE	for	PV-TE	maximum	power

output	to	refer	to	the	value	of	the	load	resistance	for	TE	maximum	power	output	in	PV-TE	module.

The	effect	of	the	ambient	temperature	for	the	load	resistance	is	clear,	as	shown	in	Fig.	9.	With	the	ambient	temperature	increase,	the	load	resistances	for	TE	and	PV-TE	maximum	power	output	in	the	PV-TE	module	have	the

opposite	change	trend.	The	load	resistance	for	TE	maximum	power	output	in	PV-TE	module	gradually	becomes	smaller,	and	the	one	for	PV-TE	maximum	power	output	gradually	becomes	larger,	which	will	be	larger	than	the	internal

resistance	of	TE	when	the	ambient	temperature	is	higher	than	310 K.

Fig.	6	Load	resistances	with	different	ambient	temperature	(based	on	c-Si).

Fig.	7	Load	resistances	with	different	wind	speeds	(based	on	GaAs).

Fig.	8	Load	resistances	with	different	solar	concentration	ratios	(based	on	GaAs).



From	the	analysis	above	 it	can	be	seen	that	the	 inconsistent	phenomenon	of	TE	load	resistance	 is	existent.	The	possible	explanations	may	originate	from	the	coupling	effect	between	the	PV	and	TE.	The	difference	 in	 load

resistance	may	lead	to	the	temperature	difference	of	TE	hot	and	cold	sides	since	the	difference	 in	 load	resistance	 lead	to	the	different	current	and	further	to	the	different	electricity	and	heat	percentages.	Actually,	when	the	 load

resistance	is	not	equal	to	the	internal	resistance,	the	TE	cannot	produce	the	maximum	output	but	provide	the	suitable	temperature	for	PV	then	get	the	maximum	output	for	the	whole	PV-TE	module.

Therefore,	the	load	resistance	correlation	for	TE	alone	maximum	output	is	unsuitable	for	determining	the	optimum	load	resistance	for	PV-TE	module.	In	addition,	in	the	test,	if	the	load	resistance	is	changed	to	meet	the	TE

maximum	power	output,	the	load	resistance	is	not	equivalent	to	the	one	for	PV-TE	maximum	power	output,	and	the	sum	of	the	TE	maximum	power	output	and	the	PV	power	output	under	the	same	temperature	condition	is	not	the

actual	PV-TE	module	power	output.	In	other	words,	when	the	load	resistance	matches	the	one	for	the	PV-TE	maximum	power	output,	the	output	for	TE	does	not	correspond	to	the	maximum	output	for	TE	alone	or	TE	in	the	PV-TE

module.	Taking	the	PV-TE	based	on	c-Si	and	GaAs	for	example,	the	data	details	are	shown	in	Table	2.	For	the	PV-TE	based	on	c-Si,	the	internal	resistance	of	TE	is	0.47 Ω,	and	the	load	resistance	of	TE	for	TE	maximum	power	output	in

the	PV-TE	is	1.40 Ω.	But	it	is	clearly	that	when	the	load	resistance	matches	the	TE	maximum	power	output,	whatever	in	the	TE	alone	or	in	the	PV-TE,	the	total	PV-TE	efficiency	is	lower	than	that	with	the	load	resistance	of	0.75  Ω.	The

inconsistent	phenomenon	of	TE	also	occurs	in	the	PV-TE	based	on	the	GaAs	cell.	Thus,	in	the	PV-TE,	it	is	not	always	the	optimize	output	when	only	depending	on	the	internal	resistance	of	TE	or	the	load	resistance	responding	to	the	TE

maximum	output	to	match	the	TE	maximum	power	output.

Table	2	Details	of	different	efficiencies	with	different	load	resistances.

Load	resistance	of	TE	(Ω) TE	efficiency	(%) PV-TE	efficiency	(%)

Based	on	c-Si 0.47 1.30 11.04

1.40 1.67 10.95

0.75 1.57 11.07

Based	on	GaAs 2.00 1.01 22.90

3.40 1.20 22.83

1.60 1.03 22.94

5	Conclusion
In	this	paper,	the	inconsistent	phenomenon	of	TE	load	resistance	for	photovoltaic–thermoelectric	module	was	indicated.	The	model	of	the	PV-TE	was	built	and	verified.	The	load	resistances	in	different	ambient	conditions	were

also	presented.

Due	to	the	coupling	effect	of	PV	and	TE,	the	characteristic	of	the	load	resistance	was	changed,	and	the	inconsistent	phenomenon	of	TE	load	resistance	is	significant.	The	load	resistances	of	TE	for	the	maximum	power	output	of

Fig.	9	Load	resistances	with	different	ambient	temperature	(based	on	GaAs).



the	TE	alone,	TE	in	PV-TE	and	PV-TE	in	different	ambient	conditions	were	compared.	Different	types	of	PV	cells	and	different	ambient	conditions	all	affect	the	load	resistance	of	TE.	But	it	can	be	concluded	that	the	load	resistance	of	the

TE	alone	is	different	from	the	load	resistance	of	TE	in	PV-TE	module,	so	the	internal	resistance	of	TE	cannot	be	as	the	reference	to	match	the	load	resistance	for	PV-TE	module.

In	addition,	the	load	resistance	of	TE	for	TE	maximum	power	output	is	not	the	one	for	PV-TE	maximum	power	output.	In	actual	application,	the	PV	efficiency	and	TE	efficiency	may	be	all	considered	to	match	the	load	resistance

of	TE.	Only	considering	the	TE	efficiency	to	match	the	load	resistance	may	not	also	lead	to	a	highest	PV-TE	efficiency.	This	paper	would	provide	a	reference	to	match	a	suitable	a	load	resistance	for	the	PV-TE	maximum	power	output.
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