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Abstract—Cloud computing providers must support requests
for resources in dynamic environments, considering service
elasticity and overbooking of physical resources. Due to the
randomness of requests, Virtual Machine Placement (VMP)
problems should be formulated under uncertainty. In this
context, a renewed formulation of the VMP problem is pre-
sented, considering the optimization of four objective functions:
(i) power consumption, (ii) economical revenue, (iii) resource
utilization and (iv) reconfiguration time. To solve the presented
formulation, a two-phase optimization scheme is considered,
composed by an online incremental VMP phase (iVMP) and an
offline VMP reconfiguration (VMPr) phase. An experimental
evaluation of five algorithms taking into account 400 different
scenarios was performed, considering three VMPr Triggering
and two VMPr Recovering methods as well as three VMPr
resolution alternatives. Experimental results indicate which
algorithm outperformed the other evaluated algorithms, im-
proving the quality of solutions in a scenario-based uncertainty
model considering the following evaluation criteria: (i) average,
(ii) maximum and (iii) minimum objective function costs.
Index Terms—Virtual Machine Placement, Cloud Computing,
Overbooking, Elasticity, Uncertainty, Incremental VMP, VMP
Reconfiguration.

1. Introduction
Achieving an efficient resource management in cloud

computing datacenters presents several research challenges.
This work focuses on one of the most studied problems for
resource allocation in cloud computing datacenters: the pro-
cess of selecting which requested virtual machines (VMs)
should be hosted at each available physical machine (PM)
of a cloud computing infrastructure, commonly known as
Virtual Machine Placement (VMP). A complex Infrastruc-
ture as a Service (IaaS) environment for VMP problems
is considered, taking into account service elasticity and
overbooking of physical resources [1]. In order to model
this complex IaaS environment for VMP problems, cloud
services (i.e. a set of inter-related VMs) are considered
instead of isolated VMs.

For IaaS customers, cloud computing resources often
appear to be unlimited and can be provisioned in any

quantity at any required time [2]. Consequently, this work
considers a basic federated-cloud deployment architecture
for the VMP problem.

It is important to consider that more than 60 objective
functions have been proposed for VMP problems [3]. Con-
sequently a multi-objective formulation of the VMP problem
is presented, considering the simultaneous optimization of
the following objective functions: (i) power consumption,
(ii) economical revenue, (iii) resource utilization and (iv)
reconfiguration time.

Due to the randomness of customer requests, VMP
problems should be formulated under uncertainty. This work
presents a scenario-based uncertainty approach for modeling
uncertain parameters, evaluating 400 scenarios. At the same
time, this work presents a VMP problem taking into account
the most complex IaaS environment identified in [1], that
considers both types of service elasticity and both types of
overbooking of physical resources.

It is worth remembering that VMP is a NP-Hard com-
binatorial optimization problem [4]. From an IaaS provider
perspective, the VMP problem could be formulated as both
online and offline optimization problems [3].

It is important to consider that online decisions made
along the operation of a cloud computing infrastructure may
negatively affect the quality of obtained solutions of VMP
problems when comparing to offline decisions [5].

To improve the quality of solutions obtained by online
algorithms, VMP problems could be formulated as a two-
phase optimization problem, combining advantages of on-
line and offline formulations for IaaS environments [5]. In
this context, VMP problems could be decomposed into two
different sub-problems: incremental VMP (iVMP) and VMP
reconfiguration (VMPr), as presented in Figure 1.

The iVMP sub-problem is considered for dynamic ar-
riving requests, where VMs could be created, modified and
removed at runtime. Consequently, this sub-problem should
be formulated as an online problem and solved with short
time constraints, where existing heuristics could be reason-
ably appropriate. Additionally, the VMPr sub-problem is
considered for improving the quality of solutions obtained in
the iVMP phase, reconfiguring the placement through VM
migration. This sub-problem could be formulated offline,
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Figure 1. Two-phase optimization scheme for VMP problems considered
in this work, presenting a basic example with a placement recalculation
time of β = 2 (from t = 2 to t = 4) and a placement reconfiguration time
of γ = 1 (from t = 4 to t = 5).

where alternative solution techniques could result more suit-
able (e.g. meta-heuristics).

The VMPr phase is triggered according to a given
VMPr Triggering method. It is important to notice that the
placement recalculated by the VMPr phase is potentially
obsolete, due to its offline nature. In fact, while the VMPr
is making its calculation, the iVMP still may receive and
serve arriving requests, making obsolete the VMPr calcu-
lated solution; therefore, the recalculated placement must
be recovered accordingly using a VMPr Recovering method,
before complete reconfiguration is performed.

This work presents an experimental evaluation of five
algorithms considering three VMPr algorithms, three VMPr
Triggering algorithms and two VMPr Recovering methods.

The remainder of this paper is structured as follows: the
uncertain VMP problem formulation is presented in Section
2, while Section 3 presents details on the design and imple-
mentation of evaluated alternatives to solve the presented
renewed formulation of the VMP problem. Experimental
results are summarized in Section 4. Finally, conclusions
and future work are left to Section 5.

2. Uncertain VMP Formulation
This section presents a formulation of the VMP problem

under uncertainty considering a two-phase scheme for the
optimization of the following objective functions: (i) power
consumption, (ii) economical revenue, (iii) resource utiliza-
tion and (iv) placement reconfiguration time. According
to the taxonomy presented in [3], this work focuses on
a provider-oriented VMP for federated-cloud deployments,
considering a combination of two types of formulations: (i)
online (i.e. iVMP) and (ii) offline (i.e. VMPr).

The VMP problem presented in this work takes into
account a complex IaaS environment that considers service
elasticity, including both vertical and horizontal scaling of
cloud services, as well as overbooking of physical resources,
including both server and networking resources [1].

2.1. Complex IaaS Environment
The renewed formulation of the VMP problem models

a complex IaaS environment, composed by available PMs

and VMs requested at each discrete time t, considering the
following input data: (i) a set of n available PMs and their
specifications (1) and (ii) a set of m(t) VMs requested, at
each discrete time t, and their specifications (2).

The set of PMs owned by the IaaS provider is repre-
sented as a matrix H ∈ R

n×(r+2), as presented in (1). Each
PM Hi is represented by r different physical resources. This
work considers r = 3 physical resources (Pr1 to Pr3):
CPU [EC2 - Compute Unit (ECU)], RAM [GB] and network
capacity [Mbps]. The maximum power consumption [W] is
also considered. It is important to mention that the presented
notation is general enough to include more characteristics
associated to physical resources as Solid State Drive (SSD),
Graphical Processing Unit (GPU) or storage, just to cite a
few. Finally, considering that an IaaS provider could own
more than one cloud datacenter, PMs notation also includes
a datacenter identifier ci, i.e.

H =

⎡
⎣ Pr1,1 . . . P rr,1 pmax1 c1

. . . . . . . . . . . . . . .
P r1,n . . . P rr,n pmaxn cn

⎤
⎦ (1)

where: Prk,i is the physical resource k on Hi, 1 ≤ k ≤ r;
pmaxi is the maximum power consumption of Hi in [W];
ci is the datacenter identifier of Hi, 1 ≤ ci ≤ cmax; n is
the total number of PMs.

Clearly, the set of PMs H could be modeled as a function
of time t, considering PM crashes [6], maintenance or even
deployment of new hardware.

In the complex environment considered in this work,
the IaaS provider dynamically receives requests of cloud
services for placement (i.e. a set of inter-related VMs) at
each discrete time t. A cloud service Sb is composed by a
set of VMs, where each VM may be located for execution in
different cloud computing datacenters according to customer
preferences or requirements.

The set of VMs requested by customers at each discrete
time t is represented as a matrix V (t) ∈ R

m(t)×(r+2),
as presented in (2). In this work, each VM Vj requires
r = 3 different virtual resources (V r1,j(t)-V r3,j(t)): CPU
[ECU], RAM memory [GB] and network capacity [Mbps].
Additionally, a cloud service identifier bj is considered, as
well as an economical revenue Rj [$] associated to each
VM Vj . As mentioned before, the presented notation could
represent any other set of r resources.

The requested VMs try to lease the requested virtual
resources for an unknown period of discrete time.

V (t) =

⎡
⎣ V r1,1(t) . . . V rr,1(t) b1 R1(t)

. . . . . . . . . . . . . . .
V r1,m(t)(t) . . . V rr,m(t)(t) bm(t)Rm(t)(t)

⎤
⎦ (2)

where: V rk,j(t) is the virtual resource k on Vj , 1 ≤ k ≤ r;
bj is the service identifier of Vj ; Rj(t) is the economical
revenue for allocating Vj in [$]; m(t) is the number of VMs
at each discrete time t, 1 ≤ m(t) ≤ mmax.

2.2. Incremental VMP (iVMP)
In online algorithms for solving the presented VMP

problem, placement decisions are performed at each discrete



time t. The formulation of the presented iVMP (online)
problem is based on [5] and could be enunciated as:
Given a complex IaaS environment composed by a set of
PMs (H), a set of active VMs already requested before time
t (V (t)), and the current placement of VMs into PMs (i.e.
x(t)), it is sought an incremental placement of V (t) into
H for the discrete time t+ 1 (i.e.x(t+ 1)) without migra-
tions, satisfying the problem constraints and optimizing the
considered objective functions.

Additionally to the complex IaaS environment, the
iVMP problem receives the following input data: (i) infor-
mation about the utilization of resources of each active VM
at each discrete time t (3) and (ii) the current placement at
each discrete time t (i.e. x(t)) (4).

In most situations, virtual resources requested by cloud
services are dynamically used, giving space to re-utilization
of idle resources that were already reserved. Information
about the utilization of virtual resources at each discrete time
t is required in order to model a dynamic VMP environment
where IaaS providers consider overbooking of both server
and networking physical resources.

Resource utilization of each VM Vj at each discrete time
t is represented in matrix U(t) ∈ R

m(t)×r, as presented (3):

U(t) =

⎡
⎣ Ur1,1(t) . . . Urr,1(t)

. . . . . . . . .
Ur1,m(t)(t) . . . Urr,m(t)(t)

⎤
⎦ (3)

where: Urk,j(t) is the utilization ratio of V rk(t) in Vj at
each discrete time t.

The current placement of VMs into PMs (x(t)) repre-
sents VMs requested in the previous discrete time t − 1
and assigned to PMs; consequently, the dimension of x(t)
is based on the number of VMs m(t − 1). Formally, the
placement at each discrete time t is represented as a matrix
x(t) ∈ {0, 1}m(t−1)×n, as defined in (4):

x(t+ 1) =

⎡
⎣ x1,1(t+ 1) . . . x1,n(t+ 1)

. . . . . . . . .
xm(t),1(t+ 1) . . . xm(t),n(t+ 1)

⎤
⎦ (4)

where: xj,i(t) ∈ {0, 1} indicates if Vj is allocated (xj,i(t) =
1) or not (xj,i(t) = 0) for execution in a PM Hi at a discrete
time t (i.e., xj,i(t) : Vj → Hi).

The result of the iVMP phase at each discrete time t is
an incremental placement Δx(t) for the next time instant
in such a way that x(t + 1) = x(t) + Δx(t). Clearly, the
placement at t + 1 is represented as a matrix x(t + 1) ∈
{0, 1}m(t)×n.

2.3. VMP Reconfiguration (VMPr)

An offline algorithm solves a VMP problem considering
a static environment where VM requests do not change
over time and considers migration of VMs between PMs.
The formulation of the presented VMPr (offline) problem is
based on [7], [8] and could be enunciated as:
Given a current placement of VMs into PMs (x(t)), it is
sought a placement reconfiguration through migration of

VMs between PMs for the discrete time t (i.e. x′(t)), satisfy-
ing the constraints and optimizing the considered objective
functions.

The VMPr problem receives the current placement at
discrete time t (i.e. x(t)) (4) as input data.

The result of the VMPr problem is a placement recon-
figuration through migration of VMs between PMs for the
discrete time t (denoted as x′(t)).

2.4. Constraints

2.4.1. Constraint 1: Unique Placement of VMs. A VM Vj

should be allocated to run on a single PM Hi or alternatively
located in another federated IaaS provider. Consequently,
this placement constraint is expressed as:

n∑
i=1

xj,i(t) ≤ 1 (5)

∀j ∈ {1, . . . ,m(t)}, i.e. for all VM Vj .

2.4.2. Constraints 2-4: Overbooked Resources of PMs. A
PM Hi must have sufficient available resources to meet the
dynamic requirements of all VMs Vj that are allocated to run
on Hi. It is important to remember that resources of VMs
are dynamically used, giving space to re-utilization of idle
resources that were already reserved. Re-utilization of idle
resources could represent higher risk of unsatisfied demand
in case utilization of resources increases in a short period of
time. Therefore, providers need to reserve a percentage of
idle resources as a protection (defined by a protection factor
λk) in case overbooking is used. These constraints can be
formulated as:

m(t)∑
j=1

xj,i(t)

{
V rk,j(t)× Urk,j(t)+

+λk

[
V rk,j(t)(1− Urk,j(t))

]}
≤ Prk,i

(6)

for every time slot t, ∀i ∈ {1, . . . , n} and ∀k ∈ {1, . . . , r},
i.e. for each PM Hi and for each of the r considered
resource, where: λk is the protection factor for V rk,j ∈
[0,1]. Note that λk = 0 means full overbooking while
λk = 1 means no-overbooking.

2.5. Objective Functions
Although in general some objective functions can be

minimized while maximizing other objectives functions, in
this work each of the considered objective functions are
formulated in a minimization context.

2.5.1. Power Consumption Minimization. Based on Bel-
oglazov et al. [9], this work models the power consumption
of PMs considering a linear relationship with the CPU
utilization of PMs, without taking into account PMs at
alternative datacenters of the cloud federation. The power
consumption minimization can be represented by the sum
of the power consumption of each PM Hi (see Section 2.1),
as defined in (7).



f1(x, t) =

n∑
i=1

((pmaxi−pmini)×Ur1,i(t)+pmini)×Yi(t) (7)

where: x is the evaluated solution of the problem; f1(x, t) is
the total power consumption of PMs at instant t; pmini is
the minimum power consumption of a PM Hi. As suggested
in [9], pmini ≈ pmaxi ∗ 0.6; Yi(t) ∈ {0, 1}: indicates if
Hi is turned on (Yi(t) = 1) or not (Yi(t) = 0) at instant t.

2.5.2. Economical Revenue Maximization. For IaaS cus-
tomers, cloud computing resources often appear to be un-
limited and can be provisioned in any quantity at any
required time t [2]. Consequently, this work considers a
basic federated-cloud deployment architecture, where a main
provider may support requested resources that are not able
to be provided (e.g. a workload peak) by transparently leas-
ing low-price resources from alternative datacenters owned
by federated providers [10]. This leasing costs should be
minimized in order to maximize economical revenue.

Equation (8) represents the mentioned leasing costs,
defined as the sum of the total costs of leasing each VM
Vj that is effectively allocated for execution on any PM of
an alternative datacenter of the cloud federation. A provider
must offer its idle resources to the cloud federation at lower
prices than offered to customers in the actual cloud market
for the federation to make sense. The pricing scheme may
depend on the particular agreement between providers of
the cloud federation [10]. For simplicity, this work considers
that the main provider may lease requested resources (that
are not able to provide) from the cloud federation at 70%
(X̂j = 0.7) of its market price (Rj(t)). This Leasing Cost
(LC(t)) may be formulated as:

LC(t) =

m(t)∑
j=1

(Rj(t)×Xj(t)× X̂j) (8)

where: LC(t) is the total leasing costs at instant t; X̂j indi-

cates if Vj is allocated on the main provider (X̂j = 0) or on

an alternative datacenter of the cloud federation (X̂j = 0.7).

It is important to note that X̂j is not necessarily a
function of time. The decision of locating a VM Vj on
a federated provider is considered only in the placement
process, with no possible migrations between different IaaS
providers.

Additionally, overbooked resources may incur in un-
satisfied demand of resources at some periods of time,
causing Quality of Service (QoS) degradation, and con-
sequently Service Level Agreement (SLA) violations with
economical penalties. This economical penalties should be
minimized for an economical revenue maximization. Based
on the workload independent QoS metric presented in [9],
formalized in SLAs, this work presents (9) to represent
total economical penalties for SLA violations, defined as the
sum of the total proportional penalties costs for unsatisfied
demand of resources.

EP (t) =

m(t)∑
j=1

( r∑
k=1

Rrk,j(t)×Δrk,j(t)×Xj(t)× φk

)
(9)

where: EP (t) is the total economical penalties at instant t;
Rrk,j(t) is the economical revenue for attending V rk,j(t);
Δrk,j(t) is the ratio of unsatisfied resource k at instant t;
Δrk,j(t) = 1 means no unsatisfied resource; Δrk,j(t) = 0
means resource k is unsatisfied in 100%; φk is the penalty
factor for resource k, φk ≥ 1.

In this work, the maximization of the total economical
revenue that an IaaS provider receives is achieved by mini-
mizing the total costs of leasing resources from alternative
datacenters of the cloud federation as well as the total
economical penalties for SLA violations, as presented in
(10), i.e.

f2(x, t) = LC(t) + EP (t) (10)

where: f2(x, t) is the total economical expediture of the
main IaaS provider at instant t.

2.5.3. Resources Utilization Maximization. An efficient
utilization of resources is a relevant resource management
challenge to be addressed by IaaS providers. This work
presents a maximization of the resource utilization by min-
imizing the average ratio of wasted resources on each PM
Hi (i.e. resources that are not allocated to any VM Vj). This
objective function is presented in (11).

f3(x, t) =

∑n
i=1

[
1−

(∑r
k=1 Urk,i(t)

r

)]
× Yi(t)∑n

i=1 Yi(t)
(11)

where: f3(x, t) is the average ratio of wasted resources at
instant t.

2.5.4. Reconfiguration Time Minimization. Performance
degradation may occur when migrating VMs between PMs
[11]. Logically, it is desirable that the time of placement
reconfiguration by VM migration is kept to a minimum
possible. As explained in [11], the time that a VM takes
to be migrated from one PM to another could be estimated
as the ratio between the total amount of RAM memory to
be migrated and the capacity of the network channel.

Inspired in [11], once a placement reconfiguration is
accepted in the VMPr phase, all VM migrations are assumed
to be performed in parallel through a management network
exclusively used for these actions, increasing 10% CPU
utilization in VMs being migrated. Consequently, the min-
imization of the (maximum) reconfiguration time could be
achieved by minimizing the maximum amount of memory
to be migrated from one PM Hi to another Hi′ (i 	= i′).

Equation (12) is presented to minimize the maximum
amount of RAM memory that must be moved between PMs.

f4(x, t) = max(MTi,i′) ∀i, i′ ∈ {1, . . . , n} (12)

where: f4(x, t) is the network traffic overhead for VM
migrations at instant t; MTi,i′ is the total amount of RAM
memory to be migrated from PM Hi to Hi′ .



2.6. Normalization and Scalarization Methods

As a consequence of experimental results obtained in
a previous work by the authors [7] for VMP problems
optimizing multiple objective functions, even in a many-
objective optimization context for cloud computing datacen-
ters, instead of calculating a whole Pareto set approximation,
a scalarization method (e.g. minimum distance to origin)
is suggested to combine all considered objective functions
into a single objective function, therefore solving the studied
problem considering a Multi-Objective problem solved as
Mono-Objective (MAM) approach [3]. Consequently, each
of the considered objective function must be formulated in
a single optimization context (in this case, minimization)
and each objective function cost must be normalized to be
comparable and combinable as a single objective. This work
normalizes objective functions cost by calculating f̂i(x, t).

f̂i(x, t) =
fi(x, t)− fi(x, t)min

fi(x, t)max − fi(x, t)min
(13)

where: f̂i(x, t) is the normalized cost of objective function
fi(x, t) at instant t; fi(x, t) is the cost of original objective
function; fi(x, t)min and fi(x, t)max are the minimum and
maximum possible cost for fi(x, t) respectively.

Finally, the presented normalized objective functions are
combined into a single objective considering a minimum
Euclidean distance to the origin, expressed as:

F (x, t) =

√√√√ q∑
i=1

f̂i(x, t)2 (14)

where: F (x, t) is a unique function combining each f̂i(x, t)
at instant t; q is the number of objective functions. In this
work q = 4.

2.7. Scenario-based Uncertainty Modeling

In this work, uncertainty is modeled through a finite
set of well-defined scenarios S [12], where the following
uncertain parameters are considered: (i) virtual resources
capacities (vertical elasticity), (ii) number of VMs that
compose cloud services (horizontal elasticity), (iii) utiliza-
tion of CPU and RAM memory virtual resources and (iv)
utilization of networking virtual resources (both relevant for
overbooking). For each scenario s ∈ S, a temporal average
value of the objective function F (x, t) presented in (14) is
calculated as:

fs(x, t) =

∑tmax

t=1 F (x, t)

tmax

(15)

where: fs(x, t) is the temporal average of combined ob-
jective function for all discrete time instants t in scenario
s ∈ S; tmax is the duration of a scenario in time instants.

As previously described, when parameters are uncertain,
it is important to find solutions that are acceptable for any (or
most) considered scenario s ∈ S. This work considers min-
imization of the following criteria to select among solutions

from different evaluated alternatives as: (i) average [12], (ii)
maximum [12] and (iii) minimum objective function costs:

F1 = F (x, t) =

∑|S|
s=1 fs(x, t)

|S| (16)

F2 = max
s∈S

(fs(x, t)) (17)

F3 = min
s∈S

(fs(x, t)) (18)

where: F1 is the average fs(x, t) for all scenarios s ∈ S
[12]; F2 represents the maximum fs(x, t) considering all

scenarios s ∈ S while F3 is the minimum fs(x, t) consid-
ering all scenarios s ∈ S.

3. Evaluated Algorithms

This work evaluates five algorithms, presented in Table
1. Algorithm 1 (A1) is inspired in [13], considering a central-
ized decision approach while Algorithm 2 (A2) is inspired in
[9] following a distributed decision approach. Additionally,
Algorithm 3 (A3) considers a centralized decision approach
implementing the presented prediction-based VMPr Trigger-
ing and update-based VMPr Recovering methods. Algorithm
4 (A4) is inspired in [14], considering a centralized decision
approach. Algorithm 5 (A5), also inspired in [14], considers
a centralized decision approach implementing the presented
prediction-based VMPr Triggering and update-based VMPr
Recovering methods. In this context, A1, A2 and A4 consider
original VMPr Triggering and VMPr Recovering methods
proposed on each original research work [9], [13].

3.1. Incremental VMP (iVMP) Algorithm
In experimental results previously obtained by the au-

thors in [5], the First-Fit Decreasing (FFD) heuristic outper-
formed other evaluated heuristics in average; consequently,
the mentioned heuristic was the only one considered in this
work for the iVMP problem in all evaluated algorithms (A1
to A5), as summarized in Table 1. This way, this paper
focuses in its main contribution: the VMPr phase. Further
studies on alternative heuristics for the iVMP phase is left
as future work.

In the First-Fit (FF) heuristic, requested VMs Vj(t)
are allocated on the first PM Hi with available resources
(see Section 2.4.2). The considered FFD heuristic operates
similarly to FF heuristic, with the main difference that FFD
heuristic sorts the list of requested VMs Vj(t) in decreasing
order by revenue Rj(t) (first see details in Algorithm 1).

Taking into account the particularities of the presented
complex IaaS environment, the FFD heuristic presents some
modifications when comparing to the one presented in [5],
mainly considering the cloud service request types previ-
ously described in Section 2.1. In fact, Algorithm 1 shows
that cloud service destruction, scale-down of VM resources
and cloud services scale-in are processed first, in order to
release resources for immediate re-utilization (steps 1-3 of
Algorithm 1). At step 4, requests from V (t) are sorted by a
given criterion as revenue (Rj(t)) in decreasing order (of



Algorithm 1: First-Fit Decreasing (FFD) for iVMP.

Data: H , V (t), U(t), x(t) (see notation in Section
2.1)

Result: Incremental Placement x(t+ 1)
/* removed cloud services */

1 process cloud services destruction from V (t);
/* vertical elasticity */

2 process scale-down of VMs resources from V (t);
/* horizontal elasticity */

3 process cloud services scale-in from V (t);
/* sort VMs by revenue */

4 sort VMs by revenue (Rj(t)) in decreasing order;
/* vertical elasticity */

5 process scale-up of VMs resources from V (t);
/* horizontal elasticity */

6 process cloud services scale-out from V (t);
/* created cloud services */

7 foreach unprocessed Vj in V (t) do
8 while Vj is not allocated do
9 foreach Hi in H do

10 if Hi has enough resources to host Vj

then
11 allocate Vj into Hi and break loop;
12 end
13 end
14 if Vj is still not allocated then
15 allocate Vj in another federated provider;
16 end
17 end
18 end
19 update x(t+ 1) with processed requests;
20 return x(t+ 1)

course, other criterion may be considered, as CPU [5]),
where scale-up of VM resources and cloud services scale-
out are firstly processed (steps 5-6), in order to consider
elastic cloud services more important than non-elastic ones.
Next, unprocessed requests from Vj(t) include only cloud
service creations that are allocated in decreasing order (steps
7-18). Here, a Vj is allocated in the first Hi with available
resources (see (6)) after considering previously sorted V (t).
If no Hi has sufficient resources to host Vj , it is allocated in
another federated provider. Finally, the placement x(t + 1)
is updated and returned (steps 19-20).

Algorithm 2: Ant Colony Optimization (ACO) for
VMPr.

Data: H , U(t), x(t) (see notation in Section 2.1)
Result: Recalculated Placement x′(t)
/* initializes empty migration plan */

1 x′(t) = ∅;
2 Set pheromone value on all VM-PM pairs to τmax;
3 foreach q in nCycles do
4 foreach a in nAnts do

/* initializes empty ant score */

5 Scoreant = 0; x′(t)tmp = ∅; x′(t)a = ∅;
6 while | x′(t)tmp | <| VMs | do
7 Compute probability to be migrated;
8 Choose (v, p) randomly;
9 Add (v, p) to x′(t)tmp;

10 Update PMs used capacities;
/* calculates new score */

11 Scoretmp = f(x′(t)tmp);
/* replace if new score is better */

12 if Scoretmp <Scoreant then
13 Scoreant = Scoretmp;
14 x′(t)a = x′(t)a ∪ {(v, p)};
15 end
16 end
17 end
18 Choose the best migration plan as x′(t)cBest;

/* replaces x′(t) when a new best local

score is found */

19 if f(x′(t)cBest) <f(x′(t)); x′(t) = x′(t)cBest;
/* updates pheromore based on the new best

migration plan found */

20 foreach (v, p) ∈ V ∗ P do
21 τv,p = (1− ρ) ∗ τv,p +Δτ bestv,p ;
22 if τv,p >τmax ; τv,p = τmax;
23 if τv,p <τmin ; τv,p = τmin;
24 end
25 end
26 return x′(t)

3.2. VMP Reconfiguration (VMPr) Algorithms

Previous research work by the authors focused on de-
veloping VMPr algorithms considering centralized decisions
such as the offline Memetic Algorithms (MAs) presented in
[7], [8], [15] and the Ant Colony Optimization (ACO) pre-
sented in [14]. In this work, the considered VMPr algorithms
for centralized decision approaches are: (i) A1 and A3 (based

TABLE 1. SUMMARY OF EVALUATED ALGORITHMS AS WELL AS THEIR CORRESPONDING VMPR TRIGGERING AND RECOVERING METHODS. N/A
INDICATES A NOT APPLICABLE CRITERION.

Algorithm Approach iVMP VMPr VMPr Triggering VMPr Recovering
A1 Centralized FFD MA Periodically Cancellation
A2 Distributed FFD MMT Threshold-based N/A
A3 Centralized FFD MA Prediction-based Update-based
A4 Centralized FFD ACO Periodically Cancellation
A5 Centralized FFD ACO Prediction-based Update-based



on MA) as well as (ii) A4 and A5 (based on ACO). Details
on each algorithm can be found in [7] and [14].

Additionally, a distributed decision approach is also
considered in the experimental evaluation performed in this
work (A2). For this purpose, the most representative related
work was considered [9]: the Minimum Migration Time
(MMT) algorithm. The considered MMT is presented in
Algorithm 4. For original explanation see [9].

The main difference between the MA (see Algorithm 3)
and the ACO (see Algorithm 2) with the MMT algorithm
(see Algorithm 4) is the considered decision approach,
where the MA and ACO performs a centralized decision
that globally reconfigures the placement of VMs while the
MMT algorithm performs a distributed decision partially
reconfiguring VMs allocated in only one PM at a time.

3.3. Evaluated VMPr Triggering Methods

In this work, a VMPr Triggering method defines when
the VMPr phase should be triggered in a two-phase op-
timization scheme for VMP problems. Considering VMPr
Triggering methods, this work evaluated two main ap-
proaches: (i) periodical and (ii) threshold-based, mixing
them with the VMPr algorithms (see Table 1). This work
also presents a prediction-based approach for a novel VMPr
Triggering method, statistically analyzing the objective func-
tion costs and proactively detecting requirements for trigger-
ing the VMPr phase. The following sub-sections describe the
VMPr Triggering methods presented in this work as part of
a two-phase optimization scheme for VMP problems in a
complex IaaS environment.

3.3.1. Periodical Triggering. Several studied works consid-
ered to periodically triggering the VMPr phase. This work
considers the VMPr Triggering method described in [13],
triggering the VMPr phase every 10 discrete time instants.

Periodically triggering the VMPr could present disad-
vantages when defining a fixed reconfiguration period (e.g.

Algorithm 3: Memetic Algorithm (MA) for VMPr.

Data: H , U(t), x(t) (see notation in Section 2.1)
Result: Recalculated Placement x′(t)

1 initialize set of candidate solutions Pop0;
2 Pop′0 = repair infeasible solutions of Pop0;
3 Pop′′0 = apply local search to solutions of Pop′0;
4 x′(t) = select best solution from Pop′′0 ∪ x(t) considering

(14);
5 u = 0;Popu = Pop′′0 ;
6 while stopping criterion is not satisfied do
7 Popu = selection of solutions from Popu ∪ x′(t);
8 Pop′u = crossover and mutation on solutions of Popu;
9 Pop′′u = repair infeasible solutions of Pop′u;

10 Pop′′′u = apply local search to solutions of Pop′′u;
11 x′(t) = select best solution from Pop′′′u considering

(14);
12 increment number of generations u;
13 end
14 return x′(t)

Algorithm 4: Minimum Migration Time (MMT) for
VMPr running at PM Hi.

Data: H , U(t), x(t), Hi (see notation in Section 2.1)
Result: Recalculated Placement x′(t)
/* Hi has exceeded upper threshold */

1 if Hi is overloaded then
2 sort VMs Vj allocated into Hi in increasing order by

RAM;
3 while Hi is overloaded do
4 schedule migration of Vj from Hi to Hi′ using

FFD;
5 end
6 end
/* Hi does not reach the lower threshold */

7 if Hi is underloaded then
8 schedule migration of all Vj from Hi to Hi′ �= Hi if

possible;
9 end

10 update x′(t) considering scheduled migrations;
11 return x′(t)

every 10 time instants). For example, a reconfiguration could
be required before the established time, where optimization
opportunities could be wasted or even economical penalties
could impact the cloud datacenter operation. In certain cases
the reconfiguration may not be necessary and triggering the
VMPr could represent profitless use of resources.

3.3.2. Threshold-based Triggering. Another very studied
VMPr Triggering method considers a threshold-based ap-
proach, where thresholds are defined in terms of utilization
of PM resources (e.g. CPU). Thresholds indicate when a PM
Hi is considered to be underloaded or overloaded, and con-
sequently, a VMPr should be triggered. This work considers
a threshold-based VMPr Triggering method based on [9],
fixing utilization thresholds for overloaded and underloaded
PM detection, to 10% and 90% respectively.

The above described threshold-based VMPr Triggering
method makes isolated reconfiguration decisions at each
PM without a complete knowledge of global optimization
objectives, giving place to a distributed decision approach,
as the algorithm A2 implemented in this work.

3.3.3. Proposed Prediction-based Triggering. Considering
the main identified issues related to the studied VMPr Trig-
gering methods, this work presents a novel prediction-based
VMPr Triggering method, statistically analyzing the global
objective function F (x, t) that is optimized (see (14)) and
proactively detecting situations where a VMPr triggering is
potentially required for a placement reconfiguration.

The prediction-based VMPr Triggering method consid-
ers Double Exponential Smoothing (DES) [16] as a statisti-
cal technique for predicting values of the objective function
F (x, t), as formulated next in (19) to (21):

St = α× Zt + (1− τ)(St−1 + bt−1) (19)

bt = τ(St − St−1) + (1− τ)(bt−1) (20)

Zt+1 = St + bt (21)



Algorithm 5: Update-based VMPr Recovering.

Data: x(t), x′(t− β) (see notation in Section 2.1)
Result: Recovered Placement x′(t)

1 remove VMs Vj from x′(t− β) that are no longer running
in x(t)

2 adjust resources from x′(t− β) that changed in x(t)
3 add VMs Vj from x(t) that were not considered in

x′(t− β)
4 if x′(t− β) is better than x(t) then ;
5 return x′(t− β);
6 else return x(t) ;

where: α is the smoothing factor, 0 ≤ α ≤ 1; τ is the trend
factor, 0 ≤ τ ≤ 1; Zt is the known value of F (x, t) at
discrete time t; St represents the expected value of F (x, t)
at discrete time t; bt is the trend of F (x, t) at discrete time
t; Zt+1 is the value of F (x, t+ 1) at discrete time t.

At each discrete time t, the VMPr Triggering method
predicts the next N values of F (x, t) and effectively triggers
the VMPr phase in case F (x, t) is predicted to consistently
increase, considering that F (x, t) is being minimized.

3.4. Evaluated VMPr Recovering Methods

It is important to consider that the placement reconfigu-
ration calculated in the VMPr phase is potentially obsolete,
considering the offline nature of the VMPr problem formula-
tion. In this work, a VMPr Recovering method defines what
should be done with cloud service requests arriving during
the VMPr recalculation time β. The iVMP may receive
cloud service requests during the β discrete time that the
VMPr performed the calculation of an improved placement
(see Figure 1). Consequently, the calculated new placement
must be recovered according to the considered VMPr Recov-
ering method before the reconfiguration is performed. The
mentioned issue is mainly associated to centralized decision
approaches, such as the ones presented in [7], [13].

3.4.1. Canceling Reconfiguration. Calcavecchia et al.
studied in [13] a very basic VMPr Recovering method,
canceling the VMPr whenever a new request is received.
In this case, the VMPr is only performed in periods with
no requests, that could be considered unpractical for IaaS
providers, taking into account the highly dynamic envi-
ronment of cloud computing markets and particularly the
complex IaaS environment presented in this work.

3.4.2. Proposed Update-based Recovering. This work
presents a VMPr Recovering method based on updating the
placement reconfiguration calculated in the VMPr phase,
according to the changes that happened during the place-
ment recalculation time, applying operations to update the
potentially obsolete placement (see Algorithm 5).

The update-based VMPr Recovering method receives
the placement reconfiguration calculated in the VMPr phase
(corresponding to the discrete time t − β) and the current
placement x(t) as input data (see Algorithm 5).

Considering that any VM Vj could be destroyed, or
a cloud service could be scaled-in (horizontal elasticity)

during the β discrete times where the calculation of the
placement reconfiguration was performed, these destroyed
VMs are removed from x′(t − β) (step 1). Next, any
resource from a VM Vj could be adjusted due to a scale-
up or scale-down (vertical elasticity). Consequently, these
resource adjustments are performed in x′(t − β) (see step
2). Additionally, new VMs Vj could be created, or a cloud
service could be scaled-out (horizontal elasticity), during
the calculation of x′(t − β). In the example of Figure 1
cloud service S2 is created (+V2) and additionally a scale-
out of the mentioned cloud service was performed (+V3)
during the recalculation time β. These VMs are added to
x′(t−β) using an FFD heuristic (step 3), the same heuristic
used in the iVMP phase. Finally, if the partially recalculated
placement x′(t − β) is better than the current placement
x(t), x′(t−β) it is accepted (step 5) and the corresponding
management actions are performed (i.e. mainly migration
of VMs between PMs). In case x′(t− β) is not better than
the current placement x(t), no change is performed and the
VMPr phase finishes without any further consequence.

4. Experimental Evaluation

The following sub-sections summarize the experimental
environment as well as the main findings identified in the
experiments performed as part of the simulations to validate
the two-phase optimization scheme for VMP problems. The
quality of solutions obtained by the evaluated algorithms in
a scenario-based uncertainty model with 400 different sce-
narios was compared considering the following evaluation
criteria among solutions: (i) average, (ii) maximum and (iii)
minimum objective function costs, defined in (16) to (18).

4.1. Experimental Environment

The five evaluated algorithms (see Table 1) previously
presented in Section 3 were implemented using Java pro-
gramming language. The source code is available online1,
as well as all the considered input data and experimental
results. Experiments were performed on a GNU Linux Op-
erating System with an Intel(R) Xeon(R) E5530 at 2.40
GHz CPU and 16 GB of RAM memory. The following
parameters of the presented uncertain VMP formulation
were considered for the experimental evaluation presented
in this work (see details in Section 2):

• Number of considered resources: r = 3;
• Recalculation time for A1, A3, A4 and A5: β = 2;
• Recalculation time for A2: β = 1;
• Protection factor for each resource k: λk = 0.5;
• Penalty factor for each resource k: φk = 1.
As input data, available PMs (see (1)) include 4 diffe-

rent types of PMs. Considering the available PM types, 5
different IaaS datacenters were considered (DC1 to DC5).

Additionally, 80 different workload traces1 of requested
cloud services (V (t)) and their specifications (see (2)) were
considered as input data as well as their utilization of

1. http://github.com/DynamicVMP/DynamicVMPFramework



resources U(t) at each discrete time t (see (3)). Requested
VMs were considered according to instance types offered
by Amazon Elastic Compute Cloud (EC2).

It is important to remember that in this work, the fol-
lowing parameters are considered to be uncertain: (i) virtual
resources capacities (vertical elasticity), (ii) number of VMs
that compose cloud services (horizontal elasticity), (iii) uti-
lization of CPU and RAM memory virtual resources and
(iv) utilization of networking virtual resources (both relevant
for overbooking). Consequently, two different Probability
Distribution Functions (PDFs) were considered to represent
each parameter behavior (i.e. Uniform and Poisson). Work-
load traces of cloud service requests were generated using
a Cloud Workload Trace Generator (CWTG) for provider-
oriented VMP problems [17], and are available online2.

Considering the scenario-based uncertainty modeling ap-
proach presented in this work, each evaluated scenario s ∈ S
is composed by an IaaS and a workload trace of requested
cloud services, totalizing 400 different evaluated scenarios
(i.e. 80 workload traces × 5 IaaS datacenters).

For simplicity, only one cloud computing datacenter is
considered in this work. Experiments are summarized in
what follows: ten runs of algorithms A1, A3, A4 and A5
were performed for the 400 considered scenarios, taking into
account the randomness of the MA and ACO considered
for solving the VMPr phase. Average obtained results are
presented in Table 2. The same table also shows results of
one run of the determinist A2 algorithm, performed with the
same 400 scenarios.

4.2. Experimental Results

Table 2 presents values of the considered evaluation
criteria, i.e. F1, F2 and F3 costs (see (16) to (18)), sum-
marizing results obtained in performed simulations. The
evaluation criteria are presented separately for each of the
five considered IaaS cloud datacenter (DC1 to DC 5). Also,

2. http://github.com/DynamicVMP/workload-trace-generator

TABLE 2. SUMMARY OF EVALUATION CRITERIA IN EXPERIMENTAL

RESULTS FOR EVALUATED ALGORITHMS. VALUES IN BOLD INDICATE

BEST RESULTS.

Criterion DC1 DC2 DC3 DC4 DC5 Ranking

F1

A1 0.839 0.944 1.003 1.007 1.039 2nd

A2 0.841 0.946 1.002 1.003 1.037 3rd

A3 0.779 0.866 0.926 0.918 0.963 1st

A4 0.773 0.956 1.029 1.034 1.111 5th

A5 0.769 0.946 1.024 1.031 1.096 4th

F2

A1 1.029 1.138 1.208 1.224 1.252 2nd

A2 1.036 1.143 1.214 1.226 1.256 3rd

A3 1.006 1.102 1.163 1.183 1.205 1st

A4 0.936 1.280 1.552 1.568 1.771 5th

A5 0.938 1.307 1.496 1.508 1.658 4th

F3

A1 0.691 0.798 0.830 0.806 0.839 3rd

A2 0.690 0.763 0.808 0.785 0.820 2nd

A3 0.546 0.613 0.653 0.586 0.648 1st

A4 0.633 0.809 0.848 0.861 0.894 5th

A5 0.645 0.809 0.842 0.855 0.853 4th

the considered IaaS cloud datacenters represent datacenters
of different sizes and consequently, and the considered
workload traces represent different load of requested CPU
resources (e.g. Low (≤ 30%), Medium (≤ 60%), High
(≤ 90%), Full (≤ 98%) and Saturate (≤ 120%)) workloads.

Based on the information presented in Table 2, the Main
Findings (MFs) of the experimental evaluation performed in
this work are summarized as follows:

MF1: Algorithm A3 that considered the presented VMPr
Triggering and VMPr Recovering methods outperformed all
other evaluated algorithms in most experiments, taking into
account the considered evaluation criteria.

In summary, A3 obtained better results (minimum cost)
for the three considered evaluation criteria (see Table 2).

When considering average objective function costs (F1)
as evaluation criterion, A3 outperformed the other algo-
rithms except in the DC1, in which A5 got a slightly better
result. Additionally, when considering maximum objective
function costs (F2) as evaluation criterion, A3 obtained the
best results except in DC1, being outperformed by A4 in
7%. Finally, when considering minimum objective function
costs (F3), A3 got the best results on each datacenter.

Figure 2 illustrates the temporal average cost of the
single combined objective function for all scenarios s ∈ S,
denoted as fs(x, t) in (15).

MF2: The presented A3 algorithm outperformed other eval-
uated algorithms in most of the considered scenarios, when
considering average values of the single combined objective
function on each scenario s ∈ S.

As presented in Figure 2, A3 outperformed the other
4 algorithms in most of the considered scenarios, while
performing near to the other evaluated alternatives in the few
scenarios where it does not perform as the best alternative.
A3 was the best algorithm in 80% of the 400.

Summarizing, according to the performed experimen-
tal evaluation, the algorithm that considered the presented
prediction-based VMPr Triggering, the update-based VMPr
Recovering methods, and the MA based on [7], [8], [15] for
the VMP reconfiguration phase (A3), is the clear alternative
for solving the uncertain VMP problem in a two-phase
optimization scheme, considering the simulation results pre-
sented in this section.

5. Conclusions and Future Work

A renewed formulation of an uncertain VMP problem
was presented, for the optimization of the following four
objective functions: (i) power consumption, (ii) economical
revenue, (iii) resource utilization as well as (iv) placement
reconfiguration time (see Section 2.5) in a context of Multi-
Objective problem solved as Mono-Objective (MAM) [7].
Clearly, the formulation may consider any other objectives
functions with almost no change.

Additionally, a scenario-based uncertainty approach for
modeling relevant uncertain parameters considering the
complex IaaS environment in the two-phase optimization
scheme for VMP problems was presented. The considered
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Figure 2. Temporal average cost: Average values of fs(x, t) in DC1 to DC5 per each scenario s ∈ S.

uncertain parameters were: (i) virtual resources capacities
(vertical elasticity), (ii) number of VMs that compose cloud
services (horizontal elasticity), (iii) utilization of CPU and
RAM memory virtual resources and (iv) utilization of net-
working virtual resources (both relevant for overbooking).

Experimental results in simulations suggested that the
best algorithm for solving the presented uncertain VMP
problem in a two-phase optimization scheme is the one con-
sidering the prediction-based VMPr Triggering, the update-
based VMPr Recovering methods and a MA (A3 algorithm).

Several future works were also identified. First, a for-
mulation of a VMP problem considering a dynamic set of
PMs H(t), to consider PM crashes, maintenance or even
deployment of new generation hardware is proposed as a
future work.

Experimenting with geo-distributed datacenters is also
left as a future work, taking into account that simulations
presented considered only one cloud computing datacenter.

Finally, other VMPr algorithms can be proposed and
mixed with the presented VMPr Triggering and VMPr Re-
covering methods resulting in a potentially better variety of
new algorithms in a two-phase optimization scheme.
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