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Abstract. Cloud Service Brokers (CSBs) simplify complex resource al-
location decisions, efficiently linking up the tenant dynamic requirements
in to providers dynamic offers, where several objectives should ideally be
considered. Nowadays, both demands and offers should be considered
in dynamic environments, representing particular challenges in cloud
computing markets. This work proposes for the first time a pure multi-
objective formulation of a broker-oriented Virtual Machine Placement
(VMP) problem for dynamic environments, simultaneously optimizing
following objective functions: (1) Total Infrastructure CPU (TICPU),
(2) Total Infrastructure Memory (TIMEM) and (3) Total Infrastructure
Price (TIP) subject to load balancing across providers. To solve the for-
mulated multi-objective problem, a Multi-Objective Evolutionary Algo-
rithm (MOEA) is proposed. When a change arises in the demands or in
the offers, a set of non-dominated solutions is found (usually more than
one solution), selection strategies were considered in order to automati-
cally select a solution at each reconfiguration. The proposed MOEA and
selection strategies, were compared in different scenarios composed by
real data from providers in actual markets. Experimental results demon-
strate the good quality of the obtained solutions for the proposed sce-
narios.

Keywords: Cloud Computing, Cloud Brokering, Virtual Machine Place-
ment, Multi-Objective Optimization, Evolutive Algorithm

1 Introduction

Cloud computing datacenters delivers infrastructure, platform and software as
services available to end users in a pay-as-you-go basis [23]. Particularly, the In-
frastructure as a Service (IaaS) model provides processing, storage, network and
other fundamental computing resources where a customer is able to deploy and
run arbitrary software, which can include operating systems and applications
[1]. Cloud computing markets are currently composed by a wide ecosystem of
heterogeneous Cloud Service Providers (CSPs) with different pricing schemes,
virtual machine (VM) offers and features. Also, there are heterogeneous Cloud
Service Tenants (CSTs) with different requirements and budgets to deploy com-
plex cloud infrastructures. In this context, Cloud Service Brokers (CSBs) play
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a strategic role providing the CSTs with abstractions of complex resource al-
location decisions, mapping specific requirements of each cloud infrastructure
according to particular CST preferences (demands) onto available resources of
CSPs (offers) [2].

Efficiently mapping demands from CSTs to available CSP offers could be
defined as broker-oriented Virtual Machine Placement (VMP) [3]. In the VMP
literature, this process is also known as Cloud Application Brokerage (CAB) [4].
CSBs allow CSTs to deploy multi-cloud infrastructures, avoiding vendor lock-
in problems, while optimizing infrastructure costs and improving infrastructure
performance [4]. Multi-cloud deployment architecture help CSTs avoid vendor-
locking problems, also help optimizing total economical costs of the virtual in-
frastructure and even improve performance of cloud applications compared to a
single-cloud (i.e. deploying all VMs of a cloud application in only one CSP) [4].

Broker-oriented VMP problems could be studied in both static and dynamic
environments [3]. In static environments, CSP offers and CST requirements do
not change any time; in dynamic environments CSPs could change VMs features,
offers and prices over time, while CSTs could increase or decrease their demands
such as resources requirements. The broker-oriented VMP problem could be for-
mulated considering mono-objective or multi-objective approaches [3]. To the
best of the authors’ knowledge, there is no published work presenting a multi-
objective formulation of the considered problem for dynamic environments. This
work proposes for the first time a multi-objective formulation of the problem for
dynamic environments, simultaneously optimizing the following three objective
functions: (1) Total Infrastructure CPU (TICPU), (2) Total Infrastructure Mem-
ory (TIMEM) and (3) Total Infrastructure Price (TIP) while considering load
balancing across providers. Considered dynamic environment parameters are:
(1) dynamic VM type offers from CSPs, (2) dynamic pricing schemes from CSPs
and (3) variable number of required VMs from CSTs.

For solve the formulated multi-objective problem, a Multi-Objective Evolu-
tionary Algorithm (MOEA) is also proposed. Given that when a change arises
in the offer or in the demand, a set of non-dominated solutions is initially found,
to latter select a unique solution. Differents selection strategies were evaluated
in order to automatically select one solution of the Pareto set [24] at each dis-
crete time instant. Obtained results were evaluated in different scenarios with
real data from cloud providers.

Research objectives of this work are:

– Objective 1: Propose for the first time a pure multi-objective formulation of
a broker-oriented VMP problem, simultaneously optimizing three objective
functions: (1) TICPU, (2) TIMEM and (3) TIP, subject to load balancing
across providers and takeing account dynamic parameters such as: (1) dy-
namic VM resources offers, (2) dynamic pricing schemes from CSPs and (3)
variables requirements in terms of resources and budget from CSTs.

– Objective 2: Develop a Multi-Objective Evolutionary Algorithm (MOEA)
that is able to effectively solve large-scale instances of the proposed formu-
lation.
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– Objective 3: Perform experimental assessments of the obtained results by
MOEA developed, considering the selection strategies of the solution from
a Pareto set: (S1) random, (S2) minimum distance to origin, (S3) preferred
solution, (S4) maximum TICPU, (S5) maximum TIMEM and (S6) minimum
TIP.

The remainder of this work is organized as follows: Section 2 presents related
works summary and research motivation. Next, Section 3 details the proposed
multi-objective formulation of a broker-oriented VMP problem in dynamic en-
vironments. Design concepts of the proposed MOEA are explained in Section 4
while in Section 6.1 experimental results are summarized. Finally, conclusions
and future work are left to Section 5.

2 Related Work and Motivation

Broker-oriented VMP problems have been mostly studied in static environ-
ments in the literature, considering both mono-objective and multi-objective
approaches. Dynamic environments were briefly explored, but with a mono-
objective optimization approach.

2.1 Mono-Objective Brokerage in Static Environments

Tordsson et al. proposes in [4], scheduling algorithms for the cloud application
brokering (CAB) problem in static environments, taking into account fixed CST
requirements, fixed possible number of VM hardware configurations and known
hourly prices for running VMs in a CSP. The proposed Integer Linear Pro-
gramming (ILP) model considers the maximization of the Total Infrastructure
Capacity (TIC) while defining a maximum budget constraint [4]. CSTs may also
consider the following deployment constraints: (1) VM hardware configurations,
where a minimum and maximum instance type indexes are requested, (2) num-
ber of VMs of each instance type, where a minimum and maximum number of
VMs of each instance type are specified and (3) load balancing, where a min-
imum and maximum percentage of VMs that can be located at each CSP are
defined. It should be mentioned that the TIC objective proposed in [4] repre-
sents a particular capacity of CPU rather than other possible resources. To avoid
ambiguous terminology, this work redefines the mentioned objective function as
Total Infrastructure CPU (TICPU).

Chaisiri et al. proposes in [5], a Stochastic Linear Programming (SLP) model
to minimize the costs associated to hosting VMs in a multi-cloud deployment
architecture under future demand and price uncertainty, subject to constraints
to ensure that the requested demand is met and the allocations of VMs do not
exceed the resource capacity offered by CSPs. This work considers the costs min-
imized in [5] as Total Infrastructure Price (TIP). The proposed model take ac-
count two payment plans for CSTs: (1) reservation and (2) on-demand, as offered
by Amazon Web Services [6]. Extending the work proposed in [5], Mark et al.
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proposed in [7] an Evolutionary Optimal Virtual Machine Placement (EOVMP)
algorithm with a demand forecaster to allocate VMs using reservation and on-
demand plans for job processing. The proposed EOVMP is a hybridized algo-
rithm of Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO). The model proposed in [7] minimizes the total
price of the virtual infrastructure, denoted in this work as TIP.

2.2 Multi-Objective Brokerage in Static Environments

Kessaci et al. proposes in [8], a job scheduler using a Multi-Objective Evolution-
ary Algorithm (MOEA) considering response time and service price optimiza-
tion in order to maximize the CSTs satisfaction and simultaneously maximize
the CSBs profit, providing a Pareto set of non-dominated solutions rather than
a single solution.

Amato and Venticinque defines in [9, 10] that cloud brokering problems may
need to deal with several and (at the same time) contradictory objectives, finally
combining all objectives into just one objective function with a weighted sum
method. The considered objectives include [9, 10]: (1) TIP, (2) TICPU, (3) CSPs
Reputation and/or (4) Availability. The mentioned objective functions could
also be considered as two different types of constraints: mandatory (hard) and
optional (soft) constraints. The developed brokering tool is flexible enough to
define a custom model to meet particular CST requirements [9, 10].

2.3 Mono-Objective Brokerage in Dynamic Environments

Lucas-Simarro et al. proposes in [2], an optimization model for CSTs virtual
cluster placement across available CSPs offers. This scheduler considers average
prices or cloud price trends to suggest an optimal multi-cloud deployment. A
mono-objective approach is considered for TIP minimization, selecting the best
possible combination of CSPs that offer the lowest prices using an ILP formu-
lation. The following constraints are also considered in the proposed model [2]:
(1) distance, representing a minimum and maximum number of VMs that can
be relocated across CSPs (to guarantee a certain number of VMs working all the
time) and (2) load balancing, where a minimum and maximum percentage of all
VMs should be located at each CSP (to avoid vendor lock-in problems).

Li et al. proposes in [11], an ILP formulation for cloud service brokering
in dynamic environments where instance types, prices and service performance
are continuously changing throughout the service life-cycle. This work proposes
three different mono-objective optimization models: (1) TIC maximization, (2)
TIP minimization and (3) Migration Costs (MC) minimization. The following
constraints are applied to each optimization model: (1) budget, where TIP can-
not exceed a specified budget limit, (2) unique placement, where each VM has
to be of exactly one instance type and placed in exactly one CSP and (3) load
balancing, representing a minimum and maximum percentage of all VMs to be
located at each CSP. These optimization models were experimentally evaluated
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in different dynamic scenarios: (1) new instance type offers, (2) changing prices
and (3) service performance elasticity (number of VMs).

Since the scalability limitations of the ILP formulation proposed in [11],
Chamorro et al. presented in [12] a Genetic Algorithm (GA) for dynamic cloud
application brokerage also considering a mono-objective optimization approach.
The [12] works studies a broker-oriented VMP problem with large problem in-
stances considering dynamic environments such as: (1) variable resource offers
and (2) varying pricing from CSPs, as well as (3) dynamic requirements of CSTs.

2.4 Motivation: Multi-Objective Brokerage in Dynamic
Environments

Since that several different objective functions were already studied in the broker-
oriented VMP literature, these important objectives should be ideally taken into
account simultaneously. Trending dynamic markets of Infrastructure as a Service
(IaaS) present competitive advantages that should be exploited by formulating
the broker-oriented VMP problem considering dynamic parameters in actual
cloud markets. Then, this work proposes for the first time a pure multi-objective
formulation of a broker-oriented VMP problem in dynamic environments for the
simultaneous optimization of the following three objective functions: (1) Total
Infrastructure CPU (TICPU), (2) Total Infrastructure Memory (TIMEM) and
(3) Total Infrastructure Price (TIP) while considering a Minimum Distribution
Index (LOCmin) constraint to meet load balancing of VMs among CSPs, avoid-
ing vendor lock-in problems.

This work additionally considers as an important resource for any type of
virtual infrastructure or application the RAMMemory, denoted as TIMEM. Also
this work takes account soft constraints associated to each objective function cost
to guide the decision space exploitation and reduce the number of non-dominated
solutions in a Pareto set approximation [13].

To be able of effectively scale the resolution of the formulated broker-oriented
VMP problem to large problem instances, a MOEA is proposed. Considering that
the output of the proposed algorithm is a set of non-dominated solutions, a single
solution could be manually selected by a decision maker according to particular
needs. In order to facilitate it, this work uses different selection strategies to
automatically select a convenient solution at each stage, i.e. at any change of
the considered parameters that compose a dynamic environment.

In summary, the main contributions of this work are:

– a first pure multi-objective formulation of a broker-oriented VMP problem,
simultaneously optimizing three objective functions: (1) TICPU, (2) TIMEM
and (3) TIP, subject to load balancing across providers for dynamic environ-
ments: (1) dynamic VM type offers from CSPs, (2) dynamic pricing schemes
from CSPs and (3) variable number of required VMs from CSTs;

– a Multi-Objective Evolutionary Algorithm (MOEA) that is able of effectively
solve large-scale instances of the proposed formulation of the problem; and
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– experimental assessments of selection strategies for automatically selecting a
convenient solution from a Pareto set approximation for the studied problem:
(S1) random, (S2) minimum distance to origin, (S3) preferred solution, (S4)
maximum TICPU, (5) maximum TIMEM and (6) minimum TIP.

3 Proposed Multi-Objective Broker-oriented VMP
Formulation

Based on the state of the art research made by the author, this work presents
for the first time a formulation of a broker-oriented VMP problem in dynamic
environments, simultaneously optimizing the following objective functions: (1)
TICPU, (2) TIMEM and (3) TIP subject to load balancing of VMs between
CSPs. Formally, the proposed pure multi-objective broker-oriented VMP prob-
lem formulation can be enunciated as follows. Given:

– a set of m CSPs;
– a set of l(t) instance types ITj available at each CSP ck (denoted as ITj,k),

including its characteristics (as explained in Section 3.1);
– a set of n(t) VMs vi to be deployed across available CSPs ck lifetime expected

of the requested infrastructure;

it’s sought convenient combinations of instance types and CSPs to deploy the
requested VMs in dynamic cloud computing markets, satisfying the constraints
and simultaneously optimizing all objective functions defined in this formulation
in a pure multi-objective context. Based on hourly prices, each instant t typi-
cally represents an hour of resource provisioning and placement reconfiguration
is triggered for next instant t + 1 only if a change on any of the dynamic pa-
rameters of the cloud computing market is detected and whether it represents a
competitive advantage for the customer.

3.1 Problem Inputs

The proposed broker-oriented VMP problem receives information as data input,
maintaining an updated information on CSP offers and CST requirements. Thus,
this work considers a dynamic environment composed by the following dynamic
parameters: (1) new instance types may be introduced in the cloud market, (2)
changes in prices of resources and (3) changes in the number of requested VMs
or CST available budget.

The set of available CPU resources in the cloud computing market is repre-
sented as a matrix CPU(t) ∈ Z

l(t)×m, where each element CPUj,k represents
the available CPU resources associated to each instance type ITj at each ck CSP.

CPU(t) =

⎡
⎣

CPU1,1 CPU1,2 . . . CPU1,m

. . . . . . . . . . . .
CPUl(t),1 CPUl(t),2 . . . CPUl(t),m

⎤
⎦ (1)

where:
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CPUj,k: CPU resources [in # of cores] associated to each ITj at each ck;
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m.

Similarly, the set of available RAM memory resources is represented as a
matrix MEM(t) ∈ Z

l(t)×m. This set of resources can be formulated as:

MEM(t) =

⎡
⎣

MEM1,1 MEM1,2 . . . MEM1,m

. . . . . . . . . . . .
MEMl(t),1 MEMl(t),2 . . . MEMl(t),m

⎤
⎦ (2)

where:

MEMj,k:Memory resources [in GB] associated to each ITj at each ck;
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m.

Note that CPU(t) and MEM(t) matrices are functions of time because new
instance type offers may be introduced in the cloud computing market (e.g.
Amazon EC2 announced micro instances [14, 15]). Consequently, the number of
instance types l(t) could vary, representing potential placement reconfigurations.

The set of prices associated to ITj at each CSP ck is represented as a matrix
PRC(t) ∈ R

l(t)×m, where each element PRCj,k(t) represents its hourly price.

PRC(t) =

⎡
⎣

PRC1,1(t) PRC1,2(t) . . . PRC1,m(t)
. . . . . . . . . . . .

PRCl(t),1(t) PRCl(t),2(t) . . . PRCl(t),m(t)

⎤
⎦ (3)

where:

PRCj,k(t): Price [in $] associated to each ITj at each ck;
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m.

Additionally, this work takes account the overhead for placement reconfig-
urations in the proposed simulation, information about allocation (ATj,k) and
release times (RTj,k) [in hours] of each ITj,k are represented in the data input of
the formulated broker-oriented VMP problem. These information could be ex-
perimentally obtained by CSBs, as presented by Iosup et al. in [21]. Similarly to
the cited matrices, both sets of allocation (ATj,k) and release (RTj,k) times asso-
ciated to each ITj,k are represented as AT (t) and RT (t) ∈ R

l(t)×m respectively.
These can be formulated as:

AT (t) =

⎡
⎣

AT1,1 AT1,2 . . . AT1,m

. . . . . . . . . . . .
ATl(t),1 ATl(t),2 . . . ATl(t),m

⎤
⎦ (4)

and:

RT (t) =

⎡
⎣

RT1,1 RT1,2 . . . RT1,m

. . . . . . . . . . . .
RTl(t),1 RTl(t),2 . . . RTl(t),m

⎤
⎦ (5)

where:
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ATj,k: Allocation time [in hours] associated to each ITj at each ck;
RTj,k: Release time [in hours] associated to each ITj at each ck;
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m.

CSTs have to specify the number of requested VMs to be deployed, denoted
as n(t). Note that the number of VMs could be dynamically adjusted according
to particular CST requirements. Also, CST defines an estimated lifetime of the
infrastructure [in hours] (denoted as H(t)) and it indicates the time that the all
requested VMs will remain in operation.

3.2 Problem Outputs

Amatrix P (t) ∈ B
n(t)×l(t)×m, composed by decision variables xi,j,k(t), represents

a possible instance type selection and placement of VMs on available CSPs at
instant t. Consequently, the output data of the proposed multi-objective broker-
oriented VMP problem is a new matrix P (t+ 1) ∈ B

n(t+1)×l(t+1)×m, composed
by xi,j,k(t+1), representing a new instance type selection and placement of VMs
on available CSPs at the next instant t+1, considering changes presented in the
cloud market. It is important to note that P (t+1) is selected in this work from
a set of non-dominated solutions (Pareto set approximation).

3.3 Objective Functions

If one or more of the dynamic parameters considered in the proposed formulation
present a change in the cloud computing market (see Section 3.1), new oppor-
tunities could be exploited by reconfiguring the current placement of requested
VMs (e.g. migrating VMs among CSPs and/or changing selected instance types).
Inspired in [11], this work presents a Reconfiguration Overhead (RO) based on
the wasted resources during each placement reconfiguration period, considered
for both TICPU and TIMEM objectives to be presented in the following sub-
sections.

The Total Infrastructure CPU objective function is defined as the CPU
cores sum of the instance types selected for the execution of each VM required by
the CST, subtracting a possible overhead reconfiguration of the infrastructure.
The Total Infrastructure CPU TICPU is mathematically formulated below:

TICPU = H(t) ×
n(t)∑
i=1

l(t)∑
j=1

m∑
k=1

CPUj,k × xi,j,k(t + 1) (6)

where:

TICPU : Total Infrastructure CPU;
H(t): Expected remaining lifetime of the infrastructure [in hours];
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m;
CPUj,k: CPU capacity [in # of cores] of instance type ITj at CSP ck;
xi,j,k(t): Binary variable equals 1 if vi is of instance type ITj and is located

at CSP ck at instant t; otherwise, it is 0.
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CPU Overhead, the ROCPU is modeled as the CPU capacity wasted during
the reconfiguration period (i.e. allocation and release time [in hours] of modified
VMs). This overhead can mathematically be formulated as:

ROCPU =

n(t)∑
i=1

l(t)∑
j=1
j′=1

m∑
k=1
k′=1

[CPUj,k × RTj,k × xi,j,k(t) + CPUj′,k′ × ATj′,k′ × xi,j′,k′(t + 1)]

∀j �= j′; k �= k′

(7)

where:

ROCPU : Total CPU reconfiguration overhead;
n(t): Number of requested VMs vi, where 1 ≤ i ≤ n(t);
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m;
CPUj,k: CPU resources [in # of cores] associated to each ITj at each ck;
RTj,k: Release time [in hours] associated to each ITj at each ck;
ATj,k: Allocation time [in hours] associated to each ITj at each ck;
xi,j,k(t): Binary variable equals 1 if vi is of instance type ITj and is located

at CSP ck at instant t; otherwise, it is 0.

Finally, the objective function f1(x) is expressed as the difference between
the TICPU and its corresponding ROCPU (there is a release and allocation time
conversion from seconds to hours):

f1(x) = TICPU −ROCPU (8)

The Total Infrastructure Memory objective function is defined as the
RAM Memory sum (in GB) of the instance types selected for the execution of
each VM required by the CST, subtracting a possible overhead reconfiguration
of the infrastructure. The Total Infrastructure Memory TIMEM is mathemat-
ically formulated below:

TIMEM = H(t) ×
n(t)∑
i=1

l(t)∑
j=1

m∑
k=1

MEMj,k × xi,j,k(t + 1) (9)

where:

TIMEM : Total Infrastructure RAM memory;
H(t): Expected remaining lifetime of the infrastructure [in hours];
n(t): Number of requested VMs vi, where 1 ≤ i ≤ n(t);
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m;
MEMj,k: RAM Memory capacity [in GB] of instance type ITj at CSP ck;
xi,j,k(t): Binary variable equals 1 if vi is of instance type ITj and is located

at CSP ck at instant t; otherwise, it is 0.

RAM Memory Overhead, the ROMEM is modeled as the RAM Memory ca-
pacity wasted during the reconfiguration period (i.e. allocation and release time
[in hours] of modified VMs). This overhead can mathematically be formulated
as:
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ROMEM =

n(t)∑

i=1

l(t)∑

j=1
j′=1

m∑

k=1
k′=1

(MEMj,k ×RTj,k × xi,j,k(t) +MEMj′,k′ ×ATj′,k′ × xi,j′,k′(t+ 1))

∀j �= j′; k �= k′
(10)

where:

ROMEM :Total RAM memory reconfiguration overhead;
n(t): Number of requested VMs vi, where 1 ≤ i ≤ n(t);
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m;
MEMj,k:RAM memory resources [in GB] associated to each ITj at each

ck;
RTj,k: Release time [in hours] associated to each ITj at each ck;
ATj,k: Allocation time [in hours] associated to each ITj at each ck;
xi,j,k(t): Binary variable equals 1 if vi is of instance type ITj and is located

at CSP ck at instant t; otherwise, it is 0.

Finally, the objective function f2(x) is expressed as the difference between
the TIMEM and its corresponding ROMEM (there is a release and allocation
time conversion from seconds to hours):

f2(x) = TIMEM −ROMEM (11)

The Total Infrastructure Price objective function is defined as the exe-
cution price sum (in USD) of the instance types selected for each VM required
by the CST. The Total Infrastructure Price TIP is mathematically formulated
below:

f3(x) = TIP = H(t) ×
n(t)∑
i=1

l(t)∑
j=1

m∑
k=1

PRCj,k(t) × xi,j,k(t + 1) (12)

where:

TIP : Total Infrastructure Price;
H(t): Expected lifetime of the infrastructure [in hours];
n(t): Number of requested VMs vi, where 1 ≤ i ≤ n(t);
l(t): Number of instance types ITj at time instant t, where 1 ≤ j ≤ l(t);
m: Number of CSPs ck, where 1 ≤ k ≤ m;
PRCj,k(t): Price [in $] of instance type ITj at CSP ck;
xi,j,k(t): Binary variable equals 1 if vi is of instance type ITj and is located

at CSP ck at instant t; otherwise, it is 0.

3.4 Constraints

Feasible solutions of the proposed broker-oriented VMP problem are restricted
by the following constraints:
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– unique placement of VMs;
– load balancing of VMs among CSPs;
– lower and upper bounds (according to optimization context) associated to

each objective function f1(x) to f3(x).

Each of these constraints are detailed as follows.
Unique placement of VMs. For each VM vi, ∀i ∈ [1, . . . , n(t)], should be

provisioned selecting a single instance type ITj , ∀j ∈ [1, . . . , l(t)], and located to
run on a single CSP ck, ∀k ∈ [1, . . . ,m].

Load balancing of VMs between CSPs. In order to avoid vendor lock-in
problems [11], a load balancing constraint (LOCmin) is modeled as a minimum
percentage of VMs to be located at each CSP ck, ∀k ∈ [1, . . . ,m].

Adjustable constraints. Considering the multi-objective formulation of the
proposed broker-oriented VMP problem (Section 3.5), the set of non-dominated
solutions may comprise a large number of feasible solutions, being increasingly
hard of discriminate between solutions using only the dominance relation [22].
For this reason, this work proposes the utilization of lower and upper threshold
(depending on the optimization context) associated to each objective function
z ∈ {1, . . . , q} (Lz ≤ fz(x) ≤ Uz) in order to be able of reduce the number of
possible solutions to be delivered to the CST particular requirements. Since for
the CSTs may be hard to define appropriate thresholds because these values
are unknown a-priori, these lower and upper thresholds are modeled as soft
constraints [9], where a percentage of the expected thresholds could be exceeded,
always depending on the optimization context (e.g. if a CST expects at least 100
[GB] for TIMEM with an acceptable margin of 10%, the TIMEM of feasible
solutions for f2(x) must be higher or equal to L2=90 [GB] or if CST have a
budget of 120 USD for all the infrastructure with an acceptable margin of 10%,
the TIP of feasible solutions for f3(x) must be less or equal to U3=132 USD).

3.5 Multi-Objective Problem Formulation

Finally, the problem formulation of the broker-oriented VMP problem studied
in this work is based on several objectives functions and constraints detailed in
3.3 and 3.4 respectively. The problem formulation is proposed as follows:
Maximize:

y1 = f(x) = [f1(x), f2(x)] (13)

y Minimize:

y2 = f(x) = [f3(x)] (14)

where:

f1(x) = Total Infrastructure CPU (TICPU);

f2(x) = Total Infrastructure Memory (TIMEM);

f3(x) = Total Infrastructure Price (TIP).

(15)

subject to:
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e1(x) : unique placement of VMs;

e2(x) : load balancing of VMs between CSPs;

e3(x) : f1(x) ≥ L1;

e4(x) : f2(x) ≥ L2;

e5(x) : f3(x) ≤ U3;

(16)

4 Proposed Multi-Objective Evolutionary Algorithm
(MOEA)

In order to solve the proposed multi-objective broker-oriented VMP problem
presented in the Section 3, a Multi-Objective Evolutionary Algorithm (MOEA)
was developed, taking into account that it is a well studied solution technique
presenting good results for a large set of combinatorial optimization problems
[13]. The proposed MOEA is inspired in the Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [17] and it mainly works in the following way (see Algorithm
1):

At step 1, a set P0 of candidates is randomly generated. These candidates
are repaired at step 2 to ensure that P0 contains only feasible solutions. With
the obtained non-dominated solutions, the first set Pknown (Pareto set approx-
imation) is generated at step 3, considering lower and upper bounds associated
to each objective function z ∈ {1, . . . , q} (Lz ≤ fz(x) ≤ Uz). After initialization
at step 4, evolution begins (between steps 5 and 12).

Algorithm 1: Proposed MOEA for multi-objective broker-oriented VMP.

Data: CPU(t), MEM(t), PRC(t), AT(t), RT(t), n(t), H(t), P(t), selection
strategy. See Section 3.1 for notation details.

Result: P(t+1). See Section 3.2 for notation details.
1 initialize set of solutions P0

2 P ′
0 = repair infeasible solutions of P0

3 update set of solutions Pknown from P ′
0 applying lower and upper bounds

4 u = 0;Pu = P ′
0

5 while is not stopping criterion do
6 Qu = selection of solutions from Pu ∪ Pknown

7 Q′
u = crossover and mutation of solutions of Qu

8 Q′′
u = repair infeasible solutions of Q′

u

9 update set of solutions Pknown from Q′′
u applying lower and upper bounds

10 increment number of generations u
11 Pu = non-dominated sorting from Pu ∪Q′′

u

12 end
13 Pselected = selected solution (selection strategy parameter)
14 return Pselected

15 increment instant t; reset Pknown
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The evolutionary process basically follows the same behavior: solutions are
selected from the union of Pknown with the evolutionary set of solutions (or
population) also known as Pu (step 6), crossover and mutation operators are
applied as usual (step 7), and eventually solutions are repaired, as there may be
infeasible solutions (step 8). At step 9, the Pareto set approximation Pknown is
updated (if applicable); while at step 10 the generation (or iteration) counter is
updated. At step 11 a new evolutionary population Pu is selected. The evolu-
tionary process is repeated until the algorithm meets a stopping criterion (such
as a maximum number of generations), returning one solution Pselected from the
set of solutions Pknown (step 13), using one of the strategies to be presented in
Section 4.3.

4.1 Chromosome representation

Considering the output parameters presented in section 3.2, the proposed MOEA
represents a current instance types selection and placement of VMs on available
CSPs P(t) at instant t as a chromosome. A chromosome (or solution representa-
tion of the proposed broker-oriented VMP problem) is represented as an integer
matrix C(t) ∈ Z

2×n(t). The first row defines the selected instance types (ITj)
for each requested VM, while the second row indicates the selected CSP (ck)
in which the VM will be deployed. Note that the chromosome column size is
variable, since n(t) can change over time according to CST requirements.

Example: Suppose that a CST initially requires to deploy 13 VMs (n(t) = 7)
at t = 1. There are three available CSPs (m = 3) with four different instance
types (l(t) = 4) (see Table 1). Then, due to growing demands, the CST requires
to increase number of deployed VMs (n(t) = 10) at t = 2 (see Table 2). For
simplicity no reconfigurations of instance types or CSPs are presented in this
very simple example.

According to Table 1, the obtained infrastructure configuration at t = 1 is:

– v1 is of the type IT2 and is located at CSP c1;
– v2 is of the type IT1 and is located at CSP c3;
– v3 is of the type IT3 and is located at CSP c1;
– v4 is of the type IT3 and is located at CSP c2;
– v5 is of the type IT1 and is located at CSP c2;
– v6 is of the type IT2 and is located at CSP c3;
– v7 is of the type IT1 and is located at CSP c3.

When demand is increased, three additional VMs are deployed (n(t) = 10) at
t = 2, resulting in the infrastructure configuration presented in Table 2, where:

– v8 is of the type IT2 and is located at CSP c3;
– v9 is of the type IT3 and is located at CSP c2;
– v10 is of the type IT3 and is located at CSP c1.
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v1 v2 v3 v4 v5 v6 v7
2 1 3 3 1 2 1

1 3 1 2 2 3 3
Table 1. Example chromosome at t = 1.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
2 1 3 3 1 2 1 2 3 3

1 3 1 2 2 3 3 3 2 1
Table 2. Example chromosome at t = 2.

4.2 Evolutive Operators

The proposed MOEA considers a Binary Tournament method for selecting in-
dividuals for crossover and mutation operations [18]. The crossover operator
implemented in the presented work is the single point cross-cut [18]. This work
uses a mutation method in which each gene is mutated with a probability 1

n(t) ,

where n(t) represents the number of requested VMs. The fitness function con-
sidered in the proposed algorithm is based on the one presented by Deb. et al.
in [17].

The population evolution in the proposed MOEA is based on the population
evolution proposed in the Non-dominated Sorting Genetic Algorithm II [17]. A
new population Pu+1 is formed from the union of the best known population
Pknown and offspring population Qu, applying non-domination rank and crowd-
ing distance operators, as defined in [17].

4.3 Solutions Selection Strategies

In Pareto based algorithms, the Pareto set approximation can include a large
number of non-dominated solutions; therefore, in a dynamic environment, au-
tomatically selecting only one of the non-dominated solutions (step 13 of Algo-
rithm 1) can be considered as a new difficulty for the problem. This work uses
and evaluates the following selection strategies:

– Random (S1) Considering that the Pareto set approximation is composed
by non-dominated solutions, randomly selecting one of the solutions could
be an acceptable selection strategy.

– Minimum Distance to Origin (S2) The solution with the minimum
Euclidean distance to the origin is selected, since all objective functions in
a minimization context. For this purpose, f1(x) and f2(x) were redefined
as the difference between the maximum possible value at instant t. When
several solutions have equal Euclidean distance, only one of these solution is
randomly selected.

– Prefered Solution (S3) A solution is defined as prefered to another when
it is better in more objective functions [19]. When several solutions can be
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considered as prefered ones (there is a tie), the solution with higher TICPU
or TIMEM function value is selected.

– Maximum TICPU (S4) This strategy select the solution with maximum
TICPU function value*.

– Maximum TIMEM (S5) This strategy select the solution with maximum
TIMEM function value*.

– Minimum TIP (S6) This strategy select the solution with minimum TIP
function value*.

* When several solutions have the same minimum or maximun objective
function value, only one of these solutions is randomly selected.

5 Conclusion and Future Works

Current cloud computing markets have dynamic environment where the providers
offers variability about pricing schemes and computational resources, and the
CSTs requirement may change over time (e.g. available budget, VM resources
demands). In this context, the broker-oriented VMP problem resolution repre-
sents a true challenge.

This work proposes for the first time a formulation for broker-oriented VMP
problem resolution in a pure multi-objective context. This formulation simul-
taneously optimize three objective functions: (1) TICPU, (2) TIMEM and (3)
TIP, subject to load balancing across CSPs (Objective 1). In order to solve
the proposed multi-objective formulation of broker-oriented VMP problem, a
Multi-Objective Evolutionary Algorithm (MOEA) was developed that is able of
effectively solve large-scale instances of the problem (Objective 2).

In Pareto based algorithms, the Pareto set can include a large number of
non-dominated solutions but only one can be used for the reconfiguration of the
new infrastructure.
This work evaluates the following six solution selection strategies: (1) random,
(2) minimum distance to origin, (3) preferred solution, (4) Maximum TICPU,
(5) Maximum TIMEM and (6) Minimum TIP.

Several experiments were performed to assess the MOEA performance against
large instances of the problem and to evaluate the quality of the obtained solu-
tions. The experiments were focused on two scenarios which comprises a dynamic
environment through resources offers and pricing by CSPs and requirements of
CST, as well as large instances of the problem (up to 500 VMs). They proved
that the algorithm obtains good solutions that meet CSTs requirements. Be-
tween the selection strategies, preferred solution strategy has showed that gets
the best solution in terms of CSTs requirements (Objective 3).

As future works, the author suggests to study heterogeneity that may ex-
ist between different providers, generally in terms of computational resources.
In addition, a study on the feasibility of implementing a predictive model of
the behavior of CSPs offers and CSTs requirements in a purely multi-objective
context is proposed.
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6 Appendix

6.1 Experimental Results

Proposed MOEA (see section4) was implemented using Java programming lan-
guage. The source code as well as experimental results are available online1.

Experimental scenarios include real data input from different CSPs taken
from Amazon Web Services [16], these consist of several instances types in terms
of quantity of CPU and memory in GB (see Table 3), pricing schemes in USD
(see Table 4), and allocation and release times in seconds (see Table 5).

Resources m s M L XL

CPU(Cores) 1 1 2 2 4

Memory(GB) 1 2 4 8 16

Table 3. VMs hardware configuration per instance type. Micro(m), Small(s),
Medium(M), Large(L), Extra Large(XL).

CSP m s M L XL

EC2− US 0.013 0.026 0.052 0.104 0.239

EC2− EU 0.014 0.028 0.056 0.112 0.264

EC2−OC 0.020 0.040 0.080 0.160 0.336

Table 4. Hourly instance type prices per CSP in $. Micro(m), Small(s), Medium(M),
Large(L), Extra Large(XL).

Allocation Release

CSP m s M L XL m s M L XL

EC2− US 71 82 85 90 64 20 21 20 20 25

EC2− EU 71 82 85 90 64 20 21 20 20 25

EC2−OC 71 82 85 90 64 20 21 20 20 25

Table 5. Allocation and release times per instance type in seconds. Micro(m), Small(s),
Medium(M), Large(L), Extra Large(XL).

Table 6 summarizes parameters related to the proposed MOEA. The parame-
ters are: number of scenarios; t represent the time period in which CSTs maintain
the same requirements (for practical reasons, the value of t is constant); the pro-
posed MOEA was was executed several times (Runs per t) in order to average

1 https://github.com/lgchamorro/broker-VMP-MOEA
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all the obtained results and finally the GA parameters (population quantity and
generations).

Parameter Value

# of Scenarios 2

t 24 hours

Runs per t 10

Population Size 50

Number of Generations 200
Table 6. MOEA general parameters.

CSTs can define the minimum and maximum (depending of the optimization
context) values that they expect for every objective function (also knows as
minimum or maximum acceptable required values) for each scenario in 7 and 8.
Also, CSTs define a tolerance margin (in percent over specific expected value)
within which an output value could be considered as valid. Both, expected values
and tolerance are problem inputs defined by CSTs.

Expected Restriction Tolerance

t V Ms TICPU TIMEM TIP LOCmin in % Margin in %

1 100 300 1300 26 30 10

2 100 300 1300 26 30 10

3 120 380 1400 30 30 10

4 120 380 1400 30 30 10

5 120 380 1400 30 30 10

6 120 380 1400 30 30 10

7 100 300 1300 26 30 10
Table 7. CST requirements for Experiment 1.

Output values are assessed against the expected values in a optimization
context, this means that according to the objective function, the expected value
could designate an acceptable minimum (TICPU, TIMEM) or maximum (TIP).
In the same way, tolerance could extend below minimum acceptable values
(TICPU, TIMEM) or above the maximum acceptable value (TIP) based on
the tolerance percentage against expected value indicated by CSTs.

Experiments for each of the six evaluated selection strategies were repeated
10 times, given the probabilistic nature of Evolutionary Algorithms (EAs).

Experiments were performed considering two different scenarios. The differ-
ent changes that may occur in the cloud computing market are described below:

Experiment 1:

– t = 1. Initial infrastructure placement. Requested VMs n(t) = 100.
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Expected Restriction Tolerance

t V Ms TICPU TIMEM TIP LOCmin in % Margin in %

1 400 1100 4300 100 30 10

2 400 1100 4300 100 30 10

3 500 1400 5100 130 30 10

4 500 1400 5100 130 30 10

5 500 1400 5100 130 30 10

6 500 1400 5100 130 30 10

7 400 1100 4300 100 30 10
Table 8. CST requirements for Experiment 2.

Average

No. Selection Strategy TICPU TIMEM TIP

S1 Random 2,502.69 9,474.74 165.09

S2 Distance 2,543.16 9,696.35 169.75

S3 Prefered 2,725.89 10,556.18 184.84

S4 Maximum TICPU 2,711.18 10,476.18 183.67

S5 Maximum TIMEM 2,712.62 10,501.05 183.87

S6 Minimum TIP 2,315.17 8,567.42 148.20
Table 9. Obtained averaged results for Experiment 1.

– t = 2. Changes in CSP offers. New instance type offer (micro instances).

– t = 3. Changes in CST requirements. CST needs more VMs n(t) = 120.

– t = 4. Changes in CSP offers. Nighttime instance type discounts. The EC2−
OC provider offers 50% off.

– t = 5. Changes in CSP offers. Nighttime instance type discounts ends.

– t = 6. Changes in CSP offers. An instance type is removed from the market
(xlarge instances).

– t = 7. Changes in CST requirements. CST needs less VMs n(t) = 100.

Experiment 2:

– t = 1. Initial infrastructure placement. Requested VMs n(t) = 400.

– t = 2. Changes in CSP offers. New instance type offer (micro instances).

– t = 3. Changes in CST requirements. CST needs more VMs n(t) = 500.

– t = 4. Changes in CSP offers. Nighttime instance type discounts. EC2−OC
provider offers 50% nighttime off.

– t = 5. Changes in CSP offers. Nighttime instance type discounts ends.

– t = 6. Changes in CSP offers. An instance type is removed from the market
(xlarge instances).

– t = 7. Changes in CST requirements. CST needs less VMs n(t) = 400.

EST, Concurso de Trabajos Estudiantiles

46JAIIO - EST - ISSN: 2451-7615 - Página 180



Average

No. Selection Strategy TICPU TIMEM TIP

S1 Random 8,767.46 31,615.79 547.48

S2 Distance 8,926.14 32,362.23 561.90

S3 Prefered 9,137.18 33,369.80 579.78

S4 Maximum TICPU 9,096.16 33,132.56 576.34

S5 Maximum TIMEM 9,107.74 33,233.36 576.87

S6 Minimum TIP 8,433.01 29,995.62 518.41
Table 10. Obtained averaged results for Experiment 2.

6.2 Selection Strategy Analysis

Since six selection strategies are evaluated, these strategies are compared through
two methods [20] in order to check which strategy generates best solution in
terms of the values of the objective functions:

– Pareto Dominance: a solution u1 dominates another u2 if considering each
objective function u1, is better or equal than u2 and strictly better in at
least one objective.

– Pareto Preference: a solution u1 is defined as prefered over another u2 if u1

has more objective functions better evaluated than u2 in terms of quantity.

Tables 9 and 10 summarize the results obtained in both experiments. As seen
in Tables 11 and 12, in average none of the strategies is dominated by
another strategy in both experiments; consequently, no strategies dominates
the others, i.e. we can no establish that a given strategy is better than the other.

Pareto Dominance Pareto Preference

No. Selection Strategy S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

S1 Random N/A - - - - - N/A - - - - �
S2 Distance - N/A - - - - � N/A - - - �
S3 Prefered - - N/A - - - � � N/A � � �
S4 Maximum TICPU - - - N/A - - � � - N/A - �
S5 Maximum TIMEM - - - - N/A - � � - � N/A �
S6 Minimum TIP - - - - - N/A - - - - - N/A

Table 11. Experiment 1. Strategy Dominance and Preference.

Given that none of the considered strategies can be declared as the best strat-
egy considering exclusively Pareto Dominance, a further comparison of selection
strategies using the preference method (i.e. more quantity of better objective
functions values) criteria [13] is presented in Table 11. It may seem intuitive
that the S3 strategy (that uses the preference criterion itself) should be the
best; as experimentally validated and presented in Table 11 in both experi-
ments, given that in each algorithm iteration, the Preference strategy selects the
solution containing the greatest number of best objective functions.
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Pareto Dominance Pareto Preference

No. Selection Strategy S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

S1 Random N/A - - - - - N/A - - - - �
S2 Distance - N/A - - - - � N/A - - - �
S3 Prefered - - N/A - - - � � N/A � � �
S4 Maximum TICPU - - - N/A - - � � - N/A - �
S5 Maximum TIMEM - - - - N/A - � � - � N/A �
S6 Minimum TIP - - - - - N/A - - - - - N/A

Table 12. Experiment 2. Strategy Dominance and Preference.
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