
The power of writing, a pebble hierarchy and a
narrative for the teaching of Automata Theory

Carolina Mejı́a
Universidad Distrital Francisco José de Caldas

Proyecto Curricular Matemáticas
Bogotá, Colombia

Email: cmejiam@udistrital.edu.co

J. Andrés Montoya
Universidad Nacional de Colombia

Matemáticas
Bogotá, Colombia

Email: amontoyaa@unal.edu.co

Christian Nolasco
Departamento de Matemáticas

Universidad Nacional de Colombia
Bogota, Colombia.

Email: cnolascos@unal.edu.co

Abstract—In this work we study pebble automata. Those
automata constitute an infinite hierarchy of discrete models of
computation. The hierarchy begins at the level of finite state
automata (0-pebble automata) and approaches the model of one-
tape Turing machines. Thus, it can be argued that it is a complete
hierarchy that covers, in a continuous way, all the models of
automata that are important in the theory of computation. We
investigate the use of this hierarchy as a narrative for the teach-
ing of automata theory. We also investigate some fundamental
questions concerning the power of pebble automata.

Keywords—Pebble automata, finite state automata.

We study a class of nonclassical automata that we call
pebble automata. Pebble automata are two-way finite state
automata (2DFAs) provided with the weakest form of writing
ability: The ability of using along the computation a finite
amount of pebbles, which are used to mark cells of the input
tape.

Pebble automata are nonwriting extensions of two-way
finite state automata which can be organized hierarchically:
A pebble automaton provided with k pebbles is called a k-
pebble automaton (k-2DFA). Notice that the pebble hierarchy
is a hierarchy of writing power for nonwriting machines. The
automata at level zero are the standard 2DFAs, which are
provided with zero pebbles, and which do not write at all.
The automata at level k are the k-pebble automata, which can
approach the ability of writing using their k pebbles. Which
is the limit (sup) of the hierarchy?

We use the term ∞-pebble automata to denote the class
of pebble automata that are provided with an unbounded
amount of pebbles. The solely restriction is that the number
of pebbles that can be placed on a single cell is upperbounded
by a fixed constant that we call cell capacity. It is easy to
check that ∞-pebble automata are equivalent to one-tape
Turing machines. Thus, the pebble hierarchy allows us to
introduce Turing machines as the left end of an evolutionary
process that begins with finite state automata, and which is
driven by the addition of pebbles (writing power, ink drops).
It suggests that the studied hierarchy can be used as the axis
of a narrative for the teaching of automata theory and other
discrete models of computation. We discuss in some depth
this topic: It is the first application that we propose for those
nonclassical models of automata.

978-1-5386-3057-0/17/$31.00 ©2017 IEEE

It is natural to ask: Is the hierarchy strict? If it were
the case, the evolutionary process leading us from 2DFAs to
Turing machines could be decomposed into an infinite series
of discrete and natural steps. And then, it could be concluded
that we are dealing with a powerful construction that could
be used in the analysis and teaching of Turing machines and
other discrete models of computation. On the other hand, if the
hierarchy were finite, we would have something like a phase
transition occurring at some k. This last possibility seems to
be very unlikely.

It should be said, at this point, that the hierarchy is strict,
and that it was known previous to this work. We present a new
proof of this fact, and we use this proof to solve some further
questions about pebble automata and their relations with other
models of automata.

Organization of the work and contributions. This work
is organized into three sections. In section 1 we introduce
the model of pebble automata as well as some fundamental
questions that are investigated along the paper. We prove in
this section a weak form of universality for pebble automata,
and we gather some easy facts that allow us to show that the
pebble hierarchy is strict. We study, in section 2, the relations
between this hierarchy of language classes and some other
interesting classes of formal languages. We show that there
exist deterministic context-free languages that are not included
in the hierarchy, and we introduce the nondeterministic ver-
sions of the pebble classes. We can give satisfactory answers to
some of the fundamental questions about the relation between
deterministic and nondeterministic classes. In section 3 we
include some concluding remarks, most of them related to the
use of the pebble hierarchy as a narrative for the teaching of
Theory.

I. PEBBLE AUTOMATA: A HIERARCHY OF WRITING
POWER

k-pebble automata are 2DFA’s provided with k indistin-
guishable pebbles. Those automata can use pebbles as markers:
Pebbles can be placed, sensed and lifted.

Definition 1: Let k ≥ 1, a k-pebble automaton is a tuple
M = (Q, q0, A,H,Σ, δ) such that:

1) Q is a finite set of inner states.
2) q0 ∈ Q is the initial state.
3) H ⊂ Q is the set of halting states.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/153388262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4) A ⊂ H is the set of accepting states.
5) Σ is the finite input alphabet.
6) δ is the transition function which is a partial function

from the set Q × Σ × {0, ..., k} × {0, ..., k} into
the set Q × {0, ..., k} × {0, ..., k} × {←,△,→} .
Let (q, a, r, s) ∈ Q × Σ × {0, ..., k} × {0, ..., k},
tuple (q, a, r, s) encodes a configuration of M, the
configuration given by:
The inner state is state q, the scanned cell is filled
with the letter a, a stack of r pebbles is placed on
this cell, and the automaton M is carrying with s
pebbles in its bag.
Then, it follows that if (q, a, r, s) ∈ dom (δ), the
inequality r + s ≤ k must hold. Moreover, If
δ (q, a, r, s) = (p, n,m, d), we have that M changes
its inner state from q to p, it leaves n pebbles on
the scanned cell, keeps m pebbles on its bag (the
equality r + s = n +m ≤ k must hold) and moves
in the direction indicated for d (the symbol △ forces
the workhead to stay at the same cell).

Notice that pebble automata are quasi-writing machines.
Thus, it can make a big difference if we allow the workhead
to visit the empty cells of the input tape. The pebble automata
that cannot visit the empty cells are called standard, while
the pebble automata that are allowed to use all those cells are
called unrestricted.

We want to study the power of pebble automata when they
are used as language acceptors. Thus, we define the following
classes of formal languages

Definition 2: Let L be a language, we have that L ∈ Pk,
if and only if, language L can be recognized using a standard
k-pebble automaton..

We use the symbol P to denote the set
⋃

i∈N

Pi. Standard

pebble can be easily simulated by deterministic linear bounded
automata (DLBAs): The cell contents of pebble automata,
which are pairs constituted by a stack of pebbles and an input
letter, can be suitably encoded into the work alphabets of
linear automata. It can also be checked that if P 6= NP, the
later containment is strict: The set P is contained in ptime,
while the problem SAT can be solved by deterministic linear
bounded automata. Thus, if DCSL denotes the set constituted
by all the deterministic context-sensitive languages, we have
that the containment P ⊆ DCSL holds, and if P 6= NP, the
later containment is strict.

Let M be an unrestricted pebble automaton. We notice
that automaton M can use its pebbles to simulate counters.
It follows that 4-pebble unrestricted automata can simulate
four counters, and as a consequence they can simulate two
pushdown stacks [5]. Recall that the class of automata provided
with two pushdown stacks constitutes an universal model of
computation. We are interested in models of automata which
are strictly weaker than Turing machines. Therefore, we focus
our attention on the class of standard pebble automata. From
now on, we use the term pebble automata to refer the more
restrictive notion of standard pebble automata.

What does it happens if we drop the finiteness constraint,
and we consider automata provided with an unbounded amount
of pebbles? We call ∞-pebble automata to the two-way

automata that are provided with an infinite amount of pebbles.
The solely restriction that we impose on those automata is
that given an ∞-pebble automaton M, there exists k (the
pebble capacity of M) such that no more than k pebbles
can be stacked on the same cell. It is easy to check that the
standard version of this new model of automata is equivalent
to the model of deterministic linear bounded automata. It is
also easy to check that the unrestricted version is equivalent to
the model of one-tape Turing machines. Thus, beginning with
2DFAs, and pebble by pebble, we arrived to an universal model
of computation. We think that it has an enormous teaching
potential, most of this teaching potential relies on the following
fact:

Beginning with a natural and easy to describe model of
computation, we can deploy a hierarchy of automata that
approaches (and converges to) an universal model of compu-
tation. Moreover, the transition between two successive levels
of the hierarchy is given in a natural way by the addition of
an epsilon of writing power (a pebble).

It is important to stress that the teaching potential of the
construction cannot be reduced to the above fact. It happens
that some fundamental phenomena (ideas) of computer science
begin to emerge at the lowest levels. It also happens that most
of the fundamental questions of theoretical computer science
begin to arise when one thinks seriously about the lowest levels
of the pebble hierarchy.

Let us check some easy facts related to the very first levels.

We know that P0 is the set of regular languages. The Blum-
Hewitt theorem implies that P1 = P0 [1]. The language of
squares, which is the language

{

ww : w ∈ {0, 1}∗
}

,

can be easily recognized with 2 pebbles, and hence two pebbles
are enough to recognize some languages that are not context-
free. The set

{1p : p is a prime number} ,

can be recognized with three pebbles. With four pebbles one
can recognize the set

{

1i01j01i
j

: i, j ≥ 0
}

,

and it means that four pebbles allows one to compute the

general exponential function. More complex sets can be rec-
ognized with the addition of some few pebbles.

An important fact about pebble automata is that those
automata are an elementary model of programmable machines
(unlike 2DFA’s). Notice that the ability of searching a transition
table is close to the ability of searching for a substring that
matches a given pattern. Pebble automata are well suited for
pattern matching tasks. When simulating a transition table
a little bit of writing power could become necessary, but it
happens that pebble automata can use some of their pebbles
to write short strings. Thus, it seems that pebble automata
can use their marking ability to search and simulate transition
tables. We have the following theorem.

Theorem 3: Given n, k ≥ 1, there exists N ∈
O (k + log (n)), and there exists a N -pebble automatonMn,k

such that any k-pebble automaton with at most n states can
be simulated by Mn,k.

Proof: Let k, n ≥ 1, it is not hard to adapt the standard
construction for universal Turing machines to get, for some
N ∈ O (k + log (n)) , the construction of a N -pebble automa-
ton Mn,k that can be programmed to simulate any k-pebble
automaton with at most n states.

Let M be a k-pebble automaton with n states, and let w
be an input of M. We can suppose that the set of states of
M is the set {1, ..., n} . Automaton Mn,k uses k pebbles to
simulate the k pebbles of M, it uses O (1) pebbles to search
for the transition table of M which is encoded as part of the
input, and it uses O (log (n)) pebbles to keep track of the state
of M. The later task is accomplished in the following way:

Automaton Mn,k uses O (log (n)) pebbles to write down
the binary code of the actual state of M, the workspace
employed are the first O (log (n)) cells of its input tape. The
encoding is fairly simple: Occupied cell is equal to one, empty
cell is equal to zero.

Notice that if N is a n-state 2DFA, then N can execute
at most n programs: Each program corresponds to choose an
state as the initial state. On the other hand, automaton Mn,k

can run an infinite number of programs: Observe that there are
no restrictions, in the statement of the above theorem, related
to the alphabet size of the automata that can be simulated by
Mn,k. This later fact clearly means thatMn,k can simulate an
infinite number of pebble automata. Thus, we can conclude that
the universality (self-reference) phenomenon begins to emerge
at the lowest levels of our hierarchy. However, universality
is not achieved at some of the levels of the hierarchy, it is
achieved at the limit (like in set theoretical forcing [4]).

We want to convince the reader of the enormous teaching
potential of pebble automata. Therefore, it becomes important
to point out that some sophisticated problem-solving (program-
ming) strategies can be implemented at the lowest levels of
the pebble hierarchy. We will elaborate on this point in next
subsection.

A. Programming strategies related to palindromes
The language of palindromes, which is the language

Pal =
{

w ∈ {0, 1}∗ : w = wR
}

,

has played a very important role in the theory of formal lan-
guages [8]. Notice that the ability of recognizing palindrome
is close to the abilities that are required to search a transition
table. We know that Pal is a nonregular language, and that it
cannot be recognized with a single pebble. It is easy to check
that Pal can be recognized using two pebbles and a naive
zig-zag strategy. Let i ≥ 1, and let Pali be the language

{w1 · · ·wi : |w1| , ..., |wi| ≥ 2 & w1, ..., wi ∈ Pal} .

How many pebbles requires the recognition of Pali? A first
plausible guess is that Pali requires i+1 pebbles. However, it
can be checked that Pal2 can be recognized with two pebbles.

Theorem 4: Pal2 ∈ P2.

Proof: We will describe a 2-pebble automaton M that
recognizes the language Pal2.

Let w be the input string of M. We suppose the follow-
ing: Automaton M has checked for all i ≤ j that either
w [1, ..., i] /∈ Pal or w [i+ 1, ..., |w|] /∈ Pal. We also suppose
that the pebbles are located at cells 1 and j + 1.

The automaton begins to move the pebbles alternatively, the
pebble on the left is moved rightward, and the pebble on the
right is moved leftward, by the way the automaton compares
the contents of the occupied cells. If a mismatch is found,
then it moves the pebbles on the opposite direction until the
left pebble reaches the leftend of the input tape. Notice that
the right pebble has been placed on cell j+1, and it has been
checked that w [1, ..., j + 1] /∈ Pal. Then, the right pebble is
moved to cell j + 2. Notice that the inductive condition has
been preserved.

Suppose that no mismatch has been found and the two peb-
bles are placed on the same cell. It means that w [1, ..., j + 1] ∈
Pal. Then, the automaton moves the pebbles alternatively on
the opposite direction until the left pebble reaches the leftend
of the input tape. The right pebble is on cell j + 1, and it is
time to check if w [j + 2, ..., |w|] belongs to Pal. The right
pebble is moved to cell j + 2, while the left pebble is moved
to cell |w|. Then, a zig-zag strategy is employed to check if
w [j + 2, ..., |w|] ∈ Pal. If this last checking is positive the
automaton halts and accepts the input, otherwise it manages
to place one of the pebbles on cell j+3 and the other one on
cell 1. Once again the inductive condition has been preserved,
and hence it becomes clear that such an automaton correctly
recognizes the language Pal2.

How many pebbles are required to recognize the language
Pal3?

We can use a running time argument to show that two
pebbles are not enough. First, we observe that pebble automata
are a special type of restricted one-tape Turing machine. It
happens that any one-tape Turing machine recognizing Pal3

requires time Ω
(

n4
)

. And, to finish with the argument, we
have that the running time of a terminating 2-pebble automaton
is O

(

n3
)

.

Let i ≤ j, notice that the number of pebbles required to
recognize the language Pali is at most as large as the number
of pebbles required to recognize Palj. Thus, we have that for
all i ≥ 3, the language Pali cannot be recognized with two
pebbles. We can prove that three pebbles are enough for the
recognition of the languages Pal3 and Pal4. To this end, we
use a divide and conquer strategy.

Theorem 5: The languages Pal3 and Pal4 can be recog-
nized with three pebbles.

Proof: We make the proof for Pal4.

Let w be the input string. Suppose that a single pebble is
placed on the input tape, and suppose that it is placed on cell
i, call this pebble the reference pebble. The automaton uses
the remaining two pebbles to check if w [1, ..., i] belongs to
Pal2, and hence, if the checking is positive, it uses the same
two pebbles to check if w [i+ 1, ..., |w|] belongs to Pal2. If the
two checkings are positive the automaton halts and accepts the
input, otherwise it moves the reference pebble to cell i+1. The
computation begins with the reference pebble placed at cell 4.
The computation is rejecting if the reference pebble reaches
the cell |w| − 3.

The above strategy can be easily extended to prove that the
language Pali can be recognized using ⌈log (i)⌉+ 1 pebbles.
We have to ask once again: How many pebbles requires the
recognition of Pali?1

We are interested in proving that the number of pebbles
required by Pali goes to infinity when i does. We can
try a running time argument, it seems plausible, notice that
the running time of a terminating k-pebble automaton is
O
(

nk+1
)

. However, we need an additional fact to finish with
the argument, and it happens that this second ingredient fails
to be true: The language Pali is a context-free language, and
given a context-free languages L, we have that there exists an
one-tape Turing machine that recognizes L in time O

(

n6
)

.
Thus, we have that (from the running time point of view)
five pebbles could be enough for the recognition of all those
infinitely many powers of Pal.

It is not hard to prove, although the details can be cum-
bersome, that the above divide and conquer strategy is an
optimal one, and that for all i ≥ 2 the language Pali requires
⌈log (i)⌉ + 1 pebbles. The later fact implies that the pebble
hierarchy is strict. It is important to stress that this later fact
was proved long time ago by Hsia and Yhe [6]. They used in
their proof a nonuniform sequence of languages that we call
the HY-sequence.

In the next sections we will prove some facts concerning
the relation of the pebble hierarchy with some other classes of
formal languages. To this end, we use that the pebble hierarchy
is infinite. However, it is important to stress that those results
cannot be obtained from the proof of Hsia and Yhe [6], given
the nonuniform character of their sequence (see below). All
the results consigned in the next few sections can be easily
obtained from the following fact:

There does not exist N such that all the powers of Pal
can be recognized with N pebbles.

II. THE PEBBLE HIERARCHY AND ITS RELATIONS WITH
SOME OTHER MODELS OF AUTOMATA

Hsia and Yhe [6], as well as Ritchie and Springsteel
[10], introduced pebble automata as computational devices
that could be used to recognize context-free languages (CFLs,
for short), and whose architecture is by far more elementary
than the architecture of Pushdown automata (PDAs). Those
two references seem to be the unique relevant references that
are related to our investigations on pebble automata. Most
references on pebble automata are related to two-dimensional
automata and picture recognition, it includes the classical
reference of Blum and Hewitt [1], where it is proved that 1-
pebble automata are as powerful as 0-pebble automata. Some
references refer the model of tree walking automata and tree-
language recognition (see for instance [2]). Some other works
study more restricted models of pebble automata that are
equivalent to finite state automata (see [3] and the references
herein).

1Notice that this question is a typical lower bound question. Thus, it can be
argued that some of the fundamental questions of complexity theory can be
introduced in a natural way using the pebble hierarchy (pebbles as computing
resources).

A. Relations with context free languages

It is proved in [10] and [6] that many important classes
of CFLs as the bounded, the structured and the standard CFLs
can be recognized by pebble automata. Let CFL be the set con-
stituted by all the context-free languages, the aforementioned
authors left open the following question: Is CFL included in
the set

⋃

i∈N

Pi.?

We can shed some light on this old question. First, we
observe that

⋃

i∈N

Pi. is included in logspace. This later fact

suggests that there exist context-free languages that cannot be
recognized by pebble automata. It is widely believed that there
exist (deterministic) context-free languages that do not belong
to L. Such a belief motivated the introduction of the class
logDCFL (see [12]), otherwise this class would be trivially
equal to L.

Thus, it seems easy to prove that CFL is not included in
⋃

i∈N

Pi. If one wants to write down a detailed proof of this fact,

he can try to look for a sequence of languages, say {Li}i≥2
,

satisfying the following two properties:

1) For all i ≥ 1, there exists j such that Lj ∈ Pi\Pi−1.
2) The sequence is uniform. It means that there exists

an alphabet Σ such that for all i ≥ 2 it happens that
Li ⊂ Σ∗, and given a /∈ Σ we have that the language

L∞ =
{

akw : w ∈ Lk

}

is a context free language.

If {Li}i≥2
is such a sequence, we have that L∞ is a

context-free language that does not belong to
⋃

i∈N

Pi. The

HY-sequence is nonuniform, but the sequence
{

Pal
i
}

i≥1

is
uniform. Thus, we can prove the following

Theorem 6: There exists a context-free language that is not
included in P .

Proof: Let a 6= 0, 1. It remains to be proved that the
language

Pal∞ =
{

akw : w ∈ Palk
}

,

is a context-free language. Notice that Pal∞ can be easily
recognized using a nondeterministic pushdown automaton sim-
ilar to the one that recognizes the language Pal∗, the main
difference being the following one:

Let akw be the input string. Each time the automaton
recognizes a palindromic factor of w, it makes an additional
ε-transition to pop one symbol a.

If the input is akw, the automaton writes k symbols a on
the pushdown stack at the beginning of the computation. The
automaton accepts by empty stack.

It seems that the language Pal∗, which is a context-free
language, cannot be recognized by pebble automata. If this
later conjecture were true, we could present an alternative
proof of the above theorem as well as alternative proofs of
corollaries 10 and 11.

B. Nondeterministic pebble automata

Nondeterministic pebble automata are pebble automata that
can behave nondeterministically. We omit to introduce a formal
definition of this new model of automata. The first question
to ask: Does nondeterminism confer computational power to
pebble automata?

Definition 7: NP i is the class of languages that can be
nondeterministically recognized using i pebbles.

Observe that for all i ≥ 0

Pi ⊂ Pi+1 ⊆ NPi+1 ⊆ NP i+2

Thus, the first question concerns the nature of the con-
tainment relations between deterministic and nondeterministic
classes.

The cases i = 1, 0 are special cases. We have that

P0 = P1 = NP1 = NP0

Next theorem allows us to answer the above question for
all i ≥ 3

Theorem 8: For all i ≥ 1, the language Pali can be
nondeterministically recognized using three pebbles.

Proof: Let i ≥ 3, we define a 3-pebble automaton
Mi that recognizes the language Pali. Automaton Mi uses
nondeterminism to guess the end position of i palindromic
factors. It works , on input w, as follows:

Suppose that Mi is located on cell j, the three pebbles
are placed on cell j, the inner state of Mi encodes a number
k ≤ i, and Mi has checked that w [1, .., j] ∈ Palk. Suppose
that k < i. If j = |w|, automaton Mi halts and rejects.
Otherwise, it places one pebble on cell j + 1 and advances
to the right carrying the remaining two pebbles until it non-
deterministically chooses a position l > j + 1. Then, it places
one pebble on cell l, and uses the other two pebbles to check
if w [j + 1, ..., l] ∈ Pal. If the checking is positive it places
the three pebbles on cell l and encodes the number k + 1 in
its inner state.

Remark 9: It can also be proved, using a similar algorithm,
that Pal∗ belongs to NP3.

We can get, from the above theorem, the following corol-
laries:

Corollary 10: For all i ≥ 3, it happens that Pi $ NP i.

Moreover, it follows that the two hierarchies are not
interleaved, and nondeterminism cannot be replaced by an
increasing in the number of pebbles.

Corollary 11: For all i ≥ 1, we have that NP3 " Pi.

There are many other elementary and fundamental ques-
tions to be considered. The investigation of those questions
could have an enormous teaching potential. Consider the
following questions:

• Is the containment P2 $ NP2 strict?

• Is the nondeterministic pebble hierarchy strict?

• How many pebbles can be simulated by nondetermin-
ism? Or, it is better to ask: Does there exist k > 0 such
that for all i the containment Pi+k $ NP i holds?

III. CONCLUDING REMARKS: PEBBLE AUTOMATA AND
THE CHOMSKY HIERARCHY

We claim that the pebble hierarchy is a powerful construc-
tion with an enormous teaching potential.

Chomsky’s hierarchy has been used as the standard nar-
rative for the teaching of automata theory. However, some
criticism concerning the role of this hierarchy has been raised
in recent years (for an informal discussion see [7] and [11]).
It has been argued that the Chomsky hierarchy is not really
a hierarchy but a small set of language classes with a linear
order given by the containment relation. Moreover, it has been
argued that some of the levels of this short hierarchy are
unnatural, and that it is true from the machine point of view
(pushdown automata), as well as from the grammar point of
view (regular and general grammars).

It must be said, in favor of Chomsky’s hierarchy, that
it contains the language classes that occur in most appli-
cations (regular, context-free, context-sensitive and Turing-
computable).

The pebble hierarchy is an infinite (somewhat continuous)
hierarchy, encoding an evolutionary process that begins with
the most elementary model of automata, and which converges
to the universal model of one-tape Turing machines. The
process is driven in a natural way by the addition of writing
power. It contains (in the limit) the classes of regular, context-
sensitive and Turing computable languages. But, as we have
seen before, it is somewhat orthogonal to the class of context-
free languages. This later fact should be considered as a major
flaw of the hierarchy, a flaw that becomes even more important
if one is thinking in using it as a narrative for the teaching of
theory. There are two possible remedies to this problem:

1) Some authors (see [7] and [11]) propose to include
all the material concerning context-free grammars and
pushdown automata into the syllabus of the courses
on the theory of programming languages, and restrict
the theory courses to the study of finite state automata
and Turing machines. It is argued that finite state
automata must be preserved as the starting point,
given that this material gives all the right intuitions
about nondeterminism and other fundamental ideas
of computer science. We have that, from the point of
view of this proposed solution, the pebble hierarchy
is a complete narrative that is called to fill the gap
between the starting point (finite state automata) and
the arrival point (Turing machines).

2) We think that the material on CFGs and PDAs is
so valuable that it must be (at least) approached in
some way. It happens that pushdown automata can be
presented as an additional branch of an evolutionary
tree that begins with finite state automata, and which
is driven in different ways by the addition of writing
power. Recall that one can use pebbles to simulate
counters and pushdown stacks. Let us elaborate a
little bit on this fact.

Let us suppose that we have two set of pebbles, the
first one infinite and constituted by black pebbles,
while the second one is finite and constituted by
white pebbles. Let us also suppose that the input tape
contains a special black cell, say cell 0, such that any
finite number of black pebbles can be placed on it.
White pebbles are the pebbles that can be placed on
the cells that are different to cell 0. One can use cell
0 and the unbounded provision of black pebbles to
simulate a counter. Thus, to begin with, we can re-
cover the model of two-way counter automata. If we
allow to have two black cells with unbounded pebble
capacity, we get the model of two-counter automata.
Recall that two counters can be used to simulate a
pushdown stack [5]. Thus, we can also recover the
model of two-way pushdown automata. We think that
one-way pushdown automata can be introduced at
this point, as well as some material on context-free
grammars. Moreover, it could be interesting (from the
teaching point of view) to ask some questions related
to the computational power of pebble automata with
a larger number of black cells. We notice that four
black cells could be used to simulate two pushdown
stacks, and as a consequence we have that this new
model of automata is an universal one [5]. It implies
that a larger (and bounded) number of black cells
do not confer computational power. What does it
happens if all the cells are black cells? This new
model of black automata is at least as powerful as
the model of ∞-pebble automata, and at most as
powerful as the model of two-dimensional Turing
machines [9]. The later two facts indicates that the
model of black automata is equivalent to the Turing
machine model, and we have arrived, once again, to
an universal model of computation.

Acknowledgement. The first author would like to thank
COLCIENCIAS for the grant confered, and which allows her
to develop her ph.D studies. The second author would like
to thank Universidad Nacional de Colombia, this research
was partially supported by Hermes Research System, project
number 32083.

REFERENCES

[1] M. Blum, C. Hewitt. Automata on a 2-Dimensional Tape. SWAT
(FOCS) 1967: 155-160.

[2] M. Bojánczyk, M. Samuelides, T. Schwentick, L. Segoufin. Expressive
Power of Pebble Automata. ICALP(1)2006:157-168.

[3] D Casas, J. A. Montoya. On the Real-state Processing of Regular Op-
erations and The Sakoda-Sipser Problem. Electr. Notes Theor. Comput.
Sci. 321: 23-39, 2016.

[4] L. Halbeisen. Combinatorial Set Theory With a Gentle Introduction to
Forcing. Springer Verlag, London, 2014.

[5] J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, Mass., 2002.

[6] P. Hsia, R. Yeh. Marker automata. Inf. Sci. 8(1): 71-88, 1975.
[7] https://rjlipton.wordpress.com/2016/08/09/do-results-have-a-teach-by-

date/
[8] J. A. Montoya. Open Problems Related to Palindrome Recognition: Are

There Open Problems Related to Palindrome Recognition? Journal of
Automata, Languages and Combinatorics 20(1): 5-25, 2016.

[9] C. Papadimitriou. Computatational Complexity. Addison-Wesley, Read-
ing, Mass., 1994.

[10] R. Ritchie, F. Springsteel. Language Recognition by Marking Automata.
Information and Control 20(4): 313-330, 1972.

[11] http://cstheory.stackexchange.com/questions/8539/how-practical-is-
automata-theory

[12] I. Sudborough. On the Tape Complexity of Deterministic Context-Free
Languages. J. ACM 25(3): 405-414, 1978.

