
BPMN 2.0 based modeling and customization
of variants in business process families

Andrea Delgado, Daniel Calegari
Instituto de Computación, Facultad de Ingenierı́a

Universidad de la República
Montevideo, Uruguay, 11300

{adelgado, dcalegar}@fing.edu.uy

Abstract—Business processes may accept variants based on
specific business requirements of an organization, leading to the
definition of a process family. There are many proposals for the
modeling of the common and variable parts of a process family, as
well as to support the customization of each process variant (i.e.,
process configuration or tailoring). In this article, we present the
results of a detailed study about the modeling and customization
of process families based on the Business Process Model and
Notation (BPMN 2.0) standard, and we introduce BPMNext, a
novel approach devised for this purpose. The language is an
adaptation of BPMN 2.0 based on the ideas provided by vSPEM,
a language for the modeling of software processes families. We
also present a supporting tool and its application to a real case
study about the assignment of positions in exchange programs.

Keywords: Business process families, variability, Business
Process Model and Notation (BPMN), vSPEM.

I. INTRODUCTION

Business Process Management (BPM) [1], [2] offers a
framework to support the definition, control and continuous
improvement of business operation. In the context of medium
and large scale, or distributed organizations, it is very common
that business processes accept variants based on specific
business requirements, e.g., different selling process depending
on the kind of products or payment method, or different
accountability steps depending on the country in which the
process is executed.

In general, process modeling languages, e.g., the Business
Process Model and Notation (BPMN 2.0 [3]), a standard
language, do not explicitly support the specification of process
families, i.e., a set of business processes which are based on
a base process (also known as: customizable or base process)
and a set of variation points which are elements of the base
process than can be customized depending on the context.

However, there are many proposals [4], [5] which extend
existent languages, or even provide a language independent
way of modeling process families. The proposals basically
follow one of these approaches: variability by restriction, or
by extension. In the variability by restriction approach, there
is a customizable process model containing every possible
behavior (variants) and then such behavior is restricted (e.g.,
activities are skipped) to conform a final process variant. The
customizable process model can be seen as the union or Least
Common Multiple (LCM) of all process variants [4]. In the

variability by extension approach, the customizable process
model only represents the most common, or shared, behavior
between the process variants and then such behavior needs to
be extended. In this approach, the customizable process model
as the intersection or Greatest Common Denominator (GCD)
of all process variants under consideration [4].

Some proposals come from the software process area in
which the Software & Systems Process Engineering Meta-
model Specification (SPEM 2.0 [6]) has a leading role.
The language is a specific modeling language for software
processes, involving concepts like disciplines, activities and
tasks, work products, phases, delivery process, among others.
Besides SPEM provides ways for variability modeling, it has
some limitations. In this context, there is a variability extension
for SPEM (v-SPEM, [7], [8]) which follows a very simple
variability by restriction approach. The customization process
in the software process area is called process tailoring.

In this article, we present the results of a detailed study
about the modeling and configuration of process families based
on BPMN 2.0. We also introduce BPMNext, an extension of
BPMN 2.0 supporting the specification of process families.
The approach is based on the ideas provided by the vSPEM
approach for software processes. We also introduce a tool
supporting the modeling of business process families based
on BPMNext, which is an extension of the BPMN2 Modeler1

within the Eclipse framework. We also apply this approach to
an existent problem within our University with respect to the
assignment of positions in academic exchange programs.

The rest of this paper is organized as follows. In Section
II we provide the results of a detailed study about BPMN
2.0 based variability approaches. In Section III we present
the BPMNext language and in Section IV we present how
BPMNext is used in a real case study, as well as its tool
support. Finally, in Section V we present some conclusions
and an outline of future work.

II. APPROACHES FOR MODELING PROCESS FAMILIES

In what follows we present the results of a study of
approaches for modeling process families. The study is fo-
cused on BPMN 2.0 based approaches, as well as language
independent approaches that were adapted to BPMN 2.0.

1Eclipse BPMN2 Modeler. http://www.eclipse.org/bpmn2-modeler/978-1-5386-3057-0/17/$31.00 c©2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/153388084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In [4], [5] the authors performed comprehensive surveys
about variability modeling including other complimentary
approaches. However, they did not pay special attention on
BPMN-based approaches. In fact, they have ignored some of
the approaches that will be presented next.

For performing a practical comparison, we modeled in each
language an airport check-in process taken from [9]. In such
paper, the authors use this case study as a practical example
within the VIVACE framework for the systematic evaluation
of variability support in process-aware information systems.

A. Summary of approaches

PROcess Variants by OPtions (Provop, [10]) is a language
independent variability by restriction/extension approach. The
language allows the definition of configurable regions and a
set of configuration alternatives together with context rules
that restrict the application of such alternatives. These rules
support the definition of dependencies between alternatives
with respect to their joint existence or mutual exclusion,
their order of execution (e.g., an alternative cannot be exe-
cuted before another one), and a hierarchical relation (i.e.,
a combination of a dependency and an order of execution
rule). This approach provides a very simple, modular and
expressive mechanism for variability modeling. However, the
language only admits variation points with respect to activities
(tasks and subprocesses). Moreover, the modeling tool is not
currently available. This approach is related to our work since
it was adapted for BPMN 2.0 in [11], [12], [13].

The Common Variability Language (CVL, [14]) is a lan-
guage independent variability by extension approach. How-
ever, in [14] the authors study its applicability to process
families based on the use of BPMN. They define how CVL and
BPMN can be used together for expressing variation points on
activities, besides the language can potentially involve other
elements. The extension mechanism separates the specification
of the base model (in this case a process model) and its
variants (called placed fragments), achieving better readability,
greater comprehension and scalability. The approach also uses
a variation model defining which replacement fragments are
used in each variation point, and a resolution model which
specifies contextual conditions that must apply for configuring
a model. The approach is supported by available tools.

vBPMN [15] is another variability by extension approach.
The approach combines BPMN 2.0 models with the rule lan-
guage R2ML for managing variabilities on activities, gateways
and events at runtime (what is called flexibility-by-design
[16]). The customizable process is built together with a data
context and adaptive workflow segments which depends on
the context. The segments can be any structured block of the
model, i.e., with only one entry flow and only one exit flow,
which are decorated with additional graphical elements. The
approach also defines event-aware adaptation patterns which
take place when entering a segment and define the available
variants which range from simple behaviors (e.g., skipping of
tasks) to complex interrelated behaviors between variants. The
language R2ML provides a way of connecting the context data

with the adaptation patterns, and such rules are evaluated at
runtime. The adaptation patterns are hard to read and the use
of the rules language adds complexity on the definition of the
process family. Finally, there is no supporting tool available.

Process Family Engineering in Service-Oriented Applica-
tions (PESOA [17]) project provides a language independent
variability by restriction approach which defines the notion of
a variant-rich process model, i.e., a process model that contains
every possible variant of the process family. Activities and data
within the model can be annotated to be optional, replaceable
by another element, conditioned to some constraint, and so
on. The overload of annotations together with the need of
expressing every variant in the same process, affects the
understandability of the process family. The approach also uses
a feature model which determines the context conditions to
which each variant applies. However, unlike other approaches,
e.g., Provop, it is not possible to state relations between vari-
ants of different variation points. The approach is supported
by an available tool, only providing modeling capabilities, not
supporting the customization process. Although the approach
is language independent, it is also related to our work since it
was adapted for BPMN 2.0 in [18], [19].

Configurable-BPMN (C-BPMN [20]) follows the ideas of
the Configurable Event-driven Process Chain (C-EPC, [21])
approach, providing a variability by restriction approach fo-
cused on BPMN 2.0. It defines configurable fragments which
are structured blocks (Simple Entry, Simple Exit fragments).
These fragments can be expressed within a pair of config-
urable connector followed by a set of flows representing the
alternative variants. This is similar to the use of a OR gateway
expressing different possible flows of execution according to
some inclusive conditions. The fragments are equipped with
expressions that define context conditions, e.g., the inclusion,
exclusion, and optionality of flows, and relations between
separate fragments. Process customization is achieved by using
a questionnaire that express a specific context configuration.
In this case, the variation point can be expressed on activities
and gateways marking them with a thick edge. There are also
expressions that allow activities to be activated, suppressed
or defined as optional, and gateways to be kept, deleted or
restricted to some specific sequence flow. It is a very expres-
sive approach since it allows variation point on activities, data,
roles and gateways, but EPC is less expressive than BPMN 2.0.
Unlike C-EPC, it does not provide any supporting tool.

BPMNt [22] is a conservative extension of BPMN 2.0.
i.e., not affecting its base semantics, providing a variability
by extension approach. It extends BPMN 2.0 metamodel
for introducing elements capturing the semantics of deleting,
replacing and adding any kind of process element. Despite its
great potential, it has a poor graphical representation which
affects understandability. The approach proposes to build
tree-based representations of a process model representing a
specific customizing configuration. For each variation point
represented in the tree, i.e., a process element, it is possible to
express deletion, replacement and adding of variants, as well
as relations between them. Tool support is not available.

TABLE I
COMPARISON OF DIFFERENT APPROACHES

Approach Variability kind Representation Variation points Language Tool
Provop [11], [12], [13] Both Base model + Context model Activities Language independent

CVL [14] Extension Base model + Context model Activities Language independent

vBPMN [15] Extension Base model + Context model Activities, gateways, events BPMN 2.0 extension

PESOA [18], [19] Restriction Base model + Feature model Activities, data Language independent

C-BPMN [20] Restriction Integrated model Activities, gateways BPMN 2.0 extension

BPMNt [22] Extension Tree-based representation Activities, data, roles, gateways, events BPMN 2.0 extension

BPMN* [23] Restriction Base model + Feature model Activities, data, roles, gateways, events BPMN 2.0 extension

Finally, BPMN* [23] is BPMN 2.0 extension providing
a variability by restriction approach. It consists of adding
stereotypes and tags to the process elements (activities, data,
roles, gateways, and events), which are related with a feature
model. It extends the BPMN 2.0 metamodel for expressing the
relation between variation points and their respective variants.
It is a simple approach with great expressiveness. As in the
case of the other variability by restriction approaches, it has a
scalability problem related to the specification of alternatives
in the same model. Tool support is not available.

In Table I there is a summary of the approaches, in par-
ticular: how the variability is expressed, the models required
for the specification, the kind of elements over which the
variability is expressed, the focused language and tool support.

Focusing on BPMN 2.0 based approaches, we can see that
they do not provide any available supporting tool. vBPMN is
focused on providing flexibility-by-design but it is the harder
to read because of the use of a rules language. C-BPMN
is the simpler language of all of them. BPMNt is a very
powerful approach but it does not define how the variation
points and variants can be expressed using process models.
Finally, BPMN* is one of the most expressive approaches
but the inclusion of variants within the customizable process
affects understandability.

In general terms, the variability by extension approaches
require the definition of more components than in the case of
variability by restriction approaches. However, they are more
scalable in terms or the understandability of the models when
the process family increases.

B. Classification of approaches

As a final conclusion about this study we can classify
the different approaches with respect to how they represent
process families.

1) Provop, CVL, vBPMN: They are variability by exten-
sion approaches based on a customizable process, a context
model and some way of expressing customizing rules. They
are focused on variation point on activities and in general
their models are simple to understand. Provop also provides
variability by restriction.

2) PESOA, BPMN*: Besides one of them is a general
approach and the other is an extension of BPMN 2.0, both are
variability by restriction approaches and share the definition

of stereotypes for expressing variation points. They both use
a feature model for expressing possible configurations.

3) C-EPC, C-BPMN: They are also variability by restric-
tion approaches. However, they do not use stereotypes but
tags for expressing variation points. They are a little bit
more invasive with respect to the customizable process, in
comparison to the other approaches. This means that it is hard
to follow what they try to represent.

4) BPMNt: This is a completely different approach in the
sense that it has no process-based representation of variation
points and variants.

C. vSPEM
As a complement of this work we also looked at vSPEM

[7], [8], which is an extension of the Software & Systems
Process Engineering Metamodel Specification (SPEM, [6] for
modeling software processes, that could be taken into account
for BPMN variability. There is a specific line of work for
software process families based on SPEM where variants of
the process are obtained by tailoring the core process.

SPEM defines specific elements for software process mod-
eling such as disciplines, tasks, activities, roles, work products,
and processes. The method content view allows defining such
elements and the process view instantiates these elements
in a specific process. It also provides a way for modeling
variability, defining several variability types between two
related elements, such as: replaces, extends, extends-replaces,
contributes and not assigned.

However, the language has some limitations for modeling
software process families, e.g., it is difficult to visualize
the core process which contains the common elements of
the process family. Taking into account the limitations, the
variability extension for SPEM, named vSPEM, provides the
means for a direct specification of the variability in a process.

In vSPEM, variation points are defined within the process,
along with the variants that can be selected to fill the points.
The relation between a variation point and a variant is a
replaces relation from SPEM, and when performing process
tailoring each variation point is substituted with exactly one
variant. As examples of use, a variation point can have one
or more associated variants, so when a process is tailored one
variant will be selected to fill the variation point. Another case
is when a variation point have only one associated variant, so,
in the tailored process the variant can be selected or not.

Fig. 1. Main v-SPEM concepts

v-SPEM extends the SPEM metamodel with new elements
and defines a new notation to represent them, as presented in
Figure 1.

III. INTRODUCING BPMNEXT

In this section we present the BPMN extension we propose
to model variability in business process families, discussing
previously the selection of the base approach we have used.

A. Discussion of existing approaches

As presented in Section II the variability by extension
approach seems to be easier to understand for medium size
and large scale process families, but variability by restriction
presents all possible variants within the base process showing
the options explicitly thus providing a complete view of the
family and its variants.

Regarding the languages used to model variability, we found
that although BPMN 2.0 is nowadays one of the most used
languages for business process modeling, there are not many
approaches that provide complete support for it, including
modeling and configuration facilities. What is more, we can
see that they do not provide any available supporting tool for
BPMN 2.0 variability.

Although Provop, PESOA and C-EPC are well-known ap-
proaches that provide support for the core elements of process
variability, as shown in the evaluation carried out within
the VIVACE framework [9], they do not provide practical
elements for BPMN 2.0. Although the first two can be used
within BPMN 2.0 models, there are no tool support for
applying them.

We believe that showing variation points and the corre-
sponding variants for each one provides a better view of the
family, but we also want to minimize the complexity of adding
all elements to the base process. Based on the analysis of
existing approaches and trying to provide both conceptual
and tool support for BPMN 2.0 variability by restriction,
we decided to translate the vSPEM approach for software
processes variability, to business processes variability, thus
defining BPMNext, a BPMN 2.0 extension supporting business
process families.

We basically take two aspects of vSPEM: how variation
points are represented, and how the BPMN 2.0 metamodel
is extended. As with vSPEM, in our approach the relation

Fig. 2. BPMNext variation points in activities

between a variation point and a variant is a replacement
relation, and for process customization, each variation point
is substituted with exactly one variant. Other software process
aspects that vSPEM handles naturally, e.g., work product,
make no sense in our proposal and, thus, they were discarded.

B. Introducing BPMNext

In what follows we define how variation points and variants
are define, as well as the set of constraints that apply for
process customization.

We restrict BPMNext to variation points on activities (tasks
and subprocesses) and roles (lanes). In the case of activities,
we tried to make a proposal as generic as possible. In par-
ticular, we can substitute an activity with any other activity,
no matter if the task is of some specific type, e.g., manual,
service, script, etc., or if it is another subprocess. Activities
deletion is also possible, only for activities with a simple entry
and a simple exit flow.

In this case, process customization involves the connection
of the precedent and subsequent flows. We also consider the
possibility of changing the role in charge of some activity,
introducing new roles, renaming them, or keeping them in the
same place. Finally, a very interesting feature of the language
is that it allows variants also with variation point, allowing
many levels of expressiveness. This is something that it is not
present in the other approaches and it is not clear, but feasible,
in vSPEM.

We decided to express variation points in a simple and
clear way, and thus we extend BPMN 2.0 with two graphical
elements corresponding to tasks and subprocesses. This is
similar to the way vSPEM specifies variation points and, as
depicted in Figure 2, it consists of the standard representation
of activities together with a double circle in the upper left side
of the element.

A process family requires the modeling of the base cus-
tomizable process together with the variants as independent
process models. These variants can also be customizable
processes with their own variants. In this way we allow a
multi-level modeling of variants.

C. Extending the BPMN metamodel

We have extended the BPMN 2.0 metamodel as depicted in
Figure 3, to include variability concepts.

We defined a concept VElement which is the base class of
the extension. Variation point (in pink) are an extension of the
corresponding BPMN 2.0 elements (in blue). In particular, we

Fig. 3. BPMNext metamodel (excerpt)

defined VPTask and VPSubprocess which are extensions of the
Task and SubProcess elements, respectively. a VPSubProcess
is composed of other VPActivity allowing multi-level variation
points.

Variants (in yellow) are also extensions of the corresponding
BPMN 2.0 elements. A Variant is related to a general VPActiv-
ity allowing the kind of substitution we have described before:
a VPActivity can be replaced by a task (VTask) or a subprocess
(VSubProcess), it can be performed by another role (VLane)
or it can be deleted (DELETE).

This metamodel can be easily extended adding other BPMN
2.0 elements as variation points, e.g., gateways. However,
it is needed to define first the way variation points can be
graphically expressed in the process model.

IV. BPMNEXT IN PRACTICE

In [24] we presented an experience report from a process
management improvement initiative we have carried out within
our university. We have worked with the General Direction of
Cooperation and International Relations (Dirección General de
Cooperación y Relaciones Internacionales, DGRC), regarding
academic exchange programs for graduate and postgraduate
students and teachers, and collaboration projects between the
university and external institutions (national and international).

We modeled the ”Assignment of positions in academic
exchange programs” BP, in which for every exchange pro-

gram in which the university participates (Erasmus, Santander,
Fulbright, etc.), positions are announced and interested people
(students, faculty, staff) apply for them. The DGRC and other
authorities analyzed applicant’s merits and after some steps
and meetings define the assignments, which are then notified
to the applicants. In Figure 4 we present its model using
BPMN 2.0, without expressing other participants and the
corresponding interactions.

We clearly identified a process family context were all
programs share a common set of activities, and based on
specific conditions of each program (variation points) different
paths are executed, probably involving different participants.
In such opportunity, we decided to use only BPMN 2.0, and
to define blocks based on XOR gateways that will be executed
or not depending on the programs settings.

We selected this option since it was the easiest way we find
to immediately solve the problem at hand and also to provide
a simpler way for business people to understand the modeling
of all exchange programs within a unique model. To do so for
each program we present the corresponding variant with its
execution path colored so they can visualize for each program
which is the corresponding control flow.

In terms of process customization, we implemented a pro-
totype using Bonita BPMS. We used specific tables for setting
and loading the configuration of each exchange program for

Fig. 4. ”Assignment of positions in academic exchange programs” BPMN 2.0 original model

Fig. 5. ”Assignment of positions in academic exchange programs” BPMNext model

the execution of defined variants. When executing the BP, the
first selection the user makes is the exchange program, and
based on that process variable, the variables of each XOR
condition are set from the data in the database.

In what follows we present another approach for the mod-
eling and customization of this process family, based on the
use of BPMNext and a tool within the Eclipse framework.

A. Modeling with BPMNext
We use BPMNext in order to handle variation points. The

language is supported in practice by an extension of the

Eclipse BPMN2 Modeler. The process, depicted in Figure 5
is simpler than the original, since it requires less gateways
to express the control flow and it allows to visually detect
whether the variation points are. Moreover, except for the case
of ”Adjudicar Movilidad”, which is a subprocess, the other
variation points can be represented as task variation points,
i.e., in which they can be replaced by a simple task.

B. Process customization
For customizing the base process, we also extended the

Eclipse BPMN2 Modeler. We have implemented a wizard

Fig. 6. Santander process variant

Fig. 7. Customization of the Santander variant

which allows to take the configurable process and the defined
variants, to define the relations between each variation point
and a variant, and to produce a customized process (process
variant) as an output. If a variant also defines other variation
points, the wizard dynamically shows the new variants to
choose for each variation point.

Process customization is automatically done by code, in-
cluding insertion, substitution and suppression of activities, re-
connection of flows, and checking of well-formed constraints.
In the case of a model with multi-level variants (not present
in the case study), the customization process is performed
recursively and the modeler must ensure that the recursion is
well-founded. The final result is a standard BPMN file together
with a reusable configuration file which resumes the selected
variants. Variants are expressed as BPMN files containing any
flow with a start event and a single end event. Elements can
also be defined within lanes, possibly not existent ones which
are created for the customized process. If in the customized
process a lane has no elements within, it is deleted.

As an example, Figure 6 shows the Santander exchange
program process variant, which was automatically generated
based on the configuration shown in Figure 7 in which the
step ”Realizar evaluacion” is deleted and the other steps are

Fig. 8. PIMA process variant

Fig. 9. Customization of the PIMA variant

replaced by a simple task (e.g., the file AnalizarDisponibili-
dad.bpmn contains a task connected with start and end events).

As another example, the PIMA exchange program variant
process is the one in Figure 8, which has the configuration in
Figure 9 in which every variation point is deleted, except for
the ”Procesar documentacion adicional”.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the results of a detailed
study about the modeling and customization of business pro-
cess families based on BPMN 2.0. We also considered other
approaches in order to extend the study and compare their
characteristics. We have classified the proposals in four cate-
gories with respect to the way they handle the variability. As
a general conclusion, the variability by restriction approaches
are more complex but also more used since they provide a
complete view of the process family. Moreover, there is little
tool support for BPMN 2.0 based approaches.

As a complement of this study, we essayed the definition
of a novel approach based on the ideas provided by vSPEM,
a language for the modeling of software processes families
which extends the SPEM language. We introduced BPMNext,
an extension of BPMN 2.0 that supports the variability by
restriction approach, translating the definitions in vSPEM to
BPMN 2.0. The language considers variation points with
respect to activities (tasks and subprocesses) and roles.

The customizable process and the variants are independently
modeled in such a way that the process customization and the
maintenance of the variants are simplified. The adoption of the
way vSPEM extends the SPEM metamodel, provides a very
simple way of extending BPMNext with the consideration of
variation points in other elements, e.g., gateways and events.
However, this extension requires future work in order to
precisely define the meaning of a variation point and the study
of consistency aspects that process customization requires in
such cases. Also, we will analyze the native BPMN extension
mechanism to support the extension.

We also built a supporting tool as an extension of the Eclipse
BPMN2 Modeler. The tool allows not only the modeling of the
customizable process and their variants, but also the process
customization. One of the most interesting aspect for both the
modeling extension and the customization process is that the
approach supports multilevel variability, i.e., a variant can also
contain variation points with their respective variants. There
are many open issues that can be considered as future work,
e.g., the definition of better error messages, and the support
of collaborative processes (i.e., many pools), among others.

The use of BPMNext in a real case study about the assign-
ment of positions in academic exchange programs showed the
feasibility of the proposal. The language allowed to represent
the original problem in a simpler way improving its under-
standing. In order to analyze its real potential, it is desirable
a more specific comparative evaluation with the rest of the
approaches.

Finally, we want to essay a model-driven approach for
carrying out the customization process instead of using a
programming language as it is now. This could provide a
higher-level representation of the transformation steps involved
in the customization process and the constraints that must
apply between the alternatives. It will also provide modular-
ization, reuse of knowledge and improved maintainability for
the automated generation of process variants.

ACKNOWLEDGMENT

This work was partially funded by the Comisión Sectorial de
Investigación Cientı́fica (CSIC), Universidad de la República,
Uruguay. We would like to thank the undergraduate students
who worked in the project: Ignacio Betancurt, Alejandro
Brusco and Nicolás Dinetti.

REFERENCES

[1] M. Weske, Business Process Management - Concepts, Languages,
Architectures, 2nd Edition. Springer, 2012.

[2] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, “Business
process management: A survey,” in Business Process Management,
International Conference, BPM 2003, Eindhoven, The Netherlands, June
26-27, 2003, Proceedings, ser. Lecture Notes in Computer Science,
W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, Eds.,
vol. 2678. Springer, 2003, pp. 1–12.

[3] OMG, “Business Process Model and notation (BPMN) v2.0,” Tech. Rep.,
2013.

[4] M. L. Rosa, W. M. P. van der Aalst, M. Dumas, and F. Milani, “Business
process variability modeling: A survey,” ACM Comput. Surv., vol. 50,
no. 1, pp. 2:1–2:45, 2017.

[5] G. Valenca, C. Alves, V. Alves, and N. Niu, “A systematic mapping
study on business process variability,” International Journal of Computer
Science & Information Technology (IJCSIT), vol. 5, no. 1, 2013.

[6] OMG, “Software and Systems Process Engineering Metamodel (SPEM)
v2.0,” Tech. Rep., 2008.

[7] T. Martı́nez-Ruiz, F. Garcı́a, and M. Piattini, Towards a SPEM v2.0
Extension to Define Process Lines Variability Mechanisms. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 115–130.

[8] T. Martinez-Ruiz, F. Garcia, M. Piattini, and J. Munch, “Modelling
software process variability: an empirical study,” IET Software, vol. 5,
no. 2, pp. 172–187, 2011.

[9] C. Ayora, V. Torres, B. Weber, M. Reichert, and V. Pelechano, “VIVACE:
A framework for the systematic evaluation of variability support in
process-aware information systems,” Information & Software Technol-
ogy, vol. 57, pp. 248–276, 2015.

[10] M. Reichert, S. Rechtenbach, A. Hallerbach, and T. Bauer, “Extending a
business process modeling tool with process configuration facilities: The
provop demonstrator,” in Proceedings of the Business Process Manage-
ment Demonstration Track (BPMDemos 2009), ser. CEUR Workshop
Proceedings, vol. 489. CEUR-WS.org, 2009.

[11] E. Santos, J. Pimentel, J. Castro, J. Sánchez, and O. Pastor, “Config-
uring the variability of business process models using non-functional
requirements,” in Enterprise, Business-Process and Information Systems
Modeling - 11th International Workshop, BPMDS 2010, and 15th
International Conference, EMMSAD 2010, Proceedings, ser. Lecture
Notes in Business Information Processing, vol. 50. Springer, 2010,
pp. 274–286.

[12] I. Machado, R. Bonifácio, V. Alves, L. Turnes, and G. Machado, “Man-
aging variability in business processes: An aspect-oriented approach,” in
Proceedings of the 2011 International Workshop on Early Aspects, ser.
EA ’11. ACM, 2011, pp. 25–30.

[13] T. Nguyen, A. Colman, and J. Han, “Modeling and managing variability
in process-based service compositions,” in Proceedings of the 9th Inter-
national Conference on Service-Oriented Computing, ser. ICSOC’11.
Springer, 2011, pp. 404–420.

[14] C. Ayora, V. Torres, V. Pelechano, and G. H. Alférez, “Applying cvl
to business process variability management,” in Proceedings of the
VARiability for You Workshop: Variability Modeling Made Useful for
Everyone, ser. VARY ’12. ACM, 2012, pp. 26–31.

[15] M. Döhring and B. Zimmermann, “vbpmn: Event-aware workflow vari-
ants by weaving BPMN2 and business rules,” in Enterprise, Business-
Process and Information Systems Modeling - 12th International Con-
ference, BPMDS 2011, Proceedings, ser. Lecture Notes in Business
Information Processing, T. A. Halpin, S. Nurcan, J. Krogstie, P. Soffer,
E. Proper, R. Schmidt, and I. Bider, Eds., vol. 81. Springer, 2011, pp.
332–341.

[16] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems - Challenges, Methods, Technologies. Springer,
2012.

[17] F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske, “Variability
mechanisms for process models,” PESOA-Report TR 17/2005, Process
Family Engineering in Service-Oriented Applications (PESOA). BMBF-
Project, Tech. Rep., 2005.

[18] V. Kulkarni and S. Barat, “Business process families using model-driven
techniques,” IJBPIM, vol. 5, no. 3, pp. 204–217, 2011.

[19] G. Gröner, M. Boskovic, F. S. Parreiras, and D. Gasevic, “Modeling
and validation of business process families,” Inf. Syst., vol. 38, no. 5,
pp. 709–726, 2013.

[20] H. Zhang, W. Han, and C. Ouyang, “Extending BPMN for configurable
process modeling,” in Proceedings of the 21st ISPE Inc. International
Conference on Concurrent Engineering, Beijing Jiaotong University,
China, September 8-11, 2014, ser. Advances in Transdisciplinary En-
gineering, vol. 1. IOS Press, 2014, pp. 317–330.

[21] M. Rosemann and W. M. P. van der Aalst, “A configurable reference
modelling language,” Inf. Syst., vol. 32, no. 1, pp. 1–23, 2007. [Online].
Available: http://dx.doi.org/10.1016/j.is.2005.05.003

[22] R. M. Pillat, T. C. Oliveira, P. S. C. Alencar, and D. D. Cowan,
“Bpmnt: A BPMN extension for specifying software process tailoring,”
Information & Software Technology, vol. 57, pp. 95–115, 2015.

[23] M. Terenciani, D. M. B. Paiva, G. Landre, and M. I. Cagnin, “Bpmn* -
A notation for representation of variability in business process towards
supporting business process line modeling,” in The 27th International
Conference on Software Engineering and Knowledge Engineering,
SEKE, H. Xu, Ed. KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2015, pp. 227–230.

[24] A. Delgado and D. Calegari, “Changing the focus of an organization:
From information systems to process aware information systems,” in
Enterprise, Business-Process and Information Systems Modeling - 16th
Int. Conference, BPMDS, Proceedings, ser. Lecture Notes in Business
Information Processing, vol. 214. Springer, 2015, pp. 53–67.

