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Abstract

Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region
and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin
films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed
depending on the growth temperature (300−700 °C) and the crystal orientation of the Ge substrate. We succeeded
in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will
lead to the application of SrGe2 to high-efficiency thin-film solar cells.
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Background
Alkaline-earth silicides have been widely investigated
because of their useful functions for many technological
applications such as solar cells [1–3], thermoelectrics [4–
6], and optoelectronics [7–9]. However, the study of ger-
manides has not been active compared to that of silicides
even though some studies have predicted interesting elec-
trical and optical properties for germanides [10–16].
SrGe2 is one of the alkaline-earth germanides. Theoret-

ical and experimental studies of bulk SrGe2 have revealed
the following properties [12–16]: (i) a BaSi2-type structure
(orthorhombic, space group: D16

2h−Pnma, no. 62, Z = 8), (ii)
an indirect transition semiconductor with a band gap of
approximately 0.82 eV, and (iii) an absorption coefficient of
7.8 × 105 cm−1 at 1.5 eV photon, which is higher than that
of Ge (4.5 × 105 cm−1 at 1.5 eV photon). These properties
mean that SrGe2 is an ideal material for use in the bottom
cell of high-efficiency tandem solar cells. Therefore, the
fabrication of a SrGe2 thin film on arbitrary substrates
would allow thin-film tandem solar cells simultaneously
achieving high conversion efficiency and low process cost.
We fabricated thin-film BaSi2, having the same structure

as SrGe2, on Si (111) and Si (001) substrates using a two-
step method: a BaSi2 template layer was formed via reactive
deposition epitaxy (RDE), which is a Ba deposition with

heated Si substrates, followed by molecular beam epitaxy
(MBE) [17, 18]. This resulted in high-quality (100)-oriented
BaSi2 thin films with a long minority carrier life time [19,
20], leading to a large minority carrier diffusion length [21]
and a high photoresponsivity at 1.55 eV [22]. The hetero-
junction solar cell with the p-BaSi2/n-Si structure allowed
for a conversion efficiency of 9.9%, the highest value ever
reported for semiconducting silicides [23]. These impres-
sive results on the BaSi2 thin films and the attractive prop-
erties of bulk SrGe2 strongly motivated us to fabricate
SrGe2 thin films.
The two-step method consisting of RDE and MBE to

form BaSi2 thin films on Si substrates is applicable to fabri-
cating SrGe2 thin films on Ge substrates because these ma-
terials have the same crystal structure [14]. In this study,
we tried to form SrGe2 on Ge (100), (110), and (111)
substrates using RDE to explore the possibility of SrGe2
thin-film formation.

Experimental
A molecular beam epitaxy system (base pressure, 5 × 10
−7 Pa) equipped with a standard Knudsen cell for Sr and an
electron-beam evaporation source for Si were used in this
investigation. Sr was deposited on Ge (100), (110), and
(111) substrates where the substrate temperature (Tsub)
ranged from 300 to 700 °C. Before the deposition, the Ge
substrate was cleaned using a 1.5% HF solution for 2 min
and a 7% HCl solution for 5 min. The deposition rate and
time of Sr were, respectively, 0.7 nm/min and 120 min for
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Ge (001), 1.4 nm/min and 30 min for Ge (011), and
1.3 nm/min and 60 min for Ge (111). The deposition rate
varied depending on the amount of the Sr source because
the Knudsen cell temperature was fixed at 380 °C. After
that, 5-nm-thick amorphous Si was deposited at room
temperature to protect the RDE layer from oxidation
because Sr−Ge compounds are easily oxidized by air. The
crystallinity of the sample was evaluated using reflection
high-energy electron diffraction (RHEED) and X-ray dif-
fraction (XRD; Rigaku Smart Lab) with Cu Kα radiation. In
addition, the surface morphology was observed using
scanning electron microscopy (SEM; Hitachi SU-8020) and
transmission electron microscopy (TEM; FEI Tecnai Osiris)
operated at 200 kV, equipped with an energy-dispersive
X-ray spectrometer (EDX), and a high-angle annular dark-
field scanning transmission electron microscopy (HAADF-
STEM) system with a probe diameter of ~ 1 nm.

Results and Discussion
Figure 1 shows the RHEED and θ–2θ XRD patterns of
the samples after the Sr deposition. For all samples,
streaky or spotted RHEED patterns were observed after

the Sr deposition, implying the epitaxial growth of Sr−Ge
compounds. For the samples with a Ge (100) substrate,
peaks from Sr5Ge3 appear for all Tsub (Fig. 1a−e). In
addition, peaks from SrGe appear for Tsub = 600 and 700 °
C (Fig. 1d, e). Only the sample with Tsub = 300 °C exhibits
the peak from SrGe2 (Fig. 1a), the target material in this
study. Figure 1a shows that the sample with Tsub = 300 °C
contains preferentially [100]-oriented SrGe2 and [220]-ori-
ented Sr5Ge3. The peak derived from the substrate, Ge
(200), is more noticeable for higher Tsub. This behavior is
related to the surface coverage of Sr–Ge compounds on
the substrate as revealed in Fig. 2. For the samples with a
Ge (110) substrate, no peaks other than those from SrGe2
(411) and the Ge substrate are observed for Tsub = 300
−600 °C (Fig. 1f−i). The peak from SrGe2 (411) exhibits
the highest intensity for Tsub = 500 °C (Fig. 1h), suggesting
that the sample with Tsub = 500 °C contains single-
composition SrGe2 with high [411] orientation. For the
samples with a Ge (111) substrate, the peaks from SrGe2
appear for all Tsub (Fig. 1k−o). The samples with Tsub =
300, 400, 500, and 700 °C exhibit [110]-oriented SrGe2
(Fig. 1k–m, o), while the SrGe2 peaks for Tsub = 300 and
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Fig. 1 RHEED and θ–2θ XRD patterns of the samples after the Sr deposition. The crystal orientation of the Ge substrate is a−e (100), f−j (110), and k−o
(111). Tsub is ranged from 300 to 700 °C for each substrate. The peaks corresponding to SrGe2 are highlighted in red
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400 °C are quite broad. The samples with Tsub = 500
and 600 °C exhibit multi-oriented SrGe2 (Fig. 1m, n). In
addition, the small peak from Sr5Ge3 (220) appears for
Tsub = 400, 500, and 700 °C (Fig. 1l, m, o). Therefore, the
growth morphology of Sr–Ge compounds on a Ge sub-
strate dramatically changes depending on the growth
temperature and the crystal orientation of the substrate.
This behavior is likely related to the surface energy of the
Ge substrate depending on the crystal orientation [24] and
the balance of the supply rate of Ge atoms from the sub-
strate and the evaporation rates of Sr atoms from the sam-
ple surface.
Figure 2 shows SEM images of the sample surfaces. It is

seen that the substrates are mostly covered by Sr−Ge
compounds for Tsub = 300 °C (Fig. 2a, f,k). For Tsub = 400,
500, and 600 °C, we can observe the unique patterns
reflecting the crystal orientation of the substrates, that is,
twofold symmetry for Ge (100) (Fig. 2b−d), onefold sym-
metry for Ge (110) (Fig. 2g−i), and threefold symmetry for
Ge (111) (Fig. 2l−n). These patterns can also be seen for
silicides on Si substrates [1, 25] and ensure the epitaxial
growth of Sr−Ge compounds on the Ge substrates. The
samples with Tsub = 700 °C exhibit dot patterns, suggesting
that the Sr atoms migrated rapidly and/or evaporated due
to the high Tsub. These SEM results account for the
streaky or spotted RHEED patterns in Fig. 1. Therefore,
we succeeded in obtaining single-oriented SrGe2 using a
Ge (110) substrate with Tsub = 500 °C, while for Ge (100)
and Ge (111) substrates, multiple-oriented SrGe2 or other
Sr–Ge compounds were obtained.
We evaluated the detailed cross-sectional structure of the

sample with a Ge (110) substrate and Tsub = 500 °C. To

prevent oxidation of the SrGe2, a 100-nm-thick amorphous
Si layer was deposited on the sample surface. The HAADF-
STEM image in Fig. 3a and the EDX mapping in Fig. 3b
show that the Sr–Ge compound is formed on nearly the en-
tire surface of the Ge substrate. The magnified HAADF-
STEM image in Fig. 3c shows that the Sr–Ge compound
digs into the Ge substrate, which is a typical feature of RDE
growth [17, 18]. The elemental composition profile in Fig. 3d
shows that Sr and Ge exist with a composition of 1:2. The re-
sults in Figs. 1 and 3 confirm the formation of SrGe2 crystals.

a b c d e

k l m n o

f g h i j

Fig. 2 SEM images of the samples after the Sr deposition. The crystal orientation of the Ge substrate is a−e (100), f−j, (110), and k−o (111). Tsub is
ranged from 300 to 700 °C for each substrate. The arrows in each image show the crystal directions of the Ge substrates

a

b

c

Fig. 3 HAADF-STEM and EDX characterization of the SrGe2 thin film
grown on the Ge (110) substrate at 500 °C. a HAADF-STEM image. b
EDX elemental map from the region shown in panel a. c Magnified
HAADF-STEM image. d Elemental composition profile obtained by a
STEM-EDX line scan measurement along the arrow in panel (c)
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The bright-field TEM image in Fig. 4a and the dark-
field TEM images in Fig. 4b, c show that while SrGe2 is
epitaxially grown on the Ge substrate, it has two orienta-
tions in the in-plane direction. The lattice image in
Fig. 4d clearly shows two SrGe2 crystals (A and B) and a
grain boundary between them. The selected area diffrac-
tion pattern (SAED) in Fig. 4e shows diffraction patterns
corresponding to two SrGe2 crystals (A and B). Figure 4d,
e also shows that the Ge (111) plane and the SrGe2
(220) plane are parallel in each crystal. These results
suggest that the SrGe2 crystals A and B epitaxially grew
from the Ge (111) plane of the substrate and then collided
with each other. No defects, such as dislocations or stack-
ing faults, were found in the SrGe2 besides the grain
boundary. Therefore, high-quality SrGe2 crystals were suc-
cessfully obtained via RDE growth on a Ge(110) substrate.

Conclusions
We successfully formed thin films of SrGe2 via RDE growth
on Ge substrates. The growth morphology of SrGe2 dra-
matically changed depending on the growth temperature
and the crystal orientation of the Ge substrate. Even though
multiple-oriented SrGe2 or other Sr–Ge compounds were
obtained for Ge (100) and Ge (111) substrates, we suc-
ceeded in obtaining single-oriented SrGe2 by using a Ge
(110) substrate at a growth temperature of 500 °C. Trans-
mission electron microscopy revealed that the SrGe2 thin

film on the Ge (110) substrate had no dislocation at the
substrate interface. Therefore, we demonstrated that high-
quality SrGe2 thin films can be produced. At present, we
are investigating the characterization of the SrGe2 thin
films and their development on Si and glass substrates for
the application of SrGe2 to near infrared light absorption
layers of multijunction solar cells.
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