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Coordinated Changes in Mutation and
Growth Rates Induced by Genome
Reduction

Issei Nishimura, Masaomi Kurokawa, Liu Liu, Bei-Wen Ying
Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

ABSTRACT Genome size is determined during evolution, but it can also be altered
by genetic engineering in laboratories. The systematic characterization of reduced
genomes provides valuable insights into the cellular properties that are quantita-
tively described by the global parameters related to the dynamics of growth and
mutation. In the present study, we analyzed a small collection of W3110 Escherichia
coli derivatives containing either the wild-type genome or reduced genomes of vari-
ous lengths to examine whether the mutation rate, a global parameter representing
genomic plasticity, was affected by genome reduction. We found that the mutation
rates of these cells increased with genome reduction. The correlation between ge-
nome length and mutation rate, which has been reported for the evolution of bac-
teria, was also identified, intriguingly, for genome reduction. Gene function enrich-
ment analysis indicated that the deletion of many of the genes encoding membrane
and transport proteins play a role in the mutation rate changes mediated by ge-
nome reduction. Furthermore, the increase in the mutation rate with genome reduc-
tion was highly associated with a decrease in the growth rate in a nutrition-
dependent manner; thus, poorer media showed a larger change that was of higher
significance. This negative correlation was strongly supported by experimental evi-
dence that the serial transfer of the reduced genome improved the growth rate and
reduced the mutation rate to a large extent. Taken together, the global parameters
corresponding to the genome, growth, and mutation showed a coordinated rela-
tionship, which might be an essential working principle for balancing the cellular dy-
namics appropriate to the environment.

IMPORTANCE Genome reduction is a powerful approach for investigating the funda-
mental rules for living systems. Whether genetically disturbed genomes have any spe-
cific properties that are different from or similar to those of natively evolved genomes
has been under investigation. In the present study, we found that Escherichia coli cells
with reduced genomes showed accelerated nucleotide substitution errors (mutation
rates), although these cells retained the normal DNA mismatch repair systems. Intrigu-
ingly, this finding of correlation between reduced genome size and a higher mutation
rate was consistent with the reported evolution of mutation rates. Furthermore, the in-
creased mutation rate was quantitatively associated with a decreased growth rate, indi-
cating that the global parameters related to the genome, growth, and mutation, which
represent the amount of genetic information, the efficiency of propagation, and the fi-
delity of replication, respectively, are dynamically coordinated.

KEYWORDS genome reduction, mutation rate, growth rate, genome size,
experimental evolution

The mutation rate is an essential global parameter, representing the plasticity and/or
evolution of the genomic background. The mutation rate, reflecting the in vivo

baseline of the DNA replication error rate, is different from species to species (1) but
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might be altered within the same population, from either low to high mutation rates
(2, 3) or high to low mutation rates (4, 5), during a time scale of experimental evolution.
Thus, the mutation rate is not only a force for adaptive evolution but is also itself able
to evolve. In an evolutionary view on mutation rate, a correlation between the mutation
rate and the genome size was intriguingly observed in eubacteria, archaea, and
double-stranded DNA (dsDNA) viruses (6). If the evolution of mutation rates is coordi-
nated with genome size, an intriguing question arises regarding whether genome
reductions performed in the laboratory can be linked to mutation rates.

Genome reduction is a powerful approach (7) to explore essential working principles
in living systems (8) and to determine basic genetic information (9, 10). The successful
construction of an assortment of reduced genomes using Escherichia coli cells (11–13)
has not only benefitted biotechnology in terms of protein syntheses (14, 15) and
metabolic engineering (16) but also has led to significant progress in understanding the
genome-wide and/or evolutionary properties of bacterial cells (17–20). The latest
systematic surveys have reported a correlation between genome reduction and growth
rate (19), a representative global parameter representing the activity of living cells.
According to these novel findings, the following questions arose regarding whether
and how genome reduction influences other fundamental properties of living cells,
such as the mutation rate and the relationships among the global parameters.

To address these questions, we examined experimentally the mutation rates of the
reduced genomes and observed a quantitative relationship between genome reduc-
tion and mutation rate in the present study. In addition, the evolvability of the mutation
rate associated with the fitness change was demonstrated by a short-term experimental
evolution with a reduced genome. Coordination between mutation and growth rates
induced by genome reduction was clearly identified, which indicated a universal
relationship among the three global parameters of genome size, mutation rate, and
growth rate.

RESULTS AND DISCUSSION
Increased mutation rate induced by genome reduction. Ten strains of varied

genome lengths (see Fig. S1A in the supplemental material), comprising the wild-type
genome (4.6 Mb) and nine reduced genomes (deletions of 89 to 982 kb) randomly
selected from the W3110 reduced genome collection KHK (13) were analyzed. The
mutation rates of these strains, grown in three different media, namely, LB, M63, and
MAA (M63 supplemented with 20 amino acids) as the nutritional variation, were
repeatedly measured.

Interestingly, an increase in the mutation rate with genome reduction was identified
(Fig. 1A), although the genes participating in the DNA replication fidelity and mismatch
repair systems remained in the genomes of these strains. Significant correlations
between the mutation rates and genome reductions were identified in all three media
(P � 0.05), suggesting that the genome reduction-mediated changes in the mutation
rate were independent of nutrition. The magnitude of the genome reduction correlated
with changes in the mutation rate on the order of nutritional levels; that is, larger
magnitudes were observed in poorer media (Fig. 1A). We assumed that the genome
reduction potentially stimulated the replication errors, reflecting the maladaptation of
the deletion of redundant genetic information. Such stress might be compensated by
nutritional richness, as the mutation rates of the cells grown in LB remained approxi-
mately at regular levels (Fig. 1A, right panel). This assumption was consistent with the
fact that the distribution of the mutation rates of these 10 strains significantly shifted
from high to low (P � 0.05) in response to the nutritional alterations from poor to rich
(Fig. 1B), although the changes in the individual strains were somehow different
(Fig. S1B).

A common rule of genome size-correlated changes in the mutation rate. The
results interestingly suggested that the correlation of the genome length with changes
in the mutation rate is a common rule, not only in the evolution of the mutation rate
in prokaryotes (6) but also in the engineering of genome reductions with a defined
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E. coli strain. DNA content analysis indicated that the number of genes was a major
factor influencing the size of the prokaryotic genome (21). Accordingly, genome size
enlargement during the evolution of free-living bacteria generally increases the
number of genes, and this is correlated with the number of regulators (22). The correlation
between a decrease in the mutation rate and an increasing size of the genome was
assumed to be beneficial for maintaining novel regulators or regulatory mecha-
nisms that evolved to promote efficient growth. However, the genome reduction-
mediated increase in the mutation rate was induced by the stress of the disap-
pearance of the genomic sequences, although these sequences were somehow
redundant for living. Despite these differentiated reasons, the correlations were
universally detected, on a time scale either as long as evolution or as short as
genetic manipulation. Simple regression, as applied for the study on evolution of
the mutation rate (6), was performed to estimate the rate of the genome length-
correlated changes in the mutation rate (Fig. 1A, dotted lines), according to the
following formula: log10(Mi) � r[log10(Gi)] � b.

Here, Mi and Gi denote the mutation rate and the genome size (in megabases),
respectively. The rates (r) of the genome size-correlated changes in the mutation rate
were �5.1, �10.1, and �14.6 in LB, MAA, and M63 medium, respectively (Fig. 1A, slopes
of the dotted lines). These rates (r) were similar to previously reported genome
reduction-correlated changes in the growth rate (19). The results indicated that the
magnitudes of the genome size-correlated changes in both the mutation rates and
growth rates were dependent on nutritional conditions. In addition, these rates were
much higher (approximately �1.1) than those estimated for evolution across eubac-
teria, archaea, and dsDNA viruses (6). Thus, the magnitude of the genome size-
correlated changes in the mutation rate somehow reflected the time scale of the
genomic changes, which was reasonable, as short-term genetic engineering brings
more severe stress to the cells than does long-term evolution.

FIG 1 Correlations between genome reduction and mutation rate. (A) Genome length-correlated
changes in mutation rates. The wild-type genome of strain W3110 (no. 0) and its reduced genomes (nos.
3, 4, 10, 11, 14, 19, 23, 27, and 28) are indicated. The results in the different growth media, LB, MAA, and
M63, are shown. Spearman rank correlation coefficients of the mutation rates and the genome sizes were
�0.891 (P � 0.001), �0.830 (P � 0.003), and �0.636 (P � 0.05) in M63, MAA, and LB, respectively.
Standard deviations of the results from repeated measurements are shown. Dotted lines indicate the
linear regression of the logarithmic genome sizes and the logarithmic mutation rates. The slopes of the
mutation rate lines were as follows: �14.6 (r2 � 0.79), �10.1 (r2 � 0.57), and �5.1 (r2 � 0.41) for M63,
MAA, and LB, respectively. (B) Direction of nutrition-dependent changes in the mutation rate. Distribu-
tions of the mutation rates in M63, MAA, and LB media are shown as dotted blue, solid green, and broken
brown lines, respectively. Frequency on the y axis indicates the number of strains with the indicated
mutation rate. Asterisks indicate significance (*, P � 0.05; **, P � 0.01).
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Gene functions related to the increased mutation rate. To identify whether any
gene categories involved in the deleted genome sequences specifically contributed to
the increase in mutation rate induced by genome reduction, gene function enrichment
and correlation analyses were performed. The genes located within the deleted
genomic regions were classified into 23 gene categories (23). The number of genes
assigned to each category and the accumulated number of deleted genes in each
reduced genome were counted, as previously described (19). The gene categories
comprising more than 10 deleted genes in from the wild-type genome no. 28 (14 of the
23 gene categories) were subjected to a correlation analysis. The correlations between
the increasing mutation rates found in bacteria grown in three different types of
medium (Fig. 1A, left) and the increasing numbers of deleted genes in each gene
category were evaluated (Table S1). Relatively high significant differences (P � 0.01)
were detected in all 14 gene categories for bacteria cultured in M63 compared to those
cultured in LB, which indicated that most genes contributed to the increased mutation
rates observed under poor nutritional conditions (Fig. 2). In particular, the highest
significance was identified in the gene categories for partial information (d), transporter
(t), and predicted transporter (pt) proteins when cells were grown in M63 medium (P �

5e�4) and MAA medium (P � 0.01), suggesting that the disturbance in transport
machineries and conserved proteins potentially triggered increased errors in DNA
replication. Intriguingly, the gene categories d and t, together with that of predicted
membrane (pm) also showed the highest significance in the correlation between the
growth rate and the number of deleted genes (reported previously [19]). Taken
together, the changes in the mutation rate induced by genome reduction appear to be
coordinated with the changes in growth rate and largely occur due to deletion of genes
that encode proteins involved in transport and membranes.

Correlation between mutation and growth rates in reduced genomes. Due to
the similarities between the changes in the mutation and growth rates, we assumed
that the genome reduction-induced changes in the mutation rate were associated with
changes in the growth rate. Comparison of the growth and mutation rates of the 10
strains revealed a strong tendency of increased mutation rates with decreasing growth
rates (Fig. 3). Negative correlations between the growth rate and mutation rate were
commonly detected across genomic variations under all nutritional conditions (P �

0.05). This finding was consistent with those of previous studies that showed the
evolution of decreased mutation rates accompanied by increased fitness (4) and
fitness-correlated mutation rate plasticity in a single genotype (24). However, the
magnitudes of the coordinated changes between the growth and mutation rates were
nutritionally differentiated, which is quantitatively proposed to following this equation:
log10(Mi) � log10(M0) � (� � �i).

FIG 2 Correlation between the mutation rate and the number of deleted genes. The deleted genes were
clustered according to the gene categories. Statistical significance levels for the correlation coefficients
between the mutation rates and the numbers of deleted genes in each gene category are presented as
a heat map on a logarithmic scale. The progression from dark to light blue represents significance levels
from high to low. M63, MAA, and LB are the growth media. Gene categories are noted by both their full
names and their corresponding abbreviations.

Nishimura et al. ®

July/August 2017 Volume 8 Issue 4 e00676-17 mbio.asm.org 4

 
m

bio.asm
.org

 on M
arch 8, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


Here, Mi and �i represent the mutation rate and the corresponding growth rate,
respectively, under a certain condition. M0 and � indicate the maximal mutation rate
when the growth rate decreases to zero and the rate of the order decrease in mutation
rate resulting from the increase in growth rate (i.e., the slope), respectively. Both M0 and
� are nutrition dependent but independent of the genome length. Regression of the
experimental data sets showed � to be �4.9, �4.8, and �2.4 in M63, MAA, and LB,
respectively (Fig. 3, gray lines), indicating that the growth decrease that was correlated
with the increase in the mutation rate in poor media (M63 and MAA) was approximately
two orders greater than that in the rich LB medium. However, the mutation capacity M0
was approximately 4e�6 (10�5.4), 5e�5 (10�4.3), and 8e�7 (10�6.1) per base pair per
division in cells grown in LB, MAA, and M63, respectively, which was not based on
nutritional richness, suggesting that amino acids (in MAA) might play a particular role
in DNA replication fidelity for reduced genomes. The results strongly indicated a
quantitative relationship between the mutation and growth rates with genome reduc-
tion.

The decrease in mutation rate is coordinated with a fitness increase in exper-
imental evolution. To verify the correlation between the growth rate and the mutation
rate, reduced genome no. 28, which retained approximately 80% of the wild-type
genome sequence, was subjected to serial transfer in M63 (Fig. 4A). The cells were
transferred daily during the early exponential phase for approximately 2 months, which
was similar to methods used in evolution experiments that are commonly performed
to increase the growth fitness of the target E. coli strain under defined conditions (2, 3).
The evolved reduced genome no. 28, which experienced approximately 400 genera-
tions of serial transfer, acquired a 1.3-fold increase in fitness associated with approxi-
mately a 1-order decrease in mutation rate (Fig. 4B). The experimental evolution
triggered an accelerated growth rate with a decreased mutation rate (Fig. 4B, high-
lighted in red). Consequently, the changes in mutation rate were dynamically coordi-
nated and negatively correlated with the changes in growth rate, which was consistent
with the theoretical hypothesis of predicted fitness-dependent mutation rates in
mathematical simulations (25, 26) and experimental evidence of decreased growth in
reduced genomes (19, 20).

Additionally, the growth rate-mediated changes in the mutation rate followed
roughly the trajectory estimated in the second equation discussed above, log10(Mi) �

log10(M0) � (� � �i) (Fig. 4B, upper panel, broken line), suggesting that this trajectory
was a common path for the coordination between growth and mutation rates in M63.
Moreover, the experimental evolution of a time scale of ~400 generations reduced not
only the mutation rate but also the rate (r) of the genome size-correlated changes in
mutation rate by roughly 4-fold (Fig. 4B, bottom panel). As the evolved reduced
genome still retained a relatively high mutation rate, the result well explained why the

FIG 3 Correlations between growth rate and mutation rate in three media. The mutation rates of both
the wild-type genome (no. 0) and the nine reduced genomes (nos. 3, 4, 10, 11, 14, 19, 23, 27, and 28) were
plotted against their growth rates. The results in the growth media LB, MAA, and M63 are represented
as brown squares, green triangles, and blue circles, respectively. Spearman rank correlation coefficients
of the growth and mutation rates were �0.648 (P � 0.04), �0.782 (P � 0.008), and �0.915 (P � 2e�4),
in LB, MAA, and M63, respectively. Standard deviations of both growth and mutation rates are indicated.
Gray broken lines indicate the linear regression of the growth rates and the logarithmic mutation rates.
The slopes are �4.9 (r2 � 0.83), �4.8 (r2 � 0.76), and �2.4 (r2 � 0.59) for M63, MAA, and LB, respectively.

Correlation between Genome Reduction and Mutation Rate ®

July/August 2017 Volume 8 Issue 4 e00676-17 mbio.asm.org 5

 
m

bio.asm
.org

 on M
arch 8, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


magnitude of genome size-correlated changes in mutation rate was much lower during
genome evolution than that observed in genome reduction, as estimated with the first
equation discussed above, log10(Mi) � r[log10(Gi)] � b.

Global coordination between growth and mutation rates. The question of why
genome reduction led to decreased fitness and increased mutation rates remains
unanswered. In a view of genome evolution, genome reduction is a type of genetic
interruption and is stressful to E. coli cells, which are accustomed to possessing a
complete wild-type genome, as previously proposed (19). Stress-induced fitness de-
crease is a familiar phenomenon and is directly linked to transcriptome reorganization.
Transcriptome reorganization is highly coordinated with growth fitness in a trade-off
manner (27–30), in which the upregulation of the genes involved in stress is balanced
by the downregulation of the genes that contribute to growth fitness. Accordingly, we
assumed that the fitness decrease caused the transcriptional repression of the genes
responsible for mismatch repair, leading to an accelerated mutation rate. To verify this
assumption, microarray data sets associated with precise growth rates were collected
(a total of 75 data sets), and the representative genes of mutHLS, of which the mutants
and/or deletions showed increased mutation rates (31–33), were subjected to analysis.
Unexpectedly, the expression levels of these genes showed no significant correlation
with the fitness decrease (Fig. 5). The expression levels of the proteins/enzymes
involved in mismatch repair were slightly changed in cells that had a decreased growth
rate. The analytical results suggested that the growth rate-coordinated changes in
mutation rate, which occurred in exponentially growing E. coli cells, were not simply
due to molecular mechanisms mediated by mutHLS but were balanced by the global
reorganization of either gene expression or cellular conditions. The previous studies
found that the mismatch repair system was mostly responsible for transition mutations
(34–36), which was consistent with the result that changes in the expression of the
mutHLS system alone could lead to a moderately correlated change in the global
parameters of the mutation and growth rates.

FIG 4 Changes in growth and mutation rates due to serial transfer. (A) Schematic of the serial transfer
step. Reduced genome no. 28 was transferred into M63 medium in 24-well microplates (light orange).
The gradations in gray circles show the variations in cell density (based on the OD600) of overnight culture
in each well. Dotted squares indicate wells for which the OD600 was between 0.001 and 0.05; these wells
were then selected for the dilution and incubation steps. (B) Decrease in mutation rate resulting from the
serial transfer. Growth increase that accompanied the decrease in mutation rate (upper) and the declined
rate of genome length-associated changes in mutation rate (bottom) are shown. The reduced genome
of no. 28 is highlighted in red. Before and after the serial transfer into M63 medium are indicated as red
open and filled circles, respectively. The gray open circles and the broken lines represent the same
conditions as described for Fig. 3, under growth in M63. The filled square and the arrow indicate the
wild-type genome no. 0 and the direction of experimental evolution (serial transfer), respectively. The
dotted and broken lines roughly indicate the rates of genome size-correlated changes in mutation rate
before and after the serial transfer, respectively.

Nishimura et al. ®

July/August 2017 Volume 8 Issue 4 e00676-17 mbio.asm.org 6

 
m

bio.asm
.org

 on M
arch 8, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


Hypothesis regarding the comparable effects of deleted genes on growth rate.
If the reduced growth rate was the primary driver of the mutation rate, the question
remained as to whether it was the reduction of genome size or the deleted genes that
caused the decreased growth. As the genome reductions are always accompanied by
gene deletions (11, 13, 37), direct experimental investigation would be difficult. Because
the reduced genomes used in our study were constructed by removing genomic
regions that did not affect E. coli growth or basic metabolism (13, 38), the genome
reduction did not delete the genes linked to growth. Nevertheless, there is no guar-
antee that the deleted genes (genomic regions) did not cause a growth deficiency,
because some deleted genes of unknown function or uncharacterized properties might
play a role in growth fitness. To investigate the effect of gene deletions, we performed
a rough survey using open-access data from the Keio Collection for single-gene
knockouts in E. coli, which included ~3,900 strains (39). Although the data set offered
the optical density (OD) values after 22 to 48 h of incubation and culture in LB or
morpholinepropanesulfonic acid (MOPS) medium and did not represent the growth
rates, these measurements still reflected the effects of gene deletions on growth
properties. The means and standard deviations were calculated for the OD values of the
knockout strain nos. 73, 112, 463, 558, 694, 816, 914, 954, and 955, for which the deleted
genes were absent from the reduced genomes of nos. 3, 4, 10, 11, 14, 19, 23, 27, and
28, respectively. The results showed that the average growth and variation of the
knockout strains assigned to the reduced genomes were highly equivalent (Fig. S3A).
This finding indicated that the deleted genomic regions (the sum of the deleted genes
without considering the gene-gene interactions) affected growth fitness to a compa-
rable degree, partially supporting our assumption that the deleted genes all contrib-
uted slightly to growth.

In addition, the growth rates of five selected strains, which presented the lowest OD
values in either LB or MOPS, were precisely evaluated in both LB and M63. There was
a significant decrease in growth in strains carrying a single deletion of either JWID0986
(yccE) or JWID5137 (ycdG) (Fig. S3B). This experimental evidence demonstrated that
there were several deleted genes of unclear function that affected growth fitness.
However, because these two genes were both deleted in the reduced genome of strain
no. 3, the growth decrease mediated by the further genome reduction (i.e., reduced
genomes of nos. 4 to 28) could not be explained simply by the loss of the two genes.
If the deleted genes did cause the decreased growth, then the correlation between
genome length and growth rate (Fig. S2) must have been nonsignificant. Taken
together, the observed significant changes in growth of the reduced genomes were
due to the accumulated deletions of multiple genes. The genome reduction effect was
assumed not to be simply caused by a size effect but also by the sum of the gene-gene
interactions.

Conclusion. The present study is the first to identify changes in mutation rates as
a consequence of genome reduction and the coordinated changes in mutation and
growth rates (Fig. 6). The mechanism of these correlated changes was unclear, although

FIG 5 Relationships between growth rate and expression of genes responsible for mismatch repair.
Expression levels of the genes that participate in mismatch repair are plotted against the growth rates.
The gene mutL, mutH, and mutS are indicated. The correlation coefficients between the growth rates and
the logarithmic gene expression levels were 0.39 (P � 0.05), �0.06 (P � 0.79), and �0.26 (P � 0.20) for
mutL, mutH, and mutS, respectively.
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the growth rate was assumed to be a primary driver of mutation rates (Fig. 6).
Removing nonessential genomic sequences might increase stress sensitivity, potentially
accelerating genome replication errors for better growth activity. The genome length-
correlated changes in the mutation rate appeared to be common in both genome
evolution and genomic engineering. The increased mutation rate caused by genome
reduction was largely decreased by serial transfer, reflecting the gradual changes in the
mutation rate in correlation with the evolution of genome size, as occurs in nature.
Genome reduction also obeyed the coordinated relationship between growth rate and
mutation rate, regardless of the nutritional conditions. The correlations among the
global parameters of genome size, growth rate, and mutation rate might be the
fundamental working principles for maintaining cellular homeostasis.

MATERIALS AND METHODS
Strains and media. Ten W3110 E. coli derivatives with varied genome lengths (reduced genome

strain nos. 3, 4, 10, 11, 14, 19, 23, 27, and 28 and the wild-type strain 0, as previously described [19]) were
selected from the KHK (Kyowa Hakko Kirin) library (13), an E. coli collection of reduced genomes (from
the National BioResource Project, National Institute of Genetics, Shizuoka, Japan), and used in the present
study. Cell culturing in three different media, complete medium (LB), minimal medium (M63), and
minimal medium supplemented with 20 amino acids (MAA), was performed as previously described (19).

Mutation rates. The mutation rates were measured according to resistance to the antibiotic nalidixic
acid, using fluctuation tests as previously reported (33). However, the number of cells was counted using
a CFU assay instead of flow cytometry. Cell cultures in the exponential phase of growth were diluted
3-fold and plated onto 9 to 12 LB plates for the CFU assay. After overnight incubation, the number of
colonies on each plate was determined, and only colony numbers ranging from 10 to 500 colonies per
plate were considered reliable counts. The final CFU results were calculated by averaging the reliable
counts of four to nine plates. More than 5,000 agar plates were used for the tests. Notably, the mutation
rate was evaluated based on the emerging frequency of nalidixic acid resistance; nevertheless, we
previously verified that the relative mutation rates did not change in response to different antibiotics
(33).

Growth rate. The E. coli growth rate was evaluated using a 96-well microplate (Costar; Corning) with
a microplate reader (Epoch2; BioTek), as described previously in detail (19). The growth rate was
calculated according to the following equation: � � [ln(Cj/Ci)]/(tj � ti). A part of the growth data sets was
adopted from a previous study (19).

Serial transfer. The serial transfer of reduced genome no. 28 was performed on 24-well microplates
specific for microbe culture (Iwaki). The glycerol stock of genome no. 28 was initially inoculated in M63
and cultured until reaching the exponential phase. The cell culture was subsequently diluted 8-fold (10
to 108) with fresh M63 medium in eight different wells of a new 24-well microplate. Each well contained
1.8 ml of cell culture. The plate was incubated overnight in a microplate bio-shaker (Deep Well Maximizer;
Taitec) at 37°C, with rotation at 500 rpm. Only one of the eight wells (dilutions) showing growth in the
early exponential phase (OD600 of 0.001 to 0.05) was selected and diluted into eight wells of a new plate
using eight dilution ratios. The serial transfer was repeatedly performed for 50 days, equivalent to
approximately 400 generations. The mutation and growth rates of the evolved genome no. 28 were
measured as described above.

Bioinformatic data sets and analyses. Information on the deleted genomic sequences (KHK
collection) was obtained from the National BioResource Project website (http://shigen.nig.ac.jp/ecoli/
strain/) as previously described (19). The accumulated length of deleted genomic sequences was
calculated in accordance. The numbers of deleted genes and the corresponding gene categories, as
classified by Riley et al. (23), were determined and subjected to the correlation analysis, as previously

FIG 6 Schematic drawing as a summary. The single- and dual-directional arrows indicate the conse-
quences of either genome reduction (Fig. 1) or experimental evolution (Fig. 4) and the coordinated
relationship between growth and mutation rates (Fig. 3 and 4), respectively. The solid and broken lines
represent the experimental evidence and a hypothetical mechanism of the growth rate as a driving force
of the mutation rate, respectively.
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described (19). The data sets used for the gene expression analysis were obtained from the NCBI Gene
Expression Omnibus database under the GEO series accession numbers of GSE61749, GSE55719, and
GSE52770. These data sets comprised large variations in either genotype or growth condition. A total of
75 raw data sets (microarrays) were subjected to global normalization, resulting in a common mean value
(logarithmic value). The biological replicates were averaged to generate a representative gene expression
value under each condition. The growth data sets of the exponentially growing E. coli cells were adopted
from the associated papers (30, 40–42).

SUPPLEMENTAL MATERIAL
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