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Charging and Aggregation Behavior of Silica Particles 

in the Presence of Lysozymes 

Yi Huang1, Atsushi Yamaguchi1, Tien Duc Pham2, Motoyoshi Kobayashi3

Abstract To gain insight into the colloidal stability in the presence of proteins, we measured the 

electrophoretic mobility and aggregation rate constant of silica particles coated with lysozymes, and the 

adsorbed amount of lysozymes on the silica. We also examined model analyses, which are based on the 

Derjaguin, Landau, Verwey, Overbeek theory with the effect of charge heterogeneity, to discuss the 

aggregation of lysozyme-coated silica. Our results show that lysozymes enhance the aggregation of silica 

when the lysozyme-coated silica is near the isoelectric point. When the adsorbed amount of lysozyme is 

low, the effect of charge-patch attractive force promotes the aggregation of silica. The effect of charge 

heterogeneity weakens with the increase of adsorbed amount of lysozyme. Our model which takes 

account of the effect of charge heterogeneity can capture the trend of the aggregation of silica in the 

presence of lysozyme qualitatively, but there are also large quantitative discrepancies between the 

theoretical prediction and experimental results. Further improvement is required to describe realistic 

charge heterogeneity and the effect of the surface coverage of lysozyme on the silica. 
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1. Introduction
Colloidal silica and silicate particles are widely encountered in food, cosmetics, and medical industries 

and also in natural environments [1, 2]. In some cases, colloidal suspensions contain proteins, which are 

adsorbed on colloidal particles. The adsorption of proteins changes the surface characteristics of colloidal 

particles, especially the charge state and thus may induce the aggregation of the particles. The adsorption 

and aggregation influence the quality of products and the fate of substances. Therefore, it is important to 

understand the adsorption and aggregation behaviors in the mixture of proteins and colloidal silica 

particles.  

Aggregation and dispersion of colloidal particles are usually discussed on the basis of the Derjaguin, 

Landau, Verwey, and Overbeek (DLVO) theory [3, 4]. According to the DLVO theory, the aggregation 

behavior of colloidal particles is determined by a repulsive electrical double layer force and the attractive 

van der Waals force. When the net charge of colloidal particles is close to zero, the repulsive electrical 

force disappears and the particles aggregate if attractive forces are not counteracted by other repulsive 

forces. We call this case charge neutralization. The charge neutralization of colloidal particles is 

practically induced by the adsorption of oppositely charged substances such as polyelectrolytes, 

multivalent ions, surfactants, and proteins [5–9]. The charge neutralization is usually confirmed as a point 

of zero zeta potential, where the electrophoretic mobility or zeta potential of particles coated with 

oppositely charged substances becomes zero. The aggregation rate is usually the fastest near the point of 

zero zeta potential and slower at conditions far away from the point of zero zeta potential.  

The DLVO theory cannot always explain the aggregation behavior of colloidal particles. Bharti et al. 

[10] observed that silica particles coated with lysozymes aggregate at the point of zero zeta potential. 

However, Lerche et al. [11] indicated that the particles aggregate despite the absolute value of zeta 

potential of lysozyme-coated silica is quite high. As a common point, however, they did not measure the 

aggregation rate constant. Therefore, we cannot evaluate the difference with DLVO theory as shown by 

previous studies [7, 9, 12]. Kobayashi et al. [12] measured the aggregation rate of bare silica particles 

and showed that bare silica particles do not aggregate despite the absolute value of zeta potential of silica 

is low at low pH. They attribute this to the existence of ‘gel-like or hairy layer’ on the silica surface, 

which provides the steric stabilization. There are also studies [13–15] considering the diffuse layer 

potential on each particle is not uniform but is normally distributed. With the distribution of diffuse layer 

potential, the particles are easier to aggregate. They also gave a theoretical model to calculate the 

aggregation rate constant by which weak dependence of the rate on parameters such as pH and salt 

concentration is described. Lin et al. [6] showed that stability ratio of sulfate latex particles has a weak 

dependence on the concentration of cationic dendrimers below the point of zero zeta potential. This study 

showed that there were electrical attractive forces between charged patches and bare particle surface, and 

the electrical attractive forces contributed to the aggregation. They described the mechanism qualitatively 

but they did not give any quantitative model. Through the previous studies with polyelectrolytes and 

surfactants, the existence of charge-patch forces and steric repulsive forces are discussed. However, it is 

still unknown that if similar mechanisms work in protein-silica system. Also, models with the distribution 
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of surface potential have not been applied to the aggregation rate constant in protein-silica system. 

Therefore, to improve our understanding on the aggregation of colloids with proteins and the effect of 

charge heterogeneity, we carried out the measurements of electrophoretic mobility and aggregation rate 

of silica particles covered with lysozymes and also the adsorption of lysozymes to silica particles. Since 

the absolute aggregation rate of lysozyme-coated silica with the characterization of adsorption and 

mobility is scarce, our experimental results are useful and novel. We also analyzed the aggregation rate 

constant with the classic DLVO theory and the models which take account of the effect of the distribution 

of diffuse layer potential and the charge heterogeneity.  

 

2. Experiment 
2.1 Materials 

Colloidal silica particles (KEP-30, Lot No. 3A15) of spherical shape were purchased from Nippon 

Shokubai. The average diameter of the particles is 302 ± 20 nm determined from transmission electron 

microscope (TEM) measurements for 800 particles. The density of silica is about 2.2 g/cm3. The silica 

particles were heated at 800 ℃ for 24 hours before using to reduce the effect of pores of the particles 

[16]. 

Hen egg-white lysozymes from Sigma-Aldrich (L6876) were used as model proteins. The lysozyme 

has a shape of spheroid with lengths of 3 nm, 3 nm, and 4.5 nm, and the molecular weight is 14.3 kDa. 

The information of size and charge of lysozyme can be found from some previous studies [17–21]. 

According to Bharti et al. [22], below pH 8.3, adsorbed lysozymes do not form multilayer on silica 

surface in their adsorption process. The lysozyme has an isoelectric point around pH 10 [23]. Below pH 

10, the lysozyme is positively charged.  

Deionized water (Elix Advantage 5, Millipore), with electric conductivity about 0.07 µS/cm, was used 

for the preparation of all the solutions and suspensions. KCl was used to control the ionic strength. And 

HCl and KOH solutions were used to control the pH to 5 and 7. All experiments were conducted in at 

room temperature (20 ℃). 

 

2.2 Measurement of electrophoretic mobility 

The electrophoretic mobility of the silica coated with lysozymes was measured to evaluate the zeta 

potential. We prepared the silica suspension with the particle concentration of 0.1 g/L. The concentration 

of KCl was set to 1 mM or 10 mM. The dose of lysozyme was varied to change the mass ratio of lysozyme 

to silica. The experiments were carried out at pH 5 or 7 to ensure that the silica was negatively charged 

and the lysozyme was positively charged. HCl and KOH solutions were used to adjust pH. The 

electrophoretic mobility was measured by an electrophoretic light scattering technique with Zeta Sizer 

Nano ZS (Malvern). The zeta potential is calculated with Smoluchowski’s formula, Eq. (5) [24]. However, 

at pH 7 and the KCl concentration of 1 mM, a relaxation effect cannot be ignored. Therefore, the zeta 

potential is calculated with Ohshima’s formula, Eq. (6) [25].  

The electrophoretic mobility of the lysozyme was also measured. We prepared the lysozyme solution 
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with the concentration of 5 g/L. The concentration of KCl was set to 1 mM or 10 mM. pH was set to 5 

and 7. The electrophoretic mobility was measured by an electrophoretic light scattering technique with 

Zeta Sizer Nano ZS (Malvern).  

 

 

2.3 Measurement of adsorbed amount 

The adsorbed amounts of the lysozymes on the silica particles were measured at the silica 

concentration of 50 g/L. The mass ratio of lysozyme to silica was changed from 0 to 0.03 g/g. The KCl 

concentrations were varied from 1 to 10 mM. The suspension pH was set to 5 or 7 with HCl and KOH 

solutions. The mixed suspensions of silica particles and lysozymes were shaken for 24 hours with a 

shaker (EYELA Multi Shaker MMS, Tokyo Rikakikai CO., LTD.) to provide sufficient time for the 

adsorption.  

After the shaking, suspensions with different composition were centrifuged at 20630g and around 

the room temperature (20 ℃) for 5 min with a centrifuge machine (3520, Kubota). The UV absorption 

(at a wavelength of 280 nm) of the supernatant obtained by the centrifugation was measured by a 

double beam spectrophotometer UV-1650PC (Shimadzu) to obtain the concentration of lysozyme by 

using the standard calibration curve of absorbance as a function of lysozyme concentrations. The 

adsorbed amounts were calculated from the difference between lysozyme concentrations before and 

after the adsorption. Quartz cells were used in UV absorbance measurements.  

 

2.4 Measurement of aggregation rate constant 

Brownian aggregation rate constant was calculated from the temporal change of absorbance of the 

silica suspension at a wavelength of 450 nm. The absorbance was measured by a spectrophotometer (U-

1800, Hitachi). All the cells used in the present experiments were immersed in 0.1 M HCl, 0.1 M KOH, 

and pure water for 2 hours, respectively. After cleaning, the cells were extensively rinsed with pure water, 

dried in air, and stored in covered containers to avoid dust. To ensure that the experiments were done in 

the initial stages, the rate was taken within the coagulation time of half-life 𝑡𝑡1/2, which is the time 

required for reducing the number of particles to the half. The 𝑡𝑡1/2 is defined by 

 
𝑡𝑡1/2 =

3𝜂𝜂
4𝑘𝑘B𝑇𝑇𝑛𝑛0

 (1) 

where 𝜂𝜂 and 𝑘𝑘B are the viscosity and the Boltzmann constant, T is the temperature, and the T is 293 K 

in this study, 𝑛𝑛0 is the particle number concentration 

 𝑛𝑛0 =
𝑤𝑤𝑆𝑆𝑆𝑆

4
3 𝜋𝜋𝑎𝑎

3𝜌𝜌
 (2) 

where 𝑤𝑤𝑆𝑆𝑖𝑖, 𝑎𝑎 and 𝜌𝜌 are the concentration of silica, the radius of particles and the density of silica, 

respectively [26–28]. In this study, all experiments were done with 0.1 g/L silica suspension, so the 𝑡𝑡1/2 

is about 58 s. Therefore, the data of initial 10 s were used in the calculation for the fastest rate. For slower 

rates, data of initial 600 s were used because the slow aggregation rate constant is much smaller than the 
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fastest rate.  

First, we measured the temporal change of the absorbance of the suspension due to aggregation without 

lysozymes as a function of KCl. This measurement was carried out to confirm the critical coagulation 

concentration (CCC) and the fastest aggregation rate at pH 5 or 7. Above the CCC, the aggregation rate 

is mainly determined by the van der Waals force and the frequency of diffusional collision. Then, we 

measured the temporal variation of the absorbance as a function of lysozyme dose at the constant KCl 

concentration of 1 mM or 10 mM. Immediately after the lysozyme solution was added to the silica 

suspension, the measurement was started. We performed a preliminary experiment to confirm the time 

to reach the equilibrium of lysozyme adsorption. We measured the zeta potential of the mixture of 

lysozyme and silica immediately after the mixing and 24 hours after the mixing, and we found there are 

no obvious differences in zeta potential between these two situations. Therefore, we consider the 

adsorption of lysozyme is rapid enough to reach the equilibrium. The aggregation rate constant of silica 

k can be calculated by  

 
𝑘𝑘 =

1
𝑛𝑛0
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

1
𝜏𝜏0

1
𝐹𝐹

 (3) 

where turbidity 𝜏𝜏 can be obtained from the absorbance. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the initial rate of turbidity change and the 

𝜏𝜏0 is the initial turbidity. F is the optical factor of the silica particles and defined by 

 
𝐹𝐹 =

𝐶𝐶2
2𝐶𝐶1

− 1 (4) 

with 𝐶𝐶1 and 𝐶𝐶2 the extinction cross sections of a single particle and a doublet (an aggregate composed 

of two single particles), respectively [28, 29]. In the present case for the silica in KCl solution, F is 

calculated to be 0.168 by T-matrix method [30, 31]. From our preliminary experiments, we decided the 

amount of HCl and KOH solution to keep the pH of suspension to 5 or 7. After the measurement, we 

measured the pH of the sample with 781 pH/Ion Meter (Metrohm) to check if the pH was around 5 or 7. 

 

 

3. Theory 
3.1 Zeta potential 

The zeta potential 𝜁𝜁 of spherical particles can be calculated from electrophoretic mobility 𝜇𝜇 with a 

proper theory. When 𝜅𝜅𝑎𝑎 ≫ 1 and 𝜁𝜁 is low, where a is the particle radius and 𝜅𝜅 is the reciprocal of 

thickness of electric double layer defined by Eq. (8) for 1:1 electrolyte, we use Smoluchowski’s equation 

[24] 

 
𝜇𝜇 =

𝜀𝜀𝑟𝑟𝜀𝜀0𝜁𝜁
𝜂𝜂

 (5) 

to calculate the zeta potential, where 𝜀𝜀𝑟𝑟𝜀𝜀0 is the dielectric constant of solvent and 𝜂𝜂 is the viscosity. 

When particles have a zeta potential whose absolute value is larger than 50 mV, we must consider the 

relaxation effect. In this case, we use Ohshima’s formula [25] 
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𝜇𝜇 =

2𝜀𝜀𝑟𝑟𝜀𝜀0𝑘𝑘B𝑇𝑇
3𝜂𝜂𝜂𝜂

�
3
2
𝜁𝜁 −

3𝐹𝐹
1 + 𝐹𝐹

𝐻𝐻

+
1
𝜅𝜅𝜅𝜅

�−18�𝑡𝑡 +
𝑡𝑡3

9
�𝐾𝐾 +

15𝐹𝐹
1 + 𝐹𝐹

�𝑡𝑡 +
7𝑡𝑡2

20
+
𝑡𝑡3

9
�

− 6(1 + 3𝑚𝑚+) �1 − exp �−
𝜁𝜁
2
��𝐺𝐺 +

12𝐹𝐹
(1 + 𝐹𝐹)2 𝐻𝐻

+
9𝜁𝜁

1 + 𝐹𝐹
(𝑚𝑚+𝐺𝐺 + 𝑚𝑚−𝐻𝐻)

−
36𝐹𝐹

1 + 𝐹𝐹
�𝑚𝑚+𝐺𝐺2 +

𝑚𝑚−

1 + 𝐹𝐹
𝐻𝐻2��� 

(6) 

, where 𝜁𝜁, 𝜅𝜅, 𝐻𝐻, 𝐾𝐾, 𝐹𝐹, 𝐺𝐺, 𝑡𝑡 and 𝑚𝑚± are defined as 

 
𝜁𝜁 =

𝑒𝑒𝑒𝑒
𝑘𝑘B𝑇𝑇

 (7) 

 
𝜅𝜅 = �

2𝑒𝑒2𝑛𝑛
𝜀𝜀𝑟𝑟𝜀𝜀0𝑘𝑘B𝑇𝑇

 (8) 

 

𝐻𝐻 = ln
1 + exp �𝜁𝜁2�

2
 

(9) 

 
𝐾𝐾 = 1 −

25
3(𝜅𝜅𝜅𝜅 + 10) exp �−

𝜅𝜅𝜅𝜅
6(𝜅𝜅𝜅𝜅 − 6) 𝜁𝜁� (10) 

 
𝐹𝐹 =

2
𝜅𝜅𝑎𝑎

(1 + 3𝑚𝑚−) �exp �
𝜁𝜁
2
� − 1� (11) 

 

𝐺𝐺 =  ln
1 + exp �− 𝜁𝜁

2�

2
 

(12) 

 
𝑡𝑡 = tanh �

𝜁𝜁
4
� (13) 

 
𝑚𝑚± =

2𝜀𝜀𝑟𝑟𝜀𝜀0𝑘𝑘B𝑇𝑇
3𝜂𝜂𝑒𝑒2

𝜆𝜆± (14) 

where e is the elementary charge and n is the number concentration of 1-1 electrolyte. 𝜆𝜆± are the drag 

coefficients of cations and anions which are defined by 

 
𝜆𝜆± =

𝑁𝑁A𝑒𝑒2

Λ±
0  (15) 

where 𝑁𝑁A is the Avogadro number and Λ±
0  are the limiting conductances of cations and anions. 

 

3.2 Aggregation rate constant with charge heterogeneity 

We can calculate the aggregation rate constant (𝑘𝑘11) by using [14, 32] 

 
𝑘𝑘11 = 𝑘𝑘𝑠𝑠 �2𝑎𝑎�

𝐵𝐵(ℎ)
(2𝑎𝑎 + ℎ)2 exp �

𝑉𝑉(ℎ)
𝑘𝑘B𝑇𝑇

�𝑑𝑑ℎ
∞

0
�
−1

 (16) 
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𝑘𝑘𝑠𝑠 =

8𝑘𝑘B𝑇𝑇
3𝜂𝜂

 (17) 

𝑘𝑘𝑠𝑠 is the Smoluchowski rate constant and ℎ is the closest distance between sphere surfaces. 𝐵𝐵(ℎ) is 

the correction factor for hydrodynamic interaction and 𝑉𝑉(ℎ)  is the physico-chemical interaction 

potential between two particles. 𝐵𝐵(ℎ) and 𝑉𝑉(ℎ) can be represented by [33] 

 

𝐵𝐵(ℎ) ≈
6 �ℎ𝑎𝑎�

2
+ 13 �ℎ𝑎𝑎� + 2

6 �ℎ𝑎𝑎�
2

+ 4 �ℎ𝑎𝑎�
 (18) 

 𝑉𝑉(ℎ) = 𝑉𝑉vdW(ℎ) + 𝑉𝑉el(ℎ) (19) 

𝑉𝑉vdW(ℎ) and 𝑉𝑉el(ℎ) are the potentials of the van der Waals attraction and the electrostatic repulsion. 

The 𝑉𝑉vdW(ℎ) between two spherical particles is given by 

 
𝑉𝑉vdW(ℎ) = −

𝐴𝐴
6
�

2
𝑠𝑠2 − 4

+
2
𝑠𝑠2

+ ln
𝑠𝑠2 − 4
𝑠𝑠2

� (20) 

where s is defined by 

 
𝑠𝑠 =

2𝑎𝑎 + ℎ
𝑎𝑎

 (21) 

and 𝐴𝐴  is the Hamaker constant. The electrostatic repulsion is obtained by means of the Derjaguin 

approximation which can be represented by 

 𝑉𝑉el(ℎ) = 2𝜋𝜋𝜋𝜋𝜀𝜀𝑟𝑟𝜀𝜀0𝜓𝜓𝑑𝑑2 ln(1 + exp(−𝜅𝜅ℎ)) (22) 

where 𝜓𝜓𝑑𝑑  is the diffuse layer potential and, in this paper, we assume 𝜓𝜓𝑑𝑑  is the same as the zeta 

potential. These equations assume that the average diffuse layer potential determines the electrical 

interaction potential. That is, surface charge heterogeneity is not considered.  

A model including the effect of distribution of diffuse layer potential was used to calculate the 

aggregation rate more correctly [13–15]. More precisely, there are some differences between diffuse 

layer potential and surface potential. In this study, we assume the diffuse and surface potential are the 

same, and the zeta potential is the average of diffuse layer potential. Following the model, we assume 

the diffuse layer potential of the silica coated with lysozymes follows a normal distribution. The average 

and standard deviation of the diffuse layer potential of the silica with lysozymes can be determined from 

the experiment of electrophoretic mobility. When two particles with distributed diffuse layer potential 

approach to each other, the theoretical aggregation rate constant 𝑘𝑘11 can be given by  

 
𝑘𝑘11 = � � 𝑝𝑝(𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗)𝑘𝑘(𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗)𝑑𝑑𝜓𝜓𝑖𝑖𝑑𝑑𝜓𝜓𝑗𝑗

∞

−∞

∞

−∞
 (23) 

where 𝑘𝑘(𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗) can be calculated by Eq. (16) with modified 𝑉𝑉el(ℎ) as Eq. (24):  

 
𝑉𝑉el(ℎ) =

1
2
𝜋𝜋𝜋𝜋𝜀𝜀𝑟𝑟𝜀𝜀0 ��𝜓𝜓𝑖𝑖 + 𝜓𝜓𝑗𝑗�

2 ln( 1 + exp(−𝜅𝜅ℎ))

+ (𝜓𝜓𝑖𝑖 − 𝜓𝜓𝑗𝑗)2 ln( 1 − exp(−𝜅𝜅ℎ))� 

(24) 

where 𝜓𝜓𝑖𝑖  and 𝜓𝜓𝑗𝑗 are the diffuse layer potential of particles i and j and the probability density function 

𝑝𝑝�𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗� is 
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 𝑝𝑝�𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗� 

=
1

𝛾𝛾√2𝜋𝜋
exp �

−(𝜓𝜓𝑖𝑖 − 𝜓𝜓�)2

2𝛾𝛾2
� ×

1
𝛾𝛾√2𝜋𝜋

exp �
−(𝜓𝜓𝑗𝑗 − 𝜓𝜓�)2

2𝛾𝛾2
� 

(25) 

where 𝜓𝜓� and 𝛾𝛾 are the average and standard deviation of the diffuse layer potential of the silica particles 

with lysozymes, respectively. Here we call the calculation with Eq. (23) 1-peak model, since this model 

only considers the distribution of diffuse layer potential around the average and the probability density 

function shows one peak. 

When lysozymes adsorb to silica, we can naturally imagine that positive and negative sites exist on 

the silica surface. Such a situation can be considered by another model, which is called 2-peak model in 

this paper. The 2-peak model takes account of positively charged and negatively charged patches on the 

surfaces. In this model, the aggregation rate constant can be given by 

 
𝑘𝑘11 = �� 𝑓𝑓2𝐴𝐴(𝜓𝜓𝑆𝑆1

∞

−∞
)𝑓𝑓2𝐵𝐵(𝜓𝜓𝑆𝑆2)𝑘𝑘(𝜓𝜓𝑆𝑆1, 𝜓𝜓𝑆𝑆2)𝑑𝑑𝜓𝜓𝑆𝑆1𝑑𝑑𝜓𝜓𝑆𝑆2 (26) 

where 𝑓𝑓2𝐴𝐴(𝜓𝜓𝑆𝑆1) and 𝑓𝑓2𝐵𝐵(𝜓𝜓𝑆𝑆2) are defined by 

 𝑓𝑓2𝐴𝐴(𝜓𝜓𝑆𝑆1) 

=
𝑤𝑤

𝛾𝛾𝑆𝑆𝑆𝑆√2𝜋𝜋
exp �

−(𝜓𝜓𝑆𝑆1 − 𝜓𝜓�𝑆𝑆𝑖𝑖)2

2𝛾𝛾𝑆𝑆𝑆𝑆2
� +

1 − 𝑤𝑤
𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿√2𝜋𝜋

exp �
−(𝜓𝜓𝑆𝑆1 − 𝜓𝜓�𝐿𝐿𝐿𝐿𝐿𝐿)2

2𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿2 � 
(27) 

 𝑓𝑓2𝐵𝐵(𝜓𝜓𝑆𝑆2) 

=
𝑤𝑤

𝛾𝛾𝑆𝑆𝑆𝑆√2𝜋𝜋
exp �

−(𝜓𝜓𝑆𝑆2 − 𝜓𝜓�𝑆𝑆𝑖𝑖)2

2𝛾𝛾𝑆𝑆𝑆𝑆2
� +

1 − 𝑤𝑤
𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿√2𝜋𝜋

exp �
−(𝜓𝜓𝑆𝑆2 − 𝜓𝜓�𝐿𝐿𝐿𝐿𝐿𝐿)2

2𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿2 � 
(28) 

𝜓𝜓�𝑆𝑆𝑆𝑆, 𝛾𝛾𝑆𝑆𝑆𝑆, 𝜓𝜓�𝐿𝐿𝐿𝐿𝐿𝐿,  and 𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿 are the average and the standard deviation of diffuse layer potentials of the silica 

and the lysozyme, respectively. w is the ratio of the bare silica surface to all surface and can be determined 

by fitting the average diffuse layer potential calculated with assumed values of w and the probability 

density function Eq. (27) with experimental zeta potentials of the silica coated with lysozymes. That is, 

 
𝜁𝜁 = 𝜓𝜓0 = � 𝜓𝜓𝜓𝜓(𝜓𝜓)𝑑𝑑𝑑𝑑

∞

−∞
 (29) 

 𝑓𝑓(𝜓𝜓) = 

1 − 𝑤𝑤
𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿√2𝜋𝜋

exp �
−(𝜓𝜓 − 𝜓𝜓�𝐿𝐿𝐿𝐿𝐿𝐿)2

2𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿2 � +
𝑤𝑤

𝛾𝛾𝑆𝑆𝑆𝑆√2𝜋𝜋
exp �

−(𝜓𝜓 − 𝜓𝜓�𝑆𝑆𝑖𝑖)2

2𝛾𝛾𝑆𝑆𝑆𝑆2
� 

(30) 

where 𝜓𝜓0 is the theoretical diffuse layer potential with the ratio of bare silica surface to the total surface 

w.  
 
4. Results and discussion  
4.1 Results of aggregation rate constant of bare silica 

Results of measurements of aggregation rate constant k of bare silica particles against the KCl 

concentration are shown in Fig. 1. With increasing KCl concentration, the silica suspension is 

destabilized and the aggregation rate is enhanced. According to the DLVO theory [3, 4], the electrical 

double layer becomes thinner with increasing electrolyte concentration. As a result, the electrical 
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repulsive force between silica particles becomes weaker and the particles aggregate. When KCl 

concentration is below critical coagulation concentration (CCC), the aggregation rate constant 

changes with the change in KCl concentration. Especially at low KCl concentration such as 10 mM 

or lower, the thickness of electrical diffuse double layer is large. Therefore, the silica particles repel 

each other strongly and the aggregation rate constant is quite low. Once the KCl concentration exceeds 

CCC, k remains the constant value 𝑘𝑘𝑓𝑓. The CCC changes with pH because the charge density and zeta 

potential of silica particles change with pH. At pH 7, the absolute value of zeta potential of silica is higher 

than that at pH 5 (Fig. 2) [16]. Therefore, the repulsive force between silica particles is weaker at pH 5, 

so the CCC is lower. In the rapid aggregation regime, the values of k at different pH are the same because 

electrical repulsive force is screened and the aggregation rate is determined by the van der Waals force 

and the collision frequency by Brownian motion. It is often pointed out that the aggregation rate of silica 

nanoparticles becomes extremely low at low pH [12, 16], or when the particles are too small [34]. This 

anomaly stable silica is not the case for the present study probably because of the heat treatment and 

larger size. The aggregation rate constant in the rapid aggregation regime (𝑘𝑘𝑓𝑓 in Fig. 1) is (2.2 ± 0.6) ×

10−18 m3/s, which is close to the previous study, while the rate constant is smaller than the prediction 

of DLVO theory [16]. 

 

4.2 Experimental results of adsorbed amount of lysozyme and zeta potential of silica 

The adsorbed amount of lysozyme on silica at 1 mM and 10 mM KCl are shown in Fig. 2. According 

to Fig. 2, we can see that the adsorbed amount changes drastically with the change of pH, but show less 

dependence on KCl concentration. As for other materials such as linear polymers and surfactants, the 

maximum adsorbed amount increases with the increase in electrolyte concentration [37-39], while the 

adsorption of anionic dye on oppositely charged surface shows that the adsorbed amount decreases with 

the increase in electrolyte concentration [40].  

About the dependence of adsorbed amount on pH and on KCl concentration, we consider that the 

concept of a three-body random sequential adsorption (RSA) model can qualitatively explain the results 

of our study [36]. According to the two-body RSA model, the maximum adsorbed amount of particles 

on a substrate is determined by the lateral electrical repulsion between adsorbed particles when the 

substrate surface is weakly charged and particles are large. The increase in salt concentration and the 

decrease in absorbed particle charge reduce the lateral repulsion and thus the maximum adsorbed amount 

increases. When the substrate surface is highly charged and the adsorbed particles are small, the three-

body RSA model suggests that the lateral repulsion of adsorbed particles decreases due to the additional 

screening by the diffuse double layer developed from the oppositely charged substrate surface. As a result, 

the maximum adsorbed amount increases with increasing the substrate surface charge and the 

dependence of the maximum adsorbed amount on salt concentration becomes weaker.  

In our study, the thickness of electrical diffuse double layer is about 3 nm at 10 mM KCl and 10 nm at 

1 mM KCl. The thickness of diffuse double layer is close to or larger than the lysozyme size. Therefore, 

the explanation of three-body RSA model can work for our system. The maximum adsorbed amount of 
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lysozyme is affected not only by the lateral repulsion between adsorbed lysozymes with positive charge 

but also by the negative charge of silica surface. For the pH dependence, when pH changes from 5 to 7, 

the charge of silica increases [12] and the charge of lysozyme decreases [23]. According to the three-

body RSA model, the range of the repulsive interaction between adsorbed lysozymes becomes smaller 

and the maximum adsorbed amount increases. Similar experimental results are reported by previous 

studies [22, 35]. For the KCl concentration dependence, when KCl concentration is low and the lysozyme 

charge is high, the range of the repulsive interaction between adsorbed lysozymes becomes larger and 

thus the maximum adsorbed amount decreases. However, the oppositely charged silica surface reduces 

the lateral repulsion and increases the adsorbed amount compared to the condition that only the 

interaction between lysozymes is taken account. Therefore, we cannot see obvious effect of KCl 

concentration on the adsorbed amount in our study. A part of the data of adsorption of positively charged 

poly(amido amine) (PAMAM) dendrimers on negatively charged silica surfaces shows similar weak 

dependence on salt concentration in a rather narrow range of salt concentration [36].  

Also, according to Kubiak-Ossowska et al. [41], the hydrophobic interaction may play an additionally 

important role in adsorption process because of the hydrophilic and hydrophobic groups of lysozymes. 

The adsorbed amount affects the zeta potential of lysozyme-coated silica. The zeta potential of silica 

with lysozymes at 1 mM and 10 mM KCl are shown in Fig. 3. The results of zeta potential against the 

adsorbed amount are given in Fig. 4. With increasing the lysozyme dose, the zeta potential of silica 

increases from negative to 0 and reverses to positive. Above the point of zero zeta potential, the zeta 

potential changes slightly and reaches a plateau. This trend of the zeta potential can be explained by the 

adsorption of positively charged lysozymes on the surface of the silica bearing negative charges. The 

plateau zeta potential corresponds to the almost saturation of the adsorption. We can also see a change of 

point of zero zeta potential with the changing of KCl concentration, and a theoretical so-called 3D model 

[42, 43] is proposed to describe the change of zeta potential of the surface covered with particles. 

According to 3D model, because the charge and zeta potential of lysozyme and silica particles are 

influenced by KCl concentration, the change of the point of zero zeta potential with KCl concentration 

is possible. There are also some previous studies reporting that the point of zero zeta potential or zero 

EPM depends on the concentration of simple 1:1 electrolytes [6, 44-47]. Therefore, we think that the 

point of zero zeta potential can change with the KCl concentration. Future studies applying the 3D model 

to silica-lysozyme systems may provide further insights. 

 

4.3 Experimental results of aggregation rate constant of silica with lysozyme 

Aggregation rate constant against the mass ratio of lysozyme to silica are shown in Fig. 5. The solid 

lines in Fig. 5 are the fast aggregation rate constant of the bare silica 𝑘𝑘𝑓𝑓 and is drawn to compare the 

maximum aggregation rate in the presence of lysozymes. When lysozyme is added, with increasing the 

lysozyme dose, the rate increases, passes through the maximum, and decreases. The aggregation rate 

reaches the maximum around the point of zero zeta potential. We found that the maximum aggregation 

rates in the presence of lysozymes at both pH 5 and 7 are higher than 𝑘𝑘𝑓𝑓, indicating that the lysozyme 
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has an effect to increase the aggregation rate of silica. The adsorption of lysozyme increases the minimum 

separation distance between two silica particles. This may make the van der Waals force smaller. 

Therefore, we think that the increase of the maximum aggregation rate is not due to the change of the 

van der Waals forces. Also, the maximum of aggregation rate constant at the point differing from zero 

zeta potential is found. Similar results are shown in a previous study [47] reporting that the point of 

maximum aggregation rate does not coincide with the point of zero zeta potential. 

We consider that the reason of increase of aggregation rate is the heterogeneities on the silica surface. 

When lysozymes adsorb on the silica surface below full surface coverage, positively charged patches 

appear and not only the van der Waals force but also the attractive electrical force between the positively 

charged patches and the negatively charged bare surface of the other silica particle acts. That is, the 

charge-patch electrical attractive force accelerates the aggregation rate [48]. The maximum aggregation 

rate becomes lower at 1 mM than that at 10 mM. This trend cannot be explained by only the attractive 

double layer force, since the attractive double layer force is strong at low salt concentration [6, 8, 9, 49]. 

At point of zero zeta potential, there are not only the attractive force between patches and bare surface 

but also the repulsive force between patches themselves. At low KCl concentration, the repulsive forces 

increase too. This may make the maximum aggregation rate constant lower at low KCl concentration 

than that at high KCl concentration. Also, at pH 7 and 1 mM KCl, the maximum of aggregation rate 

constant is not at point of zero zeta potential, so the effect of electrical repulsive force of electrical double 

layers may reduce the maximum aggregation rate. The region of the fastest rate is wider for high KCl 

concentration. This is simply because the electrostatic repulsion is screened at high ion concentration as 

expected by DLVO theory [3, 4].  

Because there are binding sites on opposite sides of the lysozyme [10, 50], the bridging of silica 

particles by lysozymes is also possible and can enhance the attachment efficiency of aggregation. This 

mechanism and the charge-patch interaction can work when the surface is not fully saturated with 

lysozyme. The maximum rate appeared at unsaturated doses, therefore these mechanisms are plausible 

for our result. The detailed mechanism of the interactions between silica and lysozymes is unclear at this 

moment, therefore, the dependency on pH and salt concentration is not predictive. We still need further 

studies for this point. 

 

4.4 Comparison of experiment to model calculation  

As introduced in the theory part, we use the 1-peak model, the 2-peak model, and the DLVO theory to 

calculate aggregation rates theoretically. By fitting the data in the absence of lysozyme in Fig. 1 into the 

DLVO theory, we assume the Hamaker constant around 1.0 × 10−21 J, and the average and coefficient 

of variation of diffuse layer potential of the silica and the lysozyme are obtained from experimental 

results of their electrophoresis. 

A comparison of aggregation rate constants among the experiments, the 2-peak model, the 1-peak 

model, and the DLVO theory is shown in Fig. 6. In Fig. 6(a) for pH 5 at 10 mM, the calculation with 2-

peak model is close to the experimental results at low dose of the lysozyme. However, above the point 
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of zero zeta potential, values by the 2-peak model are much higher than the experiment. When the dose 

is higher than point of zero zeta potential, more lysozymes are adsorbed on the surface of silica and thus 

a positively charged lysozyme layer is effectively formed. As a result, the attraction originating from 

effects of charge heterogeneity becomes weaker. In this study, the zeta potential after charge reversal 

become plateau at about 10 mV. Therefore, we cannot verify the aggregation rate constant at the zeta 

potential higher than 10 mV. If the zeta potential increases further, we expect that the plots of k are close 

to the prediction by the DLVO and 1-peak model.  

In Fig. 6(b), the calculation of 1-peak model is close to the experimental results below the point of 

zero zeta potential. Comparing Fig. 6(b) with (a), we see that the plots approach to the prediction by 1-

peak model. Figure 2 shows that the adsorbed amount at pH 7 is much more than that at pH 5. When the 

adsorbed amount increases, lysozymes form a homogeneously charged layer and weakens the effect of 

charge heterogeneity. Even though the distribution of diffuse layer potential contributes to the 

aggregation process, the effect of charge heterogeneity almost disappears. Another reason of redispersion 

of silica is considered to be the steric stabilization. Lysozymes adsorb on the surface of silica and make 

the surface rough. When the adsorption of lysozymes is saturated, further adsorption of lysozymes is 

inhibited. In turn, the silica effectively covered or saturated by lysozymes cannot easily aggregate. 

Therefore, silica particles re-disperse more quickly than the prediction of DLVO theory and 1-peak model 

because of the steric repulsive forces. 

We see that the maximum of the aggregation rate constant is not at the point of zero zeta potential in 

Fig. 6((c) and (d)). These phenomena confirmed by experiment can be seen only by 2-peak model. 

However, there are also some problems that the prediction by 2-peak model does not quantitatively agree 

with the experiment.  

We also note the asymmetry of k against the point of zero zeta potential in Fig. 6. The prediction by 

DLVO theory and 1-peak model is symmetrical around the point of zero zeta potential. In contrast, the 

2-peak model shows asymmetry, while the asymmetry is too much. In Fig. 6((a) and (b)), when the 

adsorbed amount is low below the point of zero zeta potential, the k grows gradually even though the 

zeta potential is high. Above the point of zero zeta potential, the zeta potential does not change obviously, 

but the k falls rapidly because of the disappearance of charge-patch force and the appearance of steric 

force originating from lysozyme-lysozyme interaction. The change of effectiveness of charge 

heterogeneity before and after point of zero zeta potential makes the plots of k asymmetrical.  

Even though the prediction by 2-peak model does not quantitatively agree with the experiment, only 

the 2-peak model describe the asymmetry and especially the fastest area out of point of zero zeta potential. 

Furthermore, the experimental fact that the maximum of aggregation rate constant is not at the point of 

zero zeta potential can be predicted only by 2-peak model. In this sense, the 2-peak model including 

heterogeneity of positive and negative charges can somehow describe the aggregation behavior of the 

lysozyme-coated silica particles. Further improvement can be expected by properly considering realistic 

charge heterogeneity and the effect of the surface coverage of lysozymes on the silica. 
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5. Conclusion 
To clarify the effect of lysozymes on the charging and aggregation of silica particles, we examined the 

zeta potential and the aggregation rate constant of silica particles in the presence of lysozymes. The 

measured rate constants were compared with the theoretical values predicted by the 2-peak model, the 

1-peak model, and the classical DLVO theory. While the charge neutralization and charge stabilization 

are significant, additional interaction mechanisms need to be taken into consideration. We suggest charge 

heterogeneity and steric interaction as such additional mechanisms. The experimental aggregation rate 

constant is close to the theoretical value predicted by the 2-peak model, which is proposed to quantify 

the effect of the charge heterogeneity, when the adsorbed amount is quite low. This supports the 

hypothesis of the existence of the effect of charge heterogeneity. The charge heterogeneity is effective to 

promote the aggregation of silica particles at the low adsorbed amount. At the high adsorbed amount, the 

formation of the effectively saturated lysozyme layer inhibits aggregation. Further improvement should 

be needed to consider realistic charge heterogeneity and the effect of the surface coverage of lysozyme 

on the silica. 
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Figure captions 

Fig. 1 The aggregation rate constant of bare silica against KCl concentration. Symbols denote the 

aggregation rate constant k at pH 5 and 7. The solid line denotes the aggregation rate constant in fast 

aggregation regime (𝑘𝑘𝑓𝑓). 

Fig. 2 Adsorbed amount of lysozyme against the mass ratio of lysozyme to silica. Symbols denote the 

adsorbed amount. The solid line denotes the adsorbed amount when all the added lysozymes adsorb on 

the silica surface. Error bars denote the standard deviations of adsorbed amount. 

Fig. 3 Zeta potentials of silica in the presence of lysozyme at 1 mM and 10 mM KCl at pH 5 (a) and at 

pH 7 (b). The silica concentration is 0.1 g/L. Symbols denote the zeta potential.  

Fig. 4 Zeta potential of silica against the adsorbed amount of lysozyme. Symbols denote the adsorbed 

amount of lysozyme. 

Fig. 5 Aggregation rate constant against the mass ratio of lysozyme to silica at 1 mM and 10 mM KCl at 

pH 5 (a) and at pH 7 (b). The silica concentration is 0.1 g/L. Symbols denote the aggregation rate 

constants. Solid lines denote the rapid aggregation rate constant 𝑘𝑘𝑓𝑓 of bare silica. Vertical dashed lines 

and dotted lines denote point of zero zeta potential at KCl concentration of 10 mM and 1 mM, 

respectively. 

Fig. 6 Aggregation rate constant k of experiment (○), 2-peak model (- - - -), 1-peak model (……) and 

DLVO theory (— —). The solid line denotes the aggregation rate constant in fast aggregation regime 

(𝑘𝑘𝑓𝑓) without lysozyme. The KCl concentration and pH are: (a) 10 mM, pH 5; (b) 10 mM, pH 7; (c) 1 

mM, pH 5; (d) 1 mM, pH 7.  
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Fig. 1 The aggregation rate constant of bare silica against KCl concentration. Symbols denote the aggregation 

rate constant k at pH 5 and 7. The solid line denotes the aggregation rate constant in fast aggregation regime 

(𝑘𝑘𝑓𝑓). 

Fig. 2 Adsorbed amount of lysozyme against the mass ratio of lysozyme to silica. Symbols 

denote the adsorbed amount. The solid line denotes the adsorbed amount when all the added 

lysozymes adsorb on the silica surface. Error bars denote the standard deviations of adsorbed 

amount. 
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Fig. 3 Zeta potentials of silica in the presence of lysozyme at 1 mM and 10 mM KCl at pH 5 (a) and at 

pH 7 (b). The silica concentration is 0.1 g/L. Symbols denote the zeta potential.  
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Fig. 4 Zeta potential of silica against the adsorbed amount of lysozyme. Symbols denote the 

adsorbed amount of lysozyme. 
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Fig. 5 Aggregation rate constant against the mass ratio of lysozyme to silica at 1 mM and 10 mM KCl 

at pH 5 (a) and at pH 7 (b). The silica concentration is 0.1 g/L. Symbols denote the aggregation rate 

constants. Solid lines denote the rapid aggregation rate constant 𝑘𝑘𝑓𝑓 of bare silica. Vertical dashed lines 

and dotted lines denote point of zero zeta potential at KCl concentration of 10 mM and 1 mM, 

respectively. 
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Fig. 6 Aggregation rate constant k of experiment (○), 2-peak model (- - - -), 1-peak model (……) and 

DLVO theory (— —). The solid line denotes the aggregation rate constant in fast aggregation regime 

(𝑘𝑘𝑓𝑓) without lysozyme. The KCl concentration and pH are: (a) 10 mM, pH 5; (b) 10 mM, pH 7; (c) 1 

mM, pH 5; (d) 1 mM, pH 7.  




