
An Algorithm for Detecting and Correcting XSLT
Rules Affected by Schema Updates

著者 呉 揚
内容記述 Thesis (Master of Information

Scienc)--University of Tsukuba, no. 37776,
2017.3.24

year 2017
URL http://hdl.handle.net/2241/00150809

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/153387816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Algorithm for Detecting and Correcting XSLT
Rules Affected by Schema Updates

WU YANG

Graduate School of Library, Information and Media Studies
University of Tsukuba

March 2017

i

Contents

Chapter 1 Introduction 1

Chapter 2 Preliminaries 4

2.1 DTD and Update Operations to DTDs . 4

2.2 Classes UTT and UTTpat of Tree Transducers . 5

2.3 Class UTTpat,sel . 6

Chapter 3 Rules Affected by DTD Updates 8

3.1 Correspondence between elements . 8

3.2 Rules Affected by DTD Updates . 10

Chapter 4 NP-Hardness of Applicability of Transformation Rules 12

Chapter 5 Detecting Rules Affected by DTD Updates 14

Chapter 6 Correcting Rules Affected by DTD updates 16

Chapter 7 Experiment 22

Chapter 8 Conclusion 30

Acknowledgment 31

Bibliography 32

1

Chapter 1

Introduction

DTDs are continuously updated according to changes in the real world. Updates to a DTD

affect the behavior of XSLT stylesheets as well as XML documents under the DTD. To maintain the

consistencies of XSLT stylesheets with an updated DTD, we have to detect the XSLT rules affected by

DTD updates and correct the affected XSLT rules so that the XSLT stylesheets transform documents

under the updated DTD appropriately. However, correcting such affected XSLT rules manually are

a highly difficult and time-consuming task due to the following reasons.

• Recent DTDs are becoming larger and more complex. In [6] 27 real-world DTDs are investi-

gated and the average number of rules turns out to be more than 50.

• XSLT is complex especially for unskilled users, and writing an XSLT stylesheet is an expert

task [2].

• Users do not always fully understand the dependencies between XSLT stylesheets and

old/updated DTDs.

To address this problem, we propose an algorithm for correcting XSLT rules affected by DTD

updates.

To illustrate our algorithm, let us consider the fragments of a DTD and an XSLT stylesheet

shown in Fig. 1.1(A,B). With DTD old and XSLT old, an sns element is processed by rule 1 if the

sns element is not a child of affiliation. On the other hand, an sns element that is a child of

affiliation is processed by rule 3. Here, suppose that contact is nested between affiliation

and email/sns. That is, contact is inserted as a child of affiliation, and email and sns are

moved as children of contact as shown in DTD new (Fig. 1.1(C)). Due to this DTD update, The rule

applied to the sns element of an affiliation element is changed; in DTD old, rule 3 is applied to

the sns element as above, while in DTD new rule 1 is applied to the sns element. In this situation,

there are two possible choices for correcting XSLT rules.

1. Accept the above change as it is and do nothing.

2. Modify XSLT old so that rule 3 is applied to the sns element of an affiliation element in

Chapter 1 Introduction 2

Figure 1.1 Old/new DTDs and XSLTs

DTD new.

For the latter choice, our algorithm suggests rule 3’ and rule 4 in Fig. 1.1(D). Here, rule 3’ is obtained

by modifying the pattern of rule 3 and rule 4 is newly added to XSLT old in order to “relay” the

transformation of rule 2 to rule 3’. Such suggested rules are possibly desirable correct rules, or even

if it is not the case, at least useful hints to correct rules affected by DTD updates.

In this thesis, we first give an algorithm for detecting XSLT rules affected by DTD updates, which

is an extension of the algorithm previously proposed in [13]. Based on the result, we propose an

algorithm for correcting rules affected by DTD updates. We also give the result of a preliminary

experiment.

Related Work

The algorithm in [4] transforms XPath expressions according to a schema update. Although XPath

expressions are used as XSLT patterns, their algorithm cannot be applied to our problem. This is

because XSLT rules affected by a schema update cannot be detected by checking each XSLT pattern

independently, since XSLT rules may depend on each other as shown in dependency graph. To the

best of our knowledge, there is no study on correcting XSLT rules affected by a schema update.

On the other hand, there are several studies dealing with XML schema updates. For example, [8, 5]

propose algorithms for extracting “diff” between two schemas. [3, 12] propose update operations that

assures any updated schema contains its original schema so that documents under an original schema

remains valid under its updated schema. [11] introduces a taxonomy of possible problems for XQuery

Chapter 1 Introduction 3

induced by a schema update, and gives an algorithm to detect such problems. [7] studies query-

update independence analysis, and shows that the performance of [1] can be drastically enhanced in

the use of µ-calculus.

In [13] the authors propose an algorithm for detecting rules affected by DTD updates. The paper

only considers detecting rules affected by DTD updates and does not consider correcting such rules.

Moreover, [13] assumes one-to-one correspondence between elements in old/new DTDs. However,

this may be too restrictive in real-world situations, since as shown in Chapter 4 this assumption does

not always hold due to nest/unnest operations.

4

Chapter 2

Preliminaries

In this chapter, we first give some definitions related to DTD. Then we define tree transducers, a

formal model of XSLT.

2.1 DTD and Update Operations to DTDs

Let Σ be a set of labels. For a node v in a tree t, by l(v) we mean the label of v. For a regular

expression r, the language specified by r is denoted L(r) and the set of labels appearing in r is

denoted lab(r). A DTD is a tuple D = (d, sl), where d is a mapping from Σ to the set of regular

expressions over Σ, and sl ∈ Σ is the start label. For a label a ∈ Σ, d(a) is the content model of

a. A tree t is valid against D = (d, sl) if l(v) = sl for the root v of t and for any node n in t,

l(v1) · · · l(vn) ∈ L(d(l(v)), where v1, · · · , vn are the child nodes of v.

Example 1 Consider the following DTD, where article is the start label.

<!ELEMENT article (title, section+)>

<!ELEMENT section (title, para+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT para (#PCDATA)>

Then the DTD is denoted (d, article), where d(article) = title section+, d(section) = title para+,

d(title) = d(para) = ϵ.

To define update operations to DTDs, we need to define the positions of elements/operators in a

content model. Thus, we represent a content model as a tree and specify the position of each node

by Dewey order [10], a decimal order like 1.3.2. For example, Fig. 2.1 shows the tree structure of

r = (a|b)(ca)∗, where each node is associated with its position. For a regular expression r, the label

at position u in r is denoted l(r, u) and the subexpression at position u of r is denoted sub(r, u). For

example, in Fig. 2.1, l(r, 1) = ‘|’, l(r, 1.1) = a, sub(r, 2.1) = ca.

We define some operators to positions.

Chapter 2 Preliminaries 5

Figure 2.1 Tree structure of r

• For positions u and v, by u + v we mean the position u′v′, where u′ is the position obtained

from u by deleting the rightmost number n of u and v′ is obtained by adding n to the leftmost

number of v. For example, if u = 1.3.2 and v = 2.1.1, then u+ v = 1.3.4.1.1.

• For a position u and an integer i, by inc(u, i) we mean the position obtained by incrementing

the i-th number of u. For example, if u = 2.1.1, then inc(u, 1) = 2.1.2 and inc(u, 2) = 2.2.1.

• For a position u, by len(u) we mean the length of u. For example, if u = 2.1.1, then len(u) = 3.

Let D = (d, sl) be a DTD. We have the following four update operations to D.

• ins elm(a, b, u): inserts a label b at position u in d(a).

• del elm(a, u): deletes the label at position u in d(a).

• nest(a, b, u): nests the subexpression at u in d(a) by b. This operation replaces the subexpres-

sion at u in d(a) by b and sets d(b) = sub(d(a), u).

• unnest(a, u): this is the inverse operation of nest, and replaces the label l′ = l(d(a), u) at u

in d(a) by regular expression d(l′).

By op(D) we mean the DTD obtained by applying an update operation op to D. An update script

is a sequence of update operations. For an update script s = op1op2 · · · opn, we define s(D) =

opn(· · · (op2(op1(D)))).

2.2 Classes UTT and UTTpat of Tree Transducers

A pattern is defined as pat = ls1/ · · · /lsn, where lsi = axi :: li, axi ∈ {↓, ↓∗}, and li ∈ Σ. ↓ and
↓∗ denote child and descendant-or-self axes, respectively. Let t be a tree and v be a node of t. We

say that v matches pat if there is a sequence v1, · · · , vn of nodes in t such that vn = v, l(vi) = li

(1 ≤ i ≤ n), and that for any 2 ≤ i ≤ n, if axi =↓, then t has edge vi−1 → vi, otherwise (i.e.,

axi =↓∗) there is a path from vi−1 to vi in t.

A hedge is a finite sequence of trees. The set of hedges is denoted by HΣ. For a set Q, by HΣ(Q)

we mean the set of Σ-hedges such that leaf nodes can be labeled with elements from Q. A tree

transducer is a quadruple (Q,Σ, q0, R), where Q is a finite set of states, q0∈Q is the initial state, and

R is a finite set of rules of the form (q, pat) → h, where q∈Q, pat is a pattern, and h∈HΣ(Q). For

Chapter 2 Preliminaries 6

example, (q, a/b/c)→ c(p) corresponds to the following XSLT template.

<xsl:template match="a/b/c" mode="q">

<c>

<xsl:apply-templates mode="p" />

</c>

</xsl:template>

Let v be a node in a tree t. The translation defined by a tree transducer Tr = (Q,Σ, q0, R) at v

in state q, denoted by Trq(t, v), is inductively defined as follows.

R1: If there is a rule (q, pat) → h ∈ R such that v matches pat, then Trq(t, v) is obtained from

h as follows: for each leaf node u in h, if l(u) is a state, say p, then replace u with hedge

Trp(t, v1) · · ·Trp(t, vn), where v1, · · · , vn are the children of v.

R2: Otherwise, Trq(t, v) = ϵ.

The transformation of t by Tr, denoted by Tr(t), is defined as Tr(t) = Trq0(t, v0), where v0 is the

root node of t. The class of the tree transducers defined above is denoted UTTpat. In particular, if

for every rule (q, pat)→ h ∈ R pat is a single label, then the restricted class is denoted UTT, which

coincides with that of the standard unranked tree transducer[9].

2.3 Class UTTpat,sel

We first show the definitions of XPath location paths used in select. A relative location path is

defined as ls1/ · · · /lsn, where lsi = axi :: li, axi ∈ {↓, ↑, ↓∗}, li is a label, and ↑ is a parent axis.

An absolute location path consists of‘/’optionally followed by a relative location path. The set of

relative location paths and absolute location paths is denoted by SEL. By HΣ(Q× SEL) we mean

the set of hedges such that leaf nodes can be labeled with elements from (q, sel) ∈ Q× SEL.

A tree transducer in UTTpat,sel can also be defined as a quadruple (Q,Σ, q0, R
′). The rules of

transformation are extended as follows: for every transformation rule (q, pat)→ h in R′, h belongs to

HΣ(Q×SEL). The other definitions remain the same as defined in UTTpat. For a relative location

path sel, by S(t, v, sel) we mean the set of nodes reachable from v via sel in t. In the same way, for

an absolute location path sel, by S(t, sel) we mean the set of nodes reachable from the root of t via

sel.

Let t be a tree and v be a node of t. The translation defined by a tree transducer Tr = (Q,Σ, q0, R
′)

on node v of tree t in state q, denoted by Trq(t, v), is defined as follows.

• The case where there is a rule (q, pat)→h∈R′ such that Mpat(t, v, pat) ̸= ∅:
– If sel is a relative location path, then Trq(t, v) is obtained from h as follows:

∗ for each leaf node u in h, if l(u) = (p, sel) ∈ Q × SEL, then replace u with hedge

Trp(t, v1) · · ·Trp(t, vn), where S(t, v, sel) = {v1, · · · , vn}.

Chapter 2 Preliminaries 7

– If sel is an absolute location path, then Trq(t, v) is obtained from h as follows:

∗ for each leaf node u in h, if l(u) = (p, sel) ∈ Q × SEL, then replace u with hedge

Trp(t, v1) · · ·Trp(t, vn), where S(t, sel) = {v1, · · · , vn}.
• The case where there is no rule (q, pat)→h∈R′ such that Mpat(t, v, pat) ̸= ∅:

– Trq(t, v) = ϵ.

The transformation of t by Tr, denoted by Tr(t), is defined as Trq0(t, v0), where v0 is the root

node of t. The class of the tree transducers defined above is denoted UTTpat,sel.

8

Chapter 3

Rules Affected by DTD Updates

In this chapter, we firstly define correspondence between elements of two DTDs. Based on the

correspondence, we define rules affected by DTD updates.

3.1 Correspondence between elements

The same element name may be referenced multiple times and from multiple content model defini-

tions, and we have to distinguish such elements when detecting the rules affected by DTD updates.

By ab,u we mean the element a at position u in d(b). We say that ab,u is a superscripted label. If a

is the start label, then the corresponding superscripted labels is aroot,λ. By D# we mean the super-

scripted DTD of D that is obtained by replacing each label in a content model with its corresponding

superscripted label.

Example 2 Let D = (d, article) be the DTD in Example 1. Then D# = (d#, article), where

d#(article) = titlearticle,1(sectionarticle,2.1)+,

d#(section) = titlesection,1(parasection,2.1)+,

d#(title) = ϵ,

d#(para) = ϵ.

We say that a superscripted label ab,u is reachable from the start label sl if ab,u = slroot,λ or for

some superscripted label cd,v cd,v is reachable from sl and ab,u occurs in d#(c).

For a tree t valid against D, t# is a superscripted tree of t if t# is obtained by replacing each label

in t with its corresponding superscripted label so that t# is valid against D# (see Fig. 3.1).

Let D = (d, sl) be a DTD and s be an update script to D. For a superscripted label ef,w in D#,

if ef,w is not deleted by s, then ef,w also appears in s(D)# as ef
′,w′

for some label f ′ and some

position w′, and we say that ef
′,w′

corresponds to ef,w (If no update script between old and new

DTDs is given, the algorithms in [8, 5] can generate update scripts between DTDs). Note that more

than one superscripted label in s(D)# may correspond to ef,w, as shown below.

Chapter 3 Rules Affected by DTD Updates 9

Figure 3.1 Tree t and its superscripted tree t#

In the following, we formally define the set of superscripted labels corresponding to ef,w w.r.t. edit

script. The set of superscripted labels corresponding to ef,w w.r.t. an edit script s, denoted

CD(ef,w, s), is defined as follows. First, if s = ϵ, then CD(ef,w, s) = {ef,w} for every superscripted

label ef,w in D#. Consider next the case where s = s′op, where s′ is an edit script and op is an edit

operation. Let s′(D) = (d′, sl). We have the following four cases according to op.

• The case where op = ins elm(a, b, u): Since ba,u is inserted in d′#(a), the positions of the

right siblings of ba,u and their descendants are incremented. Let RS(ba,u) be the set of

superscripted labels that are right siblings of ba,u or their descendants in d′#(a). Then

CD(ef,w, s) is obtained from CD(ef,w, s′) by replacing each ca,v ∈ RS(ba,u)∩CD(ef,w, s′) with

ca,inc(v,len(u)).

• The case where op = del elm(a, u): Let ba,u be the deleted element in d′#(a) by op. Then ba,u

and its descendants become unreachable from the start label. Thus, we define CD(ef,w, s) =

CD(ef,w, s′) \ Desc(ba,u), where Desc(ba,u) is the set of superscripted labels in s′(D)# that

become unreachable from slroot,λ by deleting ba,u.

• The case where op = nest(a, b, u): ba,u is inserted between a and sub(d′#(a), u), and thus each

superscripted label ca,v in sub(d′#(a), u) is changed to cb,v
′
with uv′ = v. Thus, CD(ef,w, s)

is obtained from CD(ef,w, s′) by replacing each ca,v ∈ lab(sub(d′#(a), u)) ∩ CD(ef,w, s′) with

cb,v
′
, where v′ is a position with uv′ = v.

• The case where op = unnest(a, u): Let ba,u is the label to be unnested. By op (1) ba,u is

deleted from CD(ef,w, s′) and (2) each superscripted label cb,v in d′#(b) is added to d′#(a) as

ca,u+v. Let C ′= CD(ef,w, s′) \ {ba,u}. We have two cases to be considered.

– The case where ba,u is the only superscripted label of b in s′(D)#: CD(ef,w, s) is obtained

from C ′ by replacing each cb,v ∈ lab(d′#(b)) ∩ C ′ with ca,u+v.

– The case where s′(D)# contains more than one superscripted label of b: In this case,

ba,u disappears from s′(D)# by op but the other superscripted labels of b still exist (thus

Chapter 3 Rules Affected by DTD Updates 10

Figure 3.2 The correspondence between elements in D# and s(D)#.

cb,v also exists). Thus, CD(ef,w, s) is obtained by adding ca,u+v to C ′ for each cb,v ∈
lab(d′#(b)) ∩ C ′.

If ab′,u′ ∈ CD(ab,u, s), then we say that ab,u corresponds to ab′,u′ and ab′,u′ corresponds to ab,u.

Example 3 Let D = (d, a) be a DTD, where d(a) = be, d(b) = c, d(c) = d, d(e) = fg, d(f) =

d(g) = h, d(h) = i, d(d) = d(i) = ϵ. Figure 3.2(a) illustrates D#. Each edge in the figure represents

a parent-child relationship between superscripted labels. Let s = del elm(b, λ)unnest(g, λ). Then

s(D) = (d′, a), where d′(a) = be, d′(e) = fg, d′(f) = h, d′(g) = d′(h) = i, d′(b) = d′(i) = ϵ.

Figure 3.2(b) illustrates s(D)#, and each dashed arc between two superscripted labels denotes the

correspondence between the labels, e.g., CD(aroot,λ, s) = {aroot,λ}, CD(ba,1, s) = {ba,1}, and so on.

Here, CD(cb,λ, s) = CD(dc,λ, s) = ∅ due to del elm(b, λ). On the other hand, CD(ih,λ, s) contains

two labels due to unnest(g, λ), i.e., CD(ih,λ, s) = {ih,λ, ig,λ}.

3.2 Rules Affected by DTD Updates

Based on the above correspondence between superscripted labels, we define rules affected by DTD

updates. Let Tr = (Q,Σ, q0, R) be a tree transducer. For a superscripted label ab,u and a rule

rl ∈ R, rl is applicable to ab,u in a tree t if for some node v in t, (1) rl is applied to v (i.e., the

antecedent of rule R1 holds for rl and v) during the transformation of Tr(t), and, (2) for some

superscripted tree t# of t, v is labeled by ab,u in t#.

Let ab,u be a superscripted label in D# and ab
′,u′∈CD(ab,u, s). We define two sets of rules affected

by s between ab,u and ab
′,u′

, denoted R+(ab,u, ab
′,u′

) and R−(ab,u, ab
′,u′

), as follows.

• R+(ab,u, ab
′,u′

) is the set of rules rl ∈ R such that rl is not applicable to ab,u in D# but

Chapter 3 Rules Affected by DTD Updates 11

becomes applicable to ab
′,u′

in s(D)#.

• R−(ab,u, ab
′,u′

) is the set of rules rl ∈ R such that rl is applicable to ab,u in D# but not

applicable to ab
′,u′

in s(D)#.

12

Chapter 4

NP-Hardness of Applicability of

Transformation Rules

In this chapter, we show that whether a transformation rule is applicable at a subscripted label is

NP-hard.

Theorem: Let D be a DTD, Tr = (Q,Σ, q0, R) be a tree transducer in UTTpat,sel. Then determining

whether there is a rule rl ∈ R applicable at ab,u in D# is NP hard.

Proof: We reduce the 3SAT problem to the above problem. The 3SAT problem is defined as follows.

• Input: Boolean formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cn, where Ci is a clause with three literals. Let

x1, x2, · · · , xm be variables appearing ϕ.

• Problem: Determine whether there is an assignment of boolean values to x1, x2, · · · , xm that

satisfy ϕ.

Firstly, DTDD = (d, s) is defined as follows.

d(s) = b(T1|F1)(T2|F2) · · · (Tm|Fm)

d(b) = ϵ

d(ci) = ϵ (1 ≤ i ≤ n)

where,

• ci is a label representing clause Ci,

• Ti(1 ≤ i ≤ m) lists “labels representing clauses which contain positive literal xi”,

• Fi (1 ≤ i ≤ m) lists “labels representing clauses which contain negative literal ¬xi”.

For example, if ϕ = C1 ∧C2 ∧C3 ∧C4, C1 = x1 ∨¬x2 ∨ x3, C2 = x2 ∨ x3 ∨ x4, C3 = ¬x1 ∨¬x2 ∨ x3,

C4 = x1 ∨ x2 ∨ ¬x4, T1 = c1c4, F1 = c3, T2 = c2c4, F2 = c1c3, and so on.

Chapter 4 NP-Hardness of Applicability of Transformation Rules 13

Secondly, we define a tree transducer Tr = (Q,Σ, qs, R) as follows.

Q = {qs, qb} ∪ {q1, q2, · · · , qn}
Σ = {s, b} ∪ {c1, c2, · · · , cn} ∪ {c′1, c′2, · · · , c′n}
R = {(qs, s)→ s(qb),

(qb, b)→ (q1, /s/c1),

(q1, c1)→ c′1(q2, /s/c2),

(q2, c2)→ c′2(q3, /s/c3),

...

(qn−1, cn−1)→ c′n−1(qn, /s/cn),

(qn, cn)→ c′n}

Without loss of generality, we assume that cn appears at the head position of T1. Then, let (cn)s,21

be the subscripted label of cn, which appears at the head position of T1. In the following, we will

show that rule (qn, cn)→ c′n is applicable to (cn)s,21 if and only if ϕ is satisfiable.

(⇒) Assume that rule (qn, cn)→ c′n is applicable to (cn)s,21. From the left-hand side of the rule,

it means that cn is assigned with state qn, therefore rule (qn−1, cn−1)→ c′n−1(qn, /s/cn) needs to be

applicable to cn−1. Similarly, we can know that for each i = n − 1, · · · , 2, ci is assigned with state

qi, therefore rule (qi−1, ci−1) → c′i−1(qi, /s/ci) needs to be applicable to ci−1. Consequently, there

is a tree valid to D such that s has child elements c1, c2, · · · , cn. Let t be this tree, let S be the

list of child elements of s in t. For every 1 ≤ i ≤ m, if S contains Ti, xi = true, if S contains Fi,

xi = false. It is obvious that this assignment of boolean values makes ϕ satisfiable.

(⇐) Assume that ϕ is satisfiable. Then, there is an assignment of boolean values which makes

ϕ = true. Here, a sequence belongs to L(d(s)) should satisfy the following requirements.

• For every 1 ≤ i ≤ m, if f(xi) = true, it contains Ti, if f(xi) = false, it contains Fi.

In this case, there exists a tree t valid to D such that t has all of c1, c2, · · · , cn as child elements of s.

For t, from the definition of Tr, it is easily shown that rule (qn, cn)→ c′n is applicable to (cn)s,21. □
In the following, we assume that a tree transducer is in UTTpat.

14

Chapter 5

Detecting Rules Affected by DTD Updates

In this chapter, we present an algorithm for obtaining R+(ab,u, ab
′,u′

) and R−(ab,u, ab
′,u′

). Assum-

ing this algorithm, in the next chapter we present algorithms for correcting rules in R+(ab,u, ab
′,u′

)

and R−(ab,u, ab
′,u′

).

To obtain R+(ab,u, ab
′,u′

) and R−(ab,u, ab
′,u′

), we have to find the rules applicable to each su-

perscripted label. To do this, we define dependency graph. In short, a pair (ab,u, q) is a node in a

dependency graph and means that state q is assigned to ab,u. Consider rule R1 in the definition of

tree transducer, and suppose that the antecedent of rule R1 holds for a node v with l(v) = ab,u.

This means that rule (q, pat) → h is applied to v in state q, in other words, state q is assigned to

ab,u and thus we have a node (ab,u, q). Then consider the consequence of rule R1. Each state p

in h is replaced by Trp(t, v1) · · ·Trp(t, vn). Let ca,v = l(vi). Then Trp(t, vi) means that state p is

assigned to ca,v, thus we obtain a node (ca,v, p). Since (ca,v, p) is obtained by (ab,u, q), we denote

this dependency by an edge (ca,v, p) → (ab,u, q). A dependency graph is a graph consisting of such

nodes and edges.

Example 4 Let D# = (d#, a
root,λ) be a superscripted DTD, where d#(a) = ba,1ca,2, d#(b) = eb,λ,

d#(c) = d#(e) = ϵ. Let Tr = (Q,Σ, q, R) be a tree transducer, where Q = {p, q}, Σ = {a, b, c, e},
and R = {(q, a) → a(q), (q, c) → c, (q, b) → b(pq)}. Since the start label is aroot,λ and the initial

state is q, we obtain (aroot,λ, q). Since d#(a) = ba,1ca,2 and (q, a)→ a(q) can be applied to aroot,λ in

state q, we obtain nodes (ba,1, q), (ca,2, q) and edges (ba,1, q)→ (aroot,λ, q) and (ca,2, q)→ (aroot,λ, q).

By applying rules in R similarly, we obtain the dependency graph in Fig. 5.1.

To define dependency graph formally, we need preliminary definitions. By St(h) we mean the

set of states in a hedge h. For example, if h = a(pq), then St(h) = {p, q}. We say that a path

(aa0,u1

1 , q1)← (aa1,u2

2 , q2)← · · · ← (a
an−1,un
n , qn) matches a pattern pat = l1/l2/ · · · /ln if ai = li for

every 1 ≤ i ≤ n. (a
an−1,un
n , qn) is called the source of the path and (aa0,u1

1 , q1) is called the target of

the path.

Now we define the dependency graph. Let D = (d, sl) be a DTD and Tr = (Q,Σ, q0, R) be a

tree transducer. Then the dependency graph of D and Tr is a graph GD = (VD, ED) satisfying the

Chapter 5 Detecting Rules Affected by DTD Updates 15

Figure 5.1 An example of dependency graph

following conditions.

• (slroot,λ, q0) ∈ VD. (slroot,λ, q0) is called the root of GD.

• If there is a rule (q, pat)→ h ∈ R satisfying the following (1) and (2), then (ca,v, p) ∈ VD and

(ab,u, q)← (ca,v, p) ∈ ED.

1. ED contains a path that matches pat.

2. Let (au,v, q′) be the source of the path of (1). Then the rightmost label of pat is a, q = q′,

p ∈ St(h), and d#(a) contains c
a,v.

• GD contains no nodes and edges that do not satisfying the above conditions.

The following algorithm computes R−(ab,u, ab
′,u′

) for every pair (ab,u, ab
′,u′

) of corresponding

superscripted labels ab,u and ab
′,u′

(R+(ab,u, ab
′,u′

) can be constructed similarly). This algorithm

constructs dependency graphs GD and G′
D for old/new DTDs, and then calculates the diff between

GD and G′
D to obtain R−(ab,u, ab

′,u′
).

Algorithm FindAffectedRules

Input: DTD D = (d, sl), update script s to D, tree transducer Tr = (Q,Σ, q0, R).

Output: R−(ab,u, ab′,u′
) for every pair (ab,u, ab′,u′

) of superscripted labels such that ab′,u′
∈ CD(ab,u, s).

1. Construct the dependency graph GD of D and Tr.

2. Construct the dependency graph G′
D of s(D) and Tr.

3. for each pair (ab,u, ab′,u′
) such that ab′,u′

∈ CD(ab,u, s) do

4. M ← {rl∈R | rl is applicable to (ab,u, q) in GD, q ∈ Q}
5. M ′ ← {rl∈R | rl is applicable to (ab′,u′

, q) in G′
D, q ∈ Q}

6. R−(ab,u, ab′,u′
)←M \M ′

7. return {R−(ab,u, ab′,u′
) |ab′,u′

∈ CD(ab,u)}

Let Mc = maxa∈Σ |d#(a)| and Ms = max(q,pat)→h∈R |St(h)|, where |d#(a)| denotes the number of

occurrences of superscripted labels in d#(a). Then FindAffectedRules runs in O(|R|5(McMs)
3)

(details are omitted).

16

Chapter 6

Correcting Rules Affected by DTD updates

In this chapter, we give algorithms for correcting rules affected by DTD updates. In the following,

for simplicity we assume that for any rule (q, pat)→ h, h contains at most one state. However, this

restriction can easily be relaxed.

We have the following three cases to be considered.

1. Correction for rules in R−(ab,u, ab
′,u′

)

2. Correction for rules in R+(ab,u, ab
′,u′

)

3. Generating rules to newly added elements

In the following, we mainly focus on Case 1. The other cases are explained briefly.

Case 1

This case is dealt with the following two steps.

1-a. Generating new rules to fix “path inconsistencies.”

1-b. Correcting patterns in rules.

Figure 6.1 Example of nest

Chapter 6 Correcting Rules Affected by DTD updates 17

First, let us consider step 1-a. For a rule rl applied to ab,u, if a label is nested/unnested be-

tween some ancestors of ab,u, then rl may become inapplicable to ab
′,u′

. For example, consider D#

(Fig. 6.1(left)) and tree transducer Tr = (Q,Σ, q, R), where R = {(q, a) → a(q), (q, c) → c}. Sup-

pose that ea,2 is inserted between aroot,λ and ca,2 by nest elm, as shown in Fig. 6.1(right). Then

rl = (q, c)→ c cannot be applied to ce,λ in s(D)# since there is no rule applied to ea,2. To recover

rl, a rule applied to ea,2, e.g., (q, e) → e(q), have to be added to Tr. We give an algorithm for

generating such rules later.

Let D be a DTD, s be an edit script to D, Tr = (Q,Σ, q0, R) be a tree transducer, and rl =

(q, pat)→ h be a rule in R. Moreover, let GD be the dependency graph of D and Tr and G′
D be the

dependency graph of s(D) and Tr. To generate rules to fix inconsistencies as above, we compare

paths in GD and those of G′
D and detect labels to which new rules should be applied. Let

p = (aa0,u1

1 , q1)← (aa1,u2

2 , q2)← · · · ← (aan−1,un
n , qn)

be a path in GD. By ls(p), we mean the sequence of labels on p, that is,

ls(p) = aa0,u1

1 aa1,u2

2 · · · aan−1,un
n .

For a sequence ls′ = bb0,v11 bb1,v22 · · · bbm−1,vm
m of labels in s(D)#, if b

bi,vi+1

i+1 occurs in d#(bi) for every

1 ≤ i ≤ m− 1 and b
bi−1,vi
i ̸= b

bj−1,vj
j for any i ̸= j, then ls′ is called a parent-child chain in s(D)#.

Let

c(a
ai−1,ui

i , ls′) =

{
1 if b

bj−1,vj
j ∈ CD(a

ai−1,ui

i , s) for some j,

0 otherwise.

Then the correspondence size between ls(p) and ls′, denoted cs(ls(p), ls′), is defined as follows.

cs(ls(p), ls′) =
n∑

i=1

c(a
ai−1,ui

i , ls′).

Intuitively, cs(ls(p), ls′) represents the “similarly” between ls(p) and ls′.

We say that ls′ matches ls(p) if bb0,v1

1 corresponds to a
ai−1,ui

i for some i ≥ 1 and b
bm−1,vm
m corre-

sponds to a
an−1,un
n . Then a parent-child chain ls′ in s(D)# is maximum w.r.t. ls(p) if ls′ matches

ls(p) and cs(ls(p), ls′) ≥ cs(ls(p), ls′′) for any parent-child chain ls′′ in s(D)# that matches ls(p).

We now give an algorithm that generates, for a rule rl = (q, pat) → h ∈ R−(ab,u, ab
′,u′

), rules to

fix path inconsistency w.r.t. rl. First, we find a path p in GD such that the target node of p is the

root of GD and that a prefix of p matches pat (line 2). Then we find a parent-child chain ls′ in

s(D)# that is maximum w.r.t. ls(p′) (line 3), and assign a state q′i for each node b
bi−1,vi
i in ls′ (lines

4 to 9). Then we find pairs ((b
bi−2,vi−1

i−1 , q′i−1), (b
bi−1,vi
i , q′i)) such that (b

bi−2,vi−1

i−1 , q′i−1)← (b
bi−1,vi

i , q′i))

is missing in G′
D, and generate new rules so that the missing edges are recovered, as follows. If there

is a rule applicable to (b
bi−2,vi−1

i−1 , q′i−1), then the rule is used as a template of a new rule to recover

the edge (lines 12 to 14). Otherwise, a new simple rule is generated (lines 15 to 16).

Chapter 6 Correcting Rules Affected by DTD updates 18

Algorithm FixPathInconsistency

Input: DTD D, edit script s for D, tree transducer Tr = (Q,Σ, q0, R), the dependency graph GD of D and

Tr, the dependency graph G′
D of s(D) and Tr, rule (q, pat)→ h ∈ R−(ab,u, ab′,u′

).

Output: Set of rules to fix path inconsistency w.r.t. (q, pat)→ h.

1. Result← ∅.
2. Find a simple path p = (aroot,λ

1 , q1) ← (aa1,u2
2 , q2) ← · · · ← (a

an−1,un
n , qn) in GD satisfying the

following.

• (aroot,λ
1 , q1) is the root of GD,

• qn = q, and

• a prefix of p matches pat.

3. Find a parent-child chain ls′ = broot,λ1 bb1,v22 · · · bbm−1,vm
m in s(D)# such that ls′ is maximum

w.r.t. ls(p′).

4. for i = 1, 2, · · · ,m− 1 do

5. if b
bi−1,vi
i corresponds to a

aj−1,uj

j for some j then

6. q′i ← qj

7. else

8. q′i ← q′i−1 // use the same state as its parent

9. q′m ← q // the last state is q

10. for i = 2, 3, · · · ,m do

11. if edge (b
bi−2,vi−1

i−1 , q′i−1)← (b
bi−1,vi
i , q′i) is missing

in G′
D then

12. if there is a rule (q′i−1, pat
′)→ h′ ∈ R applicable to

(b
bi−2,vi−1

i−1 , q′i−1) in G′
D such that St(h′) ̸= ∅ then

13. Let q′ be the state in h′. Construct a hedge h′′

from h′ by replacing q′ with q′i.

14. Let rl′ = (q′i−1, pat
′)→ h′′.

15. else

16. Let rl′ = (q′i−1, bi−1)→ bi−1(q
′
i).

17. Add (b
bi−2,vi−1

i−1 , rl′) to Result.

18. return Result.

The rules in Result are presented to a user and the user selects rules he/she wants to use.

Consider next step 1-b. Even with the rules obtained in step 1-a, some rules in R−(ab,u, ab
′,u′

) still

cannot be recovered. This is caused by patterns of some rules becoming inconsistent with updated

DTDs. For example, consider D# (Fig. 6.2(left)) and a tree transducer Tr = (Q,Σ, q, R), where

R = {(q, a) → a(q), (q, b) → b(q), (q, c) → c(q), (q, b/c/f) → f, (q, a/c/f) → f ′}. Suppose that

element cb,2 is unnested, as shown in Fig. 6.2(right). Then rl = (q, b/c/f)→ f becomes inapplicable

to f b,λ. The algorithm presented later corrects the pattern b/c/f of rl and we obtain (q, b/f)→ f ,

which is applicable to f b,λ.

We give a definition. We say that ef,v is the nearest corresponding ancestor of ab,u w.r.t. ab
′,u′

(see Fig. 6.3) if

• ef,v is an ancestor of ab,u in D#, and

• There exists a label ef
′,v′ ∈ CD(ef,v, s) such that ef

′,v′
is an ancestor of ab

′,u′
in s(D)# and

Chapter 6 Correcting Rules Affected by DTD updates 19

Figure 6.2 Example of unnest

Figure 6.3 Nearest corresponding ancestor ef,v of ab,u w.r.t. ab′,u′

that no label between ab
′,u′

and ef
′,v′

corresponds to any label between ab,u and ef,v.

We show an algorithm for correcting the pattern of a rule rl = (q, pat) → h ∈ R−(ab,u, ab
′,u′

)

such that rl is still inapplicable even with the rules obtained in step 1-a. We first find the nearest

corresponding ancestor ef,v of ab,u w.r.t. ab
′,u′

(line 2). Then we find the set NA of labels gh,w

such that gh,w is the nearest corresponding ancestor of ab,u w.r.t. ab
′′,u′′

, where ab
′′,u′′

corresponds

to ab,u but ab
′′,u′′ ̸= ab

′,u′
(line 3). Then modify rl as follows. We first find paths p in GD such

that p matches pat (excluding paths containing labels in NA to avoid paths irrelevant to ef,v) and

that p may have a corresponding path in G′
D (line 5). For each path p obtained above, we find a

maximum parent-child chain ls′ in s(D)# w.r.t. ls(p) (line 7), and modify pat of rl according to the

correspondence between ls(p) and ls′ (lines 8 to 9).

Algorithm CorrectPattern

Chapter 6 Correcting Rules Affected by DTD updates 20

Figure 6.4 Example of unnest

Input: DTD D = (d, sl), edit script s for D, tree transducer Tr = (Q,Σ, q0, R), the dependency graph GD

of D and Tr, rule rl ∈ R−(ab,u, ab′,u′
).

Output: Correction for rl.

1. Result← ∅
2. Find the nearest corresponding ancestor ef,v of ab,u w.r.t. ab′,u′

.

3. NA← {gh,w | gh,w is the nearest corresponding ancestor

of ab,u w.r.t. ab′′,u′′
, ab′′,u′′

∈ CD(ab,u, s) \ {ab′,u′
}}.

4. Let rl = (q, pat)→ h.

5. Let P be the set of path p in GD such that p matches pat, the source of p is (ab,u, q), and that p does

not contain any label in NA.

6. for each path p ∈ P do

7. Let ls′ be the maximum parent-child chain w.r.t. ls(p) in s(D)#.

8. Modify pat according to the correspondence between ls(p)

and ls′, as follows. Let pat′ be the result.

• For each ce,w in ls(p), if ls′ has no label corresponding to ce,w, then delete the label corresponding

to ce,w from pat.

• For each ce
′,w′

in ls′, if ls(p) has no label corresponding to ce
′,w′

, then insert e into pat at the

corresponding position of ce
′,w′

in ls′.

9. Let rl′ = (q, pat′)→ h.

10. Add (rl, rl′) to Result.

11. return Result

Result is presented to a user and the user selects an appropriate rule from Result.

Case 2

Suppose that rl ∈ R+(ab,u, ab
′,u′

). We have the following choices.

• Accept this as it is and do nothing.

• Modify rl so that rl is not applicable to ab
′,u′

while rl is kept applicable to any other labels

to which rl is applicable before the update.

Chapter 6 Correcting Rules Affected by DTD updates 21

For the latter choice, our algorithm modifies rl. We explain this by a simple example. Consider

D# (Fig. 6.4(left)) and a tree transducer Tr = (Q,Σ, q, R), where R = {(q, a) → a(q), (q, e) →
e(q), (q, b) → b(q), (q, c) → c(q), (q, f) → f, (q, c/f) → f ′}. Suppose that cb,λ is unnested

(Fig. 6.4(right)). Let rl = (q, f) → f . Then rl becomes applicable to f b,λ and thus we have

rl ∈ R+(f c,λ, f b,λ). Our algorithm modifies rl to rl′ = (q, e/f) → f so that rl′ is not applied to

f b,λ while rl′ remains applicable to fe,λ.

Case 3

Suppose that a new label l not in D is inserted by ins elm. Since l is not in D, there is no rule

applicable to l. In such a case, our algorithm generate a new rule applicable to l, similarly to line 16

of FixPathInconsistency. For example, suppose that l is inserted as a child of a, and we have a

rule (q, pat)→ h applicable to a such that h contains a state, say q′. Then the algorithm generates

a new rule (q′, l)→ l(q′) that is applicable to l.

22

Chapter 7

Experiment

In this chapter, we present experimental results on our algorithm. We implemented our method

in Java 1.8.0. We use two pairs of schemas, MSRMEDOC DTDs (version 2.1.1 and 2.2.2)*1 and the

NLM Journal Publishing Tag Set Tag Library DTDs (version 2.3 and 3.0)*2. MSRMEDOC DTD is a

format for information interchange in the development process of production and supply. The NLM

Journal Publishing Tag Set Tag Library DTD describes the content and metadata of journal articles,

including research and non-research articles, letters, editorials, and book and product reviews.

Firstly, we give the evaluation of our algorithm on MSRME-DOC DTDs. In the following, let

D211 be the version 2.1.1 MSRMEDOC DTD and D222 be the version 2.2.2 MSRMEDOC DTD.

The numbers of elements inD211 andD222 are 183 and 204, respectively. InD211 each element has 3.6

child elements on average. In D222 each element has 2.9 child elements on average. The maximum

number of child elements that an element holds in D211 and D222 are 19 and 20, respectively.

Table 7.1 shows the number of update operations between D211 and D222.

Since we didn’t find any XSLT stylesheet for these DTDs, We made 10 XSLT stylesheets for XML

to HTML transformation and used them in the experiment. The average number of rules of the

stylesheets is 9. In the experiment, we have two examinees who are both graduate students and are

Table 7.1 Update operations between D211 and D222

ins elm del elm nest unnest Total

68 11 27 0 106

Table 7.2 Result of Experiment 1

Examinee Case 1-a (nest) Case 1-b (pattern) Case 3 (ins elm) Total

1 12/12 22/22 0/3 34/37 (92%)

2 12/12 22/22 3/3 37/37 (100%)

*1 http://www.msr-wg.de/medoc/downlo.html
*2 http://dtd.nlm.nih.gov/publishing/

Chapter 7 Experiment 23

Table 7.3 Update operations between D23 and D30

ins elm del elm nest unnest Total

734 100 39 26 899

familiar with DTD and XSLT. The experiment was conducted as follows.

1. We explained the definitions of the DTDs, R+ rule, and R− rule, and related examples to the

examinees in advance.

2. We executed our algorithms for the 10 XSLT stylesheets, and obtained 37 corrected rules in

total.

3. We presented the stylesheets and the corrected rules generated by our algorithm to the exam-

inees, and asked them whether each of the corrected rules is “correct” or not.

Table 7.2 shows the result (in this experiment, no correction for Case 2 was made). For each XSLT

stylesheet, our system constructed dependency graphs for old DTD and new DTD. Each dependency

graph has 15.2 nodes and 8.5 edges on average. The average running time of our algorithm per XSLT

stylesheet is 1.5 seconds under a mobile PC with Intel Core i3 2.60GHz. Each cell of the table gives

the ratio of “the number of rules judged “correct” by the examinee” to “the number of rules corrected

by the algorithm”. It took about 32min on average for each examinee to judge the validity of each

XSLT stylesheet.

In case 1-a, the algorithm made 12 corrections for nested elements, and both examinees judged that

all the 12 corrections are “correct”. The example of case 1-a in this experiment is shown in Figure 7.1.

Similarly, in case 1-b, all the 22 corrections made by the algorithm were judged “correct” by both

of the examinees. The example of case 1-b in this experiment is shown in Figure 7.2. On the other

hand, in case 3 the three corrections made by the algorithm were not judged “correct” by Examinee

1. This is because Examinee 1 felt that adding new rules to newly inserted elements is unnecessary

since new elements do not affect other existing elements in terms of XSLT transformation. The

example of case 3 in this experiment is shown in Figure 7.3.

Secondly, we give a similar evaluation of our algorithm using the NLM Journal Publishing Tag Set

Tag Library. Let D23 be the version 2.3 The NLM Journal Publishing Tag Set Tag Library DTD

and D30 be the version 3.0 DTD. The number of elements of D23 is 213 and that of D30 is 235. In

D23 each element has 11.1 child elements on average. In D222 each element has 13.1 child elements

on average. The maximum number of child elements that an element holds in D211 and D222 are 73

and 82, respectively. Table 7.3 shows the number of update operations between D23 and D30.

For the NLM Journal Publishing Tag Set Tag Library DTDs, we made 8 XSLT stylesheets based

on XSLT 1.0 “NISO Journal Article Tag Suite (JATS) version 1.0”*3 which is provided by National

*3 https://github.com/ncbi/JATSPreviewStylesheets

Chapter 7 Experiment 24

Update Operations to DTDs:

L-4 element is nested as parent element of SUB.

Affected rule R1:

<xsl:template match="SUB" mode="p">

<sub>

<xsl:apply-templates mode="p" />

</sub>

</xsl:template>

Correcting option C1 provided by our algorithm:

Add the following new rule.

<xsl:template match="L-4" mode="p">

<xsl:apply-templates mode="p" />

</xsl:template>

Figure 7.1 An example of case 1-a in Experiment 1

Table 7.4 Result of Experiment 2

Examinee Case 1-a (nest) Case 1-b (pattern) Case 2 (ins elm) Total

1 7/7 19/19 2/2 28/28 (100%)

2 7/7 19/19 2/2 28/28 (100%)

Center for Biotechnology Information of U.S. National Library of Medicine (NLM). In the following,

we call this XSLT JATS for short. In the package of JATS, there are two XSLT 1.0 transformations

that can work standalone. They are jats-html.xsl XSLT stylesheets which is used for HTML trans-

formation and jats-xslfo.xsl XSLT stylesheets used for XSL-FO transformation. In our experiment,

we made XSLT stylesheets only based on jats-html.xsl for XML to HTML transformation and used

them in the experiment. The average number of rules of the stylesheets is 22. In the experiment, we

have two examinees who are both graduated students and are familiar with DTD and XSLT. The

experiment was conducted similarly as the former experiment. We obtained 28 corrected rules in

total for the 8 XSLT stylesheets.

Table 7.4 shows the result. (in this experiment, correction for Case 3 was ommited). For each

XSLT stylesheet, our system constructed dependency graphs for old DTD and new DTD. Each

dependency graph has 103.6 nodes and 834.2 edges on average. The average running time of our

algorithm per XSLT stylesheet is 37.4 seconds under the same environment as the former experiment.

Chapter 7 Experiment 25

Update Operations to DTDs:

L-1 element is nested as parent element of TT.

Affected rule R2:

<xsl:template match="MSR-QUERY-TEXT/MSR-QUERY-RESULT-TEXT/TT" mode="p">

<tt>

<xsl:apply-templates mode="q" />

</tt>

</xsl:template>

Correcting option C2 provided by our algorithm:

Fix R2 as follows.

<xsl:template match="MSR-QUERY-TEXT/MSR-QUERY-RESULT-TEXT/L-1/TT" mode="p">

<tt>

<xsl:apply-templates mode="q" />

</tt>

</xsl:template>

And add the following new rule.

<xsl:template match="MSR-QUERY-TEXT/MSR-QUERY-RESULT-TEXT/L-1" mode="p">

<xsl:apply-templates mode="p" />

</xsl:template>

Figure 7.2 An example of case 1-b in Experiment 1

In this experiment, we constructed dependency graphs with more nodes and edges than the former

experiment, and the running time is longer, too. The following two points can be given as reasons.

1. DTD data sets in this experiment is larger than the former one. From the size of DTDs,

we can see, the average number of child elements that an element has in this experiment is

nearly three times more than that in the former experiment. Therefore, we constructed larger

dependency graphs, and took more running time.

2. In this experiment, the dependency relationship of each elements in DTDs is higher than the

former experiment. This also leads to the increase of the size of the dependency graphs.

Each cell of the table gives the ratio of “the number of rules judged “correct” by the examinee” to

“the number of rules corrected by the algorithm”. It took about 37min on average for each examinee

to judge the validity of each XSLT stylesheet.

Chapter 7 Experiment 26

Update Operations to DTDs:

L-1 element is nested as child element of DESC,

and XFILE element is newly inserted into L-1.

Affected rule R3:

No affected rules.

Correcting option C3 provided by our algorithm:

And add the following new rule.

<xsl:template match="CHG-ACTIONS/CHG-ACTION/DESC/L-1/XFILE" mode="p">

<xsl:apply-templates mode="p" />

</xsl:template>

Figure 7.3 An example of case 3 in Experiment 1

In case 1-a, the algorithm made 7 corrections for nested elements, and both examinees judged that

all the 7 corrections are “correct”. The example of case 1-a in this experiment is shown in Figure 7.4.

Similarly, in case 1-b, all the 19 corrections made by the algorithm were judged “correct” by both

of the examinees. The example of case 1-b in this experiment is shown in Figure 7.5. On the other

hand, in case 2 Examinee 1 couldn’t find the affected rules successfully by himself. But the two

corrections made by the algorithm were all judged “correct” by examinees. The example of case 2

in this experiment is shown in Figure 7.6.

We used Classes UTT and UTTpat of tree transducers as the targets of our algorithm. In order to

indicate the coverage of Classes UTT and UTTpat of full XSLT set, we analyzed the details of two

XSLT data sets.

Firstly, we used XSLT 1.0 ”NISO Journal Article Tag Suite (JATS) version 1.0”, which is the

same one we used in Experiment 2. There are 323 templates(rules) in total, we can use 75 templates

of them as our research target directly, and get 74 more templates just by some slight changing of

the templates. Therefore, in JATS, 46% of templates can be used as our research target.

Secondly, we used XSL Transformations (XSLT) Version 1.0*4, which is released by World Wide

Web Consortium (W3C). There are 54 templates in total, we can use 27 templates of them as our

research target directly, and get 17 more templates just by some slight changing of the templates.

Therefore, in this XSLT data set, 81% of templates can be used as our research target. We can say

that Classes UTT and UTTpat of tree transducers are widely applied in XSLT. Thus, we believe

that our algorithm is useful to detect and correct XSLT rules affected by schema updates.

*4 https://www.w3.org/TR/xslt

Chapter 7 Experiment 27

Update Operations to DTDs:

citation element is unnested,

element-citation and mixed-citation elements are nested as parent elements of bold element.

Affected rule R4:

<xsl:template match="bold" mode="metadata" >

<xsl:apply-templates mode="metadata" />

</xsl:template>

Correcting option C4 provided by our algorithm:

Add the following new rule.

<xsl:template match="element-citation" mode="metadata">

<xsl:apply-templates mode="metadata" />

</xsl:template>

<xsl:template match="mixed-citation" mode="metadata">

<xsl:apply-templates mode="metadata" />

</xsl:template>

Figure 7.4 An example of case 1-a in Experiment 2

Chapter 7 Experiment 28

Update Operations to DTDs:

custom-meta-wrap element is unnested,

and custom-meta-group elements is nested as parent element of custom-meta element.

Affected rule R5:

<xsl:template match="article-meta/custom-meta-wrap/custom-meta" mode="metadata">

<xsl:with-param name="label">

<xsl:apply-templates mode=" metadata"/>

</xsl:with-param>

</xsl:template>

Correcting option C5 provided by our algorithm:

Fix R5 as follows.

<xsl:template match="article-meta/custom-meta-group/custom-meta" mode="metadata">

<xsl:with-param name="label">

<xsl:apply-templates mode=" metadata"/>

</xsl:with-param>

</xsl:template>

And add the following new rule.

<xsl:template match="article-meta/custom-meta-group" mode="metadata">

<xsl:apply-templates mode="metadata" />

</xsl:template>

Figure 7.5 An example of case 1-b in Experiment 2

Chapter 7 Experiment 29

Update Operations to DTDs:

label element is inserted as child element of back element.

Affected rule R6:

<xsl:template match="label" mode="label-text">

<xsl:apply-templates mode="label-text"/>

</xsl:template>

Correcting option C6 provided by our algorithm:

Provide the following message to users. In the

old DTD D23, Rule R6 is applicable to element

labelnotes,2, while in the new DTD D30, Rule R6

is applicable to both element labelnotes,2 and le-

ment labelback,1.

Figure 7.6 An example of case 2 in Experiment 2

30

Chapter 8

Conclusion

In this thesis, we proposed algorithms for detecting and correcting XSLT rules affected by DTD

updates. We made an evaluation experiment and verified that most of rules generated by the

algorithms were appropriate. However, the experiment was done under only two pairs of DTDs.

As a future work, we also would like to conduct more experiments by using more different kinds

of DTDs and XSLT stylesheets. In our experiment, we checked the validity of the corrected rules

generated by our algorithm by examinees. As a future work, we consider to give a definition of “valid

corrected rules”, so that we can check the validity of the corrected rules generated by our algorithm

automatically. We also consider extending our algorithm so that the algorithm can handle more

powerful schema languages such as XML Schema and RELAX NG.

31

Acknowledgements

The author would first like to express my sincere gratitude to warm encouragement and support of

my adviser, Associate Professor Nobutaka Suzuki in pursuing this study. Without his guidance and

persistent help this thesis would not have been possible. The author would especially like to thank

Professor Atsuyuki Morishima and Lecturer Mitsuharu Nagamori for their valuable suggestions and

support. The author is also grateful to members of Nobutaka Suzuki laboratory for their daily

supports, suggestions and encouragement.

32

Bibliography

[1] Benedikt, M., and Cheney, J. Destabilizers and independence of XML updates. Proc.

VLDB Endow. 3, 1-2 (2010), 906–917.

[2] Blouin, A., and Beaudoux, O. Mapping paradigm for document transformation. In Proc.

ACM DocEng’07 (2007), pp. 219–221.

[3] Guerrini, G., Mesiti, M., and Rossi, D. Impact of XML schema evolution on valid docu-

ments. In Proc. WIDM (2005), pp. 39–44.

[4] Hasegawa, K., Ikeda, K., and Suzuki, N. An algorithm for transforming XPath expressions

according to schema evolution. In Proc. DChanges 2013 (2013).

[5] Horie, K., and Suzuki, N. Extracting differences between regular tree grammars. In Proc.

ACM SAC (2013), pp. 859–864.

[6] Ishihara, Y., Suzuki, N., Hashimoto, K., Shimizu, S., and Fujiwara, T. XPath sat-

isfiability with parent axes or qualifiers is tractable under many of real-world DTDs. In Proc.

DBPL 2013 (2013).

[7] Junedi, M., Genevès, P., and Layäıda, N. XML query-update independence analysis

revisited. In Proc. ACM DocEng’12 (2012), pp. 95–98.

[8] Leonardi, E., Hoai, T. T., Bhowmick, S. S., and Madria, S. DTD-Diff: A change

detection algorithm for DTDs. Data & Knowledge Engineering 61 (2007), 384–402.

[9] Martens, W., and Neven, F. Typechecking top-down uniform unranked tree transducers.

In Proc. ICDT (2002), pp. 64–78.

[10] Online Computer Library Center. Introduction to the dewey decimal classification.

https://www.oclc.org/content/dam/oclc/content/dam /oclc/webdewey/help/introduction.pdf .

[11] Oliveira, R., Genevès, P., and Layäıda, N. Toward automated schema-directed code

revision. In Proc. ACM DocEng’12 (2012), pp. 103–106.

[12] Suzuki, N. An edit operation-based approach to the inclusion problem for DTDs. In Proc.

ACM SAC (2007), pp. 482–488.

[13] Wu, Y., and Suzuki, N. Detecting XSLT rules affected by schema evolution. In Proc. ACM

DocEng’15 (2015), pp. 143–146.

