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Abstract

Background: Human induced pluripotent stem cells (hiPSCs) have been attempted for clinical application with
diverse iPSCs sources derived from various cell types. This proposes that there would be a shared reprogramming
route regardless of different starting cell types. However, the insights of reprogramming process are mostly restricted
to only fibroblasts of both human and mouse. To understand molecular mechanisms of cellular reprogramming, the
investigation of the conserved reprogramming routes from various cell types is needed. Particularly, the maturation,
belonging to the mid phase of reprogramming, was reported as the main roadblock of reprogramming from human
dermal fibroblasts to hiPSCs. Therefore, we investigated first whether the shared reprogramming routes exists across
various human cell types and second whether the maturation is also a major blockage of reprogramming in various
cell types.

Results: We selected 3615 genes with dynamic expressions during reprogramming from five human starting cell types
by using time-course microarray dataset. Then, we analyzed transcriptomic variances, which were clustered into 3
distinct transcriptomic phases (early, mid and late phase); and greatest difference lied in the late phase. Moreover,
functional annotation of gene clusters classified by gene expression patterns showed the mesenchymal-epithelial
transition from day 0 to 3, transient upregulation of epidermis related genes from day 7 to 15, and upregulation
of pluripotent genes from day 20, which were partially similar to the reprogramming process of mouse embryonic
fibroblasts. We lastly illustrated variations of transcription factor activity at each time point of the reprogramming process
and a major differential transition of transcriptome in between day 15 to 20 regardless of cell types. Therefore, the results
implied that the maturation would be a major roadblock across multiple cell types in the human reprogramming
process.

Conclusions: Human cellular reprogramming process could be traced into three different phases across various cell
types. As the late phase exhibited the greatest dissimilarity, the maturation step could be suggested as the common
major roadblock during human cellular reprogramming. To understand further molecular mechanisms of the maturation
would enhance reprogramming efficiency by overcoming the roadblock during hiPSCs generation.
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Background
Human induced pluripotent stem cells (hiPSCs) have rev-
olutionized not only stem cell research but also clinical
medicine by advancing cell therapy, disease modeling, and
drug discovery. However, the reprogramming process is
still inefficient and establishment of high-quality hiPSCs is
unreliable regardless of many developed reprogramming
methods to increase efficiency and safety [1, 2]. Therefore,
to elucidate underlying mechanisms of reprogramming
procedure by unveiling its roadblock has important impli-
cation for the hiPSCs generation.
Previous studies conducted time-course gene expression

analyses during reprogramming using mouse embryonic
fibroblasts (MEFs) [3, 4]. These studies suggested the pro-
gression of reprogramming is broadly divided into three
phases: initiation, maturation, and stabilization. Briefly, re-
programming is initiated with mesenchymal-to-epithelial
transition (MET), one of the hallmark events of initiation.
Next, the intermediate reprogramming cells obtain
expressions of a subset of pluripotency genes by exogen-
ous transgene-dependent manner for maturation. Finally,
the reprogramming cells gain transgene-independent stem
cell property through stable expression of pluripotent
genes at stabilization [3–5]. Furthermore, a recent work
illustrated reprogramming roadmaps of MEFs with higher
resolution by using cell surface marker based subpopula-
tion analysis. The results indicated that suppression of
mesenchymal genes is followed by transient upregulation
of epidermis related genes whose inactivation soon turns
on pluripotency genes [6, 7].
However, the characteristics and the timing of hiPSCs

reprogramming events have been reported to be differ-
ent from mouse, although iPSCs can be generated by the
induction of the same transcription factors [8]. For ex-
ample, MET occurs later in human reprogramming
process, which is when exogenous OSKM (OCT4,
SOX2, KLF4, and c-MYC) becomes suppressed and en-
dogenous OCT4 starts to appear [9]. In addition, the
pluripotent states are referred differently for human and
mouse iPSCs, ‘primed’ and ‘naïve’, respectively [10, 11].
Because the understanding of human cell reprogram-
ming process is still limited compared to mice, to
explore reprogramming process in human cells as com-
prehensively as in mouse cells is of the utmost
importance.
Although the current insights of cellular reprogram-

ming of hiPSCs were confined to fibroblasts, hiPSCs
have been established from multiple somatic cell types
including dermal fibroblasts [12, 13], adipose-derived
stem cells [14–17], neural stem cells [18], hepatocytes
[19], amniotic fluid-derived cells [20, 21], epithelial cells
[22–24], melanocytes [25] and peripheral blood cells
[26–28]. Notably, a recent research reported that all five
OSKM-induced human somatic cell types exhibited

transiently similar transcriptome profile which resem-
bled a primitive streak [29]. These facts suggest that par-
tially common pathway in hiPSCs reprogramming might
exist across multiple cell types. Furthermore, a recent
study indicated that the maturation, from day 7 to 15
upon OSKM transduction in human dermal fibroblasts
(HDFs), is a major roadblock of reprogramming process
[30]. Thus, we aimed to differentiate reprogramming
process shared in various human cell types in order to
evaluate whether maturation is a common roadblock in
other cell types or not.
For the purpose, we extracted dynamically expressed

genes in five different human somatic reprogramming
cell types from time-course microarray dataset [29].
Next, we divided the genes into five clusters according
to gene expression patterns and functionally character-
ized each cluster. Lastly, we inferred and snapshotted
transcription factor (TF) activity during reprogramming
process. The results obtained in this work suggested
reprogramming was consistently driven through three
phases, in all five-cell types including fibroblasts,
adipose-derived stem cells, astrocytes, bronchial epithe-
lial cells and prostate epithelial cells. Furthermore, the
maturation can be proposed as the common roadblock
of reprogramming in five cell types.

Methods
Microarray data
To find conserved genes with dynamic expression
from various human cell types in cellular reprogram-
ming, we used a dataset from Gene Expression Omni-
bus under the accession number GSE50206 [29]. It
contains time-course microarray data of five human
somatic cell types: HDF (fibroblast), ASC (adipose-de-
rived stem cell), HA (astrocyte), NHBE (bronchial
epithelial cell) and PrEC (prostate epithelial cell) dur-
ing cellular reprogramming, and two stem cells:
hiPSC, and hESC (Fig. 1a). All sample records (GSM)
used in the study were listed in Additional file 1:
Table S1.

Data processing, gene selection and transcription factor
activity inference
The raw signals from dataset were processed by log2
transformation and quantile normalization. We used the
limma package for quantile normalization in R using
Bioconductor [31]. The signal intensities of each gene in
the biological replicates were averaged. Next, to extract
dynamically expressed genes across all cell types during
reprogramming process, we individually proceeded the
maSigPro package [32] in each cell and screened
genes which showed the significance in all five cell
types (P-value <0.01, FDR < 0.05, R2 > 0.6). The filtra-
tion yielded 3615 extracted genes (Fig. 1b). When
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multiple probes were annotating the same extracted
genes that are extracted, the signals were averaged.
After extracting 3615 genes in five cell types during

reprogramming, we applied the CoRegNet package [33]
to infer the activity of transcription factor (TF) in the
reprogramming process. The CoRegNet infers coopera-
tive TF network and scores TF influences with the h-
LICORN algorithm by using TFs and target genes
expression profiles (Fig. 1b) [34]. To reconstruct regula-
tory networks, we set the parameter of minCoregSup-
port as 0.55 due to the limitation on computational
memory, where the parameter indicates how frequently
the set of co-regulators appears in the dataset (Fig. 1b).
To visualize the influence of representative TFs, we

extracted 71 TFs which have significant pairs of co-
regulators (alpha <0.01) and were found many times in
the net (more than one hundredth of the maximum
number of gene regulatory network). These are default
parameters in CoRegNet package.

Principal component analysis (PCA) and Hierarchical
Clustering Analysis (HCA)
In Fig. 2, we used correlation matrix to find the com-
ponents in PCA. HCA was performed using Euclidean

distance and Ward’s linkage method. In Fig. 3, HCA
was performed using cosine similarity and Ward’s
linkage method.

Pathway, Gene Ontology (GO), and Protein-protein Inter-
action (PPI) enrichment analysis
For functional annotation of gene sets, we used Metascape
(http://metascape.org) to find top 10 clusters with the rep-
resentative enriched terms of Reactome and GO Biological
Processes [35]. Connected PPI network was inferred by
MCODE algorithms [36] with Metascape default parame-
ters. We selected significant enriched MCODE clusters
which consist of more than four nodes.

Data analysis of histone modification
In Additional file 2: Figure S3, we analyzed the ChIP-seq
data which contains H3K79me2 and H3K27me3 of fi-
broblasts differentiated from H1 ESCs (dH1f), at day 6
of OSKM retroviruses infected fibroblasts derived from
dHIf and H1 ESCs (GSE35791) [37]. ChIP-Seq signal
was quantified as total number of reads per million in
the region of interest. We extracted genomic regions
which have top 0.1% signal intensity and annotated the
nearest genes within a range of 10 kb from the TSS.

a b

Fig. 1 Schema of the experiment. a Samples of microarray dataset used in this study were obtained from GSE50206 [29], which includes five
human somatic cells during reprogramming and two stem cells. b Experimental workflow. NANOG and GAPDH were typical examples of dynamically
expressed genes and statically expressed genes in reprogramming, respectively. The filtration method extracted NANOG and eliminated GAPDH. The
main parameters were indicated in parentheses (See Methods for the detailed description)
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Results
Three distinct transcriptomic states exist during cellular
reprogramming in various cell types
To analyze the relatedness of the cellular transcription
profiles at each time point during reprogramming, we
performed PCA, and hierarchical clustering from 3615
genes. By comparing extracted genes to all genes con-
tained in the microarray probe, the reprogramming
trajectory can be traced from the extracted genes
through PCA (Fig. 2a, Additional file 3: Figure S1a).
Gene filtering system successfully increased the contri-
bution ratio of PC1 and PC2 from 26.07% and 11.87% to
40.53% and 17.48%, respectively (Fig. 2a, Additional file 3:
Figure S1a), supporting the technical validation of gene
extraction filtering methods.
According to the PCA and HCA results, the transcrip-

tome during cellular reprogramming was broadly divided
into three clusters based on their similarities: the early
phase from day 0 to 3, the mid phase from day 7 to 15,
and the late phase from day 20 to later (Fig. 2). Although
HA d15 was clustered within the late phase, this is con-
sistent with a previous report that human astrocytes can
be induced into iPSCs with high-efficient manner [38].
Notably, the results indicated that all reprogramming

cell types exhibited uniformly greater dissimilarities in
between the mid to late phase than in between the early
to mid phase (Fig. 2).

Unique gene expression patterns and functional
annotations are conserved across different cell types
during reprogramming
Next, to gain the functional insights of the gene expres-
sion dynamics during reprogramming, we clustered the
dynamic patterns of gene expression into five groups
and performed the functional annotations of gene
enrichment and protein-protein interaction. The gene
symbols in each cluster are listed in Additional file 4:
Table S2.

The first cluster containing 816 genes had a higher
expression in the early phase and remained suppressed
throughout reprogramming process (Fig. 3a). These
genes were mainly annotated as extracellular matrix
organization, which could directly influence cell prolifer-
ation and differentiation [39]. Especially, the cluster
included TGF-beta family members (TGFB1, TGFB1I1,
TGFB2, TGFB3, TGFBI, TGFBR2, TGFBR3), and TGF-
beta induced EMT markers (ZEB1, SNAI2, and
TWIST2) (Additional file 4: Table S2). Evidently, these
genes were reported as negative regulators of MET and
downregulated by exogenous Sox2, Oct4, and c-Myc in-
duction in MEFs reprogramming [40, 41]. Thus, these
results suggest that the reprogramming cells from day 0
to 3 would prepare for MET, a prerequisite for repro-
gramming commencement, by inhibiting EMT path-
ways, which is one of the hallmarks of the initiation
[3–5].
The second cluster genes had stable expression dur-

ing the early and the mid phase but decreased pat-
terns in the late phase (Fig. 3b). This cluster was
annotated as immune response related genes, which
can be caused by the effect of retroviral induction
system for exogenous OSKM expression. Because
OSKM transgenes were sustainably expressed by day
15 [29], and retroviral gene induction system is
known to trigger innate immune response [42],
OSKM retrovirus might attribute to upregulate im-
mune system from early to mid phase of
reprogramming. Notably, the suppression of the im-
mune response by supplementation of either B18R
interferon inhibitor or NFkB inhibition enhanced
hiPSCs generation [43, 44], indicating the inverse cor-
relation between immune system and reprogramming
efficiency. Therefore, considering that interferon in-
duced IFIT protein family was enriched in the early
phase from the first gene cluster analysis (Fig. 3a),
the innate immune related gene sets in the first and

a b

Fig. 2 Transcriptome analyses of 3615 extracted genes from each reprogrammed-cell type showed three clusters by the degree of relatedness.
a Principal component analysis. Each cell type was colored as followings: HDF (blue), ASC (green), HA (orange), NHBE (pink), PrEC (purple),
hiPSCs (red), and hESCs (red). The numbers indicated that the days of the RNA collection after OSKM induction. b Hierarchical cluster analysis
of each cell type. a, b The early phase, mid phase, and late phase were labeled as the translucent blue, green, and red colors, respectively
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second clusters may have an inhibitory role of cellular
reprogramming especially in the case of retrovirus in-
duction system.
The gene expressions in the third cluster were transi-

ently upregulated only in the mid phase, which were
enriched by hemidesmosome and epidermal develop-
ment related genes (Fig. 3c). This cluster included SFN
and KRT6A, consistent with the previous report that
epidermis related genes had a transient upregulation
during the reprogramming of MEFs [6]. Given that the

inhibition of these genes precedes the following activa-
tion of pluripotency genes at the late phase [6], the tran-
sitory expression of epidermis related genes could be
implied as an important feature of the mid phase.
The genes in the fourth cluster had a sharp upregula-

tion in the late phase of reprogramming, which were an-
notated as trans-synaptic signaling related genes
(Fig. 3d). Interestingly, previous studies reported that
neuronal stem cells (NSCs) can be reprogrammed by
OCT4 single gene induction in both human and mouse

a

b

c

d

e

Fig. 3 Common gene expression dynamics and their functional annotations. The left panels showed gene expression patterns. The middle panel
described functional gene enrichment analysis. The annotations of GO, R-HSA, and both ko and hsa indicated their identifiers from Gene Ontology,
Reactome, and KEGG, respectively. Right panels illustrated protein-protein interaction (PPI) network. a Cluster 1 contains 816 genes which have high
expression in the early phase. b Cluster 2 contains 536 genes which have high expression in the early and mid phase. c Cluster 3 contains 394 genes
with transient upregulation in the mid phase. d Cluster 4 contains 929 genes with sharp upregulation in the late phase. e Cluster 5 contains 940 genes
with the gradual expression increase
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because NSCs endogenously express Sox2, Klf4, and
c-Myc [18, 45], indicating higher reprogramming effi-
ciency of trans-synaptic enriched cell types. Consider-
ing that tissue-derived human neuronal progenitor
cells were more closely related to ESCs/iPSCs com-
pared with other tissue-derived cells (Additional file 5:
Figure S2), it can be speculated that NSCs would
share similar gene profiles to the late phase of human
reprogramming cells.
The genes in the fifth cluster were gradually in-

creased as the reprogramming progressed (Fig. 3e).
They were highly annotated as cell cycle related
genes, with especially dense protein-protein interac-
tions and contained families of Cyclin (CCNA2,
CCNB1, CCNB2, CCND2, CCNE1, CCNI2) and CDK
(CDK1, CDK18, CDKN3) (Additional file 4: Table
S2). This is in agreement with the previous study
that hESCs/hiPSCs require high proliferation rate for
the acquisition and maintenance of pluripotency and
self-renewal [46]. The results may propose a possi-
bility of positive selection during reprogramming,
that is, a certain cell population which acquires high
proliferating ability can survive in the early or/and
mid phase, and thus would eventually become dom-
inant in the late phase.
Because gene expression regulation is often linked

with epigenetic alteration, we also investigated how
the expression patterns of 3615 genes are coupled
with epigenetic changes. To this end, we referred
one published data of histone modification change
during reprogramming in human fibroblasts by ana-
lyzing H3K79me2 and H3K27me3 as active and re-
pressive marks of transcription, respectively [37]. We
firstly examined 3 genes, SNAI2, TUBB3, and
PRDM14, from different clusters with different ex-
pression patterns (Fig. 3, Additional file 2: Figure
S3a), and as expected the changes of H3K79me2 and
H3K27me3 in these loci during reprogramming tend
to correlate with the expression patterns (Add-
itional file 2: Figure S3a). Next, to determine the
general modification patterns of H3K79me2 and
H3K27me3 in each clustered gene during reprogram-
ming, we counted the temporal changes of gene
numbers with the histone marks in all 5 clusters
(Additional file 2: Figure S3b). The number of active
marked genes increases in cluster 1 and 2 but de-
creases in cluster 4 and 5, whereas the number of
repressive marked genes increases in cluster 1 and 2
but decreases in cluster 4 and 5. Overall, these
results suggest that our clustering based on gene
expression change across the five types of cells can
also reflect epigenetic changes, regardless of the dif-
ferent starting cells types and time points of the
analysis.

TF influence drastically changes in between the mid
phase and the late phase
Since the gene expression patterns were primarily regu-
lated by TFs, we scored influences of TFs and recon-
structed TF network. We extracted 71 TFs with major
influence and displayed the influences by colors. The
heatmap of TF influences clearly exhibited two distinct
clusters. The pluripotency-related TFs such as NANOG,
SALL4, endogenous POU5F1 and endogenous SOX2
were the positive influence in the late phase. On the
other hand, tissue morphogenesis associated TFs such as
EHF, MEF2C and FOXE1 had the positive influences in
the early phase (Fig. 4a). Next, we visualized the co-
regulatory network of the 71 TFs for each time point of
the reprogramming process. The time-course TF net-
work illustrated that the positive influence TFs from day
0 and 15 had a sparse network compared to the negative
influence TFs, whereas positive influence TFs from day
20 network was denser than negative influence TFs. This
would reflect the heterogeneous cell status in different
phases (Fig. 4b). Furthermore, no co-regulatory networks
were observed between positive influence TFs and nega-
tive influence TFs in all phases, and particularly between
the mid phase and the late phase (Fig. 4b). Therefore,
these results suggested that the transition of TF influ-
ence occurred in between the mid phase and the late
phase.

Discussion
Maturation could be the major roadblock of
reprogramming in various human somatic cell types
In this study, we analyzed 3615 extracted genes with
dynamic expression during reprogramming process from
five human cell types (Fig. 1) and addressed that shared
reprogramming route exists in human cellular repro-
gramming. The transcriptome analysis of cellular states
similarity indicated that a common route of reprogram-
ming process in human somatic cells was divided into
early, mid and late phase with the major dissimilarity in
between the mid and the late phase (Fig. 2). Moreover,
we functionally annotated the groups of genes and clus-
tered them by their gene expression patterns (Fig. 3).
Finally, we reconstructed TF networks and revealed that
the major difference of TFs activity occurred in transi-
tion between from the mid phase to late phase (Fig. 4).
Overall, these results indicated that the maturation
could be the major roadblock in reprogramming for not
only human dermal fibroblasts [30] but also for various
human cell types (Figs. 2 and 4).
In HDFs, maturation stage was reported to obstruct

reprogramming procedure, which in turn could reduce
the overall reprogramming efficiency [30]. For example,
although about 20% of retroviral infected cells at day 7
of OSKM induction, expresses TRA-1-60, one of the

Kuno et al. BMC Genomics  (2018) 19:9 Page 6 of 11



pluripotent stem cell surface markers, only a small
portion of the TRA-1-60 positive cells become iPSCs,
because many intermediate cells revert back to TRA-
1-60 negative cells [30]. However, our data clearly
suggest that the major roadblock of reprogramming
does not specifically depend on the cell type, but de-
pends on the stage of the reprogramming, i.e. the
maturation phase. This means then that the repro-
gramming is directed by stage specific manner rather
than cell type specific manner. Evidently, our data
well illustrated the common route of reprogramming
from 5 different cell types. Of note, these 5 starting
cells were derived from all different germ layers (HDF
and ASC from mesoderm, HA from ectoderm, NHBE
and PrEC from endoderm), suggesting that repro-
gramming process is not simply reversing the cell ori-
gin. Therefore, this highlights our finding that unique
reprogramming pathway is shared in many different
cell types; unlike normal development pathways are
not conserved amongst different germ layers.

Notably, the transcriptome and TF activity of epithelial
cells exhibited the distinct differences between the mid
phase and the late phase, corresponding to maturation
and stabilization (Figs. 2 and 4) even though epithelial
cells do not require MET in the initiation. Therefore,
studying of underlying mechanisms of maturation in
more detail is important considering various human
tissues derived cells become available in the clinical
situation.

Comparison of the results with previous research
Maturation was firstly described as the phase when the
pluripotency genes such as endogenous Pou5f1, Nanog,
and Sall4 begin to express [3, 5]. Because epigenetic
modification is largely reported to play pivotal roles in
the expression of pluripotency genes, reprogramming
suppressors or enhancers through epigenetic changes
were often stated in fibroblasts of mouse or human
[30, 37, 47–52]. Interestingly, mouse B cells and
mouse neural stem cells were also reported to have

a b

Fig. 4 Dynamic activity of TF networks. The TF influence scores were indicated by the color (red:positive, blue:negative). a Heatmap of TF
influences. b Co-regulatory TF networks during the reprogramming process
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the obstructive effects of reprogramming during mat-
uration stage, which was overcame by reprogramming
enhancers [53–55]. For example, C/EBP-alpha overex-
pression in mouse B cell induces the expression of
the dioxygenase Tet2 and promotes Tet2 binding to
regulatory regions of pluripotency genes, which in
turn highly accelerates reprogramming efficiency [53].
In addition, Tet1, Tet2 and Mbd3 work as facilitators
of the reprogramming in mouse neural stem cells
through upregulating pluripotency genes [54, 55].
However, these studies approached the issue of mat-
uration stage by dealing with only small number of
genes (C/EBP-alpha, Tet1, Tet2 and Mbd3), whereas
our study addressed the importance of maturation in
a larger scale using transcriptome analysis from five
different human cell types. Therefore, our study is the
first report to suggest that maturation can be a com-
mon roadblock of reprogramming process among
human cell types derived from different germ layers.
Furthermore, our study could provide some candidate

functional genes related to maturation, as the downregu-
lation of high positive influence TFs in the early phase
to the mid phase might have a key to overcome the
roadblock to the maturation. For example, a recent
study reported that co-expression of FOSL2 with OSKM
had an inhibitory effect on the reprogramming of both
of human corneal epithelial cells (CECs) and HDFs [56].
Similarly, our study showed the expression and influence
of FOSL2 remained upregulated in the early and mid
phase in both mesenchymal cells and epithelial cells
but negatively regulated in the late phase (Fig. 4,
Additional file 6: Figure S4), supporting that the
inhibition of Fosl2 expression might drive reprogram-
ming towards maturation phase. Interestingly, AP-1
complexes, c-Jun and Fos were reported to reduce
the reprogramming efficiency in MEFs by impeding
MET at initiation [57], yet, our results suggested that
FOSL2 might have a suppressive role in maturation
of reprogramming too.
In addition, DNMT3L, a catalytically inactive regula-

tory factor of DNA methyltransferases, was reported that
it was highly expressed on day 20 of reprogrammed
HDF in iPSCs generation [58]. Moreover, DNMT3L-
overexpressing HeLa cells exhibited iPSC-like colonies
and high SOX2 expression level, after over 20 passages
[59]. However, the functional role of DNMT3L has not
been studied yet in the context of cellular reprogram-
ming to the best of our knowledge. Surprisingly, in our
study, DNMT3L expression was transiently upregulated
in the mid phase (Fig. 4, Additional file 7: Figure S5), in-
dicating DNMT3L may act some biological role to facili-
tate maturation during reprogramming. Moreover, AIRE,
exerted its expression and influence in the similar man-
ner to DNMT3L, only positive in the mid phase (Fig. 4,

Additional file 7: Figure S5). Given that the genomic lo-
cations of DNMT3L and AIRE are closely coordinated
on chromosome 21 in human and they share their
23.5 kb upstream region, it can be speculated that
DNMT3L and AIRE may be regulated by the same
mechanisms such as transcriptional regulation or epi-
genetic modification. Especially, the dynamical changes
of epigenetic states during reprogramming could be
related to the suppression of cell-type-specific genes and
activation of pluripotency genes. A recent study indi-
cated that Polycomb Repressive Complex 2 (PRC2) is
involved in the repression of fibroblast-specific genes
through adding H3K27me3 in mouse and human fibro-
blasts, and yet involved in the activation of pluripotency
genes [47]. Because DNMT3L can directly interact with
PRC2 in mESCs [60], it could be speculated that
DNMT3L supports epigenetic state via PRC2 during re-
programming process. Future studies to understand the
biological roles of FOSL2 and DNMT3L will contribute
to accelerate maturation and increase reprogramming ef-
ficiency in hiPSCs generation.

Comparison of the reprogramming process between
mouse and human
The previous studies illustrated the mouse cell line
reprogramming from MEFs; firstly mesenchymal gene
expression was lost, followed by transiently upregulation
of epidermal genes, and lastly pluripotency genes are
stably expressed [6, 7]. Interestingly, our study of human
cellular reprogramming analysis were partially consistent
with the mouse reprogramming gene expression patterns
(Fig. 3a–e). Particularly, the TFs network suggested that
epidermis related TFs such as KLF4 and EHF had a co-
operative network, whose influence changed from posi-
tive to negative at the late phase (Fig. 4b). Several
studies reported the significance of Klf4 in reprogram-
ming efficiency; low protein level of Klf4 paused repro-
gramming process in MEFs regardless of high
expression of other reprogramming factors, Oct4, Sox2
and c-Myc [61]; and the length of Klf4 isoforms was crit-
ical to determine efficiency of reprogramming [62, 63].
Therefore, KLF4 and its co-operative genes may play an
important role in the intermediate process to direct to
the late phase by overcoming the roadblock of repro-
gramming maturation. Furthermore, the transient upreg-
ulation of the epidermis related genes in human cells
would support the possibility that reprogramming
process could not be considered as a reversed process of
the normal development [6].

A possible population selection in maturation
Although, transcriptome dynamics during reprogram-
ming were justifiably represented by using microarray
dataset, because the microarray is bulk measurements
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on cell populations so it can mask the transcriptomic
changes of small cell population [64]. Nevertheless, this
study consistently revealed that the expression of cell
cycle related genes gradually increased from the early
phase to the late phase (Fig. 3e) and the TF influence
was drastically changed between the mid phase to the
late phase (Fig. 4a). In addition, the high density of TF
network showing influence shift from negative to posi-
tive suggested the homogenous co-operative TF activity
(Fig. 4b), strengthening the possibility that masked
population could represent cellular reprogramming.
Given that the reprogramming cells acquire the high
proliferation ability at the early phase [46], only the
small subset of cells which acquired pluripotency and
high proliferation ability in the mid phase could survive
and continue to proliferate in self-replication manner,
which eventually dominated the late phase population.
To address this issue accurately, single-cell RNA se-
quence at the mid phase would be required [64].
In comparison to microarray, RNA-seq would be more

suitable to detect dynamically expressed genes because it
is more sensitive in detecting genes with very low ex-
pression and has a wider dynamic range [65]. However,
to our best knowledge, previously conducted time-
course RNA-seq during reprogramming in human cells
was focused on fibroblasts as the starting cells [66, 67],
and not any other cell types. Therefore, the analysis of
RNA-seq data is the subject of future study, when other
cell type RNA-seq data to examine reprogramming pro-
cedure are reported.
It is also possible that the different copies of OSKM

retroviral vectors were integrated into genome and in-
fluence different gene expression profiles. Indeed, pre-
vious study showed each iPS clone derived from MEF
has different numbers of retroviral integration [68]. In
addition, a subset of OSKM-induced MEFs become
similar to extraembryonic endoderm stem cells (iXENCs)
and the iXENCs tend to have lower viral insertions than
iPSCs [69]. Considering that the copy numbers of OSKM
retrovirus are different even within the same cell type
(MEF) and that it may affect reprogramming states, the
differences of virus integration among different cell types
could be higher. However, regardless of different copy
numbers of OSKM, our results consistently indicated
that parts of reprogramming process could be shared
among different cell types at least in human cellular
reprogramming.
As far as we know, our report is the first study to de-

scribe that human reprogramming process was partially
shared across multiple different human somatic cells
and that maturation could be the common barrier in re-
programming in various human cell types. The strategy
can be applied not only transcriptome but also epigen-
etic or proteomic studies and it would provide further

insights of the fundamental mechanisms of cellular
reprogramming.

Conclusions
In summary, we illustrate that the reprogramming
process was shared in five human somatic cell types by
applying the genome-wide analyses of time-course
microarray data. From the results of functional annota-
tions of the gene expression patterns and reconstruction
of transcription factor activity, we suggest the matur-
ation could be the common roadblock of reprogram-
ming into hiPSCs in various cell types. Identification of a
reprogramming route shared in cell types would provide
the keys to further investigate and understand the mech-
anisms of cellular reprogramming.
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