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Abstract

Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil

into a fruit. While fruit set is known to involve the activation of signals (including various plant

hormones) in the ovary, many biological aspects of this process remain elusive. To further

expand our understanding of this process, we identified genes that are specifically exp-

ressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive

RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six dif-

ferent developmental stages. First, we identified 532 candidate genes that are preferentially

expressed in the pistil based on their tissue-specific expression profiles. Next, we compared

our RNA-seq data with publically available transcriptome data, further refining the candidate

genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes

were identified, including several transcription factor genes that function in reproductive

development. We also identified genes encoding hormone-like peptides with a secretion sig-

nal and cysteine-rich residues that are conserved among some Solanaceae species, sug-

gesting that peptide hormones may function as signaling molecules during fruit set initiation.

This study provides important information about pistil-specific genes, which may play spe-

cific roles in regulating pistil development in relation to fruit set.

Introduction

The pistil is a single reproductive organ that develops into a fruit after fruit set. The efficiency

of fruit set is one of the most important traits that determine yield in many fruit-bearing crops

such as tomato (Solanum lycopersicum L.). Because of its worldwide production and availabil-

ity, tomato has been widely accepted as a model system for investigating fruit set. In general,

fruit set is induced after successful development of the pistil upon pollination and following

fertilization [1]. Through conventional molecular, genetic, and biochemical analyses of

tomato, plant hormones such as auxin and gibberellic acid (GA) have been shown to play
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important roles in various plant developmental processes, including inducing fruit set in the

pistil [1–5]. Mimicking fruit set signals by exogenous application of these hormones and muta-

tion of the genes related to hormone signaling or metabolism induce fruit set without pollina-

tion/fertilization, a process known as parthenocarpy [6]. Furthermore, endogenous induction

of auxin biosynthesis in ovules through genetic engineering is one of the most effective

approaches for inducing parthenocarpy [7]. However, the key mechanisms and signals that

induce fruit set in conjunction with plant hormones in the pistil remain largely unknown. To

investigate this issue, it would be useful to obtain transcriptome profiles in the pistil to uncover

genes regulated by signals related to fruit set.

Microarray and next generation sequencing of transcripts (RNA-Seq) are two major tran-

scriptome profiling systems that have been widely used in molecular biology [8]. One of the

benefits of transcriptome analysis is that it allows the global gene expression profiles of thou-

sands to nearly 40,000 genes to be investigated in a single experiment. Recently, RNA-seq has

become more popular than microarray analysis for obtaining transcriptome profiles and the

associated quantitative data. Comparative transcriptomics by RNA-seq produces massive

amounts of accurate information about differentially expressed genes between various biologi-

cal events and among related individuals, providing many clues about the mechanisms under-

lying plant development, growth, responses to various environmental signals, and the

evolution of plant species [9–15]. In studies investigating fruit development, RNA-seq-based

transcriptome analyses have revealed important biological pathways and gene sets associated

with fruit development and ripening [16,17–22]. However, only a limited number of transcrip-

tome studies have targeted pistils during fruit set in tomato [20,23–25]. These studies have

identified various gene sets that appear to be expressed during fruit set, such as genes related

to plant hormone metabolism and sensitivity, transcription factors regulating meristem differ-

entiation and floral organ development, and those involved in carbohydrate metabolism

[20,26]. Because of their multiple effects on various aspects of plant development, it is still diffi-

cult to narrow down candidate genes or biological pathways that directly influence the induc-

tion and completion of fruit set downstream of plant hormone signaling.

Pistil comprises a mixture of heterogeneous tissues consisting of ovules, style, placenta, and

pericarp (ovary wall), which often hinders the elucidation of the detailed mechanism of early

fruit development due to this inherent complexity. The development of each tissue may

directly influence the success of fruit set and subsequent fruit growth. After pollination, pollen

enters the ovule through the style. The fertilized ovules become seeds, which provide growth

signals to the entire fruit, while the rate of cell division in the ovary wall and placenta deter-

mines the final size of the fruit [1]. Recently, cell-type-specific transcriptomes of the pistil dur-

ing fruit set were uncovered by two independent groups using wild tomato S. pimpinellifolium
and tomato cultivar ‘Moneymaker’, providing important information about cell type-specific

transcriptomes during fruit set [23,27]. In addition, several individual pistil-specific genes

(PSGs) were identified, which play important roles in processes such as pollen tube extension,

pollen-pistil interactions, and ovule development, highlighting the importance of PSGs in the

regulation of tissue-specific development in the pistil, including two polygalacturonase genes

(PG7 and TAPG4) in tomato [28], one extensin-like glycoprotein gene (PELP3) in Nicotiana
tabacum [29–31], one endo-1,4-β-D-glucanase gene, and one MADS box transcription factor

gene (SEEDSTOCK/AGL11) in Arabidopsis thaliana [32,33]. Nonetheless, few studies have

focused on the isolation of PSGs due to technical difficulties such as the small size of the tissue.

Recently, anther-specific genes were identified in various species using a transcriptomic

approach, which play important roles in tissue differentiation and specification [34,35]. The

isolation of genes expressed in specific tissues not only provides new insights into the develop-

ment of each tissue, but it also provides genetic engineering tools for molecular breeding [36].
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Therefore, to extend our understanding of the molecular mechanism underlying fruit set and

to generate new tools for pistil-specific regulation of fruit set-associated genes, it is important

to identify PSGs that are specifically expressed during fruit set initiation.

In this study, we conducted genome-wide analysis of PSGs in tomato by RNA-seq and com-

pared the results with publicly available data. As a result, we identified about one hundred of

PSGs including genes encoding signaling-related proteins, several transcription factors, and

peptide hormone-like proteins, in addition to many genes of unknown function. Further anal-

ysis of these mined genes would increase our understanding of the mechanisms underlying of

pistil development and fruit set and would be useful for generating genetic engineering tools,

such as tissue-specific promoters.

Material and methods

Plant materials, hormone treatment, and cDNA synthesis

Tomato cv ‘Micro-Tom’ was used in this study. The seeds were incubated on wet filter paper

in a Petri dish at 25˚C to stimulate germination, followed by growth in a cultivation room

under a 16 h/8 h light/dark cycle at 25˚C/22˚C (day/night). Total RNA was extracted using an

RNeasy Plant Mini Kit (Qiagen, USA) from 17 samples of different organs at different develop-

mental stages: pistil and fruit samples (#1–8): pistils of 2–2.5 mm buds (#1), 3–4 mm buds

(#2), 1 day before flowering (1 DBF) (#3), at anthesis (#4), 5 days after flowering (5 DAF) (#5),

5 mm ovaries of 7 days after flowering (7 DAF) (#6), mature green fruits at 33 days after flow-

ering (MG) (#7), red fruits at 44 days after flowering (RED) (#8); stamens and other floral

organ samples (#9–11): stamens of 3–4 mm buds (#9), 1 DBF (#10) and at anthesis (#11),

sepals at anthesis (#12), petals at anthesis (#13), vegetative organs (#14–17 samples): 3-week-

old leaves (#14), mature leaves (#15), stems (#16), and roots (#17). The total RNA was treated

with DNase to remove contaminating DNA using a DNA-free RNA Kit (Zymo Research,

USA). The cDNA was synthesized with 2 μg of total RNA using SuperScript VILO MasterMix

(Thermo Fisher, USA) according to the manufacturer’s instructions. The cDNA libraries for

RNA-seq were prepared using a TruSeq RNA Sample Prep Kit v2 (Illumina) according to

manufacturer’s protocol.

RNA-seq, processing, mapping of Illumina reads, and detection of PSGs

The 35-nt and 100-nt single-end sequencing analysis was conducted on the Illumina Genome

Analyzer IIx system and Illumina HiSeq 2000, respectively. To identify the transcriptome of

each tissue, “direct-mapping method” was conducted.

For the direct-mapping method, the quality of Illumina raw FASTQ data was checked by

FastQC before and after trimming with Trimmomatic according to the instruction manual (S1

Fig) [37]. After trimming, only sequences with a minimum length of 20 bp were retained. The

trimmed sequence data were imported into CLC Genomics Workbench ver 7.0.4 (QIAGEN,

Germany) and mapped to the tomato genome SL2.50 and gene model SL2.40. Gene expression

data were obtained as gene length by reads per kilobase of exon per million mapped reads

(RPKM) values [38]. The data were normalized by the quantile method to reduce obscuring of

variation among samples, and a logarithmic transformation part 2 subjects the normalized

data after adding 1 to each values to logarithmic transformation for heat map analysis [39,40].

To narrow down the candidate genes expressed specifically in pistils, an RPKM value of 0.5

was used as the cutoff value to determine specific expression in each sample. Based on this cri-

terion, candidate tomato PSGs with values higher than 0.5 in pistils and lower than 0.5 other

tissues were identified by comparing the transcriptome data for each tissue.
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Data mining of publically available RNA-seq data

To examine the expression patterns of the identified genes in tissues other than pistils, publi-

cally available data were downloaded from transcriptome analyses of tomato from the Tomato

Functional Genomics Database (http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/home.cgi).

Data from nine different vegetative samples from tomato cv. Heinz and wild tomato species S.

pimpinellifolium were extracted and investigated to determine whether the candidate genes

were expressed in these tissues.

To estimate the regions in the pistil in which the candidate genes are expressed, tissue-specific

transcriptome data from the pistils of tomato wild relative S. pimpinellifolium [27] were used to

identify genes with expression levels higher than RPM (reads per million mapped reads) = 2 in at

least one sample. The expression levels of the top-ten genes in each tissue were then examined. To

confirm the expression patterns of the candidate genes in the pistil, their expression levels were

also investigated using transcriptome data from tomato cv. ‘Moneymaker’ [23]. If the expression

level was higher than FPKM (Fragments Per Kilobase of exon per Million mapped fragments) 0.5

in at least one sample, it was judged to be an expressed gene. To investigate the responses of the

genes to plant hormone treatment, a publically available dataset from the transcriptomes of polli-

nated or parthenocarpic fruit induced by hormone treatment was utilized [20]. To compare the

list of differentially expressed genes with the candidate genes, unigene numbers were converted to

ITAG IDs using the Unigene converter in the SGN database.

Gene ontology analysis

ITAG IDs of the candidate PSGs were used as input with the AgriGO agricultural gene ontol-

ogy (GO) analysis tool (http://bioinfo.cau.edu.cn/agriGO/analysis.php) to elucidate enriched

GO terms. A false discovery rate (FDR; e-value corrected for list size) of�0.05 was used as the

criterion to obtain enriched GO terms.

Gene expression analysis by RT-PCR

To confirm the expression patterns of the candidate genes by RNA-seq analysis, RT-PCR was

performed using cDNA samples derived from vegetative and reproductive organs, including

young leaves, mature leaves, mature stems, mature roots, flower buds, and flower from 3-week-

old plants. To analyze the expression patterns of the genes in ovaries or fruits before/after pollina-

tion, RT-PCR was performed using cDNA samples from tomato pistils and fruits at the corre-

sponding developmental stages: A, pistils from 2–2.5 mm flower buds at 10 days before flowering

(10 DBF); B, pistils from 3–4 mm flower buds at 7 days before flowering (7 DBF); C, pistils at 1

day before flowering (1 DBF); D, pistils at anthesis/pollination (0 DAF); E, pistils at 5 days after

flowering (5 DAF); F, 5 mm ovaries at 7 days after flowering (7 DAF); G, mature green fruits at

33 days after flowering (MG); H, red fruits at 44 days after flowering (RED). Semi-quantitative

reverse transcription polymerase chain reaction (RT-PCR) analysis was performed with Master-

cycler ProS (Eppendorf, Germany) using an ExTaq Kit (TaKaRa Bio, Japan) and the primer sets

listed in S5 Table. As an internal control for expression analysis in different organs, SAND expres-

sion was monitored using the primers SAND-F (5’- TTGCTTGGAGGAACAGACG-3’) and

SAND-R (5’- GCAAACAGAACCCCTGAATC -3’) [41].

Sequence analysis of genes with unknown functions

Protein sequences were downloaded from the Sol genomic network. Sequence alignments

were conducted using ClustalW in DDBJ (http://clustalw.ddbj.nig.ac.jp/). Phylogenetic trees

were generated using CLC Genomic Workbench. The presence of secretion signals in the
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small proteins was investigated using SignalP 4.1 Server (http://www.cbs.dtu.dk/services/

SignalP/). The conserved domains and motifs within the identified proteins were searched

using NCBI’s Conserved Domain Database (CDD) (https://www.ncbi.nlm.nih.gov/Structure/

cdd/wrpsb.cgi?) [42].

Availability of RNA-seq dataset

Transcriptome data are available at the GEO database under accession number DRA005810.

Results and discussion

Transcriptome analysis of various tomato tissues

To obtain transcriptome profiles of various tomato organs in order to identify PSGs, we per-

formed RNA-seq analysis of 17 different floral and vegetative samples at different developmen-

tal stages (Fig 1A). We initially selected six different stages for the pistil samples (P1 to P6) and

three different stages for the anther samples (A1 to A3). P1 to P3 and A1 to A2 represent sam-

ples at pre-anthesis; P1 corresponds to pistils in 2–2.5 mm flower bud, P2 and A1 correspond

to pistils and anthers, respectively, in 3–4 mm flower bud, and P3 and A2 correspond to those

in flower buds 1 day before flowering (1 DBF), while P4 and A3 correspond to those in flower

buds at anthesis (0 DAF). P5 and P6 represent samples from post-anthesis stages: P5 and P6

correspond to pistils/fruits in flowers at 5 days after flowering (5 DAF) and in 5 mm ovaries at

7 days after flowering (7 DAF) samples, respectively. In addition, we used eight samples from

different tissues. We conducted 35 nt and 50 nt single reads sequencing by Illumina GAIIx

and Hiseq 2000, respectively (S1 Table). We used the “direct-mapping method” to identify sets

of PSGs (Fig 1B). In the direct-mapping method, whole sequenced short reads were directly

mapped onto the tomato reference genome.

The direct-mapping method is a common approach for transcriptome analysis in which

sequence reads are mapped onto the reference genome of a target organism [8,38]. Our RNA-

seq generated different amounts of raw data ranging from 8.32 to 39.42 million reads. After

quality checking and trimming of low quality reads and adapter sequences, we obtained 7.28

to 35.23 million clean reads for mapping (S1 Table). We analyzed the reads using CLC Geno-

mic Workbench ver. 7.0.4, a user-friendly mapping tool; 82.3% to 90.5% of the clean reads

from each sample were mapped to the tomato genome SL2.40 [43] (S1 Table). An RPKM cut-

off value of 0.5 was utilized to declare a locus expressed, resulting in an average of approxi-

mately 25,000 genes above the expression threshold in 17 samples (S2A Fig).

Before isolating PSGs, we examined the quality of our transcriptome data, as we used only

one replicate per sample. Initially, to characterize the transcriptome data, we conducted princi-

pal component analysis (PCA) with CLC Genomic Workbench ver. 7.0.4. Component 1

explained 91% of the variation, while component 2 explained 2% of the variation, indicating

that the two components together explained 93% of the variation of the 17 original variables.

Samples from vegetative and reproductive organs were separated into two groups, with sam-

ples such as petals and sepals (which are components of reproductive organ but are composed

of vegetative cells) located in the middle of the two groups (Fig 2A), indicating specialized

transcriptomes. We investigated the expression patterns of the homologs that had already

been identified as tissue-specific genes, such as YABBY transcription factor genes. In Arabi-

dopsis, two YABBY transcription factors, CRABS CLAW (CRC) and INNER NO OUTER
(INO), show pistil-specific expression and are involved in the pistil and early fruit development

[44–46]. Thus, we expected the expression patterns of their homologs in tomato to show pistil-

specific expression, and we therefore examined this possibility. Three of nine YABBY tran-

scription factor genes found in the tomato genome, SlCRCa (Solyc01g0101240), SlCRCb
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Fig 1. Experimental design for RNA-seq analysis. (A) The 17 samples used for transcriptome analysis.

For vegetative organs, four samples were collected, including mature leaves from 3-week-old plants and

young leaves, stems, and roots from 1-week-old plants. For reproductive organs and fruits, 13 samples were

collected, including pistils and anthers of 2–2.5 mm buds, pistils and anthers of 3–4 mm buds, pistils at 1 day-

before-flowering (1 DBF), pistils and anthers at anthesis (0 DAF), ovaries of 5-days after flowering (5 DAF), 5

mm ovaries (7 DAF), sepals and petals at anthesis, mature green fruits (MG), and red fruits (RED). (B) Work

flow of transcriptome analyses. For the direct-mapping method, whole transcriptome data from short reads

were obtained, which were directly mapped onto the tomato reference genome, and expressed genes were

identified.

https://doi.org/10.1371/journal.pone.0180003.g001
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Fig 2. Identification of genes preferentially expressed in pistils based on the direct-mapping method.

(A) PCA analysis of the RNA-seq data. (B) Identification and validation of the expression of 532 candidate genes

with RPKM values greater than 0.5 in at least one pistil sample and less than 0.5 in the other tissue samples

using publically available data. Out of 532 genes, 206 were found to be expressed in the transcriptome produced

by Pattison et al. (2015) [27]. On the other hand, the expression of 376 genes was detected in at least one

sample from many different tissues and conditions, and 275 of these showed RPKM values less than 1 in nine

vegetative samples (Floral organ specific genes). Finally, by comparing the two gene sets, 108 genes were

found in both sets, identified as pistil-specific genes (PSGs). (C) Heatmap of the expression of 108 genes in 17

different samples. Normalized Log2-transformed expression data were visualized by constructing a heatmap

using MeV software. Hierarchical clustering by Pearson correlation was conducted. (D) Gene ontology analysis

was performed using AgriGO (http://bioinfo.cau.edu.cn/agriGO/). Only one category, carboxylesterase activity
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(Solyc05g012050), and SlINO (Solyc05g005240), were specifically expressed in flower buds and

flower at the anthesis stage, which is consistent with the results obtained in a previous study

[47] (S2B Fig). SlCRCa was expressed in the early stage of pistil development, and SlCRCb
and SlINO were expressed through all stages of pistil development, while they were barely

expressed in the other tissues (S2B Fig). These data support the quality of the transcriptome

dataset. Next, according to RPKM values, we narrowed down the list of genes to those with

RPKM values greater than 0.5 in at least one pistil sample and less than 0.5 in the other tissues,

resulting in the identification of 532 of the initial candidate PSGs obtained by the direct-map-

ping method (Fig 2B).

Validation of the expression specificity of the candidate genes using

publically available datasets

To reconfirm the tissue-specific expression of the 532 candidate genes, we performed compar-

ative analyses between our transcriptome dataset and two publicly available transcriptome

datasets (Experiment 1 and Experiment 2) from 26 samples, including vegetative tissues and

floral tissues derived from tomato cv. Heinz and wild relative S. pimpinellifolium (strain.

LA1589) available in the Tomato Functional genomics database (http://ted.bti.cornell.edu/);

Experiment 1 (Exp1; Tomato Genome Consortium, 2012), Experiment 2 (Exp2; accession no.

PRJNA179156). As a result, 376 of the 532 candidate genes were detected in at least one of the

26 samples from the public data, suggesting that these genes are most likely expressed in

tomato plants. We investigated the expression levels of the 376 genes in nine different vegeta-

tive samples. We then excluded genes whose RPKM values were>1 in any of nine vegetative

samples and identified 275 genes as “Floral organ-specific genes” (Fig 2B).

Alternatively, to obtain information about the cell types in which the candidate genes are

expressed, we investigated their expression patterns in cell-type-specific transcriptome data

from pistils of wild tomato (S. pimpinellifolium) [27]. We then selected genes expressed in

pistils based on the criterion used by Pattison et al. [27]; genes with RPM values > 2 in at

least one sample were chosen. In total, 206 genes were defined as “Pistil expressed genes”;

their expression was evident in the pistil, especially after anthesis, while the other 326 genes

excluded by this step may not be expressed in the pistil or may be expressed only at the ear-

lier stages than 1 DBF (Fig 2B).

We compared “Floral organ-specific genes” and “Pistil expressed genes” and selected

redundant genes, ultimately identifying 108 genes as PSGs by the direct-mapping method (Fig

2B and 2C, Table 1 and S2 Table). Among these, 56 genes had not been characterized. Public

transcriptome data analysis provided information about both the organs and cell types in

which the 108 PSGs were expressed. Using cell-type-specific transcriptome dataset from pistils

of wild relative S. pimpinellifolium [27], we obtained spatial information about the expression

of PSGs within the pistil (S3 Table). Hierarchical heat mapping clearly showed their cell-type-

specific expression profiles (Fig 3A). Remarkably, roughly two-thirds of the genes appeared to

show highly tissue-specific expression in the ovule and/or seed tissues (embryo, endosperm,

seed coat). While many genes were preferentially expressed in the ovule and the seed tissues

except seed coat, several genes were preferentially expressed in the pericarp at anthesis, in the

placenta, and in the seed coat after pollination (Fig 3A). For example, five genes were preferen-

tially expressed in the pericarp before pollination: genes encoding cinnamoyl CoA reductase-

(GO:0004091), was significantly (FDR<0.05) represented in the gene set, while 56 genes were not annotated

and were not assigned to GO terms. bottom table; Gene ID and functional annotation described in the SGN

database.

https://doi.org/10.1371/journal.pone.0180003.g002
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Table 1. List of 108 pistil-specific genes (PSGs) identified by the direct-mapping-based method.

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

1 Solyc01g007270 Cytokinin riboside 5&apos;-

monophosphate

phosphoribohydrolase LOG (AHRD

V1 **—LOG_ORYSJ)

AT5G06300 217 56/

68

82

2 Solyc01g008540 Cinnamoyl CoA reductase-like

protein (AHRD V1 ***-

B9HNY0_POPTR); Interpro domain

(s) IPR016040 NAD(P)-binding

domain

AT5G19440 326 223/

315

71 NAD(P)-binding Rossmann-fold superfamily protei

3 Solyc01g010600 Homeobox-leucine zipper-like

protein (AHRD V1 *-*-

Q3HRT1_PICGL); contains In

contains terpro domain(s)

IPR001356 Homeobox

AT1G69780 294 150/

300

50 ATHB13

4 Solyc01g016530 Unknown Protein (AHRD V1);

contains Interpro domain(s)

IPR008507 Protein of unknown

function DUF789

AT1G73210 314 32/

69

46 Protein of unknown function (DUF789)

5 Solyc01g068440 Os06g0207500 protein (Fragment)

(AHRD V1 ***- Q0DDQ9_ORYSJ);

contains Interpro domain(s)

IPR004253 Protein of unknown

function DUF231, plant

AT2G42570 367 166/

341

49 TBL39 (TRICHOME BIREFRINGENCE-LIKE 39 )

6 Solyc01g079560 B3 domain-containing protein

Os11g0197600 (AHRD V1 ***-

Y1176_ORYSJ); contains Interpro

domain(s) IPR003340

Transcriptional factor B3

AT3G18990 341 30/

92

33 VRN1, REM39

7 Solyc01g081360 Unknown Protein (AHRD V1) - - - -

8 Solyc01g090300 Ethylene responsive transcription

factor 1b (AHRD V1 *-*-

C0J9I8_9ROSA); contains Interpro

domain(s) IPR001471

Pathogenesis-related transcriptional

factor and ERF, DNA-binding

AT2G44840 226 69/

107

64 ATERF13, EREBP, ERF13

9 Solyc01g090820 Expansin B1 (AHRD V1 ***-

C8CC40_RAPSA); contains Interpro

domain(s) IPR007112 Expansin 45,

endoglucanase-like

AT1G65680 273 119/

249

48 ATEXPB2, EXPB2, ATHEXP BETA 1.4

10 Solyc01g095760 UDP-glucosyltransferase (AHRD V1

***- Q8LKG3_STERE); contains

Interpro domain(s) IPR002213 UDP-

glucuronosyl/UDP-

glucosyltransferase

AT5G49690 460 164/

471

35 UDP-Glycosyltransferase superfamily protein

11 Solyc01g104390 Blue copper protein (AHRD V1 **—

B6TT37_MAIZE); contains Interpro

domain(s) IPR003245 Plastocyanin-

like

AT1G17800 129 49/

116

42 ARPN

12 Solyc01g106140 F-box protein family-like (AHRD V1

*-*- Q6ZCS3_ORYSJ); contains

Interpro domain(s) IPR005174

Protein of unknown function DUF295

AT3G25750 348 41/

162

25 F-box family protein with a domain of unknown

function (DUF295)

13 Solyc01g106730 MADS box transcription factor 1

(AHRD V1 *-*- D9IFM1_ONCHC);

contains Interpro domain(s)

IPR002100 Transcription factor,

MADS-box

AT5G60440 299 95/

160

59 AGL62
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Table 1. (Continued)

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

14 Solyc01g106980 Endo-1 4-beta-xylanase (AHRD V1 *
—B6SW51_MAIZE); contains

Interpro domain(s) IPR013781

Glycoside hydrolase, subgroup,

catalytic core

AT4G33840 576 276/

545

51 Glycosyl hydrolase family 10 protein

15 Solyc01g108380 Protease inhibitor protein (AHRD V1

-**- B3FNP9_HEVBR); contains

Interpro domain(s) IPR000864

Proteinase inhibitor I13, potato

inhibitor I

AT2G38900 88 27/

61

44 Serine protease inhibitor, potato inhibitor I-type

family protein

16 Solyc02g022860 FAD-binding domain-containing

protein (AHRD V1 **—

D7MFI0_ARALY); contains Interpro

domain(s) IPR006094 FAD linked

oxidase, N-terminal

AT4G20820 532 243/

532

46 FAD-binding Berberine family protein

17 Solyc02g032150 Unknown Protein (AHRD V1) - - - - -

18 Solyc02g067630 Polygalacturonase 1 (AHRD V1 ***-

O22311_SOLLC); contains Interpro

domain(s) IPR000408 Regulator of

chromosome condensation, RCC1

IPR000743 Glycoside hydrolase,

family 28

AT2G43860 384 232/

389

60 Pectin lyase-like superfamily protein

19 Solyc02g069330 Unknown Protein (AHRD V1);

contains Interpro domain(s)

IPR006501 Pectinesterase inhibitor

AT5G64620 180 26/

80

33 C/VIF2, ATC/VIF2

20 Solyc02g072280 Subtilisin-like protease (AHRD V1 **
—Q9LWA3_SOLLC); contains

Interpro domain(s) IPR015500

Peptidase S8, subtilisin-related

AT5G67360 757 335/

761

44 ARA12

21 Solyc02g077170 X1 (Fragment) (AHRD V1 *—

Q7FSP8_MAIZE); contains Interpro

domain(s) IPR005379 Region of

unknown function XH

AT1G15910 634 96/

259

37 XH/XS domain-containing protein

22 Solyc02g078090 Unknown Protein (AHRD V1) - - - - -

23 Solyc02g079080 F-box family protein (AHRD V1 ***-

B9GFH4_POPTR); contains Interpro

domain(s) IPR001810 Cyclin-like F-

box

AT5G02930 469 108/

440

25 F-box/RNI-like superfamily protein

24 Solyc02g084140 Unknown Protein (AHRD V1) - - - - -

25 Solyc02g085190 GATA transcription factor 19 (AHRD

V1 *-** B6TS85_MAIZE); contains

Interpro domain(s) IPR000679 Zinc

finger, GATA-type

AT3G50870 295 127/

292

43 MNP, HAN, GATA18

26 Solyc02g086290 Receptor serine/threonine kinase

(AHRD V1 ***- Q9FF31_ARATH)

AT1G66940 332 76/

267

28 protein kinase-related

27 Solyc02g087490 Prolyl 4-hydroxylase alpha subunit-

like protein (AHRD V1 ***-

Q9LSI6_ARATH); contains Interpro

domain(s) IPR006620 Prolyl

4-hydroxylase, alpha subunit

AT3G28490 288 176/

265

66 Oxoglutarate/iron-dependent oxygenase

28 Solyc02g092030 Cbs domain containing protein

expressed (Fragment) (AHRD V1 *
—A6N095_ORYSI); contains

Interpro domain(s) IPR002550

Protein of unknown function DUF21

AT2G14520 423 283/

423

67 CBS domain-containing protein with a domain of

unknown function (DUF21)

(Continued )
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Table 1. (Continued)

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

29 Solyc02g093540 Cytochrome P450 AT3G50660 513 193/

470

41 DWF4, CYP90B1, CLM, SNP2, SAV1, PSC1

30 Solyc03g020000 Pentatricopeptide repeat-containing

protein (AHRD V1 *-*-

D7L041_ARALY); contains Interpro

domain(s) IPR002885

Pentatricopeptide repeat

AT2G22410 681 181/

487

37 SLO1

31 Solyc03g025240 Multidrug resistance protein mdtK

(AHRD V1 *—MDTK_YERP3);

contains Interpro domain(s)

IPR002528 Multi antimicrobial

extrusion protein MatE

AT4G25640 514 273/

398

69 DTX35

32 Solyc03g031660 Unknown Protein (AHRD V1) - - - - -

33 Solyc03g058330 Unknown Protein (AHRD V1) AT5G06760 158 57/

144

40 LEA4-5

34 Solyc03g096190 Receptor like kinase, RLK AT3G47570 1010 441/

1003

43 Leucine-rich repeat protein kinase family protein

35 Solyc03g111190 Auxin-independent growth promoter-

like protein (AHRD V1 ***-

Q9FMW3_ARATH); contains

Interpro domain(s) IPR004348

Protein of unknown function

DUF246, plant

AT5G63390 559 343/

557

62 O-fucosyltransferase family protein

36 Solyc03g115350 Expansin 2 (AHRD V1 ***-

C0KLG9_PYRPY); contains Interpro

domain(s) IPR002963 Expansin

AT5G39280 259 146/

223

65 ATEXPA23, ATEXP23, ATHEXP ALPHA 1.17

37 Solyc03g116410 Zinc finger CCCH domain-containing

protein 39 (AHRD V1 ***-

C3H39_ARATH); contains Interpro

domain(s) IPR000571 Zinc finger,

CCCH-type

AT3G19360 386 54/

199

27 Zinc finger (CCCH-type) family protein

38 Solyc03g123770 Unknown Protein (AHRD V1) - - - - -

39 Solyc03g123970 Lipid-binding serum glycoprotein

family protein (AHRD V1 *-*-

D7LAX8_ARALY)

AT3G20270 722 26/

51

51 lipid-binding serum glycoprotein family

40 Solyc04g007310 Thaumatin-like protein (AHRD V1

***- C1K3P2_PYRPY); contains

Interpro domain(s) IPR001938

Thaumatin, pathogenesis-related

AT4G38670 253 108/

252

43 Pathogenesis-related thaumatin superfamily protein

41 Solyc04g008670 Gibberellin 2-beta-dioxygenase 7

(AHRD V1 **** B6SZM8_MAIZE);

contains Interpro domain(s)

IPR005123 Oxoglutarate and iron-

dependent oxygenase

AT4G21200 336 166/

302

55 ATGA2OX8, GA2OX8

42 Solyc04g014750 TNFR/CD27/30/40/95 cysteine-rich

region (AHRD V1 ***-

Q2HT38_MEDTR)

AT1G12064 109 34/

73

47 Unkown protein

43 Solyc04g025740 Homeobox-leucine zipper protein

ROC3 (AHRD V1 ***-

ROC3_ORYSJ); contains Interpro

domain(s) IPR001356 Homeobox

AT1G73360 722 52/

125

42 HDG11, EDT1, ATHDG11

44 Solyc04g051070 Unknown Protein (AHRD V1) - - - - -

45 Solyc04g058040 Laccase (AHRD V1 ***-

Q9AUI3_PINTA); contains Interpro

domain(s) IPR011707 Multicopper

oxidase, type 3

AT5G09360 569 82/

212

39 LAC14

(Continued )
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Table 1. (Continued)

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

46 Solyc04g072870 Beta-D-xylosidase (AHRD V1 ****
Q8W011_HORVU); contains

Interpro domain(s) IPR001764

Glycoside hydrolase, family 3, N-

terminal

AT1G78060 767 445/

756

59 Glycosyl hydrolase family protein

47 Solyc04g074320 Zinc finger protein (AHRD V1 *—

D7KHP2_ARALY); contains Interpro

domain(s) IPR007087 Zinc finger,

C2H2-type

AT1G34790 303 143/

200

72 TT1, WIP1

48 Solyc04g074890 Unknown Protein (AHRD V1) - - - - -

49 Solyc04g078240 Natural resistance associated

macrophage protein (AHRD V1 *—

B3W4E1_BRAJU); contains Interpro

domain(s) IPR001046 Natural

resistance-associated macrophage

protein

AT1G47240 530 73/

95

77 NRAMP2, ATNRAMP2

50 Solyc04g081180 Unknown Protein (AHRD V1) - - - - -

51 Solyc04g082520 Ring zinc finger protein (Fragment)

(AHRD V1 *—A6MH00_LILLO);

contains Interpro domain(s)

IPR008166 Protein of unknown

function DUF23

AT4G37420 588 233/

500

47 Domain of unknown function (DUF23)

52 Solyc05g005240 YABBY-like transcription factor

CRABS CLAW-like protein (AHRD

V1 **-* Q6SRZ7_ANTMA); contains

Interpro domain(s) IPR006780

YABBY protein

AT1G23420 231 100/

184

54 INO

53 Solyc05g008320 Fasciclin-like arabinogalactan

protein (AHRD V1 ***-

B9N201_POPTR); contains Interpro

domain(s) IPR000782 FAS1 domain

AT5G40940 424 114/

328

35 FLA20

54 Solyc05g010190 Unknown Protein (AHRD V1) AT3G42565 119 48/

121

40 ECA1 gametogenesis related family protein

55 Solyc05g010200 Unknown Protein (AHRD V1) - - - - -

56 Solyc05g013230 Unknown Protein (AHRD V1) AT3G23880 364 21/

57

37 F-box and associated interaction domains-

containing protein

57 Solyc05g052440 Os03g0291800 protein (Fragment)

(AHRD V1 **—Q0DSS4_ORYSJ);

contains Interpro domain(s)

IPR004253 Protein of unknown

function DUF231, plant

AT2G40320 425 279/

411

68 TBL33

58 Solyc05g052530 Endoglucanase 1 (AHRD V1 ***-

B6U0J0_MAIZE); contains Interpro

domain(s) IPR001701 Glycoside

hydrolase, family 9

AT2G44550 490 292/

476

56 ATGH9B10

59 Solyc06g007380 Os08g0119500 protein (Fragment)

(AHRD V1 *-*- Q0J8C9_ORYSJ)

AT5G01710 513 258/

510

51 methyltransferases

60 Solyc06g048400 Unknown Protein (AHRD V1);

contains Interpro domain(s)

IPR008502 Protein of unknown

function DUF784, Arabidopsis

thaliana

AT3G30387 115 34/

97

35 Protein of unknown function (DUF784)
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Table 1. (Continued)

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

61 Solyc06g060450 Transmembrane emp24 domain-

containing protein 10 (AHRD V1 ***-

B6SSF8_MAIZE); contains Interpro

domain(s) IPR000348 emp24/

gp25L/p24

AT1G2190 216 108/

210

51 emp24/gp25L/p24 family/GOLD family protein

62 Solyc06g070950 ATP-binding cassette (ABC)

transporter 17 (AHRD V1 ***-

Q4H493_RAT); contains Interpro

domain(s) IPR003439 ABC

transporter-like

AT3G47780 935 503/

937

54 ATATH6, ATH6

63 Solyc06g073100 GDSL esterase/lipase At3g27950

(AHRD V1 ***- GDL54_ARATH);

contains Interpro domain(s)

IPR001087 Lipase, GDSL

AT3G27950 361 197/

375

53 GDSL-like Lipase/Acylhydrolase superfamily protein

64 Solyc06g074160 B3 domain-containing protein

Os03g0212300 (AHRD V1 ***-

Y3123_ORYSJ); contains Interpro

domain(s) IPR003340

Transcriptional factor B3

AT3G06160 374 38/

131

29 AP2/B3-like transcriptional factor family protein

65 Solyc06g075200 Unknown Protein (AHRD V1) AT5G37474 80 28/

83

34 Putative membrane lipoprotein

66 Solyc07g007520 Unknown Protein (AHRD V1) - - - - -

67 Solyc07g032700 Unknown Protein (AHRD V1) - - - - -

68 Solyc07g043410 UDP-glucosyltransferase family 1

protein (AHRD V1 ****
C6KI43_CITSI); contains Interpro

domain(s) IPR002213 UDP-

glucuronosyl/UDP-

glucosyltransferase

AT2G15480 484 166/

487

34 UGT73B5

69 Solyc07g053400 Unknown Protein (AHRD V1) - - - - -

70 Solyc07g054360 Unknown Protein (AHRD V1) - - - - -

71 Solyc07g062320 Unknown Protein (AHRD V1) - - - - -

72 Solyc07g064780 Unknown Protein (AHRD V1) - - - - -

73 Solyc08g015750 F-box family protein (AHRD V1 ***-

B9I6K2_POPTR); contains Interpro

domain(s) IPR001810 Cyclin-like F-

box

AT5G02920 469 58/

200

31 F-box/RNI-like superfamily protein

74 Solyc08g061120 Unknown Protein (AHRD V1) - - - - -

75 Solyc08g066400 Protein kinase (Fragment) (AHRD

V1 *-*- A2Q5N5_MEDTR)

AT2G25760 676 217/

333

65 Protein kinase family protein

76 Solyc08g074920 Aspartic proteinase nepenthesin I

(AHRD V1 **—A9ZMF9_NEPAL);

contains Interpro domain(s)

IPR001461 Peptidase A1

AT5G33340 437 206/

437

47 CDR1

77 Solyc08g080020 Serine protease inhibitor potato

inhibitor I-type family protein (AHRD

V1 ***- D7LT19_ARALY); contains

Interpro domain(s) IPR000864

Proteinase inhibitor I13, potato

inhibitor I

AT3G46860 85 32/

86

37 Serine protease inhibitor, potato inhibitor I-type

family protein

78 Solyc08g082260 Integrin-linked kinase-associated

serine/threonine phosphatase 2C

(AHRD V1 **** ILKAP_RAT);

contains Interpro domain(s)

IPR015655 Protein phosphatase 2C

AT2G29380 362 134/

298

45 HAI3
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Table 1. (Continued)

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

79 Solyc09g011280 Unknown Protein (AHRD V1);

contains Interpro domain(s)

IPR006501 Pectinesterase inhibitor

AT3G17220 173 31/

131

24 ATPMEI2

80 Solyc09g011290 Invertase inhibitor homolog (AHRD

V1 ***- O49603_ARATH); contains

Interpro domain(s) IPR006501

Pectinesterase inhibitor

AT5G64620 180 52/

173

30 C/VIF2, ATC/VIF2

81 Solyc09g025200 Ribosomal protein L18 (AHRD V1

*-*- B7FMF5_MEDTR); contains

Interpro domain(s) IPR000039

Ribosomal protein L18e

AT3G05590 187 31/

50

62 RPL18

82 Solyc09g042760 ZIP4/SPO22 (AHRD V1 **—

A5Y6I6_ARATH); contains Interpro

domain(s) IPR013940 Meiosis

specific protein SPO22

AT5G48390 936 527/

936

56 ATZIP4

83 Solyc09g047860 HAT family dimerisation domain

containing protein (AHRD V1 *-*-

Q2R1C3_ORYSJ); contains Interpro

domain(s) IPR008906 HAT

dimerisation

AT5G33406 509 52/

173

30 hAT dimerisation domain-containing protein /

transposase-related

84 Solyc09g056030 Unknown Protein (AHRD V1) AT4G12570 873 17/

44

39 UPL5

85 Solyc09g056040 Ubiquitin-protein ligase 1 (AHRD V1

***- Q5CHN2_CRYHO); contains

Interpro domain(s) IPR000569

HECT

AT4G12570 873 153/

413

37 UPL5

86 Solyc09g066050 Homeodomain-containing

transcription factor FWA (AHRD V1

**-* B5BQ02_ARASU); contains

Interpro domain(s) IPR002913 Lipid-

binding START

AT1G73360 722 211/

587

36 HDG11, EDT1, ATHDG11

87 Solyc09g073020 Unknown Protein (AHRD V1) - - - - -

88 Solyc09g075110 Unknown Protein (AHRD V1) - - - - -

89 Solyc09g089590 Ramosa1 C2H2 zinc-finger

transcription factor (AHRD V1 *-*-

D0UTY8_ZEAMM); contains

Interpro domain(s) IPR007087 Zinc

finger, C2H2-type

AT3G23130 204 78/

192

78 SUP, FON1, FLO10

90 Solyc09g089960 Unknown Protein (AHRD V1) - - - -

91 Solyc09g091300 Self-incompatibility protein

(Fragment) (AHRD V1 -**-

C8C1B5_9MAGN); contains Interpro

domain(s) IPR010264 Plant self-

incompatibility S1

AT3G26880 161 35/

135

33 Plant self-incompatibility protein S1 family

92 Solyc10g005170 Purine permease (AHRD V1 *—*
B6TET5_MAIZE); contains Interpro

domain(s) IPR004853 Protein of

unknown function DUF250

AT1G30840 382 208/

330

63 ATPUP4, PUP4

93 Solyc10g005440 Serine/threonine-protein kinase

receptor (AHRD V1 ****
B6U2B7_MAIZE); contains Interpro

domain(s) IPR002290 Serine/

threonine protein kinase

AT4G21390 849 440/

858

51 B120, S-locus lectin protein kinase family protein

(Continued )
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Table 1. (Continued)

# ITAG ID Description in ITAG2.40 Homologue in

Arabidopsis

length

(aa)

Identities

(%)

94 Solyc10g017990 Cytokinin oxidase/dehydrogenase 2

(AHRD V1 *-** C0LPA7_SOLTU);

contains Interpro domain(s)

IPR015345 Cytokinin

dehydrogenase 1, FAD and cytokinin

binding

AT2G41510 575 214/

525

41 ATCKX1, CKX1

95 Solyc10g044690 Annexin (AHRD V1 ***-

D2D2Z9_GOSHI); contains Interpro

domain(s) IPR009118 Annexin, type

plant

AT5G12380 316 173/

316

55 ANNAT8

96 Solyc10g047720 Unknown Protein (AHRD V1) AT5G26805 156 44/

163

27 unknown protein

97 Solyc10g050750 Pectinacetylesterase like protein

(Fragment) (AHRD V1 *—

Q56WP8_ARATH); contains

Interpro domain(s) IPR004963

Pectinacetylesterase

AT4G19420 397 234/

381

61 Pectinacetylesterase family protein

98 Solyc10g051370 LRR receptor-like serine/threonine-

protein kinase, RLP

AT2G16250 915 105/

198

53 Leucine-rich repeat protein kinase family protein

99 Solyc10g055600 S-phase kinase-associated protein

1A (AHRD V1 **—

B2VUU5_PYRTR); contains Interpro

domain(s) IPR001232 SKP1

component

AT4G34210 152 38/

47

81 ASK11, SK11

100 Solyc11g005500 ECA1 protein (AHRD V1 *-*-

Q53JF8_ORYSJ); contains Interpro

domain(s) IPR010701 Protein of

unknown function DUF1278

AT1G76750 158 63/

124

51 EC1.1

101 Solyc11g005540 ECA1 protein (AHRD V1 *-*-

Q53JF8_ORYSJ); contains Interpro

domain(s) IPR010701 Protein of

unknown function DUF1278

AT2G21750 125 61/

130

47 EC1.3

102 Solyc11g006840 Unknown Protein (AHRD V1) - - - - -

103 Solyc11g012650 TPD1 (AHRD V1 *-*-

Q6TLJ2_ARATH)

AT1G32583 179 66/

112

59 TPD1-like

104 Solyc11g043160 Endo-1 4-beta-xylanase (AHRD V1

***- B6SW51_MAIZE); contains

Interpro domain(s) IPR013781

Glycoside hydrolase, subgroup,

catalytic core

AT4G33840 576 217/

545

40 Glycosyl hydrolase family 10 protein

105 Solyc11g070010 F8A5.6 protein (AHRD V1 **—

Q9ZP57_ARATH)

AT1G60500 669 117/

391

30 DRP4C

106 Solyc11g072650 Trans-2-enoyl CoA reductase

(AHRD V1 **—C5MRG3_9ROSI);

contains Interpro domain(s)

IPR002085 Alcohol dehydrogenase

superfamily, zinc-containing

AT3G45770 375 215/

335

64 Polyketide synthase, enoylreductase

107 Solyc12g019050 Exostosin-like (AHRD V1 ***-

A4Q7M8_MEDTR); contains

Interpro domain(s) IPR004263

Exostosin-like

AT3G42180 470 203/

349

57 Exostosin family protein

108 Solyc12g042340 Genomic DNA chromosome 5 P1

clone MAC9 (AHRD V1 ***-

Q9FLS4_ARATH)

AT5G61865 417 136/

368

35 unknown protein

https://doi.org/10.1371/journal.pone.0180003.t001
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Fig 3. Characterization and validation of the 108 genes. (A) Many of the 108 PSGs were predominantly

expressed in ovules and/or seeds in the pistil. Reads per million (RPM) values of PSGs in S. pimpinellifolium were

visualized by constructing a heatmap using MeV software. Hierarchical clustering by Pearson correlation was

conducted. The transcriptome data were obtained from [27]. OPE; ovule preferentially expressed genes, EPE;
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like protein (Solyc01g008540), Unknown Protein (Solyc04g074890), homeobox-leucine zipper-

like protein (Solyc01g010600), B3 domain-containing protein Os03g0212300–like protein

(Solyc06g074160), and Unknown Protein (Solyc03g123770). Furthermore, the gene encoding

cytokinin oxidase/dehydrogenase 8 (SlCKX8, Solyc10g017990), TNFR/CD27/30/40/95 cyste-

ine-rich region (Solyc04g014750), Unknown Protein (Solyc03g031660), Unknown Protein

(Solyc07g053400), and Ramosa1 C2H2 zinc-finger transcription factor (Solyc09g089590) were

preferentially expressed in the seed coat. Solyc09g089590 encodes one of two homologous pro-

teins of Arabidopsis SUPERMAN (SUP), which regulates auxin biosynthesis [48]. In addition,

the expression of 63 out of 108 genes was detected also in the recently published ovary tran-

scriptome dataset derived from cultivated tomato ‘Moneymaker’ [23], in which RNA-seq anal-

yses against ovule and ovary wall tissue were conducted; their average expression levels were

over FPKM of 0.5 [23] (S4 Table). The 55 other genes were not detected in that dataset, indi-

cating that these 55 genes were barely expressed in cultivated tomato or were only expressed

in other type of tissues such as the placenta and septum, which were excluded from their

experiment.

Validation of gene expression patterns by RT-PCR

We then verified the expression patterns of the PSGs by RT-PCR analysis. Since many of these

genes were highly expressed in the ovule and/or seed, especially the embryo (Fig 3A), we

initially focused on genes specifically expressed in these tissues. Among the 108 PSG candi-

dates, the top-five PSGs highly expressed in 0 DAF ovules were designated Ovule Preferen-

tially Expressed genes 1–10 (OPE1–5) (S5 Table). We verified the tissue-specific expression

of five of these genes by RT-PCR analysis (Fig 3B). OPE1 was preferentially but not exclu-

sively expressed in the pistil at anthesis, OPE2 and OPE5 were specifically expressed in the

pistil at both 1 DBF and 0 DAF, and the expression of OPE3 in the pistil was not detected in

this experiment. OPE4 was expressed in the pistil at 0 DAF and mature green fruits. We

also designated the top-five PSGs that were highly expressed in 4 DAF embryos as Embryo

Preferentially Expressed genes 1–5 (EPE1–5) (S5 Table). EPE1, encoding a self-incompati-

bility protein-like protein according to SGN, might function in pollen-pistil interactions,

while most of the EPEs had not been functionally characterized or annotated in previous

studies. Like the OPEs, we investigated the expression of the five EPEs (EPE1–5) by RT-

PCR to validate their tissue-specific expression patterns. Three genes, EPE1-EPE3, were

specifically expressed in the pistil and EPE5 was preferentially expressed in the pistil espe-

cially before anthesis, although we failed to detect the expression of EPE4 in our RT-PCR

analysis (Fig 3B). EPE1 was specifically expressed in the pistil throughout pistil/fruit devel-

opment but was not expressed in mature red fruits. EPE3 was also specifically expressed in

the pistil, but only after anthesis. EPE2 was expressed exclusively during fruit set initiation

between 1 DBF and 0 DAF (Fig 3B). In summary, three OPEs and four EPEs were specifi-

cally expressed in pistils, confirming their tissue-specific expression in the pistil (Fig 3B).

Therefore, we confirmed the tissue-specific expression of PSGs in the pistil. These results

indicate that the direct-mapping method also successfully identified true PSGs.

embryo preferentially expressed genes. (B) Validation of the expression of ovule preferentially expressed (OPE)

genes, embryo preferentially expressed (EPE) genes, and several transcription factor genes by RT-PCR. Most of

the genes were specifically expressed in the pistil. Three pistil-specific transcription factor genes, SlATHB13/

23-like (Solyc01g010600), SlINO (Solyc05g005240), and SlTT1 (Solyc10g051370) showed pistil-specific

expression before anthesis. Bottom one represents the expression of the internal control gene SAND [41].

https://doi.org/10.1371/journal.pone.0180003.g003
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GO analysis using AgriGO

To elucidate the enriched functional categories of the 108 identified PSGs, we performed GO

analysis using AgriGO. A false discovery rate (FDR; e-value corrected for list size) of< 0.05 was

used as the criterion to obtain enriched GO terms. Consequently, only one category, Carboxy-

lesterase activity (GO:0004091), showed significant abundance (p-value = 0.0017, FDR = 0.037)

(Fig 2D). This category includes five genes (listed in Fig 2D), three of which (Solyc02g069330,

Solyc09g011280, and Solyc09g011290) were assigned to the sub-term “Pectinesterase inhibitor”.

Even though Solyc09g011290 was classified as a “Pectinesterase inhibitor”, it was labeled as an

“invertase inhibitor homolog” in the SGN database and has higher sequence homology with the

invertase inhibitor group that includes invertase inhibitor 1 (INVINH1, Solyc12g099200), which

specifically regulates cell wall invertase activity in early developing fruits [49].

Pectin, a major component of the primary cell walls of higher plants, is methyl-esterified by

pectin methyltransferase (PMT) before its transport to the cell wall following its biosynthesis in

Golgi bodies [50,51], whereas pectin methylesterase (PME) catalyzes the removal of methyl esters

from pectin [52–54]. The removal of methyl group from pectin allows carboxyl groups to form

Ca2+- and Mg2+-mediated linkages, leading to the hardening of pectin [55,56]. In addition, pec-

tin methylesterase inhibitors (PMEIs) directly interact with PME and inhibit its activity, affecting

pectin composition in the cell wall. Lionetti et al. [57] reported that overexpressing Arabidopsis

PMEI increased the degree of pectin methylesterification by approximately 16%, resulting in lon-

ger roots due to the promotion of cell elongation. Therefore, the degree of methylation and

demethylation of pectin determines the balance between extensibility and rigidity, affecting

growth and cell shape. In tomato, PMEU1, a ubiquitously expressed pectin methylesterase gene,

is expressed during early fruit development [58]. Terao et al. [59] recently reported the occur-

rence of rapid pectin metabolism during the early stage of fruit development in tomato: immu-

nolocalization analysis demonstrated that methyl-esterified pectin levels in the ovary increased

from 1 DBF to 3 DAF [59]. During fruit set, the transition of cell state from cell division to cell

expansion occurs during a short period of time, and the regulation of this process is important

for determining the size of the fruit. Therefore, it would be interesting to investigate whether

PMEI plays a role in the post-translational regulation of PME and cell wall state during fruit set.

In addition, the pectinesterase inhibitor protein family includes several enzyme inhibitors

such as invertase (Beta-fructofuranosidase) inhibitors, each of which has a specific target

[60,61]. Solyc09g011290 was annotated as an invertase inhibitor homolog in the SGN database.

Invertase inhibitors regulate specific invertases in a post-translational manner, negatively

affecting the enzyme activity of their targets [49,61]. We found that Solyc09g011290was specifi-

cally and highly expressed in the ovule/seed (S3 Table). The expression of Solyc09g011290 was

induced during anthesis and remained at high levels in the absence of pollination but was

down-regulated by pollination and hormone treatments (S6 Fig). Several studies on the cell

wall invertase (CWIN) and INVINH1 in tomato suggest that these proteins play important

roles in seed set and fruit set by regulating the unloading of sugar from the phloem during the

ovary-to-fruit transition [4,49,62,63]. Thus, the expression pattern of Solyc09g011290, the up-

regulation during flowering and the down-regulation by the fruit-set stimulus (S6 Fig), sug-

gests that Solyc09g011290 may also participate in the modulation of the sugar unloading to

unpollinated pistil via post-translational inhibition of invertase activity.

Identification of pistil-specific transcriptional regulators

Pistil-specific transcription factors. Next, we performed similar RT-PCR analyses of sev-

eral transcription factor genes listed among the PSGs and confirmed the tissue-specific expres-

sion of three transcription factor genes (Fig 3B).
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Solyc04g074320 (SlTT1-like) shares high homology (71.5%) with Arabidopsis zinc-finger

protein TRANPARENT TESTA1 (TT1) [64]. Arabidopsis TT1 expression is restricted to

developing ovules and young seeds and functions in the accumulation of proanthocyanidin

pigments in the seed coat [65,66], while in the current study, tomato SlTT1-like transcripts

were exclusively detected in the ovule, embryo, and endosperm but not in the seed coat (Fig

3B). Mazzucato et al. [67] provided evidence that higher anthocyanin content is associated

with increased early fruit growth in non-pollinated flowers. Furthermore, there is an evidence

that the alteration of the flavonoid pathway via the regulation of biosynthesis genes induces

seedless fruit development in both a pollination-dependent and pollination-independent man-

ner [68,69]. Further elucidation of the function of SlTT1-like in the control of flavonoid-related

genes may provide insight into the role of flavonoids during fruit set initiation.

SlINO (Solyc05g005240) was identified as a pistil-specific YABBY transcription factor gene

(S2B Fig and Fig 3B). YABBY family proteins contain two conserved domains, i.e., a C2C2

zinc-finger-like domain in their N-termini and a helix-loop-helix domain known as the

YABBY domain [70]. In Arabidopsis, two YABBY genes, INO and CRC, show tissue-specific

expression in the pistil and are involved in pistil and early fruit development [44–46]. Nine

YABBY genes were previously identified in tomato, three of which (SlCRCa, Solyc01g0101240;

SlCRCb, Solyc05g012050; SlINO, Solyc05g005240) are specifically expressed in the flower bud

and in open flowers at anthesis [50]. In the current study, we found that SlCRCa, SlCRCb, and

SlINO were preferentially expressed in the pistil (S2B Fig). SlCRCa was expressed in the early

stage of pistil development, while SlCRCb and SlINO were expressed during all stage of pistil

development. Furthermore, we confirmed the tissue-specific expression of SlINO in pistils by

RT-PCR analysis (Fig 3B), suggests its role in the regulation of pistil development [46].

Solyc01g010600 (SlATHB13/23-like), which encodes a homeodomain leucine zipper 1 tran-

scription factor (HD-Zip TF), shares similarity with Arabidopsis class-1 HD-Zip genes AtHB13
and AtHB23 and was specifically expressed in the pistil before anthesis (Fig 3B). The HD-Zip

TF family forms a large gene family that is divided into four classes; 58 HD-Zip proteins found

in both Arabidopsis and tomato are listed in PlantTFDB version 3.0 (http://planttfdb.cbi.pku.

edu.cn) [71,72]. Although the molecular functions of class-1 HD-Zip proteins in the regulation

of pistil development remain elusive, AtHB13 and AtHB23 were shown to play negative roles in

inflorescence stem elongation by affecting cell division, and AtHB13 also regulates pollen

hydration and development [73]. In tomato, class-1 HD-Zip SlHZ24 functions as a transcrip-

tional activator of SlGMP3 (encoding GDP-D-mannosepyrophosphorylase), which plays an

important role in the production of the antioxidant ascorbate [74]. In addition, virus-induced

gene silencing of class-1 HD-Zip LeHB1 reduced the mRNA accumulation of LeACO1 and

inhibited ripening [75]. Further, Lin et al. [75] also reported that ectopic overexpression of

LeHB1 led to the conversion of sepals into carpel-like structures. We also found that SlATHB13/
23-like was highly expressed in the ovary wall in the pistil at anthesis (S3 and S4 Tables), suggest-

ing its regulatory role in carpel and ovary wall development.

Besides, we identified the type-I MADS box gene, Solyc01g106730 among PSGs (Table 1).

MADS box genes encode transcription factors which are generally involved in homeotic regula-

tion of reproductive organs and can be divided into two subfamilies (type-I and type-II) accord-

ing to the presence of conserved domains [75, 76]. Some type-II MIKC MADS box genes play

key roles as regulators of meristem identity, flowering time, and fruit and seed development

[77,78], whereas little information is available about the function of type-I MADS box proteins.

Most (38 out of 61) Arabidopsis type-I MADS box genes are expressed in the female gameto-

phyte [79], whereas others exhibit highly specific expression such as in the central cell and

embryo sac [80]. For example, Arabidopsis type-I AGAMOUS-LIKE61(AGL61)/DIANA (DIA)

is expressed exclusively in the central cell and early endosperm and plays crucial role in
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endosperm development after fertilization through transcriptional control in the central cells

[79–82]. AtAGL62 also plays important role in the endosperm and seed coat development [83–

85]. Gene expression analysis using tissue-specific transcriptome data from wild tomato S. pim-
pinellifolium [27] revealed that the type-I MADS box gene Solyc01g106730 is preferentially

expressed in the ovule (S3 and S4 Tables). In addition to the relationship between type-I MADS

box genes and seed development, there is an evidence that down-regulation or mutation in

type-II MADS box genes, such as TM29, TAP3, TM8, SlAGL11 or SlAGL6, results in partheno-

carpy [86–90]. Thus, it would be important to investigate the roles of Solyc01g106730 in pistil,

seed, and fruit development.

Pistil-specific peptide hormone-like small peptide genes and receptor-like proteins.

The role of peptide hormones in plant signaling pathways is a popular focus of study [91–95].

The peptide hormone signaling system involves two main components: (1) small ligand pro-

teins such as small cysteine-rich peptides (CRPs) and (2) receptor proteins such a leucine-rich

receptor-like kinases (LRR-RLKs) [96]. CRPs function as signaling molecules (peptide hor-

mones) in various plant species, which are required for many aspects of development including

antimicrobial defense, pollen tube guidance, stomatal patterning, and early embryo patterning

[97–104]. CRPs contain four, six, or eight conserved cysteine residues at their C-termini in

addition to a secretion signal at their N-termini. Interestingly, a substantial number of PSGs

identified in this study encode small proteins (44 out of 108 genes identified by the mapping-

based method [40%]) less than 200 amino acids in length (Table 2). Small proteins are defined

as proteins smaller than 200 amino acids according to previous reports [94,97,105]. Since pep-

tide hormone-like small proteins share a conserved structure, we performed a sequence similar-

ity search of the 44 identified small proteins and one TAPETUM DETERMINANT 1 (TPD1)-

like protein (204 aa) by BLAST analysis and SignalP 4.1 server (http://www.cbs.dtu.dk/services/

SignalP/) manually to investigate whether they have conserved residues or functional domains.

Roughly half of these proteins also have a secretion signal in their N-termini (Table 2). Notably,

through subsequent sequence analysis of these small proteins, four tissue-specific CRPs includ-

ing an unknown gene (Solyc06g075200) and two LRR-RLK-like proteins were identified (Listed

in Table 2, S5 Fig).

OPE4 (Solyc11g012650) was homologous to Arabidopsis TAPETUM DETERMINANT
(AtTPD1, AT4G24972) (6e-37), encoding a peptide hormone that functions as a ligand mole-

cule to regulate the specification of tapetum cells in coordination with receptor protein EMS/

EXS [106, 107], while BLAST searches of the tomato genome identified three other homologs,

designated SlTPD1L1 (Solyc03g097530), SlTPD1L2/OPE4 (Solyc11g012650), and SlTPD1L3
(Solyc11g006850), based on sequence similarity to AtTPD1, with 59.4% (1e-49), 55% (6e-37),

and 50% (4e-33) sequence similarity, respectively. Like AtTPD1, we confirmed the presence of

a secretion signal in the N-terminal region and conserved cysteine residues at the C-terminus

among the three deduced proteins (S3A Fig). Although the sequence of N-terminal secretion

signal region varied among the three proteins, an alignment of each SlTPD1L compared to

amino acids 26–179 of AtTPD1 revealed a high degree of similarity (48–56%) (S3B Fig).

Although it is known that AtTPD1 is also expressed in inflorescence meristems, floral meri-

stems, carpel primordia, and ovule primordia, its function in these tissues remains unknown

[106, 107]. The notion that SlTPD1L2/OPE4 (Solyc11g012650) showed pistil-specific expression

(Fig 3B), and that OPE4 is shown to be preferentially expressed in the ovule both in S. pimpi-
nellifolium and tomato cultivar ‘Moneymaker’ (S3 and S4 Tables), it was suggested that

SlTPD1L2/OPE4 might play a tissue-specific role in ovule development.

Solyc11g005540,Solyc11g005500, and Solyc05g010190 share sequence similarity with Arabi-

dopsis ECA1-like protein (EC1) genes, which involved in gamete fusion [108] (S4B and S4C

Fig). mRNA from the five Arabidopsis EC1 genes (EC1.1 to EC1.5; belonging to the ECA1
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[Early Culture Abundant] gametogenesis-related cysteine-rich protein subfamily) is present

only in egg cells before fertilization. And, small proteins encoded by EC1 genes are secreted into

the outer region of the egg cell to redundantly regulate the fusion of the germ cell to the sperm

cell during double fertilization [82,108]. Three tomato EC1-like protein homologs are expressed

in the ovule/seed in S. pimpinellifolium (S3 and S4 Tables), while in the current study, we con-

firmed the pistil-specific expression of Solyc11g005500 and Solyc11g005540 (S4A Fig). Sequence

similarity analysis of these protein sequences with AtEC1s identified five tomato homologs,

which share six conserved cysteine residues in the C-terminal region and an N-terminal secre-

tion signal peptide (S4B Fig). Therefore, these genes were designated S. lycopersicum SlEC1-like

genes (SlECLs; e.g., SlECL1 [Solyc11g005500], SlECL3 [Solyc05g010190], and SlECL5 [Solyc11g00
5540]), suggesting that they play a conserved role in the pistil at fertilization.

In addition to several ligand-like, pistil-specific CRPs, we also identified two proteins with

RLK-related domain; OPE5 (Solyc10g051370) and Solyc03g096190. OPE5 was expressed in

ovule and seed, and Solyc03g096190 was expressed in placenta and septum (S3 Table). In

tomato, the LRR-RLK family represents the largest family of RLKs [109]. Molecular genetic

studies have shown that LRR-RLKs are involved in a wide range of plant development, such as

stem cell maintenance [110,111], cell fate determination and patterning [103,112], and brassi-

nosteroid signaling [113–115]. Generally, LRR-RLK proteins, such as EMS1/EXS and CLA-

VATA1 (CLV1), function as receptors by interacting with small ligand proteins at LRR

domain and subsequently transmit external signals into cells by activating kinase domain,

inducing various cellular responses [116–118]. While Solyc03g096190 possesses the LRR

domain, one transmembrane domain and the cytoplasmic kinase domain, OPE5 possesses

only small LRR domain composed of five repeats (S5 Fig). Some receptor-like proteins with

extracellular LRR domains lacking the internal kinase domain also have been identified in

other plants, such as Arabidopsis CLAVATA2 (CLV2) [119], which regulates various develop-

mental and immunity signaling pathways by interacting with other RLKs including CLV1

[119–122]. Unraveling the role of pistil-specific RLK like proteins may help understand the

detailed mechanism of signal transduction during fruit set.

Fig 4. PSGs identified from this study. Many candidate transcriptional regulators in tomato pistils were identified, including cysteine-rich

peptide (CRP)-like proteins, indicating their roles in the development of specific types of cells in the pistil. Ovule- and embryo-specific

genes: SlINO, SlTT1-like, SlECL1, SlECL5. Pericarp-specific gene; SlATHB13/23-like. Seed coat-specific gene; SlCKX8.

https://doi.org/10.1371/journal.pone.0180003.g004
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Relationship between PSGs and fruit set signaling

We further characterized and identified PSGs associated with fruit set in the pistil. Specifically,

we investigated their expression in a dataset of differentially expressed genes (DEGs) in the pistils

of plants treated with 2,4-D and GA3 from Tang et al. [20]. Among total 4764 and 6875 DEGs in

ovaries undergoing fruit set after induction by plant hormones (auxin and GA) or pollination at

4 DAF compared to unpollinated ovaries at 2 DBF and unpollinated ovaries at 4 DAF, respec-

tively, three genes, including invertase inhibitor homolog (Solyc09g011290),SlATHB13/23-like
(Solyc01g010600),SlCKX8 (Solyc10g017990) were included out of 108 PSGs, suggesting their

roles in pistil development and/or fruit set initiation (S6 Fig). The mRNA levels of SlATHB13/
23-like (Solyc01g010600) were significantly reduced at 4 DAF by either plant hormone (auxin or

GA) treatment or pollination compared to that at 2 DBF, while no significant difference was

found compared to ovaries at 6-days post-emasculation (6 DPE). By contrast, the mRNA levels

of SlCKX8 (Solyc10g017990), invertase inhibitor homolog (Solyc09g011290) were significantly

lower in ovaries undergoing fruit set compared to those at 6 DPE, indicating that these genes are

up-regulated in the absence of fruit set signaling after flowering.

Regulatory regions of PSGs as genetic engineering tools

Tissue-specific promoters are useful tools for regulating the expression of genes of interest in

a spatial and temporal manner, which could provide new insights into various biological

mechanisms and facilitate their application to molecular breeding, such as generating geneti-

cally modified organisms [123]. Constitutive promoters such as the 35S promoter from Cauli-
flower mosaic virus (CaMV) is widely used to regulate the expression of target genes in plants

[124,125]. However, the constitutive regulation of target genes is not always useful, since it

sometimes induces additional undesirable effects that hamper agronomic applications. Thus,

in the past several decades, many tissue-specific promoters have been isolated, such as fruit-

specific promoters [126–129], root-specific promoters [130–132], seed-specific promoters

[133–135], many pollen and/or anther-specific promoters [36,136–139], and so on. Several

individual promoters targeting the stigma and/or style in the pistil have also been evaluated in

several plant species, such as the stigma- and style-specific thaumatin/PR5-like protein(PsTL1)

promoter from Japanese pear (Pyrus serotina) [140–142]. Importantly, the use of the ovule-

specific DefH9 and INO promoters allows parthenocarpy to be efficiently induced via the

ovule-specific activation of auxin signaling without producing substantial undesirable fruit

traits in tomato [143]. Moreover, several reproductive tissue-specific promoters, such as sperm

cell- and egg cell-specific promoters, have been successfully used to induce targeted mutagene-

sis by CRISPR/Cas9 [36,144]. For example, Wang et al. [144] used the promoter of egg cell-

specific EC1.2 (homolog of SlEC1.2 and SlEC1.3 identified in the current study) for CRISPR/

Cas9 to generate homozygous mutants for multiple target genes in a single generation in Ara-

bidopsis. These findings indicate that pistil-specific promoters, especially ovule-specific pro-

moters, can be highly effective tools for plant breeding. Here, we identified various types of

PSGs in tomato, e.g., SlINO and two homologs of Arabidopsis EC1.2, which were specifically

expressed in the ovule (Table 2). Thus, these promoters could contribute to tissue-specific reg-

ulation or genome editing of target genes to improve fruit set by inducing parthenocarpy.

Conclusion

In conclusion, in this study, we conducted global analysis of tomato PSGs in tomato, which

might be involved in the ovary development or fruit set process, by performing RNA-seq

analysis and comparisons with publically available data. This study successfully identified

several genes encoding signaling-related transcription factor and peptide hormone-like
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proteins, in addition to many genes with unknown functions (Fig 4). Although their biolog-

ical functions remain to be determined, our findings lay the foundation for further analysis

of the precise gene regulatory network and developmental mechanisms underlying fruit set,

in addition to the usage of promoter region of PSGs for genetic engineering and molecular

breeding.

Supporting information

S1 Fig. Results of trimming and filtering of raw read data from each sample obtained by

RNA-seq. Trimming was performed using FastQC. #1 and #2 represent FastQC analysis of

original and trimmed data from petals, respectively. Pistil and fruit samples (#3–10): pistils of

2–2.5 mm buds (#3), 3–4 mm buds (#4), 1 DBF (#5), anthesis (#6), 5 DAF (#7), 5 mm ovaries

at 7 DAF (#8), mature green fruits (#9), and red fruits (#10); Stamen and other floral organ

samples (#12–14): stamens of 3–4 mm buds (#12), 1 DBF (#13) and anthesis (#14). sepals; Veg-

etative organs (#15–18): 3-week-old leaves (#15), mature leaves (#16), stems (#17), roots (#18),

from left to right, respectively.

(TIF)

S2 Fig. Identification of pistil-specific genes based on the direct-mapping method. (A)

Number of expressed genes in different tissue/stages. Genes with RPKM values greater than 0

and 0.5 are shown in the top and bottom panels, respectively. (B) Expression of tomato

YABBY transcription factor family genes. The expression of nine YABBY transcription factor

genes was examined. SlCRCa, SlCRCb, and SlINO appeared to be preferentially expressed in

the pistil. Vertical axis represents the expression value (RPKM). Horizontal axis represents the

17 samples used for RNA-seq analysis.

(TIF)

S3 Fig. TPD1-like cysteine-rich peptides specifically expressed in pistils. (A) Alignment of

five TPD1-like proteins in tomato, including SlTPD1 (Solyc11g005500), SlTPD1-like1

(Solyc12g009850), TPD1-like2 (Solyc05g010190), TPD1-like3 (Solyc04g071640), and TPD1

(AT4G24972). rice MIL2/TPD1A (Os12g0472500), maize MAC1 (JN247438). (B) Phyloge-

netic tree of three tomato TPD1-like proteins and several orthologs of Arabidopsis, rice and

maize. Numbers above the branches indicate bootstrap values (10,000 replicates).

(TIF)

S4 Fig. EC1-like cysteine-rich peptides specifically expressed in pistils. (A) Expression of

tomato EC1-like (ECL) genes. Both SlECL1 and SlECL5 were specifically expressed in the pistil

at anthesis. Bottom one represents the expression of the internal control gene SAND [41]. (B)

Alignment of five ECA1-like proteins in tomato, including SlECL1 (Solyc11g005500), SlECL2

(Solyc05g010190), SlECL3 (Solyc12g009850), SlECL4 (Solyc04g071640), and SlECL5

(Solyc11g005540). Arabidopsis EC1s and Tomato ECLs share six conserved cysteine residues

at their C-termini (asterisk). (C) Neighbor-joining tree of amino acid sequences of five tomato

ECLs proteins and five Arabidopsis EC1s. Numbers above the branches indicate bootstrap val-

ues (10,000 replicates).

(TIF)

S5 Fig. Second structure of CRPs and LRR-RLKs identified in this study. Conserved

domains and motifs were searched using CDD in NCBI. The presence of secretion signal and

transmembrane region was investigated using SignalP 4.1 Server and TMHMM Server v. 2.0

(http://www.cbs.dtu.dk/services/TMHMM/).

(TIF)
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S6 Fig. Five PSGs that are differentially regulated during fruit set. The data were obtained

from Tang et al. 2015. Vertical axis represents the expression values normalized to transcripts

per million (TPM) 6. Horizontal axis represents the pistil sample types.

(TIF)

S1 Table. Tomato tissues subject to RNA-seq and summary of sequencing results.

(XLSX)

S2 Table. Gene expression patterns of the 108 genes in various tissues of Micro-Tom.

(XLSX)

S3 Table. Gene expression patterns of the 108 PSGs in the pistils of wild tomato relative S.

pimpinellifolium based on published data from Pattison et al. (2015).

(XLSX)

S4 Table. Gene expression patterns of the 108 PSGs based on published data from Zhang

et al. (2016).

(XLSX)

S5 Table. List of oligonucleotide primers used for RT-PCR in this study. List of ovule pref-

erentially expressed genes (OPEs) and embryo preferentially expressed genes (EPEs).

(XLSX)
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