
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pen11ission of the Author.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Massey Research Online

https://core.ac.uk/display/153387321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Development of an Executable
Graphical Notation for Describing

Direct Manipulation Interfaces

A dissertation presented
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy in Computer Science

at Massey University

Christopher Henry Edwin Phillips

1993

111

Abstract

The research reported in this thesis involves the development of an executable

semi-formal graphical notation, Lean Cuisine+, for describing the underlying behaviour

of event-based direct manipulation interfaces, and the application of the notation both in

'reverse engineering', and during the early design phase of the interface development life

cycle.

A motivation for the research stems from the need for tools and techniques to

support high level interface design. The research supports and brings together a number

of views concerning the requirements of notations at this level. These are that a notation

should be semi-formal, graphical, executable, and object-oriented, and that to be most

effective it should be targeted at a specific category of interaction. The Lean Cuisine+

notation meets all these criteria, the underlying meneme model matching closely with the

selection-based nature of direct manipulation interfaces.

Lean Cuisine+ is a multi-layered notation, and is a development of Lean Cuisine

(Apperley & Spence, 1989). The base layer is a tree diagram which captures part of the

behaviour of an interface in terms of constraints and dependencies between selectable

dialogue primitives. Further constraints and dependencies associated with the dynamics

of the interface are captured through overlays to the basic tree diagram. An orthogonal

task layer captures any temporal relationships between primitive task actions, and

provides a link with higher level functionality. Lean Cuisine+ is able to combine both

static and dynamic modelling in a coherent manner, thus avoiding the necessity of

employing separate and possibly disjoint models at the early design stage. A software

support environment for the notation is also specified and partially prototyped.

The research demonstrates the advantages of a notation which can be executed to

provide limited but valid early simulation of the dynamic behaviour of the interface under

design. A mapping from Lean Cuisine+ to a dialogue implementation language, DAL

(Anderson, 1993), is also developed in support of the view that a multi-notational

approach to interface development is required, and that it must be possible to move easily

from initial specification to prototyping and implementation.

The Lean Cuisine+ descriptions of aspects of the Apple Macintosh interface

included in the thesis show the notation to be capable of handling a range of direct

manipulation interaction styles and a variety of interface objects. A five stage

methodology for the construction of Lean Cuisine+ specifications for new interfaces is

also developed, and applied in two case studies.

iii

Acknowledgements

I wish to thank Professor Mark Apperley, not only as my chief supervisor for his

guidance, support and enthusiasm throughout this research, but also in his capacity as

head of the Computer Science Department for creating the space which permitted its

completion within a manageable time frame.

Thanks must also go to my second supervisor Dr Peter Kay for his painstaking

reading and correction of the thesis, and to Philip Etheridge for the occasions on which

he was called upon, often at short notice, to assist with the interfacing of Macintosh

software. The assistance of Paul Anderson with regard to the mapping of Lean Cuisine+

into his Dialogue Activation Language is also appreciated.

The receipt of a grant from the Massey University Research Fund for the

purchase of an A4 portrait monitor to support aspects of this research is also gratefully

acknowledged.

On a more personal level I am grateful for the patience and support of my wife

Carol throughout the research, and to my daughters for the many hours at home when

because of the research I was out of circulation.

Finally, I wish to dedicate this thesis to my parents, Harry and Dorothy, for their

vision in wanting me to have an education, and for supporting me through school and

university at considerable personal cost.

Trademarks

Finder, HyperCard, Lisa, Macintosh and MacPaint are trademarks of Apple Computer Inc.

MacDraw is a trademark of Claris Corp.

Prototyper is a trademark of SmethersBarnes.

Star is a trademark of Xerox Corp.

Teamwork is a trademark of Cadre Technologies Inc.

Word is a trademark of Microsoft Corp.

V

Brief Contents

PART 1 SURVEY AND FRAMEWORK

Chapter 1

Chapter 2

Chapter 3

Chapter 4

PART 2

Chapter 5

Chapter 6

Chapter 7

Chapter 8

PART 3

Chapter9

Introduction ... 3

Direct Manipulation Interfaces 15

A Review of Dialogue Models and Notations 33

Extending Lean Cuisine .. 63

DEVELOPMENT

The Basic Lean Cuisine+ Notation 81

Extending the Lean Cuisine+ Object Range 103

Lean Cuisine+ in High Level Interface Design 125

Software Support for Lean Cuisine+ 157

REVIEW

Conclusions and Further Work 185

REFERENCES AND GLOSSARY

References

Glossary
·· 195

·· 205

APPENDICES

Appendix A The Lean Cuisine Notation 227

Appendix B A Macintosh Task Analysis .. 231

Appendix C The Lean Cuisine+ Notation 237

Appendix D A Support Environment Prototype 245

Vil

Detailed Contents

Chapter 1 Introduction 3

1.1 Motivation for the research ... 3

Direct manipulation interfaces ... 4

The interface development life cycle (IDLC) .. 5

Existing interface development tools ... 6

The need for 'high level' tools .. 8

Formal vs informal specifications ... 10

Focus on a graphical representation .. 11

1.2 Objectives of the research ... 12

1.3 Approach adopted .. 13

1.4 Structure of the thesis .. 14

Chapter 2 Direct Manipulation Interfaces 1 5

2.1 The nature of direct manipulation .. 15

The object-action model .. 18

2.2 The desktop metaphor ... 20

Menus .. 21

Windows ... 21

2.3 The Macintosh interface ... 22

The desktop .. 2 3

Basic interaction techniques ... 25

Modality 26

The hierarchical file system .. 2 7

Other Macintosh applications .. 2 8

2.4 Modelling direct manipulation interfaces .. 29

Three views of the interface ... 3 0

2.5 Software architectures for direct manipulation interfaces 3 1

2.6 Review .. 32

Chapter 3 A Review of Dialogue Models and Notations 3 3

3.1 Specifying system behaviour ... 33

3.2 Dialogue notations ... 3 5

3.2.1 Sequence-based notations .. 3 7

State transition diagrams (STDs) .. 37

IX

X

Event-decomposition graphs (EDGs) 41

Petri nets ... 4 3

Other sequence-based notations ... 46

3.2.2 State-based notations ... 4 7

Statecharts ... 4 7

3.2.3 Object-based notations ... 51

Lean Cuisine ... 5 1

Other object-based notations ... 55

3.3 Comparison and review ... 57

A direct manipulation dialogue model .. 5 9

A way forward .. 61

Chapter 4 Extending Lean Cuisine 6 3

4.1 Analysis of Macintosh interaction tasks ... 6 3

Finder processes .. 6 6

MacPaint processes ... 6 8

A task taxonomy .. 7 0

4.2 Extending the scope of Lean Cuisine .. 7 2

4.3 A framework for Lean Cuisine+ ... 7 4

Chapter S The Basic Lean Cuisine+ Notation 81

5.1 Introduction ... 81

5.2 The base layer .. 83

Object state variables ... 8 6

5.3 Further constraint layers ... 86

The selection trigger layer .. 8 6

The option precondition layer ... 90

The existence dependency layer ... 91

5.4 An extended icon object hierarchy ... 92

System directives ... 9 6

5.5 The addition of menus ... 99

5.6 Review ... 100

Chapter 6 Extending the Lean Cuisine+ Object Range 103

6.1 External selection triggers ... 103

6.2 The Microsoft Word dialogue ... 103

Object state variables .. 107

Selection trigger layer ... 1 O 8

Option precondition layer ... 111

DETAILED CONTENTS X1

Existence dependency layer .. 111

6.3 The MacDraw dialogue ... 114

Object state variables .. 116

Selection trigger layer ... 119

Option precondition layer ... 119

6.4 The completed Finder-application linkage ... 121

6.5 The dialogue interlink diagram (DID) .. 121

6.6 Review ... 123

Chapter 7 Lean Cuisine+ in High Level Interface Design 12 5

7 .1 The role of Lean Cuisine+ in interface design ... 12 5

7.2 Task analysis ... 126

7.3 The Lean Cuisine+ task layer ... 12 7

7.4 A methodology for constructing Lean Cuisine+ specifications 12 8

7 .5 Case study I: the Finder document folder system 13 0

7. 6 Case study II: an electronic mail browser ... 14 2

7. 7 Review ... 15 4

Chapter 8 Software Support for Lean Cuisine+ 157

8.1 Requirements of a support environment ... 15 7

8.2 A support environment prototype ... 158

Execution of the specification .. 164

8.3 Prototyping the interface under design .. 170

Mapping to a dialogue specification language 171

The modified event response system (MERS) notation 172

Dialogue activation language (DAL) .. 173

Chapter 9 Conclusions and Further Work 185

9 .1 Review of the Lean Cuisine+ notation ... 1 8 5

Visual aspects of the notation .. 1 8 6

Applicability of the notation .. 1 8 7

Executability of the notation .. 18 7

Mappability of the notation for prototyping and implementation 18 8

9 .2 The wider contribution of the thesis .. 18 8

Support for the early design phase of the IDLC 18 8

Definition of a direct manipulation behavioural model 18 9

Analysis of Macintosh interaction tasks .. 18 9

9.3 General conclusions .. 190

9.4 Further work .. 191

X1l

References

Glossary

195

205

Appendix A The Lean Cuisine Notation 227

Al Menu definitions .. 2 2 7

A2 Menu subgroup structures ... 227

A3 Lean Cuisine definitions ... 2 2 7

A4 Menu and meneme modifiers .. 228

A5 Special characters ... 2 2 8

Appendix B A Macintosh Task Analysis 231

Bl Macintosh Finder ... 232

B 2 MacPaint application ... 2 3 5

Appendix C The Lean Cuisine+ Notation 237

C 1 Basic features and definitions ... 2 3 7

C2 Additional constraints .. 242

C3 The task layer ... 243

C4 Execution of a Lean Cuisine+ specification ... 244

Appendix D A Support Environment Prototype 2 4 5

Dl Basic browsing mode .. 246

D2 Selection trigger mode ... 248

D3 Option precondition mode ... 2 5 0

D4 Existence dependency mode ... 2 5 2

D5 Object state variable (OSV) mode ... 253

D6 Task mode ... 255

D7 Execution mode ... 256

Figures and Tables

Figures
Figure 2.1: Macintosh document window (active state) 24

Figure 2.2: Example Macintosh desktop .. 25

Figure 2.3: Example dialogue box (Microsoft Word) 27

Figure 2.4: Example Macintosh document folder icon/window hierarchy 2 8

Figure 3.1: SID for MacWrite Style menu (Apperley & Spence, 1989) 39

Figure 3.2: SID for Finder document folder system40

Figure 3.3: EDG for Finder document folder system42

Figure 3.4: Petri net for Finder document folder system 45

Figure 3.5: Statechart for Finder document folder system 49

Figure 3.6: Lean Cuisine in action ... 52

Figure 3. 7: Lean Cuisine diagram for Finder document folder system 5 3

Figure 4.1: Get Value subtask ... 65

Figure 4.2: Taxonomy of interaction tasks ... 71

Figure 4.3: Lean Cuisine+ framework .. 7 6

Figure 5.1: Finder: Lean Cuisine+ base layer tree diagram 83

Figure 5.2: PrintDirectory modal subdialogue tree .. 8 5

Figure 5.3: Finder: Selection trigger layer over greyed base layer diagram 8 8

Figure 5.4: Finder: Option precondition layer over greyed base layer diagram 90

Figure 5.5: Finder: Existence dependency layer over greyed base layer diagram 92

Figure 5.6: Extended Finder icon object hierarchy .. 93

Figure 5.7: Base layer tree diagram for extended Finder document folder system 95

Figure 5.8: OpenDisk subdialogue involving a system directive 96

Figure 5.9: Finder diskette-related selection triggers .. 97

Figure 5.10: Finder diskette-related option preconditions 9 8

Figure 5.11: Finder menus showing option preconditions 100

Figure 5.12: Lean Cuisine+ structural dialogue components 101

Figure 6.1: Finder icon object hierarchy showing external triggers 104

Figure 6.2: Microsoft Word: base layer tree diagram 106

Figure 6.3: Microsoft Word: Internal selection triggers 109

Figure 6.4: Microsoft Word: External selection triggers 110

Figure 6.5: Microsoft Word: Option preconditions 112

xiii

xiv

Figure 6.6: Microsoft Word: Existence dependencies 113

Figure 6.7: MacDraw: base layer tree diagram for level 2 115

Figure 6.8: MacDraw: selection triggers for level 2 118

Figure 6.9: MacDraw: option preconditions for level 2 120

Figure 6.10: The DID for part of the Macintosh interface 121

Figure 6.11: Finder icon object hierarchy showing all application links 122

Figure 6.12: Dialogue levels in Lean Cuisine+ ... 12 3

Figure 7 .1: Task action sequence for Open (Folder) over greyed base layer diagram .127

Figure 7 .2: Methodology for constructing a Lean Cuisine+ Specification 12 9

Figure 7.3: STAGE 1: Finder task decomposition .. 132

Figure 7.4: STAGE 2: Initial Finder subdialogue trees 135

Figure 7.5: STAGE 3: Initial Finder object hierarchy 136

Figure 7 .6: STAGE 3: Refined Finder object hierarchy 13 6

Figure 7.7: STAGE 3: Refined Finder subdialogue trees 136

Figure 7.8: STAGE 3: Composite Finder dialogue tree 137

Figure 7.9: STAGE 4: Finder selection triggers showing Table 7.1 references 138

Figure 7.10: STAGE 4: Finder option preconditions showing Table 7.1 references .. 139

Figure 7 .11: STAGE 4: Finder existence dependency 140

Figure 7 .12: STAGE 4: Finder task action sequence for Empty Trash 141

Figure 7.13: STAGE 5: Finder menus .. 141

Figure 7 .14: STAGE 1: Mail browser task decomposition 14 3

Figure 7.15a: STAGE 2: Initial mail browser subdialogue trees 145

Figure 7.15b: STAGE 2: Initial mail browser subdialogue trees - contd 146

Figure 7 .16: STAGE 3: Initial Mail browser object hierarchy 14 7

Figure 7.17: STAGE 3: Refined Mail browser object hierarchy 147

Figure 7.18: STAGE 3: Composite mail browser dialogue tree 148

Figure 7.19: STAGE 4: Mail browser selection triggers showing Table 7.3 refs 151

Figure 7 .20: ST AGE 4: Further mail browser constraints 15 2

Figure 7 .21: STAGE 4: Mail browser Open box task action sequence 15 3

Figure 7.22: STAGE 5: Mail browser menus showing option preconditions 154

Figure 8.1: Support environment window format .. 15 9

Figure 8.2: Basic browsing mode showing base layer dialogue tree 160

Figure 8.3: Selection trigger overlay for New Folder 161

Figure 8.4: OSV mode showing state variables for Folderlcon 162

Figure 8.5: Task overlay for task Open Folder .. 163

Figure 8.6: Finder simulation: example icon/window system 164

Figure 8.7: Finder simulation Stage #1: start-up state 167

Figure 8.8: Finder simulation Stage #7: folders B, C and F open 168

Figure 8.9: Finder simulation Stage #14: Trash folder open 169

FIGURES AND TABLES xv

Figure 8.10: Finder simulation Stage #7 under tandem execution 171

Figure 8.1 la: Mapping Lean Cuisine+ to DAL .. 176

Figure 8.1 lb: Mapping Lean Cuisine+ to DAL - continued 177

Figure 8.1 lc: Mapping Lean Cuisine+ to DAL - continued 17 8

Figure 8.lld: Mapping Lean Cuisine+ to DAL- continued 179

Figure 8.1 le: Mapping Lean Cuisine+ to DAL - continued 180

Tables
Table 2.1: Macintosh mouse techniques .. 26

Table 3.1: Classification of surveyed graphical dialogue notations 3 6

Table 3.2: Finder states: STDs vs. statecharts ... 50

Table 3.3: Required scope of a direct manipulation dialogue model 5 9

Table 4.1: Primitive virtual devices (Wallace, 1976) .. 64

Table 4.2: Interaction tasks (Foley et al, 1984) .. 65

Table 4.3: Macintosh mouse techniques .. 66

Table 4.4: Taxonomy of interaction tasks .. 71

Table 4.5: Required scope of a direct manipulation dialogue model 73

Table 4.6: Aspects of the dialogue model requiring Lean Cuisine extensions 7 4

Table 5.1: Initial set of Finder OSV s .. 8 7

Table 5.2: Application icon related OSVs ... 94

Table 5.3: Finder menu option preconditions ... 100

Table 6.1: OSV s for Microsoft Word .. 107

Table 6.2: OSV s for level 2 of MacDraw ... 11 7

Table 7 .1: ST AGE 1: Finder tasks ... 13 3

Table 7.2a: Initial set of Finder OSV s ... 13 8

Table 7 .2b: Initial set of Finder OSV s - contd .. 13 9

Table 7.3: STAGE 1: Mail browser tasks ... 144

Table 7.4a: OSV s for mail browser .. 149

Table 7.4b: OSVs for mail browser- contd ... 150

Table 8.1: Finder simulation: initial OSV values .. 16 5

Table 8.2: Icon set and window stack at each stage of the simulation 166

Table 8.3: Feature analysis of Lean Cuisine+ and DAL 175

Part 1

Survey and Framework

Chapter 1

Chapter 2

Chapter 3

Chapter4

Introduction ... 3

Direct Manipulation Interfaces 15

A Review of Dialogue Models and Notations 33

Extending Lean Cuisine .. 63

1

Chapter 1

Introduction

"The problem addressed here is not how to construct good interfaces; it is how to

provide an environment in which good interfaces can be constructed."

Hartson & Hix, 1989

1.1 Motivation for the research
As human-computer interfaces have become easier to use they have become

harder to create. Graphical interface software is large, complex, and difficult to debug

and modify. The design of graphical interfaces has been likened to the design of

buildings - partly an art, partly a science (Foley & Van Dam, 1984). An application's

interface can account for a significant fraction of the code. Surveys of artificial

intelligence applications, for example, report that 40 or 50 percent of the code and run

time memory are devoted to interface aspects (Bobrow, Mittal & Stefik, 1986). Smith

(1986) points out that user interface software is not only critical to system performance

but can also represent a sizeable investment. The production of good interactive software

is therefore both difficult and expensive.

Rhyne & Watson (1987) consider that interface requirements are rarely as well

defined and stable as requirements for computational algorithms. Farooq & Dominick

(1988, p.481) are also of the view that the creation of a user interface requires special

skills, tools and methodologies, "because it is an intrinsically different activity from the

coding of computational algorithms". In the context of menu systems, Edmondson &

Spence (1992, p.1) observe that "a designer has available, on the one hand, an

embarrassingly large repertoire of interaction and presentation techniques, but on the

other, a distressingly small toolkit of guidelines, notations, methodologies, frameworks

and languages to provide the means for intelligent thought".

Hartson & Hix (1989, p.8) define dialogue "as the observable two-way exchange

of symbols and actions between human and computer". In this thesis the term dialogue is

used to refer to the structure of the human-computer interaction expressed in terms of

constraints relating to dialogue primitives, and described through the employment of a

formal or semi-formal dialogue model. Structural models of the human-computer

interface serve as frameworks for understanding the elements of interfaces and for

3

4

guiding the dialogue developer in their construction (Hartson, 1989). Rhyne & Watson

(1987) take the view that some symbolic specification of interface behaviour appears

inescapable for the near future, but that the task is difficult, and can only be made easier

through the development of better specification paradigms. A problem identified with

some existing dialogue notations is that they describe only the 'surface behaviour' of the

interface. New notations must go beyond this and must be capable of associating the

functionality of the interface with objects, actions and states. Two concepts associated

with dialogue design underpin the research reported. The first is the notion of 'dialogue

independence' - the separation of the design of dialogue from the design of computational

software. Most current approaches to interface development are based to some extent on

dialogue independence. The second is the isolation of the design of interactive dialogues

from the detail of their implementation.

Interface representation is currently achieved through a variety of notational

schemes, including both textual and graphical representation languages. Control

structures govern how sequencing among dialogue and computational components is

designed and executed, the two basic kinds being 'sequential' and 'asynchronous'

(Hartson, 1989). In sequential dialogue only one task is presented to the user at any one

time, whereas in asynchronous dialogue more than one task or thread may be available.

Asynchronous dialogue is also described as multi-threaded. In this thesis it is assumed to

be multi-threaded dialogue in which there is generally an absence of sequence within the

separate threads or subdialogues. Asynchronous dialogue is also referred to as 'event

based' dialogue (Hartson & Hix, 1989, p.11), "because end-user actions (e.g., clicking

the mouse button on an icon) are viewed as input events". It should be noted that

asynchronous does not imply concurrent. Concurrent dialogue is multi-threaded dialogue

in which more than one thread can be executed simultaneously.

Direct manipulation interfaces

So-called 'direct manipulation' interfaces are asynchronous, with the objects of

interest being displayed so that actions are directly in the problem domain. They are most

easily understood by example, perhaps the best known being the Apple Macintosh

interface (Apple, 1989a) which is used as the basis for the case studies in this thesis.

This interface is based on the 'desktop' metaphor in which icons represent documents

and folders and in which the mouse is the electronic extension of the hand. This is an

example of the more general 'model world' metaphor defined by Hudson & King (1986).

Many real direct manipulation interfaces include elements from several styles in a single

interface, e.g. menus, dialogue boxes and windows; incorporate objects of a dynamic

nature, e.g. windows and icons; and involve concurrency, conditions, and object inter

relationships. The nature of direct manipulation interfaces is examined in detail in

Chapter 2 of this thesis.

CHAPTER 1: INTRODUCTION 5

The specification of direct manipulation interfaces presents particular problems

not encountered in other software systems. Myers (1989, p.15) states that "direct

manipulation interfaces popular on many modem systems are among the most difficult to

implement.. .. because they often provide elaborate graphics, many ways to give the same

command, many asynchronous input devices, a mode-free interface (the user can give

any command at virtually any time), and rapid semantic feedback". Rhyne & Watson

(1987) highlight the difficulties of testing for potential ambiguities in the design of

asynchronous dialogues, and identify a need for tools to assist the designer in building

and debugging such dialogues. Hartson & Hix (1989, p.18) see research on structural

modelling of asynchronous dialogue as still embryonic, because "such dialogue is less

structured than sequential dialogue". Techniques are required for recording behavioural,

structural and detailed representation of both visible and non-visible aspects of direct

manipulation interfaces. Ideally the techniques should be independent of tools through

which they may be implemented, and be complete in their ability to represent interfaces.

The 'object-oriented' paradigm, in which hierarchies of objects are manipulated

and where immediate semantic feedback is required, seems to suit the implementation of

direct manipulation interfaces (Barth, 1986; Sibert, Hurley & Bleser, 1986; Rhyne,

Ehrich, Bennett, Hewett, Sibert & Bleser, 1987; Hartson, 1989; Foley, Kim, Kovacevic

& Murray, 1989; Bass & Coutaz, 1991; Markopoulos, Pycock, Wilson & Johnson,

1992). In describing the development of the Xerox Star interface, Smith, Irby, Kimball,

Verplank & Harslem (1982) argue that such interfaces are by their very nature object

oriented. Hartson takes the view that object orientation is effective for representing

asynchronous dialogue, and for representing the behaviour of specific interface features

(e.g. windows), because of its event-based nature. However, he also considers that a

disadvantage of object orientation is its tendency to obscure temporal relationships in the

high level sequencing behaviour in the application interface.

Event-based mechanisms are currently the primary underlying techniques upon

which asynchronous dialogue is constructed. Reliable guidelines for the design of direct

manipulation interfaces do not yet exist. There is a need for tools that can assist with

their design and development.

The interface development life cycle (IDLC)

The interface development process, or life cycle, can be viewed as consisting of a

number of stages. Shneiderman (1987) defines an eight stage life cycle, consisting of:

collection of information; definition of requirements and semantics; design of syntax and

support facilities; specification of physical devices; development of software;

implementation and testing; evaluation; and revision. The need to view interface

development as an integral part of the software engineering process is being recognised,

and this life cycle bears broad resemblance to the more generally prescribed software life

6

cycle (e.g. Sommerville, 1985). Although this is a step-by-step description, the process

is equally iterative. A distinction must be drawn between design representations and

design methodologies. The former define the space of objects that can be designed

within them and impose structure on them (Moran, 1981). A representation may be

incorporated into a methodology, and it is important to show where such representations

fit into the scheme of things.

A variety of models at various levels of abstraction have been employed in the

early stages of the IDLC. These include user models, task models, and dialogue models.

From an implementation viewpoint, Green (1986) broadly classifies the latter into state

transition networks, formal grammars, and event-based techniques. User and task

models are applicable to the first two stages of the life cycle, that is, to information

collection and requirements definition. They form important inputs to the early phase of

Shneiderman's third (design) stage, where dialogue models come into play, and where

prototyping of the interface may be employed. Prototyping is also sometimes called

dialogue simulation, and prototypes may involve executable specifications. Hartson &

Hix (1989) view prototyping as an effective way to begin evaluation and testing earlier in

the life cycle than was formerly the case. Dialogue models and notations, which are the

focus of this thesis, are reviewed in Chapter 3.

Existing interface development tools

Many attempts have been made to develop tools to make the task of designing

and implementing interfaces easier. These include user interface toolkits, and so-called

'user interface management systems' (UIMSs). Toolkits are libraries of pre-defined

interaction techniques offering support for the implementation of limited interaction

styles, but providing only minimal support for interface design. UIMSs reach further

back into the IDLC by providing for the specification of sequencing and dialogue control.

In UIMSs, the concept of dialogue independence is explicitly recognised and supported.

Both UIMSs and toolkits are intended to speed up the development of interfaces. Hill

(1987) defines the key goals of a UIMS as reducing the high cost of implementing user

interfaces, and helping improve the quality of user interfaces by facilitating prototyping

and experimentation. Hix & Hartson (1986) consider however that many UIMSs

emphasise the execution-time aspects of interface management at the expense of interface

design. Koiuvnen & Mantyla (1988, p.44) state that "the concept of UIMS is still also a

vague one, and many mutually inconsistent approaches exist". They go on to produce a

taxonomy of toolkits and UIMSs. Myers (1989) also provides a useful survey of both

toolkits and UIMSs.

All UIMSs are restricted in the forms of user interfaces they can generate. A

further limitation of many UIMSs is that they require the designer to specify interfaces in

a textual, formal, programming-style language (Myers, 1987b). This has proved useful

CHAPTERl:INTRODUCTION 7

and appropriate for textual command languages but difficult and clumsy for direct

manipulation interfaces. A number of UIMSs allow the designer to use more graphical

styles. Examples include Menulay (Buxton, Lamb, Sherman & Smith, 1983), Trillium

(Henderson, 1986), and GRINS (Olsen, Dempsey & Rogge, 1985). These are still

limited for the most part to using graphical techniques for specifying static aspects of the

interface, i.e. to control the placement of interaction objects.

A number of problems have been identified with current UIMSs and interface

toolkits:

+ they are generally aimed at the programmer rather than the designer (Olsen, 1987a,

1987b; Myers, 1987a, 1989; Rhyne et al, 1987; Cockton, 1987, 1990b);

+ they have borrowed models from other areas of computer science (Cockton, 1987);

+ they are difficult to use (Rhyne et al, 1987);

+ they support only part of the IDLC (Myers, 1989);

+ they cannot support the development of direct manipulation interfaces (Myers,

1987a, 1989);

+ they are unavailable commercially or not portable (Myers, 1989);

• they do not support evaluation (Myers, 1989).

Cockton (1990a, 1990b) considers models and architectures to be central to the

development of tool-based design environments for interactive systems, which he calls

'interactive system design environments' (ISDEs). Cockton believes that current

software practice is still dominated by a 'programming language' approach, where the

designer's representation of the formalism is the implementation language. Olsen

(1987b, p.73) goes further, stating that "A UIMS can be viewed as a tool for increasing

programmer productivity". Myers (1987a) even argues for a UIMS classification based

on the level of programming skills needed to use them, which he sees as closely tied to

their ease of use. Olsen (1987c) considers that difficulties in expressing interfaces in

'borrowed models' have led to UIMSs not being used, in spite of large potential

productivity gains. Rhyne et al (1987) see the difficulties in using current UIMSs as

arising partly from the difficulty of the problem, partly from the considerable

programming skills required by users of today's tools, and partly because tool interfaces

are themselves badly designed.

Most automated tools support the developer in the coding phase of software

production, not the design phase, and they generally lack tools to facilitate construction of

human-computer interfaces (Hartson, 1989). Markopoulos et al (1992) take the view that

recent generations of UIMSs have provided the designer with increasingly sophisticated

design tools supporting rapid prototyping. They go on to argue that prototyping is

largely a trial and error software engineering activity to support implementation,

8

providing no explicit theory beyond the particular implementation, and lacking principles

for design and design decisions. Models and tools must be developed that provide

support for the design process, to enable a designer to evaluate the consistency and

completeness of the definition. Rhyne et al (1987, p.83) argue that "consistency is more

likely to result when designers have a clear and spare mental model of the interface".

It must be recognised that direct manipulation interfaces are intrinsically complex,

and may include multiple states, simultaneous interaction events, complex constraints,

communication with the application, and elaborate feedback. Hudson (1987) argues that

syntax (for direct manipulation interfaces) should be in terms of individual objects,

should be as simple as possible, and should involve physical actions such as pointing or

dragging instead of more linguistic concepts. This implies that previous approaches

based on state transition networks or grammars which control the overall interface are not

good candidates for direct manipulation interfaces. Jacob (1986, p.287) supports this,

stating that "it is unnatural, though possible, to describe the user interface of a direct

manipulation system as a conventional dialogue by means of a syntax diagram or other

such notation". Cockton (1987) considers that the real issue is find a language that

captures the user's view of a direct manipulation interface as perspicuously as possible,

and with as few ad hoc features and extensions to the specification technique as possible.

He also considers (Cockton, 1990b) that models are of limited use when we do not really

understand the properties which component abstractions should satisfy. The

identification of these properties for direct manipulation interfaces is central to this

research.

The need for 'high level' tools

It is not enough for the designer or user to 'patch together' an interface using a

toolkit. In supporting this view, Rhyne et al (1987, p.85) argue that "The complexity of

the design problem at this level precludes the simple assembly of interaction technique

modules". There is a need for 'high level' tools, models, and techniques for the

designer, providing for both interface creation and interface analysis. Foley (1987)

defines high level user interface representation as embodying information about the

interface in terms of objects, actions, relations, attributes, and pre- and post-conditions

associated with the actions. Alexander (1987) considers it important that interface

designers are able to experiment with different ideas at the early stages of the interface

development process.

With one or two exceptions (e.g. the UofA UIMS (Singh & Green, 1991)), there

are few tools to support high level design of user interfaces. To some extent this is a

consequence of the variety of individual methodologies in use, but Rhyne et al (1987)

consider the greater cause to be the fact that few researchers have attempted to build such

tools. Both Cockton (1990b) and Guindon (1990) also support this view. Guindon

CHAPTERl:INTRODUCTION 9

observes that high level design has seldom been empirically studied, and that it is poorly

supported by software tools and environments available today. Farooq & Dominick

(1988, p.491) argue that higher level directly executable specification techniques are

needed to avoid burying the interface designer in low level details, "especially during the

experimentation associated with prototyping such interfaces". Olsen (1987a) identifies a

goal for future research as being the development of designer oriented tools - in

particular, tools that automate the design process, that involve high level representations

of the user interface, and that allow designers to produce different styles of user

interfaces. The high level design of interfaces is arguably the weakest link in the chain,

and is an under-researched area.

Parallels can be drawn with two other areas of systems design:

• The development of data models for database design

In the 1960s and early 1970s databases were designed using various implementation

models, (hierarchical, network, or relational). Not until the mid 1970s was attention

devoted to the development of independent conceptual data models, e.g. the E-R

model (Chen, 1976), for use in the early stages of data base design.

• The production of systems requirements specifications

Tse & Pong (1991) argue that a requirements specification should be independent of

the design and implementation of the target system, and that the supporting language

should be behaviour-oriented and non-procedural. It should provide a means of

improving the conceptual clarity of the problems, should allow us to model logical

and physical characteristics separately, and should be expressible in a precise

notation with a unique interpretation. They also present a case for a hierarchical

framework to permit downwards movement from higher levels of abstraction to

more detailed descriptions.

Olsen (1987b) takes the view that the use of high level specifications should

simplify the production of user interfaces. However, referring to existing models created

for specifying interactive tasks, he states (Olsen, 1987c) that there are very few

guidelines or principles to direct high level design of interfaces. He sees most current

UIMS developments as being driven not by the task model but rather by syntactic and

device oriented models. Smith (1986) argues the importance of distinguishing the

underlying logic or architectural form of user interface functions from the detailed

presentation of those functions to the user. Anderson & Apperley (1991, p.2) state that

"initially what is needed is some form of abstraction that permits the basic dialogue

structure of the interface to be defined, and then the details to be added as required".

In the context of menu systems, Apperley & Spence (1989) identify the need for a design

methodology for the dialogue designer which should in itself provide a good interface to

10

the designer, and which should reflect the structure of the dialogue rather than the

underlying program.

In order to characterise at a high level the interaction between a user and a system

an explicit representation of the behaviour of the system itself is needed (Kieras &

Polson, 1983). Edmondson (1991, p.8) notes that this is underlying behaviour "as

distinct from the superficial behaviour we observe when looking at the mechanics of the

interface". A representation of the behaviour of an interactive system should be

independent of the implementation, and should reflect structural properties such as

hierarchy, possible modes, and consistent patterns of interaction, in addition to being

easy to define and understand. This representation will involve both semantic and

syntactic aspects of the interface. Olsen (1987b, p.75) takes the view that the semantics

of an application are expressed in "the behaviour of the objects and actions of the user

interface and in the relationship between these objects and actions". Chakravarty &

Kleyn (1990) observe that the interference of events internal to a task with the events in a

higher level task making use of it, or with tasks that are interleaved in a multi-threaded

execution, is a major problem associated with developing a specification of high level

system behaviour.

Formal vs informal specifications

There is a tension between the merits of a fully formal specification, defined in a

language which is mathematically precise and in which strict syntax and semantics are

used, and the need in the early stages of design for a less formal and more intuitive

approach as an aid to understanding the system being designed. Carey & Graham (1987)

consider that any (design) method must be formal enough to provide benefits throughout

the development cycle, and natural enough for designers to use it productively. Green

(1986) argues that on the one hand design notations can be very informal, since their

main purpose is to record the thoughts of the designer, but that on the other hand the

notations used in the implementation of user interfaces must be formal, since they will be

used to produce the implementation of the interface. Cockton (1987) sees the need for

users to be able to comprehend and understand future dialogue models as more important

than identifying a mathematically optimum model. Moran (1981) supports this view,

arguing that a model can be too abstract, and thus difficult, for most people to grasp.

Harbert, Lively & Sheppard (1990) consider the range of things that must be specified in

a user interface to be too broad for any one form of specification.

Guindon (1990) considers that the early stages of design are best characterised as

'opportunistic'. He defines opportunistic design (p.336) as "design in which interim

decisions can lead to subsequent decisions at various levels of abstraction in the solution

decomposition". The results of this study have implications for methods and

environments that support the early stages of design: representation languages should

CHAPTER1:IN1RODUCTION 11

support a smooth progression from requirements expressed informally to design

decisions expressed formally or semi-formally, in code.

Docker (1989) in the context of the development of a structured analysis

programming environment, quotes from Gehani & McGettrick (1986, p.vii): "Formal

specifications do not render informal specifications obsolete or irrelevant; although they

(formal specifications) can be checked to some degree for completeness, redundancy, and

ambiguity, and can be used in program verification, they are often hard to read and

understand. Consequently, informal specifications are still necessary as an aid to the

understanding of the system being designed; informal and formal specifications

complement each other". Docker also suggests the possibility of a spectrum of

descriptions going from informal at one end to strictly formal at the other, and introduces

the term 'semi-formal' to describe, for example, the class of techniques called 'structured

systems analysis'. He sees these techniques as having been developed (p.8) "in an

attempt to improve both the approach to analysis, and to place the emphasis more on the

graphical presentation of information as a better method of communications".

Focus on a graphical representation

It has been argued (Tse & Pong, 1991) that graphical languages are better at the

higher levels of abstraction, and textual languages are better for providing detailed

description. In the context of specifying systems requirements, Tse & Pong argue that

graphical representation of complex material is much more comprehensible than its textual

counterpart, because it is two-dimensional rather than one-dimensional, and therefore

provides an additional degree of freedom in presentation; because it can show naturally

both hierarchy and concurrency; because it can be read selectively rather than linearly;

because it reduces the number of concepts to be held in short-term memory; and because

the reader can move naturally from higher to lower levels of detail. Harel, Lachover,

Naamad, Pnueli, Politi, Sherman & Shutl-Trauring (1988) consider that languages for

describing reactive systems ought to make it possible to move easily from the initial

stages of requirements and specification to prototyping and design. They go on to

suggest that specifications, including behavioural aspects, should be based to a large

extent on 'visual formalisms' depending on a small number of carefully chosen

diagrammatic paradigms. (Harel, 1988, p.528) supports the use of visual formalisms

for representing computer-related systems "because they are to be generated,

comprehended, and communicated by humans".

This suggests an approach to interface design in which a semi-formal high level

graphical specification is augmented by non-graphical detail, and subsequently mapped

into a more formal dialogue specification language for implementation; that is, an

approach based upon multiple specifications. At the highest level of design what is

needed is a visual vocabulary suitable for 'sketching' the interface, a representation able

12

to capture both user and system interaction with the visual display. In the words of Jacob

(1985, p.52): "a visual representation chosen for this purpose needs to describe the

external (user-visible) behaviour of the user interface of a system precisely, leaving no

doubt as to the behaviour of the system for each possible input. It should separate

function from implementation, describing the behaviour of a user interface completely

and precisely without unduly constraining the way it will be implemented".

Chakravarty & Kleyn (1990) consider that compactness and readability are

crucial to the usefulness of visual formalisms (which they term 'visualisms') applied to

the description of the behaviour of reactive software systems. The control aspects of

such systems comprise the generation and processing of external and internal events, the

actions performed as a result of the events, the directions of control flow, and the

concurrency of events, all of which contribute to the difficulty of specifying and

understanding system behaviour. In any visual formalism there is a trade-off between the

visual complexity of the graphical notation and the effort required to use it. As the visual

complexity increases, the effort required to use the notation effectively also increases.

It is interesting to note that the most successful and widely adopted graphical

representations in other fields of systems design have been simple notations with a few

easily understood constructs, for example, the E-R notation (Chen, 1976) in high level

data base design, and the data flow notation of structured systems analysis (Gane &

Sarson, 1979). The event model, a candidate for describing direct manipulation

interfaces, has to date lacked a graphical representation. Issues associated with graphical

notations are explored further in Chapter 3 of this thesis.

1.2 Objectives of the research
The principal objective of this research is to develop a semi-formal graphical

notation and associated methodology for use during the high level design phase of

interface development. The notation should be targeted specifically at direct manipulation

interfaces and should be extensively evaluated in the context of an existing interface.

Implicit in this objective are the following secondary objectives:

• That visually, the notation should:

- have a small number of simple concepts;

- be suitably expressive, and in particular reflect the object oriented nature of

direct manipulation interfaces;

- be compact, and maintain locality between dialogue elements.

• That the notation should be suited both to the analysis of existing interfaces, and to

the high level synthesis of component dialogues for new interfaces.

CHAPTERl:INTRODUCTION 13

+ That the notation should be executable, and thereby support a limited form of early

prototyping of interfaces.

• That the notation should be mappable into a formal dialogue specification language,

and thereby support interface prototyping and implementation.

1.3 Approach adopted
The approach to achieving the objectives set out in Section 1.2 can be

summarised as follows:

• The nature of direct manipulation interaction is established, and the desktop

metaphor is examined with reference to the Apple Macintosh. Three views pertinent

to the development of direct manipulation interfaces are identified (Chapter 2).

• Existing dialogue notations are reviewed in the context of direct manipulation

interfaces, with a focus on graphical representations for specifying underlying

interface behaviour to support high level design. Some preliminary results of this

research have been published (Phillips, 1991). Based on this analysis, the required

scope of a direct manipulation dialogue model is established (Chapter 3).

• A task analysis of part of the Macintosh interface is undertaken in order to establish

the fundamental nature of direct manipulation interaction. The results of this

analysis have been published (Phillips & Apperley, 1991). A framework for

developing and extending Lean Cuisine (Apperley & Spence, 1989), a tree

structured graphical notation for describing the behaviour of menu systems, is

defined (Chapter 4).

• Lean Cuisine is developed incrementally into an object-based multi-layered notation,

Lean Cuisine+, providing for specification of the full range of constraints and

dependencies which exist between selectable dialogue primitives in a direct

manipulation interface. This development is achieved through the description of the

behaviour of part of the Macintosh interface (Chapters 5 and 6). Aspects of this

research have been published (Phillips, 1992).

• The role of Lean Cuisine+ in interface design is considered, and an orthogonal task

layer is added to the notation. A five stage design methodology, commencing with

a task decomposition is developed and applied to an example interface (Chapter 7).

• A specification for a software environment to support the construction, browsing,

and execution of Lean Cuisine+ specifications is developed. The extensions to

support execution complete the Lean Cuisine+ notation. The software environment

is partially prototyped using HyperCard. Mapping to a more formal dialogue

specification language to support interface prototyping and implementation is

considered (Chapter 8).

14

• The Lean Cuisine+ notation is reviewed and the contribution of the research

examined critically (Chapter 9).

1.4 Structure of the thesis
The thesis is arranged in three parts. Part 1 includes this introductory chapter,

Chapters 2 and 3, which present the major part of the literature survey, and Chapter 4,

which establishes a framework for the notation developed in Part 2.

In Part 2, the basic Lean Cuisine+ notation is developed in Chapters 5 and 6, and

extended in Chapters 7 and 8. Chapter 7 also presents a methodology for the

construction of Lean Cuisine+ specifications, and Chapter 8 defines a software

environment to support the notation.

Part 3 contains a single review chapter, Chapter 9, in which the contribution of

the research is examined and further work identified.

