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Abstract 

The research reported in this thesis involves the development of an executable 

semi-formal graphical notation, Lean Cuisine+, for describing the underlying behaviour 

of event-based direct manipulation interfaces, and the application of the notation both in 

'reverse engineering', and during the early design phase of the interface development life 

cycle. 

A motivation for the research stems from the need for tools and techniques to 

support high level interface design. The research supports and brings together a number 

of views concerning the requirements of notations at this level. These are that a notation 

should be semi-formal, graphical, executable, and object-oriented, and that to be most 

effective it should be targeted at a specific category of interaction. The Lean Cuisine+ 

notation meets all these criteria, the underlying meneme model matching closely with the 

selection-based nature of direct manipulation interfaces. 

Lean Cuisine+ is a multi-layered notation, and is a development of Lean Cuisine 

(Apperley & Spence, 1989). The base layer is a tree diagram which captures part of the 

behaviour of an interface in terms of constraints and dependencies between selectable 

dialogue primitives. Further constraints and dependencies associated with the dynamics 

of the interface are captured through overlays to the basic tree diagram. An orthogonal 

task layer captures any temporal relationships between primitive task actions, and 

provides a link with higher level functionality. Lean Cuisine+ is able to combine both 

static and dynamic modelling in a coherent manner, thus avoiding the necessity of 

employing separate and possibly disjoint models at the early design stage. A software 

support environment for the notation is also specified and partially prototyped. 

The research demonstrates the advantages of a notation which can be executed to 

provide limited but valid early simulation of the dynamic behaviour of the interface under 

design. A mapping from Lean Cuisine+ to a dialogue implementation language, DAL 

(Anderson, 1993), is also developed in support of the view that a multi-notational 

approach to interface development is required, and that it must be possible to move easily 

from initial specification to prototyping and implementation. 

The Lean Cuisine+ descriptions of aspects of the Apple Macintosh interface 

included in the thesis show the notation to be capable of handling a range of direct 

manipulation interaction styles and a variety of interface objects. A five stage 

methodology for the construction of Lean Cuisine+ specifications for new interfaces is 

also developed, and applied in two case studies. 
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Chapter 1 

Introduction 

"The problem addressed here is not how to construct good interfaces; it is how to 

provide an environment in which good interfaces can be constructed." 

Hartson & Hix, 1989 

1.1 Motivation for the research 
As human-computer interfaces have become easier to use they have become 

harder to create. Graphical interface software is large, complex, and difficult to debug 

and modify. The design of graphical interfaces has been likened to the design of 

buildings - partly an art, partly a science (Foley & Van Dam, 1984). An application's 

interface can account for a significant fraction of the code. Surveys of artificial 

intelligence applications, for example, report that 40 or 50 percent of the code and run

time memory are devoted to interface aspects (Bobrow, Mittal & Stefik, 1986). Smith 

(1986) points out that user interface software is not only critical to system performance 

but can also represent a sizeable investment. The production of good interactive software 

is therefore both difficult and expensive. 

Rhyne & Watson (1987) consider that interface requirements are rarely as well 

defined and stable as requirements for computational algorithms. Farooq & Dominick 

(1988, p.481) are also of the view that the creation of a user interface requires special 

skills, tools and methodologies, "because it is an intrinsically different activity from the 

coding of computational algorithms". In the context of menu systems, Edmondson & 

Spence (1992, p.1) observe that "a designer has available, on the one hand, an 

embarrassingly large repertoire of interaction and presentation techniques, but on the 

other, a distressingly small toolkit of guidelines, notations, methodologies, frameworks 

and languages to provide the means for intelligent thought". 

Hartson & Hix (1989, p.8) define dialogue "as the observable two-way exchange 

of symbols and actions between human and computer". In this thesis the term dialogue is 

used to refer to the structure of the human-computer interaction expressed in terms of 

constraints relating to dialogue primitives, and described through the employment of a 

formal or semi-formal dialogue model. Structural models of the human-computer 

interface serve as frameworks for understanding the elements of interfaces and for 
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guiding the dialogue developer in their construction (Hartson, 1989). Rhyne & Watson 

(1987) take the view that some symbolic specification of interface behaviour appears 

inescapable for the near future, but that the task is difficult, and can only be made easier 

through the development of better specification paradigms. A problem identified with 

some existing dialogue notations is that they describe only the 'surface behaviour' of the 

interface. New notations must go beyond this and must be capable of associating the 

functionality of the interface with objects, actions and states. Two concepts associated 

with dialogue design underpin the research reported. The first is the notion of 'dialogue 

independence' - the separation of the design of dialogue from the design of computational 

software. Most current approaches to interface development are based to some extent on 

dialogue independence. The second is the isolation of the design of interactive dialogues 

from the detail of their implementation. 

Interface representation is currently achieved through a variety of notational 

schemes, including both textual and graphical representation languages. Control 

structures govern how sequencing among dialogue and computational components is 

designed and executed, the two basic kinds being 'sequential' and 'asynchronous' 

(Hartson, 1989). In sequential dialogue only one task is presented to the user at any one 

time, whereas in asynchronous dialogue more than one task or thread may be available. 

Asynchronous dialogue is also described as multi-threaded. In this thesis it is assumed to 

be multi-threaded dialogue in which there is generally an absence of sequence within the 

separate threads or subdialogues. Asynchronous dialogue is also referred to as 'event

based' dialogue (Hartson & Hix, 1989, p.11), "because end-user actions (e.g., clicking 

the mouse button on an icon) are viewed as input events". It should be noted that 

asynchronous does not imply concurrent. Concurrent dialogue is multi-threaded dialogue 

in which more than one thread can be executed simultaneously. 

Direct manipulation interfaces 

So-called 'direct manipulation' interfaces are asynchronous, with the objects of 

interest being displayed so that actions are directly in the problem domain. They are most 

easily understood by example, perhaps the best known being the Apple Macintosh 

interface (Apple, 1989a) which is used as the basis for the case studies in this thesis. 

This interface is based on the 'desktop' metaphor in which icons represent documents 

and folders and in which the mouse is the electronic extension of the hand. This is an 

example of the more general 'model world' metaphor defined by Hudson & King (1986). 

Many real direct manipulation interfaces include elements from several styles in a single 

interface, e.g. menus, dialogue boxes and windows; incorporate objects of a dynamic 

nature, e.g. windows and icons; and involve concurrency, conditions, and object inter

relationships. The nature of direct manipulation interfaces is examined in detail in 

Chapter 2 of this thesis. 
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The specification of direct manipulation interfaces presents particular problems 

not encountered in other software systems. Myers (1989, p.15) states that "direct 

manipulation interfaces popular on many modem systems are among the most difficult to 

implement.. .. because they often provide elaborate graphics, many ways to give the same 

command, many asynchronous input devices, a mode-free interface (the user can give 

any command at virtually any time), and rapid semantic feedback". Rhyne & Watson 

(1987) highlight the difficulties of testing for potential ambiguities in the design of 

asynchronous dialogues, and identify a need for tools to assist the designer in building 

and debugging such dialogues. Hartson & Hix (1989, p.18) see research on structural 

modelling of asynchronous dialogue as still embryonic, because "such dialogue is less 

structured than sequential dialogue". Techniques are required for recording behavioural, 

structural and detailed representation of both visible and non-visible aspects of direct 

manipulation interfaces. Ideally the techniques should be independent of tools through 

which they may be implemented, and be complete in their ability to represent interfaces. 

The 'object-oriented' paradigm, in which hierarchies of objects are manipulated 

and where immediate semantic feedback is required, seems to suit the implementation of 

direct manipulation interfaces (Barth, 1986; Sibert, Hurley & Bleser, 1986; Rhyne, 

Ehrich, Bennett, Hewett, Sibert & Bleser, 1987; Hartson, 1989; Foley, Kim, Kovacevic 

& Murray, 1989; Bass & Coutaz, 1991; Markopoulos, Pycock, Wilson & Johnson, 

1992). In describing the development of the Xerox Star interface, Smith, Irby, Kimball, 

Verplank & Harslem (1982) argue that such interfaces are by their very nature object

oriented. Hartson takes the view that object orientation is effective for representing 

asynchronous dialogue, and for representing the behaviour of specific interface features 

(e.g. windows), because of its event-based nature. However, he also considers that a 

disadvantage of object orientation is its tendency to obscure temporal relationships in the 

high level sequencing behaviour in the application interface. 

Event-based mechanisms are currently the primary underlying techniques upon 

which asynchronous dialogue is constructed. Reliable guidelines for the design of direct 

manipulation interfaces do not yet exist. There is a need for tools that can assist with 

their design and development. 

The interface development life cycle (IDLC) 

The interface development process, or life cycle, can be viewed as consisting of a 

number of stages. Shneiderman (1987) defines an eight stage life cycle, consisting of: 

collection of information; definition of requirements and semantics; design of syntax and 

support facilities; specification of physical devices; development of software; 

implementation and testing; evaluation; and revision. The need to view interface 

development as an integral part of the software engineering process is being recognised, 

and this life cycle bears broad resemblance to the more generally prescribed software life 
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cycle (e.g. Sommerville, 1985). Although this is a step-by-step description, the process 

is equally iterative. A distinction must be drawn between design representations and 

design methodologies. The former define the space of objects that can be designed 

within them and impose structure on them (Moran, 1981). A representation may be 

incorporated into a methodology, and it is important to show where such representations 

fit into the scheme of things. 

A variety of models at various levels of abstraction have been employed in the 

early stages of the IDLC. These include user models, task models, and dialogue models. 

From an implementation viewpoint, Green (1986) broadly classifies the latter into state 

transition networks, formal grammars, and event-based techniques. User and task 

models are applicable to the first two stages of the life cycle, that is, to information 

collection and requirements definition. They form important inputs to the early phase of 

Shneiderman's third (design) stage, where dialogue models come into play, and where 

prototyping of the interface may be employed. Prototyping is also sometimes called 

dialogue simulation, and prototypes may involve executable specifications. Hartson & 

Hix (1989) view prototyping as an effective way to begin evaluation and testing earlier in 

the life cycle than was formerly the case. Dialogue models and notations, which are the 

focus of this thesis, are reviewed in Chapter 3. 

Existing interface development tools 

Many attempts have been made to develop tools to make the task of designing 

and implementing interfaces easier. These include user interface toolkits, and so-called 

'user interface management systems' (UIMSs). Toolkits are libraries of pre-defined 

interaction techniques offering support for the implementation of limited interaction 

styles, but providing only minimal support for interface design. UIMSs reach further 

back into the IDLC by providing for the specification of sequencing and dialogue control. 

In UIMSs, the concept of dialogue independence is explicitly recognised and supported. 

Both UIMSs and toolkits are intended to speed up the development of interfaces. Hill 

(1987) defines the key goals of a UIMS as reducing the high cost of implementing user 

interfaces, and helping improve the quality of user interfaces by facilitating prototyping 

and experimentation. Hix & Hartson (1986) consider however that many UIMSs 

emphasise the execution-time aspects of interface management at the expense of interface 

design. Koiuvnen & Mantyla (1988, p.44) state that "the concept of UIMS is still also a 

vague one, and many mutually inconsistent approaches exist". They go on to produce a 

taxonomy of toolkits and UIMSs. Myers (1989) also provides a useful survey of both 

toolkits and UIMSs. 

All UIMSs are restricted in the forms of user interfaces they can generate. A 

further limitation of many UIMSs is that they require the designer to specify interfaces in 

a textual, formal, programming-style language (Myers, 1987b). This has proved useful 
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and appropriate for textual command languages but difficult and clumsy for direct 

manipulation interfaces. A number of UIMSs allow the designer to use more graphical 

styles. Examples include Menulay (Buxton, Lamb, Sherman & Smith, 1983), Trillium 

(Henderson, 1986), and GRINS (Olsen, Dempsey & Rogge, 1985). These are still 

limited for the most part to using graphical techniques for specifying static aspects of the 

interface, i.e. to control the placement of interaction objects. 

A number of problems have been identified with current UIMSs and interface 

toolkits: 

+ they are generally aimed at the programmer rather than the designer (Olsen, 1987a, 

1987b; Myers, 1987a, 1989; Rhyne et al, 1987; Cockton, 1987, 1990b); 

+ they have borrowed models from other areas of computer science (Cockton, 1987); 

+ they are difficult to use (Rhyne et al, 1987); 

+ they support only part of the IDLC (Myers, 1989); 

+ they cannot support the development of direct manipulation interfaces (Myers, 

1987a, 1989); 

+ they are unavailable commercially or not portable (Myers, 1989); 

• they do not support evaluation (Myers, 1989). 

Cockton (1990a, 1990b) considers models and architectures to be central to the 

development of tool-based design environments for interactive systems, which he calls 

'interactive system design environments' (ISDEs). Cockton believes that current 

software practice is still dominated by a 'programming language' approach, where the 

designer's representation of the formalism is the implementation language. Olsen 

(1987b, p.73) goes further, stating that "A UIMS can be viewed as a tool for increasing 

programmer productivity". Myers (1987a) even argues for a UIMS classification based 

on the level of programming skills needed to use them, which he sees as closely tied to 

their ease of use. Olsen (1987c) considers that difficulties in expressing interfaces in 

'borrowed models' have led to UIMSs not being used, in spite of large potential 

productivity gains. Rhyne et al (1987) see the difficulties in using current UIMSs as 

arising partly from the difficulty of the problem, partly from the considerable 

programming skills required by users of today's tools, and partly because tool interfaces 

are themselves badly designed. 

Most automated tools support the developer in the coding phase of software 

production, not the design phase, and they generally lack tools to facilitate construction of 

human-computer interfaces (Hartson, 1989). Markopoulos et al (1992) take the view that 

recent generations of UIMSs have provided the designer with increasingly sophisticated 

design tools supporting rapid prototyping. They go on to argue that prototyping is 

largely a trial and error software engineering activity to support implementation, 
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providing no explicit theory beyond the particular implementation, and lacking principles 

for design and design decisions. Models and tools must be developed that provide 

support for the design process, to enable a designer to evaluate the consistency and 

completeness of the definition. Rhyne et al (1987, p.83) argue that "consistency is more 

likely to result when designers have a clear and spare mental model of the interface". 

It must be recognised that direct manipulation interfaces are intrinsically complex, 

and may include multiple states, simultaneous interaction events, complex constraints, 

communication with the application, and elaborate feedback. Hudson (1987) argues that 

syntax (for direct manipulation interfaces) should be in terms of individual objects, 

should be as simple as possible, and should involve physical actions such as pointing or 

dragging instead of more linguistic concepts. This implies that previous approaches 

based on state transition networks or grammars which control the overall interface are not 

good candidates for direct manipulation interfaces. Jacob (1986, p.287) supports this, 

stating that "it is unnatural, though possible, to describe the user interface of a direct 

manipulation system as a conventional dialogue by means of a syntax diagram or other 

such notation". Cockton (1987) considers that the real issue is find a language that 

captures the user's view of a direct manipulation interface as perspicuously as possible, 

and with as few ad hoc features and extensions to the specification technique as possible. 

He also considers (Cockton, 1990b) that models are of limited use when we do not really 

understand the properties which component abstractions should satisfy. The 

identification of these properties for direct manipulation interfaces is central to this 

research. 

The need for 'high level' tools 

It is not enough for the designer or user to 'patch together' an interface using a 

toolkit. In supporting this view, Rhyne et al (1987, p.85) argue that "The complexity of 

the design problem at this level precludes the simple assembly of interaction technique 

modules". There is a need for 'high level' tools, models, and techniques for the 

designer, providing for both interface creation and interface analysis. Foley (1987) 

defines high level user interface representation as embodying information about the 

interface in terms of objects, actions, relations, attributes, and pre- and post-conditions 

associated with the actions. Alexander (1987) considers it important that interface 

designers are able to experiment with different ideas at the early stages of the interface 

development process. 

With one or two exceptions (e.g. the UofA UIMS (Singh & Green, 1991)), there 

are few tools to support high level design of user interfaces. To some extent this is a 

consequence of the variety of individual methodologies in use, but Rhyne et al (1987) 

consider the greater cause to be the fact that few researchers have attempted to build such 

tools. Both Cockton (1990b) and Guindon (1990) also support this view. Guindon 
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observes that high level design has seldom been empirically studied, and that it is poorly 

supported by software tools and environments available today. Farooq & Dominick 

(1988, p.491) argue that higher level directly executable specification techniques are 

needed to avoid burying the interface designer in low level details, "especially during the 

experimentation associated with prototyping such interfaces". Olsen (1987a) identifies a 

goal for future research as being the development of designer oriented tools - in 

particular, tools that automate the design process, that involve high level representations 

of the user interface, and that allow designers to produce different styles of user 

interfaces. The high level design of interfaces is arguably the weakest link in the chain, 

and is an under-researched area. 

Parallels can be drawn with two other areas of systems design: 

• The development of data models for database design 

In the 1960s and early 1970s databases were designed using various implementation 

models, (hierarchical, network, or relational). Not until the mid 1970s was attention 

devoted to the development of independent conceptual data models, e.g. the E-R 

model (Chen, 1976), for use in the early stages of data base design. 

• The production of systems requirements specifications 

Tse & Pong (1991) argue that a requirements specification should be independent of 

the design and implementation of the target system, and that the supporting language 

should be behaviour-oriented and non-procedural. It should provide a means of 

improving the conceptual clarity of the problems, should allow us to model logical 

and physical characteristics separately, and should be expressible in a precise 

notation with a unique interpretation. They also present a case for a hierarchical 

framework to permit downwards movement from higher levels of abstraction to 

more detailed descriptions. 

Olsen (1987b) takes the view that the use of high level specifications should 

simplify the production of user interfaces. However, referring to existing models created 

for specifying interactive tasks, he states (Olsen, 1987c) that there are very few 

guidelines or principles to direct high level design of interfaces. He sees most current 

UIMS developments as being driven not by the task model but rather by syntactic and 

device oriented models. Smith (1986) argues the importance of distinguishing the 

underlying logic or architectural form of user interface functions from the detailed 

presentation of those functions to the user. Anderson & Apperley (1991, p.2) state that 

"initially what is needed is some form of abstraction that permits the basic dialogue 

structure of the interface to be defined, and then the details .... to be added as required". 

In the context of menu systems, Apperley & Spence (1989) identify the need for a design 

methodology for the dialogue designer which should in itself provide a good interface to 
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the designer, and which should reflect the structure of the dialogue rather than the 

underlying program. 

In order to characterise at a high level the interaction between a user and a system 

an explicit representation of the behaviour of the system itself is needed (Kieras & 

Polson, 1983). Edmondson (1991, p.8) notes that this is underlying behaviour "as 

distinct from the superficial behaviour we observe when looking at the mechanics of the 

interface". A representation of the behaviour of an interactive system should be 

independent of the implementation, and should reflect structural properties such as 

hierarchy, possible modes, and consistent patterns of interaction, in addition to being 

easy to define and understand. This representation will involve both semantic and 

syntactic aspects of the interface. Olsen (1987b, p.75) takes the view that the semantics 

of an application are expressed in "the behaviour of the objects and actions of the user 

interface and in the relationship between these objects and actions". Chakravarty & 

Kleyn (1990) observe that the interference of events internal to a task with the events in a 

higher level task making use of it, or with tasks that are interleaved in a multi-threaded 

execution, is a major problem associated with developing a specification of high level 

system behaviour. 

Formal vs informal specifications 

There is a tension between the merits of a fully formal specification, defined in a 

language which is mathematically precise and in which strict syntax and semantics are 

used, and the need in the early stages of design for a less formal and more intuitive 

approach as an aid to understanding the system being designed. Carey & Graham (1987) 

consider that any ( design) method must be formal enough to provide benefits throughout 

the development cycle, and natural enough for designers to use it productively. Green 

(1986) argues that on the one hand design notations can be very informal, since their 

main purpose is to record the thoughts of the designer, but that on the other hand the 

notations used in the implementation of user interfaces must be formal, since they will be 

used to produce the implementation of the interface. Cockton (1987) sees the need for 

users to be able to comprehend and understand future dialogue models as more important 

than identifying a mathematically optimum model. Moran (1981) supports this view, 

arguing that a model can be too abstract, and thus difficult, for most people to grasp. 

Harbert, Lively & Sheppard (1990) consider the range of things that must be specified in 

a user interface to be too broad for any one form of specification. 

Guindon (1990) considers that the early stages of design are best characterised as 

'opportunistic'. He defines opportunistic design (p.336) as "design in which interim 

decisions can lead to subsequent decisions at various levels of abstraction in the solution 

decomposition". The results of this study have implications for methods and 

environments that support the early stages of design: representation languages should 
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support a smooth progression from requirements expressed informally to design 

decisions expressed formally or semi-formally, in code. 

Docker (1989) in the context of the development of a structured analysis 

programming environment, quotes from Gehani & McGettrick (1986, p.vii): "Formal 

specifications do not render informal specifications obsolete or irrelevant; although they 

(formal specifications) can be checked to some degree for completeness, redundancy, and 

ambiguity, and can be used in program verification, they are often hard to read and 

understand. Consequently, informal specifications are still necessary as an aid to the 

understanding of the system being designed; informal and formal specifications 

complement each other". Docker also suggests the possibility of a spectrum of 

descriptions going from informal at one end to strictly formal at the other, and introduces 

the term 'semi-formal' to describe, for example, the class of techniques called 'structured 

systems analysis'. He sees these techniques as having been developed (p.8) "in an 

attempt to improve both the approach to analysis, and to place the emphasis more on the 

graphical presentation of information as a better method of communications". 

Focus on a graphical representation 

It has been argued (Tse & Pong, 1991) that graphical languages are better at the 

higher levels of abstraction, and textual languages are better for providing detailed 

description. In the context of specifying systems requirements, Tse & Pong argue that 

graphical representation of complex material is much more comprehensible than its textual 

counterpart, because it is two-dimensional rather than one-dimensional, and therefore 

provides an additional degree of freedom in presentation; because it can show naturally 

both hierarchy and concurrency; because it can be read selectively rather than linearly; 

because it reduces the number of concepts to be held in short-term memory; and because 

the reader can move naturally from higher to lower levels of detail. Harel, Lachover, 

Naamad, Pnueli, Politi, Sherman & Shutl-Trauring (1988) consider that languages for 

describing reactive systems ought to make it possible to move easily from the initial 

stages of requirements and specification to prototyping and design. They go on to 

suggest that specifications, including behavioural aspects, should be based to a large 

extent on 'visual formalisms' depending on a small number of carefully chosen 

diagrammatic paradigms. (Harel, 1988, p.528) supports the use of visual formalisms 

for representing computer-related systems "because they are to be generated, 

comprehended, and communicated by humans". 

This suggests an approach to interface design in which a semi-formal high level 

graphical specification is augmented by non-graphical detail, and subsequently mapped 

into a more formal dialogue specification language for implementation; that is, an 

approach based upon multiple specifications. At the highest level of design what is 

needed is a visual vocabulary suitable for 'sketching' the interface, a representation able 
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to capture both user and system interaction with the visual display. In the words of Jacob 

(1985, p.52): "a visual representation chosen for this purpose needs to describe the 

external (user-visible) behaviour of the user interface of a system precisely, leaving no 

doubt as to the behaviour of the system for each possible input. It should separate 

function from implementation, describing the behaviour of a user interface completely 

and precisely without unduly constraining the way it will be implemented". 

Chakravarty & Kleyn (1990) consider that compactness and readability are 

crucial to the usefulness of visual formalisms (which they term 'visualisms') applied to 

the description of the behaviour of reactive software systems. The control aspects of 

such systems comprise the generation and processing of external and internal events, the 

actions performed as a result of the events, the directions of control flow, and the 

concurrency of events, all of which contribute to the difficulty of specifying and 

understanding system behaviour. In any visual formalism there is a trade-off between the 

visual complexity of the graphical notation and the effort required to use it. As the visual 

complexity increases, the effort required to use the notation effectively also increases. 

It is interesting to note that the most successful and widely adopted graphical 

representations in other fields of systems design have been simple notations with a few 

easily understood constructs, for example, the E-R notation (Chen, 1976) in high level 

data base design, and the data flow notation of structured systems analysis (Gane & 

Sarson, 1979). The event model, a candidate for describing direct manipulation 

interfaces, has to date lacked a graphical representation. Issues associated with graphical 

notations are explored further in Chapter 3 of this thesis. 

1.2 Objectives of the research 
The principal objective of this research is to develop a semi-formal graphical 

notation and associated methodology for use during the high level design phase of 

interface development. The notation should be targeted specifically at direct manipulation 

interfaces and should be extensively evaluated in the context of an existing interface. 

Implicit in this objective are the following secondary objectives: 

• That visually, the notation should: 

- have a small number of simple concepts; 

- be suitably expressive, and in particular reflect the object oriented nature of 

direct manipulation interfaces; 

- be compact, and maintain locality between dialogue elements. 

• That the notation should be suited both to the analysis of existing interfaces, and to 

the high level synthesis of component dialogues for new interfaces. 
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+ That the notation should be executable, and thereby support a limited form of early 

prototyping of interfaces. 

• That the notation should be mappable into a formal dialogue specification language, 

and thereby support interface prototyping and implementation. 

1.3 Approach adopted 
The approach to achieving the objectives set out in Section 1.2 can be 

summarised as follows: 

• The nature of direct manipulation interaction is established, and the desktop 

metaphor is examined with reference to the Apple Macintosh. Three views pertinent 

to the development of direct manipulation interfaces are identified (Chapter 2). 

• Existing dialogue notations are reviewed in the context of direct manipulation 

interfaces, with a focus on graphical representations for specifying underlying 

interface behaviour to support high level design. Some preliminary results of this 

research have been published (Phillips, 1991). Based on this analysis, the required 

scope of a direct manipulation dialogue model is established (Chapter 3). 

• A task analysis of part of the Macintosh interface is undertaken in order to establish 

the fundamental nature of direct manipulation interaction. The results of this 

analysis have been published (Phillips & Apperley, 1991). A framework for 

developing and extending Lean Cuisine (Apperley & Spence, 1989), a tree

structured graphical notation for describing the behaviour of menu systems, is 

defined (Chapter 4). 

• Lean Cuisine is developed incrementally into an object-based multi-layered notation, 

Lean Cuisine+, providing for specification of the full range of constraints and 

dependencies which exist between selectable dialogue primitives in a direct 

manipulation interface. This development is achieved through the description of the 

behaviour of part of the Macintosh interface (Chapters 5 and 6). Aspects of this 

research have been published (Phillips, 1992). 

• The role of Lean Cuisine+ in interface design is considered, and an orthogonal task 

layer is added to the notation. A five stage design methodology, commencing with 

a task decomposition is developed and applied to an example interface (Chapter 7). 

• A specification for a software environment to support the construction, browsing, 

and execution of Lean Cuisine+ specifications is developed. The extensions to 

support execution complete the Lean Cuisine+ notation. The software environment 

is partially prototyped using HyperCard. Mapping to a more formal dialogue 

specification language to support interface prototyping and implementation is 

considered (Chapter 8). 
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• The Lean Cuisine+ notation is reviewed and the contribution of the research 

examined critically (Chapter 9). 

1.4 Structure of the thesis 
The thesis is arranged in three parts. Part 1 includes this introductory chapter, 

Chapters 2 and 3, which present the major part of the literature survey, and Chapter 4, 

which establishes a framework for the notation developed in Part 2. 

In Part 2, the basic Lean Cuisine+ notation is developed in Chapters 5 and 6, and 

extended in Chapters 7 and 8. Chapter 7 also presents a methodology for the 

construction of Lean Cuisine+ specifications, and Chapter 8 defines a software 

environment to support the notation. 

Part 3 contains a single review chapter, Chapter 9, in which the contribution of 

the research is examined and further work identified. 




