
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

I MASSEY UNIVERSITY I
LIBRARY

An Object-Oriented Database· Methodology

for application development with

extended relational or object-oriented DBMS

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Science in Computer Science at Massey University

Benny Liew

1992

Acknowledgement

Firstly, I would like to thank Mr Roger Tagg, my thesis supervisor, for helping me

to draft out the contents and using the two case study examples from his 57.0DB(Object­

Oriented Database) paper. His advice and guidance throughout is greatly appreciated.

Many books and articles were borrowed from him for use in this thesis.

Next, I would like to express my appreciation to Dr. Daniela Mehandjiska­

Stavreva, my alternate supervisor for her helpful comments on the structure, written style

and presentation of this thesis ..

I would like to thank Massey University Library for using the facilities for my

literature search, especially the Library Interloan staff for their excellent services. A total

of eight books and more than a dozen of journal articles were requested within New

Zealand and overseas. Some of these articles came as far as Canadian universities'

libraries.

Thanks go to Mr. Colin Eagle and Mr. Richard Rayner for their excellent support of

Postgres on our Sun Microstations network; and also to Mr Todd Cochrane, our PhD

student of Computer Science Department, for his past assistance. I wish Todd every

success for his PhD research work.

Lastly, I would like to thank Mum and Dad for so many years of upbringing.

Benny Liew, DipSc(CompSc), TechDip(Elect Engg), MSIET

Master of Science(Computer Science) candidate,
Massey University,
Dept. of Computer Science,
Palmerston North,
New Zealand.

3/12/92

ii

Abstract

Recently development methodologies have been proposed which describe

themselves as "Object Oriented". While all of them offer approaches to extended data and

behavioural modelling, none of them seem fully adequate to address the total concept of

object-oriented development They often do not provide constructs which lead to the use

of databases, nor do they always recognise the shift from sequential to prototyping style

which is inherent in much object-oriented technology.

The objective of this thesis is to lay a framework for an object-oriented

methodology suitable for OODBMS. Details of conventional methods for developing

database applications, and of the recent 00 methods, have been examined and compared

in order to propose a coherent set of tasks and deliverables. Account has also been taken

of designing for re-use, which has been one of the main selling points of the 00

approach.

The proposed methodology attempts to address related side issues, with particular

focus on object concurrency, which seems particularly thinly covered in many of the

current proposals. Many other side issues are also mentioned, but due to time

constraints, they are not given any further discussion. The topic is an extremely multi­

disciplinary one, and a very wide range of expertise would be necessary to do justice to

all these aspects.

Mapping of the new methodology has been tried on two case study examples using

Postgres and Ontos. Postgres is an extended relational DBMS developed as a research

prototype at University of California, Berkeley. Ontos is the commercial object-oriented

DBMS marketed by Ontos Incorporated, Burlington, Massachusetts. Some details of

these implementation examples are included.

3/12/92

•

iii

Rationale for the Research

Object-oriented technology has gained much popularity recently, but methcxlologies

for its use are still at an immature stage. There are many proposed developments of the

00 paradigm by pioneers in this area. Examples are Booch[4], Coad & Yourdon[7,8],

Shlaer & Mellor[55], and Meyer[19]. These methodologies are often fairly general in

nature and do not specifically address the needs of the 00 paradigm to some special

areas, such as databases.

On the other hand, pioneers in OODBMS like Zdonik and Maier[30],

Stonebraker[56-58], Won Kim[15] and Lochovsky[14] and Rolland & Brunet[52]

concentrate more on the requirements and implementation of a specific kind of OODBMS.

The concepts of Object Repository and reusability of software have also been

subjects of discussion lately. There are many advantages associated with 00

prototyping[20].

So far, there has not been an 00 paradigm that covers the whole development cycle

of an OODBMS, although there exists many OODBMS tools. This thesis aims to

propose a total, unified paradigm applicable to OODBMS from feasibility through

analysis and design to implementation stage. It emphases particularly on prototyping and

reusability through the use of class libraries and repositories so as to support modern

practices.

One way of doing this is to review all the currently proposed 00 methodologies to

gain an understanding of each in terms of techniques and diagrams used. Sometimes,

different conventions and terms are used by different authors to represent the same

semantic meaning. It is necessary to understand why such individual approaches are

used.

An 00 methodology should also have stages of development just like conventional

software development using the functional approach. In addition, steps for each phase of

development is prescribed.

Extended relational and object-oriented databases are examined, and their common

features extracted. This is necessary for the formulation of an OODBMS methodology of

general applicability.

The topic of object-oriented prototyping as applied to application development in

OODBMS is also discussed. 00 prototyping enables quick development of 00 database

applications and this technique should be used

3/12/92

iv

Thesis structure

This thesis is made up of eight chapters.

The first chapter of the thesis takes a look at past methodologies for software

development and the evolution of present ones. It briefly describes the existing

methodologies that are well accepted and practised by current software houses. It then

describes the emerging methcxlologies of the 1990s such as RAD and the IBM AD/Cycle­

Repository. Finally, some of the better-known 00 approaches are briefly introduced and

summarised.

Chapter 2 discusses the required features of an OODBMS methodology. These

concepts are taken from various sources and each one is given a brief description. Later,

in Chapter 4, some of them are selected to be applied in the proposed methodology.

Chapter 3 gives a brief description of existing methodologies using the object­

oriented paradigm. It is important to note that not all of them are equally suitable for all

types of implementation. For instance, Rolland & Brunet's O* Model is particularly

suitable for OODBMS because it supports a lot of database concepts. A comparison is

made on the methodologies covered in the literature search. The similarities, differences,

strength and deficiency of each is pointed out in a matrix.

Chapter 4 is the proposal of a new methodology for OODBMS. The new proposal

stresses 4 stages of development and the exploitation of object-oriented prototyping for

object iteration. The techniques and diagrams adopted in each step have been described in

Chapter 3.

Chapter 5 examines the application of the proposed paradigm as applied to extended

relational database. Postgres is chosen as the extended relational database used to

illustrate a case study example.

Chapter 6 examines the application of the proposed paradigm as applied to

OODBMS. Ontos is used as the object-oriented database to illustrate a case study

example.

3/12/92

V

Chapter 7 offers some conclusions. It also comments on the application of the

proposed methodology to the two different types of DBMS. Further possible work on

the enhancement of the new methodology is also suggested.

Five sections are included in the Appendices.

Section A gives a brief description of existing fourth generation languages(4GL) for

OODBMS. Samples of the user interfaces of 02, GemStone, and GOOSE are shown.

GOOSE is a graphical interface for an 00 database schema environment created at

Georgia Institute of Technology.

Section B discusses concurrency control protocols in OODBMS.

Implementation details of Postgres Case Study example are provided in Appendix

C. Implementation details of Ontos Case Study example are provided in Appendix D.

Finally in Appendix E, current research areas relating to both types of DBMS are

discussed.

The bibliography contains all the books and journal articles used in the formulation

of the proposed methodology.

3/12/92

vi

Table of Contents

Chapters Page

1. Review of Software Development Methodology 1

1.1 Introduction 1

1.2 Mainstream Methodologies 1

1.2.1 STRADIS 1

1.2.2 Information Engineering 1

1.2.3 SSADM 2

1.2.4 JSD 3

1.2.5 MERISE 3

1.2.6 SSA 3

1.2.7 Deficiency of mainstream methodologies 3

1.3 Current Trend 4

1.3.1 Rapid Application Development(RAD) 4

1.3.2 IBM AD/Cycle - Repository 7

1.4 Object-Oriented Methodologies 8

1.4.1 Booch Methodology 9

1.4.2 Rolland & Brunnet O* Model 9

1.4.3 Coad & Yourdon OOA and 00D 9

1.4.4 GE Labs Object Modelling Technique 9

1.4.5 Bertrand Meyer 00 Methodology 9

1.4.6 Ivar Jacobson Object-Oriented Development 10

1.4.7 Henderson-Sellers Object-Oriented Life Cycle 11

1.4.8 Summary of Object-Oriented Methodologies 12

1.5 Conclusions 13

2 . Required Features of an OODBMS Methodology 14

2.1 Support for development in stages 14

2.2 Oass Identification 14

2.3 Relationships Identification 14

2.4 Behaviour modelling 14

2.5 User Interface Development 15

2.6 Digramming conventions 16

2.7 Object-Oriented CASE Tools 16

2.7.1 Tools for analysis and design(front-end) 16

2.7 .2 Tools for implementation(back-end) 16

3/12/92

vii

2.8 Object-Oriented Prototyping 17

2.9 Object Repository 17

2.10 Support for Reusability 17

2.11 Support for use of OOPL 19

2.12 Support for use of OODBMS features 19

3. Review of Current Object-Oriented Methodologies 20

3.1 Booch Methodology 20

3.2 The Database Object Model by Rolland & Brunet 23

3.3 Coad & Yourdon's Methodology 25

3.3.1 Object-Oriented Analysis 26

3.3.2 Object-Oriented Design 29

3.4 Object-Modelling Technique(OMf) 30

3.5 Comparison of Methodologies 32

4. A Proposed Object-Oriented Methodology for OODBMS 35

4.1 Feasibility Study 37

4.1.1 Overall application purpose 37

4.1.2 Statement of interactions 38

4.1.3 Performance requirements 38

4.1.4 Failure conditions 38

4.1.5 Cost/Benefit analysis 38

4.2 Object-Oriented Analysis 38

4.2.1 Generating a description of the problem domain 39

4.2.2 Constructing the Analysis Model 39

(a) Identify Classes 39

(b) Identify Relationships 41

(c) Structure the Static Aspect 41

(d) Structure the Dynamic Aspect 44

(e) Structure the Static/Dynamic Interaction 47

4.2.3 Object-Oriented Prototyping 47

4.3 Object-Oriented Design 49

4.3.1 Identification of supporting classes 49

4.3.2 Identification of reusable library classes 50

4.3.3 Tailoring the class structure for reusability 50

4.3.4 Choosing a concurrency control protocol 50

4.3.5 Iteration of classes 50

4.3.6 System Design 52

3/12/92

viii

4.4 hnplementation 52

4.4.1 Mapping to the target language 53

4.4.2 hnplementing the application 53

4.4.3 Querying the database 54

4.5 Maintenance of the application 54

4.6 Summary 54

5. Application of the proposed methodology to Postgres Case Study 55
5.1 Features of Postgres 55
5.2 Feasibility Study 55

5.2.1 Overall application purpose 55
5.2.2 Statement of interaction 56

5.2.3 Performance requirements 56

5.2.4 Failure conditions 56

5.2.5 Cost/Benefit analysis 56

5.3 Object-Oriented Analysis 57

5.3.1 Generating a description of the problem domain 57

5.3.2 Constructing the Analysis Model 57

5.3.3 Object-Oriented Prototyping 59

5.4 Object-Oriented Design 60

5.4.1 Identification of supporting classes 60

5.4.2 Identification of reusable library classes 60

5.4.3 Tailoring the class structure for reusability 60

5.4.4 Choosing a concurrency control protocol 60

5.4.5 Iteration of classes 61

5.4.6 System Design 61

5.5 hnplementation 61

5.5.1 Mapping to the target language 61

5.5.2 hnplementing the application 61

5.5.3 Querying the database 61

5.6 Summary 61

6. Application of the proposed methodology to Ontos Case Study 62

6.1 Features of Ontos 62

6.2 Feasibility Study 62

6.2.1 Overall application purpose 62

6.2.2 Statement of interaction 63

6.2.3 Performance requirements 63

3/12/92

6.2.4 Failure conditions

6.2.5 Cost/Benefit analysis

6.3 Object-Oriented Analysis

6.3.1 Generating a description of the problem domain

6.3.2 Constructing the Analysis Mcxlel

6.3.3 Object-Oriented Prototyping

6.4 Object-Oriented Design

6.4.1 Identification of supporting classes

6.4.2 Identification of reusable library classes

6.4.3 Tailoring the class structure for reusability

6.4.4 Choosing a concurrency control protocol

6.4.5 Iteration of classes

6.4.6 System Design

6.5 hnplementation

6.5.1 Mapping to the target language

6.5.2 hnplementing the application

6.5.3 Querying the database

6.6 Summary

7. Conclusion

7.1 Author's comment on the newly proposed methodology

7.2 Comparison of Development for Postgres and Ontos

Appendices

A. 00 Prototyping Tools

B. Concurrency Control in OODBMS

C. hnplementation details of Postgres Case Study

D. hnplementation details of Ontos Case Study

E. Future Directions of OODBMS

Bibliography

3/12/92

63

64

64

64

65

67

68

68

68

68

69

69

69

69

69

70

70

71

71

71

72

73

75

80

98

119

123

ix

X

List of Figures

Page

Fig. 1.1 Stage Framework of Information Engineering Methodology 2

Fig. 1.2 The Rapid Iterative Production Prototyping 6

Fig. 1.3 IBM AD/Cycle - Repository 8

Fig. 1.4 Oass/Module Life Cycle 10

Fig. 1.5 Object-Oriented Systems Development 11

Fig. 1.6 Fountain Model 12

Fig. 2.1 Model of Reuse in Object-Oriented Development 18

Fig. 3.1 Booch's Class Diagram 21

Fig. 3.2 Template for the class Alann 21

Fig. 3.3 State Transition Diagram for the class Alarm 22

Fig. 3.4 Booch's Object Diagram 23

Fig. 3.5 Overview of Rolland & Brunet's Object Definition 24

Fig. 3.6 A sample of the O* Model textual description 25

Fig. 3.7 Using a class as a generalisation 27

Fig. 3.8 Using a class object as a generalisation 27

Fig. 3.9 Person Gen-Spec structure, as a lattice 28

Fig. 3.10 "Part-of' structure of Aircraft & Engine 29

Fig. 3. 11 "Part-of' structure of Organisation & Clerk 29

Fig. 3.12 Four components and five layers 30

Fig. 3.13 Matrix for the comparison of the methodologies 34

Fig. 4.1 Development stages of the new methodologies 36

Fig. 4.2 Effort as a function of time 39

Fig. 4.3 Association Object 40

Fig. 4.4 Extended E-R diagram 42

Fig. 4.5 Oass Descriptor for the class Reservation 43

Fig. 4.6 Object Communication Diagram 44

Fig. 4.7 State Transition Diagram 45

Fig. 4.8 Event Trace Diagram 47

Fig. 4.9 Mapping Principles for Analysis 48

Fig. 4.10 Mapping Principles for Design 51

Fig. 4. 11 Module Diagram 52

Fig. 4.12 Mapping Principles for Implementation 53

Fig. 5.1 Class Diagram for Postgres Case Study 58

3/12/92

xi

Fig. 5.2 Class Descriptor for Postgres Case Study 59

Fig. 6.1 Oass Diagram for Ontos Case Study 66

Fig. 6.2 Oass Descriptor for Lakes 66

Fig. 6.3 State Transition Diagram for class Measuring_point 67

Fig. 6.4 Object Communication Diagram for Ontos Case Study 67

Fig. B.l Dynamic Interrelations Diagram 75

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 1

Chapter 1 : Review of Software Development Methodologies

I, I Introduction
Early 1960s' information systems were not built according to any formal

methodology[l,25,26). Analysis work was limited and the emphasis was towards

programming. Implementation of information systems was mainly restricted to

programming and was based on fixed file structures.

In the late 1960s and 1970s, software development was based largely on function­

oriented design, whereby the design is decomposed into a set of interacting units, each

having a clearly defined function. Large software systems have been built using this

technique and thus it has stood the test of practice. However, the need to develop and

maintain large complex software systems using advanced techniques such as databases in

a competitive and dynamic environment drove interest in better approaches to software

design and development. In the 1980s, this led to a batch of formal "methodologies",

which have incorporated some blend of function-oriented and data-oriented approaches.

1.2 Mainstream Methodoloeies Description
Some of the well-known methodologies that have gained widespread acceptance

for information systems development today are introduced below:

1.2.1 STRADIS : Structured Analysis, Design and Implementation of Information

Systems

This is based on the work of Gane & Sarson. The development of this structured

systems approach to analysis came as a result of the earlier development of a structured

approach to design. The structured design concepts were first proposed in 197 4 by

Stevens, Myers and Constantine (1974) and were later developed and refined by

Yourdon and Constantine (1978), and Myers(1975, 1978). Data flow diagrams are

constructed to represent the existing system and its interfaces.

1.2.2 Information Engineering

The term Information Engineering[17,18] originates from Clive Finkelstein who

described a data modelling methodology he developed in Australia in the late 1970s,

although the details have developed from a variety of sources including Ian Palmer of

CACI in the UK, and James Martin in the USA. Information Engineering is now a

comprehensive methodology covering all aspects of the software life cycle. It is evolving

in the area of automated tools and the development of the methodology to support 4GL.

The methodology is divided into four levels, within which there are seven stages, each

with different objectives as shown in Fig. 1.1.

3/12/92

Chapter 1 : Review of Software Development Methodologies

Planning

Analysis

Design

Construction

Stage Framework of Information Engineering Methodology

Business
Strategy
Plannin

1 Information
Strategy
Planning

-}-
1 · ""''""' Area

Analysis

- - } -

I
3 Business

System
Design

Business area
desaiption

4 Technical
Design I ..,. /Technical /

/ Specification . -_ t----_,c_ - -
I· eoo,~. I

+
6 Transition

1,---1
Fig. 1.1

1.2,3 Structured Systems Analysis and Desi~ Methodolo~<SSADM}

Page 2

SSADM[21] is a data-driven methodology developed originally by U.K.

consultants, Learmonth and Burchett Management Systems and the U .K.Central

Computing and Telecommunications Agency(CCT A). There are six phases in SSADM,

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 3

in which the first three phases are classified into systems analysis and the last three are

systems design. They are :

(a) analysis of the current system,

(b) specification of the required system,

(c) user selection of Service Levels, including technical options,

(d) detailed data design,

(e) detailed procedure design,

(f) physical design control.

Data flow diagrams and entity models are needed to represent the static views of the

system and a function/event matrix and an entity/event matrix are used to show the effects

of time on the system.

1.2.4 Jackson Structured Design{JSD)

JSD[l 1] emphasises on the developing of maintainable software systems, and less

on organisational need. Topics such as project selection, cost justification, requirements

analysis, project management, user interface, procedure design or user participation are

not addressed. JSD does not deal in detail with database design or file design. The

major phases of JSD are :

(a) entity step action,

(b) entity structure step,

(c) initial model step,

(d) function step,

(e) system timing step,

(f) implementation step.

1.2.5 MERISE

MERISE[21] supports four stages of information system development. It

combines an entity-relationship approach for data and a Petri-net based approach for

processes.

1.2.6 Structured Systems Analysis(SSA)

SSA[21] was developed by Exxon in 1978, combining functional decomposition,

data flow, relational data modelling and Jackson Structured Programming(JSP)

techniques. Some information systems planning capability is also included.

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 4

1.2. 7 Deficiency of mainstream methodolo~es
The 1980s have witnessed a growth in the number and variety of information

systems methodologies. This increase in number of methodologies has caused much

confusion. Many are the same(or very similar) and yet they have different 'brand

names' . Some of them emphase in the techniques, the role of the computer, the

documentation or the role of the people using the system. Some methodologies

emphasize the importance of data and the development of a database. Some concentrate

on analysis, others on design or implementation.

The classical waterfall software development life cycle, which is extensively used,

is sometimes treated as a process in which work proceeds from one phase to another. It

would be more difficult to return to the previous phase when the specification changes in

comparison with 00 development. Reasons why the traditional life cycle is inadequate

for software development are :

(a) It assumes a relatively uniform progression of discrete steps, which includes

little or no iteration,

(b) Due to the low cohesion and high coupling nature of program modules, it is

difficult for the software to accomodate change which is a very desirable

factor because each system is built from scratch and maintenance costs

account for a large share of development cost,

(c) It does not accomodate the sort of evolutionary development made possible

by rapid prototyping tools and 4GL,

(d) It does not allow future modes of software development like automatic code

generation, module code transformation and 'knowledge-based' software

development assistance,

(e) There is no emphasis on re-use of the software developed.

I. 3 Current trends
In the early 1990' s, there have been two new developments in the marketplace.

One is Rapid Applications Development(RAD); the other is the IBM AD/Cycle

applications development framework.

1. 3.1 Rapid Application Development<RAD}

RAD[18] may be defined as the process of building and refining a working model

or prototype of the final software system during the development process. The main

purpose of prototyping is to refine functions, inputs and outputs during the design phase

without having to wait for development to be completed. However, prototyping is not a

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 5

substitute for good analysis and design, but rather it is another way of producing results.

If used properly, prototyping can be an effective tool and an aid in developing systems

that allow closer user participation in the process, leading to information systems that

meet the needs of the business.

Prototyping has been an informal methodology for quite some time. However,

over the years, more experiences are gained in this area, and now it is possible to come

up with some form of requirements or standards. The reason for prototyping is that the

formal lifecycle is actually delaying the delivery of the final product It is becoming the

major cause of the application backlog. Moreover, the elapsed time between

requirements and a delivered product erodes a customer's confidence. Perhaps, people

are more impatient and pragmatic these days and would like to see some form of results

earlier on. Gladden[18] suggests delivering any form of a prototype as quickly as

possible. This approach is typified by Gilb[9] and Martin[l 7, 18].

An approach to making prototyping successful was developed by Du Pont in 1985,

called RIPP[3]. The approach was developed around the use of a CASE tool - CorVision

from Cortex. A proposal and definition report was drafted between 10 to 15 days before

proceeding to prototyping. The timebox is basically an iteration development process of

the prototype limited to a maximum of 90 days before being evaluated again. DuPont's

first project using RIPP was completed in 5 man months compared with the 28 to 36

months using traditional approaches. This approach has saved them $2.3 million over 3

years, in 15 systems at 9 sites.

The RAD lifecycle has 4 phases[3] as applied in RIPP :

(a) Requirements Planning

(b) User Design,

(c) Rapid Construction,

(d) Transition.

During the first phase, developers create an outline model of the chosen area and

define the scope of the planned system. Business executives, users, and developers take

part in workshops(called the Joint Requirements Planning Workshop - JRP) that

progress through a structured set of steps. All the results of the workshops are recorded

using an integrated CASE(I-CASE) tool. The I-CASE tool is a repository for

requirements and specifications. This stage usually takes one to three weeks.

3/12/92

Chapter 1 : Review of Software Development Methodologies

The Rapid Iterative Production Prototyping

Project
Request

,

Project
Definition

'
Project
Evaluation

,

~
~

r -
I
I -- -
I
I
L -

-

- - - - - -
Timebox

Step Step
- Evaluation ...

t I
90 Days - - - - - -

Fig. 1.2

Page 6

7
I
I Prototype -- Evaluation

I
I

_J ,
Prototype
Implementation

The User Design stage requires that end-users part1c1pate strongly in the

nontechnical design of the system under the guidance of an IS developer. User Design is

done in a Joint Applications Design(JAD) workshop, which completes the detailed

analysis of business activities and develops the outline design of the system. The

information recorded in the I-CASE tool is used as input and is further refined. This

stage usually lasts three to five weeks.

The third stage involves the design and implementation of the proposed system,

which was outline in the previous stage. The software is constructed using an iterative

technique. Finally this stage includes activities needed to prepare for cut over to

production status. The I-CASE tool is used to generate the application code from

database definitions.

When the system is cut over in the last stage, a variety of actions is needed,

including comprehensive testing, end-user training, organisationanal changes and

operation in parallel with the previous system until the new system settles in.

Prototyping approaches have the following advantages:

(a) improved developer user communications

(b) increased developer productivity

(c) working model versus a paper model

(d) model iterations

3/12/92

Chapter 1 : Review of Software Development Methodologies

(e) user specification is changeable at any st.age

(f) reduction in user training due to early participation

(g) production of error-free applications

However, the disadvantages are :

Page 7

(a) configuration management and version control of prototypes is more difficult

than with conventional development. Prototyping can result in many trial

systems. It is possible to get versions mixed or to be unable to recover an

earlier prototype version. Configuration management software can reduce

this problem

(b) keeping documentation up to date may be difficult because of its rapidly

changing and iterative nature

(c) maintaining discipline and objectives in the development team is difficult

because it is possible to become distracted from the legitimate goals of the

prototype due to the fluid nature and constant demands of prototyping

(d) Planning and allocating resource is difficult in an environment dealing with

uncertainty and unknown

(e) ultimate testing may be neglected and left to the users.

Incidentially, a RAD approach has also been integrated into Information

Engineering by Texas Instruments (James Martin Associates).

1.3.2 IBM AD/Cycle-Repository

In Sep 1989, IBM became a standard bearer for the computer-aided software

engineering(CASE) industry by laying out its plan for the software development process.

AD/Cycle-Repository[38,53,54] is an integrated framework intended for a CASE

environment, and compatible with a range of development tools and techniques from

many vendors. The goal is to vastly improve productivity in the applications

development process. The only way to achieve this is to automate code generation

through the use of models rather than conventional programming. Also it standardises

repository storage of development objects. All CASE tools from other vendors, in order

to link to AD/Cycle, must comply with certain IBM standards. However, no attempt has

been made to create a standard in the methodologies themselves.

The primary benefit of the open repository-based environment is that users should

be able to plug tools developed by CASE vendors complying with the repository standard

into the environment and then use them together. CASE tools supporting various

methodologies use the services of the Repository Manager to store user-defined

application knowledge. The information contained in these models is stored in standard

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 8

format within the Repository Manager, from which it will be ultimately used to drive a

code generator.

However, until now, it has not become popular due to a number of reasons. The

MVS Repository Manager is not a stable product Only a few CASE tools are compatible

and it is difficult for other vendors to plug their CASE tools into the Repository. There is

also problem with LAN configuration which is a important desired feature because

today's CASE tool is geographically dispersed. Vendors with CASE tools running under

MS-DOS and Unix have to rewrite them for OS/2EE for IBM PC and SAA compliance.

One problem is that until now OS/2EE has not been popular.

While IBM is promoting integrated CASE in a mainframe environment, Digital

Equipment Corp is following a more distributed path[53]. DECs integrated CASE

standard is known as A TIS(A Tool Integration Standard) and COD/Repository in the

VAX/VMS and Ultrix enviroments.

LAN

IBM AD/Cycle-Repository

u
Protocol

1 Pe« ID peer protocol
2 Life Cycle Transition Protocol

(Movem«1t ID Final Cocle)

Enterprise
Repository

3 Reposltorylllbraty Exchange Protocol

~
_c'°_A~_H_T''!_. G 1~1 G ~lienV ~

ardGUI L_)
Local
Reposik>ry

Local
Repository

Local
Repository

Fig. 1.3

1,4 Obiect-Oriented MethodoJ02ies
Recent suggestions[27] have been made that methods based on the paradigm of

functions acting on data should be superseded by object-oriented approach. Object-

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 9

oriented methodology is defined as an application development strategy that models both

requirements and software solutions as collections of objects that contain both data

structure and behaviour.

However, many software organisations have developed standards and methods

based on the functional approach and are understandably reluctant to embark on some

design techniques that are still immature and unproven. Hence, any migration to new

methods is likely to be a gradual one.

Current application of the 00 paradigm has been limited to Design and

Implementation due to the widespread use of C++ and Smalltalk in a small scale

environment. Less has been done on the Analysis, although this is crucial for the

construction of large and complex 00 Information Systems.

The Object-Oriented development cycle is covered, in particular, by Booch[4],

Budd[5], Henderson-Sellers[l0,40], Korson[43], Jacobson[l2,41], Bailin[31] and

Coad & Yourdon[7,8].

1.4.1 Booch Methodology

Early versions of the methodology, proposed by Grady Booch were centered

around Ada. In his most recent book, Booch introduces four models to capture 00

semantics, which are then mappable to several target 00 software environments.

1.4.2 Rolland & Brunet 0* Model

This metholodogy[52], by the two authors at the University of Paris, concentrates

on development for OODBMS, particularly the 02 system.

1.4.3 Coad & Yourdon OOA andOOD

This methodology[? ,8] has been widely published through two books, one each on

Analysis and Design, and a CASE tool has been developed.

1.4.4 GE Labs Object Modellin& Technique(QMT)

This technique[24] is developed by Rumbaugh, Blaha, Premerlani, Eddy and

Lorensen at General Electric R&D Center, Schenectady, New York. Originally, this

technique[34] was meant for use with relational database but has been modified to suit the

object-oriented one.

1.4.5 Bertrand MeyerOO Methodology

Meyer's object-oriented methodology is centered around his OOPL, Eiffel. Not

much is discussed about OOA. However, he claims that Eiffel language can both handle

00D and implementation[19]. The reason being the items of interest in each phase are

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 10

the same : objects. Objects and relationships between objects are identified in both the

analysis and design phases. The cluster model has been proposed by Meyer as a life

cycle for a tightly related group of classes, or cluster, in which three phases are

identified.

aass/Module Life Cycle

Ouster n

(SPEC HDESIMP)----->(VALGEN)

(SPEC)---,>{oESIMP)1-~>(VALGE0

Ouster 2

c SPEC)----,>(DESIMP H VALGE0

Ouster 1

Ouster model proposed by Meyer.
SPEC• specification; DESIMP .. design+implementation; VALGEN=validation+
generalisation

Fig. 1.4

First, a specification is written by the systems designer(SPEC), then this is

designed and implemented(DESIMP)(one process in a language like Eiffel) and finally it

is validated and generalised(V ALGEN). This life cycle occurs for different clusters of

classes at different times. For example, a window cluster and a graphics cluster of

classes could be specified, designed and implemented and then validated and generalised

at different times. These phases are also iterative with refinements added

1.4.6 Ivar Jacobson Object-Oriented Development

Ivar Jacobson come out with an early version of 00 systems development in 1987.

This technique originates from his work at Ericsson Telecom and since then has been

used extensively within the whole Swedish telecommunication industry.

Basically, this paradigm describes a system as a set of properly interconnected

blocks - each building block representing a packaged service of the system. A block may

itself be made up of other, low-level blocks or by components. Components are standard

modules which can be used for many different applications. The lowest-level blocks are

made up of components only. Blocks as well as components are naturally implemented

as classes using object-oriented programming. The designers are consequently provided

with a set of components when building applications by means of blocks.

There is one interesting assumption made in this paradigm with regards to object

concurrency. It is assumed that there is an infinite processor capacity, the execution

speed is immensely high and endless storage volume. In this way, parallelism can be

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 11

disregarded and the course of events may be serialised. This assumption may not be

adequate for the general case.

lysteffl

Fig 1.5

1.4.7 Henderson-Sellers 00 Life Cycle
This methodology is developed at the University of New South Wales, Australia

which describes the life cycle of 00 systems devleopment. It focuses more on the front­

end and high-level analysis. There are seven proposed steps to follow and earlier efforts

made by Coad & Yourdon, Shlaer & Mellor, Bailin, and Wirfs-Brock are applied in these

stages:

(a) Undertake object-oriented system requirements specification,

(b) Identify the objects and the services each can provide(interface),

(c) Establish interactions between objects in terms of services required and

services rendered,

(d) Analyse stage merges into design stage : use of lower-level entity data

flow diagrams/Information flow diagrams,

(e) Consider the bottom-up concerns and use of library classes,

(f) Introduce hierarchical inheritance relationships as required,

(g) Aggregate and/or generalise of classes.

The last step is illustrated using a fountain model rather than the traditional waterfall

model.

3/12/92

Chapter 1 : Review of Software Development Methodologies

Life cyde model for module
development, proposed by
Henderson-Sellers where
the mod.lie may relate to an
individual dass or a duster
of dasses.

Fig. 1.6 Fountain Model

1.4,8 Summazy of 00 Methodolo~es

Page 12

Booch and Henderson-Sellers have agreed that object-oriented design embodies an

incremental, iterative process in between successive stages. Both Jacobson and

Henderson-Sellers' ideas are particularly suitable for developing very large object­

oriented software systems(> 10 man-years). Another interesting point to note is that

boundaries of analysis, design and implementation stages in object-oriented software

development are blurred. Examples are Coad & Yourdon, who overlap between object­

oriented analysis and design. Booch combines design with implementation.

Henderson-Sellers has identified the iterative process and comes out with the

fountain model to replace the classical waterfall model. Development reaches a high level

only to fall back to a previous level if so needed, to begin the climb once again. This is a

better model of reality then the traditional waterfall model. Firstly, it provides a

diagrammatic version of the stages present in an software life cycle and a clearer

representation of the iteration and overlap made possible by object-oriented technology.

Secondly, since the foundation of a successful software development is its requirements

analysis and specifications, this stage has been placed at the base of the diagram. The

fountain model can also be extended to the life cycle of a module, as outlined in Section

1.4.5.

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 13

are:

Some of the advantages of object-oriented paradigm at the Analysis level[7,43] are:

(a) It can handle more complicated problem domains; emphasing more on the

understanding of problem domains since it is based on objects, and not

just functions or processes alone,

(b) It can improve interaction between analyst and client since it organises

analysis and specification using the methods of organisation that pervade

people's thinking,

(c) It can increase the internal consistency of analysis results. Object-oriented

analysis introduced by several authors have consistent diagramming,

(d) The results obtained in Analysis can be reused on some similar projects.

Some of the advantages of object-oriented paradigm at the Design level[8,27 ,43]

(a) Object-oriented design is actually a continuation of the efforts made at the

Analysis stage,

(b) Results and experiences gained during the Analysis stage can be reused,

(c) Object-oriented prototyping is used which increases productivity,

(d) Low life cycle cost,

(e) Modularity,

(f) Maintenability.

l, 5 Conclusions
Most of the well-known 00 methodologies have been given a brief intrcxluction.

While all of them offer approaches to extended data and behavioural modelling, none of

them seem fully adequate to address the issues specifically related to 00 database

applications development They have also not mentioned the guidelines and the steps

involved in the prototyping process.

3/12/92

