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Abstract 

Human mcthylmalonyl CoA mutase (hMCM) is a 78 kDa homodimeric mitochondrial 

matrix enzyme. hMCM catalyses the conversion of 2R-methylmalonyl Co A to succinyl 

CoA in the metabolism of propionyl groups. and requires the vitamin Birderived 

cofactor adenosylcobalamin (AdoCbl). The mechanism of catalysis imolves homolytic 

cleavage of AdoCbl's unusual C-Co bond. to generate radicals. Dysfunctional hMCM 

results in the rare, potentially fatal metabolic disorder methylmalonic acidemia. An 

experimentally determined structure of hMCM would add to the understanding of both 

the mechanism of catalysis and the molecular basis of some of the mutations underlying 

methvlmalonic acidemia. The structure of the bacterial orthologue from 

Prop/onibactenum shermcmit has been solved b1 x-ray crystallography. enabling the 

development of structural models of hMCM. Critical differences. however. bet11een 

these two en,smcs. mean that some regions of the models could be inaccurate. 

There is no x-rav crystal structure of hi'dCM. Purification of native hMC!Vl tor 

cr,stallization trials is complicated by ethical probkms. low yields. and hctcwgcneity 

generated by the cofactor. To provide a more convenient source of pure. active human 

methylmakrn,l CoA mutase for x-ray cr1stallograph1·. an expression svstcrn for 

recombinant hMCM is required. Other researchers have expressed hMCM in 

f,'scherich1a coli as (i) insoluble inclusion bodies. (ii) soluble fusion protein that cannot 

be separated efiicicntlv from the fusion tag, or (iii) in low quantities. 

This research aimed to develop an L colt expression system for the production of active 

human methylmalonyl CoA mutase, to enable x-ray crystallography structural studies. 

Based on the results of previous expression systems, four novel expression vectors were 

developed utilising the maltose binding protein and thioredoxin as solubility tags. lt was 

hoped that conventional protease cleavage. to remove these solubility tags, could be 

circumvented by the use of intein-mediated cleavage. lntein-mediated cleavage was 

successful. and soluble active hMCM was recovered in low yields from a C-terminal 

thioredoxin solubility tag construct. hMCM was insoluble when expressed with MBP at 

the C-terminus. 
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1 

1 Introduction 

1.1 The Function of Methylmalonyl CoA Mutase (MCM) 

Human methylmalonyl CoA mutase (hMCM) is a mitochondrial enzyme that catalyses 

the isomerisation of R-methylmalonyl CoA to succinyl CoA, and the succinyl group is 

ultimately oxidised in the citric acid cycle ( figure l. l ). This reaction is required in the 

metabolism of propionyl CoA formed during the catabolism of odd chain fatty acids, 

cholesterol intermediates, thymine, uracil and the amino acids methionine. isoleucine 

and valine (Kolhouse et al .. 1988). 

In prokaryotes MCM has a ditforent role: it is involved in the terminal fermentation 

pathway of succinyl CoA to propionate. and catalyses the conversion of succinyl-CoA 

to methylmalonyl Co A (Zagalak and Retey. 197 4 ). 
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Figure 1.1 Propionyl CoA Metabolism in Humans. Showing the formation of the hMCM substrate 

methylmalonyl CoA and synthesis of the cofactor coenzyme B12 from inactive 8 12 precursors (XB12). 

(Figure adapted from Leal et al., 2003) 
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1.2 The Cofactor and Catalytic Mechanism 

MCM belongs to a group of prokaryotic and animal enzymes that require the vitamin 

8 12-derived cofactor adenosylcobalamin (AdoCbl) , also known as coenzyme 8 12 and of 

this group only MCM is found in both prokaryotes and animals (Banerjee, 1997). 

AdoCbl-dependent enzymes catalyse carbon skeleton rearrangements via a radical 

mechanism involving the carbon-cobalt bond in the AdoCbl cofactor, (figure 1.2) , 

(Taoka et al. , 1997; Banerjee and Vlasie, 2002). 
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Figure 1.2 The Reaction of Methylmalonyl CoA Mutase. Showing th e radical 

generati on by the adenosylcobalamin cofactor (shown as the square conta ining Co), 

then the formati on ofsuccin yl CoA and the regeneration of the free enzyme. 

(F igure adapted from Matthews et al. , 1999) 

AdoCbl compnses a modified corrin ring surrounding a cobalt atom (figure 1.3). A 

protein histidine side chain acts as a sixth ligand binding to the cobalt atom in the 

holoenzyme (Mancia et al. , 1996). The adenosyl moiety is attached to the cobalt though 

a covalent cobalt-carbon bond. This carbon-cobalt bond has special reactivity, and is 

also very rare ; there are only two known enzymes in animals that employ carbon-cobalt 

bonds m reaction mechanisms. Cytoplasmic methionine synthase uses 

methylcobalamin and mitochondrial MCM uses adenosylcobalamin (Kolhouse and 

Allen, 1977). The reaction catalysed by hMCM is also unusual for another reason; the 

enzyme breaks and reforms a carbon-carbon bond in the carbon skeleton of 

methylmalonyl CoA. 
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Figure 1.3. Adenosylcobalamin Binding to Bacterial P. shemumii MCM. Left: 'base on ' AdoCbl, 

separate from the enzyme. Right : ' base off AdoCbl. bound to the enzyme through a hi stidine residue. 

The adenosyl moiety (R) provides the carbon atom for the carbon-cobalt bond. The four njtrogen' s of the 

corrin ring coordinate the cobalt (centre), and the hi stidine of MCM (below) displ aces the lower axial 

li gand of cobalt. 

(Figure adapted from Toi linger et al., 200 I) 

1.3 The Human Methylmalonyl CoA Mutase Gene 

The mut locus on chromosome 6 contains 13 exons, and (in total) the gene is 35 kbp 

long (Ledle y et al. , 1988). hMCM is constitutively expressed and encodes a protein 

with a 32 amino acid mitochondrial leader sequence that is cleaved to produce the 

mature 78 kDa peptide. (Nham et al. , l 990). The active human enzyme purified from 

liver is an a2 homodimer of approximately 150 kDa, and each subunit binds a molecule 

of adenosylcobalamin, the cofactor. Adenosylcobalamin is synthesised from vitamin 8 12 

in vivo as shown in figure I. I (Fenton and Roseburge, 1995 ; Banerjee and Chowdury, 

1999). 



Figure 1.4 Structure of the Propionihacterium shernumii methylmalonyl CoA mutase. 

The substrate, methylmalonyl CoA (green ) and the co-factor, adenosylcobalamin (red), are 

shown bound in the active site. 

(Mancia er al, 1996) 

4 

The precursor protein sequence contains a C-terminal cobalamin binding domain m 

residues 578-750. The (Pa)8 barrel formed by residues 87-416 contains a 

methylmalonyl CoA binding site . Residues at the N-terminus may be important in the 

dimerisation of the two subunits (figure 1.5). A loss in homology between the bacterial 

and human enzymes makes predictions about the structure and function of this region 

less certain (Thoma and Leadley, 1996). The MCM ap heterodimer of the 

Propionibacterium shermanii homologue has been cloned and expressed in £. coli 

(McKie et al. , 1990), and the crystal structure has been solved to 2A resolution, see 

figure 4 (Mancia et al, 1996). The a subunit of P. shermanii MCM shows a remarkably 

high (6 1 %) amino acid identity to the a subunit of human MCM (Leadlay and Ledley, 
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1989). However the p subunit, while clearly related to the a subunit shares only 34% 

identity with the amino acid sequence of the human gene, and its role remains enigmatic 

(figure 1.5). 

• : .• : . . , : * . • • ! : • • • • 
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Figure 1.5 An Alignment of Human & Bacterial Amino Acids at the N Termini of 

MCM. There is 61 ° o identity overall between the a subun its of the bacterial and human 

enzymes. however the identity in the 59 -tenn inal amino acids drops to 22°0. 

Red an-ow indicates th e cleavage site of the mitochondrial leader sequence within the 

h uman enZ)me. The 59 N terminal amino acids are shown here with a black line. 1-1 is the 

human MCM sequence. and B the bacterial sequence (of the a subunit from P. sher111w11 i) 

Mutat ions in the methylmalonyl CoA mutase gene (mut) cause mut methylmalonic 

acidemia (mut MMA). The disease mut MMA has an estimated incidence of 1/30000 to 

1/50000 live births, and symptoms include metabolic ac idos is, lethargy, dehydration, 

vomiting, and neuro logical problems (Fuchshuber et al .. 2000). Mut MMA patients can 

be distinguished from those suffering from other fo rms of MMA by their non 

responsiveness to 8 12 therapy; other fo rms of MMA are often due to mutations in 

enzymes involved in the synthesis of coenzyme 81 2 and so can be corrected by 8 12 

therapy. There are two types of mut MMA, mut° and mu(. The mu( form of MMA is 

milder, and is characterised by a reduced hMCM activity. Most of the mutations 

assoc iated with muf MMA are found in the AdoCbl binding domain, and so by 

increasing the AdoCbl concentration some of the enzyme activity is recovered (Ad jail a 

et al., 1998). Muf MCM, however, is completely inactive and this fo rm of mutMMA is 

severe and often fatal (Peters et al., 2002). So far 81 different mutations in the hMCM 

'structural gene ' have been identified. Three are found at higher frequencies in some 

populations (- 1 % of births are carriers) Ell 7X in Japanese, G7 l 7V in African 
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Americans and N2 l 9Y m a French/Turkish population (Aquaviva et al. , 200 I, 

Aquaviva et al., 2005). 

The known mutations in hMCM causing mutMM A are more commonly missense or 

nonsense nucleotide substitutions, and many unidentified mutations may occur in both 

the structural gene and promoter region. (Peters et al. 2002). Cobalamin affinity and 

enzyme kinetics has been characterised for most of the known mutations from mut 

MMA patients, has lead to a better understanding of the structure-function relationship 

of the human enzyme (Janata et al. , 1997; Andrevvs et al. , 1993 ; Crane et al. , 1991 ). 

Figure 1.6 Proposed Topology Model of hMCM. The positions of 30 disease causing mutations are 

indicated as bl ack filled circles. Solid black bar is the cobalamin co-factor. 

(Adapted from Fuchshuber et al., 2000) 

The topology model in figure 1.6 shows the known mutations in the C-terminal 

cobalamin binding region, G623R, G626C, G630E, G703R are substitutions of glycines 

thought to be interacting with the cofactor. These residues surround the H627 that binds 

as the sixth ligand to the cobalt of the AdoCbl. Mutation at G648 or G7 l 7 also disrupts 

the structure orientation of the H627, affecting the binding of the co-factor, and 

consequently these are both highly conserved residues. Some other mutations are found 
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at the putative interface of the two dimers at the N-terminal domain (R93H), and in the 

channel to the active site (Wl05R). 

1.4 The Novel Gene MMAA 

ln 2002 a methylmalonic academia patient with a novel mutation was reported. The 

mutation was in a novel gene that was called MMAA (methylmalonic academia linked 

to the cblA complementation group). The gene was mapped to chromosome 4q3 I. l-2, 

and comparison of the genomic and cDNA sequences revealed 7 exons, and a 

mitochondrial signal sequence. It was a highly conserved protein between organisms 

and homologues are found in archea, eubacteria and eukaryotes. The gene was assigned 

a putative function as a transport protein for vitamin 8 12, based on sequence alignments 

and analysis of prokaryotic gene arrangements (Dobson et al., 2002) . Subsequently a 

different group has backed up these findings, with the discovery of seven novel 

mutations in MMAA, all in patients responsive to 8 12 therapy (Yang et al. , 2004) . 

In contrast to these findings , mutation of a gene with very high sequence homology 

(meaB) in the bacteria Me thy/bacterium extorquens AM I, caused a loss of MCM 

activity. MCM activity was not recoverable by the addition of 8 12 which would be 

expected if indeed meaB encoded a protein for a 8 12 transport . In pull down assays a 

complex of MCM and the meaB protein formed. meaB was also found to be required for 

MCM activity in vitro. The authors suggest that the function of the meaB protein is to 

prevent the inactivation of MCM during catalysis. This may arise by a stabilising 

effect on the dimer form of the mutase, or protection of the enzyme from attack by 

oxygen, water or highly reactive radical intermediates (Korotkova and Lidstrom, 2004). 

Whether this gene rneaB is a functional homologue of MMAA remains unclear, more 

detailed biochemical analysis is required. 
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1.5 Past Recombinant Expression Systems of hMCM 

Earlier attempts to express hMCM in £. coli resulted in the production of inclusion 

bodies, which are inso luble aggregates of mis fo lded protein. This is common in £. coli 

with highly expressed recombinant proteins (reviewed by Baneyx and Mujacic, 2004). 

Refolding of these inactive inclusion bodies from £. coli has been attempted with the 

use of rapid dilution, dialys is, detergent ass isted refo lding, size exclusion 

chro matography and use of chaperonin-ass isted refo lding. Refo lding effi ciency reached 

1 % soluble active enzyme, using the rapid dilution technique. This suggests that the 

polypeptide produced is fo lded incorrectly, but otherwise full y active when expressed in 

E. coli, (Hayes. 1998) . This is not always so, some reco mbinant proteins may require 

posttranslational modification that the£. coli is not able to perfo rm. Eukaryotic proteins 

may also expressed as so luble, but not biologicall y active in £. coli. 

In an attempt to correct the misfo lding in vivo of hMCM expressed in £. coli, cell s were 

co-transformed with hMCM express ion plasmid and pGroESL, a pACYC-derived 

plasmid that overexpresses the £. coli chaperonins GroE L and GroES chaperones 

(Goloubinoff et al 1989). However the co-express ion of chaperon ins had little effect on 

the mis fo lding of the protein (Janata et al., 1997) . 

There is an increase in yield of so luble hMCM, observed when expressed with a Trx 

tag, in £. coli (Janata et al. , 1997) . This soluble protein is not being recovered from the 

insoluble pool of protein, but rather appears to be from a reduction in protein be ing 

degraded ( figure l. 7). 
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Native hMCM 
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Uninduced cells Trx-hMCM 
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Figure 1.7 SOS PAGE Gel Showing the Expression Systems of Janata et al, (1995). hMCM 

expression without a solubili ty tag (nati ve hMCM) is compared to expression with a Trx tag (Trx 

hMCM). The Trx solubi li ty tag drasticall y increases the yield of soluble protein without reducing 

the amount of in soluble protein . Insol : In soluble fraction . Sol: Soluble fraction . M: Molecular size 

markers 

(F igw·e adapted from Janata et al.. 1997) 
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The increase in yield reco mbinant protein with a Trx tag, (fi gure 1.7) , could be a result 

of two changes that the Trx makes to the polypeptide. One possibility is increasing the 

half-life due to N-terminal amino acid change. It is also poss ible that instead of, or in 

addition to , the Trx, may also reduce the degradation of aberrantly folded protein. The 

stability of the hMCM is improved thus reducing the aberrantly folded hMCM, and so 

also reduces the protease degradation of this aberrantly folded hMCM. The authors do 

not comment on either of these possibilities (Janata et al. 1997). 

In humans the hMCM pre-protein is targeted to the mitochondria where the signal 

sequence removed, to produce an N terminal Leu on the polypeptide (table 1.1, protein 

l) . In£. coli, however, a leucine at the N-termini of a polypeptide has a very short half 

life of2 mins (Tobias et al. 1991). Expression ofthe native hMCM polypeptide, even 

with a Met before the Leu, in £. coli would be expected to result in the production of a 

short-lived protein. This high turnover rate, ultimately leads to a lower yielding E. coli 

expression system. Janata et al. ( 1997) expressed the hMCM in two systems, without 



and with the Trx tag (table 1.1 , proteins 2 and 3 respectively) showing a remarkable 

increase in protein yield with the Trx tag. 

Source N terminal amino acids After Met 12rocessing Haltlife in £. coli 

1. Native hMCM: Leu His -

2. Janata, hMCM Met Leu His - Leu His - ( 15%) 2 mins 

3. Janata, thio hMCM Met Ser - T- Leu His - Ser TAG Leu His - (84%) 10 hours 

10 

Table 1. I N terminal amino acid and the turnover rate of proteins in E. coli From left, the source, 

the sequence of the first amino acids, the sequence after the N-tenninal Met is removed and the predicted 

half life in£. coli .. 

The effect of a post induction temperature, on hMCM solubility with and without a Trx 

fusion on the N-terminus was critical (Janata et al. , I 997) . With the Trx-fusion at 3 7 °C 

most of the protein was in the form of inactive inclusion bodies, however at 12 °C the 

majority of the protein is correctly folded, soluble and full y active. The Trx-fusion 

expression system in £. coli 01698 at 12 °C, resulted in high levels of soluble 

recombinant protein, however the Trx tag was not able to be separated from the target 

protein. Enterokinase cleavage was inefficient, but at higher protease concentrations and 

longer reaction times, degradation of the hMCM was observed. A specific activity of 

23-26 U/mg was recovered despite the Trx fusion remaining on the hMCM. 

Human fibroblasts and S. cerevisiae have been used to express mainly mutant enzymes, 

for use in enzyme activity studies of the mutations . Low activity can be detected using a 
14C-propionate incorporation assay (Aquaviva et al. , 2001 , Crane et al. , 1992, Peters et 

al. , 2002) . This requires very little active enzyme and is an effective method for 

diagnoses and study of mut MMA patients. In S. cerevisiae the protein was soluble; but 

not active and was unable to complement mut fibroblast cells. However, mouse MCM 

was expressed in the same system, and produced an active enzyme, able to compliment 

amut deficiency in human cells (Andrews et al., 1993). 
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1.6 Enhancing solubility of Recombinant Proteins in E. coli. 

l.6.1 Background 

If the aggregates are forming during cell lysis, changing the lysis buffer could prevent 

partitioning of the recombinant protein into the insoluble fraction (Bondos et al. 2003). 

Recombinant expression of hMCM in £. coli results in the formation of aggregates in 

vivo: and the inclusion bodies can be observed by a light microscope (Mark Patchett, 

pers. Comm.). Consequently the expression conditions must be altered to solublise the 

hMCM protein in E.coli (Baneyx and Georgiou 1990). 

The formation of expressed protein aggregates is often rapid and irreversible. The 

kinetics of the aggregation may be significantly faster than the folding kinetics to the 

native state, as once the aggregation process is initiated. the aggregates ,viii form 

rapidly (Cellmer et al. 2005 and Goldberg et al. 1991). Solubilising the aggregates is 

accompanied by a neYv problem: proteases now have access to the recombinant protein 

as is it now not sequestered in the inclusion bodies (Cheng et al.. 1981 ). To prevent 

inclusion bodies from forming and degradation of the soluble recombinant protein, 

some expression conditions can be changed: e.g. the rate of expression can be slowed. 

decreasing the local concentration of folding intermediates. The redox potential of the 

E. coli c11oplasm can be changed or the protein can be targeted to the periplasm which 

contains many chaperones. Solubility tags can be used or a protease deficient £. coli cell 

line used. 

1.6.2 Periplasmic Expression 

Secretion of recombinant proteins to the periplasm in £. coli has been show to improve 

the solubility proteins. A signal sequence is placed in the gene, most commonly the 

signal sequence from the MBP which is located in the periplasim of E. coli (Loo et al, 

2002; Witholt et al., 1976). 
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1.6.3 Temperature 

The macromolecule concentration in cells is in excess of 300 mg/mL so a newly 

synthesised protein will not fold in isolation, but rather while interacting with a number 

of other molecules that may influence the way the protein folds (Dobson. 2001 ). 

Decreasing the temperature of the £. colt culture during induction and expression has 

been used extensively to slo\\ the recombinant prokin expression rate, enhancing 

solubility of recombinant proteins. This is thought to be due to the reduction in the 

concentration of partially folded proteins at any given time, reducing the chance of two 

partially folded proteins associating and initiating aggregation (Schein and Noteborn. 

1988; Janata et al.. 1997). 

The bacterial methylmalonyl CoA mutase (of P. shermanii) \YaS expressed in £. colt 

K38, in a vector containing the two MCM enzyme subunits. l:xpression at 37 T 

resulted in insoluble protein. but \vhcn induction temperature was lowered to 30 'C. 

resulting in the expression of soluble active metl1vlrnalonyl Co A mutase ( :\1cKic et al .. 

l 990 

1.6.4 E. coli Strains 

E. coli BL2 I (DE3) is deficient in the Lon and OmpT proteases. Lon is a Cytoplasmic 

protease responsible frir the degradation of proteins possessing a non native structure 

(Gottesman, 1989). OrnpT is an outer membrane protease that cleaves dibasic amino 

acid sequences (Grodberg and Dunn 1988) These proteases can contribute to the 

degradation of some recombinant proteins during expression and purification (Baneyx 

and Georgiou 1990). This strain is also lysogenic for a ), prophage that contains an 

lPTG inducible T7 RNA polymerase gene, allowing expression from vectors containing 

a T7 promoter (Studier, et al., 1990). 

E. coli strain Rossetta-gami 2 contains mutations in genes for thioredoxin reductasc and 

glutathione oxidoreductase (lrxB and gor). Thioredoxin reductase is part of an active 

process preventing disulfide bonds from forming in the cytoplasm of £. coli. 

Glutathione oxidoreductase is involved in the oxidative stress response of E. coli and 

loss of activity changes the redox potential of the qtoplasm (Becker-Hapak and 
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Eisenstark 1995; Davis et al., 1982). These mutations improve the folding of many 

eukaryotic proteins expressed in £. coli in particular proteins containing disulfide bonds 

(Derman, et al. , 1993, Cassland et al. , 2004). 

The £. coli strain Rosetta-gami 2 also contains a mutation in the lac permease (lac Y) 

gene, giving the Tuner™ genotype. These cells allow a more even entry of IPTG 

through the cell membrane. More even IPTG entry causes induction to occur in an IPTG 

concentration-dependent manner throughout the culture, allowing stricter control of 

promoter induction, and the use of very low levels of IPTG to slow expression of 

recombinant protein. 

Am ino ac ids can be encoded fo r by more than one codon in the mRN A. Different 

organisms will favour the use of some codons fo r an amino acid, resulting in a bias in 

the levels of tRNA fo r particular codons (see the appendix) . The codons used 

infrequently in a certain organism are called rare codons, and are translated 

ineffic ientl y, due to the low leve l of corresponding tRNA. The £. coli strain Rosetta 

Rosetta-gami 2 have extra cop ies of tRNA genes argU, argW, ileX, glyT, leuW, prol. 

metT. thrT. tyrU, and thrU on pRARE, a pACYC 184-der ived plasmid (Novy et al.. 

200 I). These genes encode the tRNA for codons not abundantly fo und in £. coli 

mRN A; AUA, AGG, AGA, CUA, CCC, and GGA allowing the ribosome to translate 

the eukaryote mRNA more efficiently. Translation pausing of the riboso me, at regions 

of mRN A that contain rare codons may result in premature translation termination, 

translat ional stalling, translation frameshifting and mis incorporat ion of amino acids. 

These events can lead to low yie ld and mis folding of recombinant proteins (Looman et 

al. 1987; Makhoul and Trifonov, 2002; Kurland and Gallant, 1996; McNulty et al., 

2003) . The codons of the hMCM sequence were analysed at the database on the website 

http://www.kazusa.or.jp/codon/ (see appendix). A total of 25 codons are present in 

hMCM that the tRNA is found below 0.5% frequency in£. coli. 

E. coli ER2566 is an expression strain provided by New England Biolabs with the 

vectors pTYB4 and pTYBl 1, and is the recommended expression strain for both these 

vectors. (Ltittkopf et al. , 2001). The cells£. coli ER2566 cells are deficient in Ion and 

OmpT proteases and contain the ). prophage with an IPTG inducible T7 RNA 

polymerase gene. 
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1.6.5 Solubility Tags 

Many proteins formerly used as affinity purification or detection tags were also found to 

enhance expression levels and solubility of the target protein, so are now also referred to 

as solubility tags. A solubility tag is a second protein fused in the same open reading 

frame as the recombinant target protein (figure 1.8). The open reading frames of both 

will now be expressed as one polypeptide, and after folding and purification the 

polypeptide can be separated to yield two polypeptides i.e. the target protein and the 

solubility tag see section l. 7 on 'purification and processing of recombinant proteins ' . 

Sometimes (rarely) the target protein may aggregate after cleavage even if it is correctly 

folded as a fusion . (Sati et al. , 2002). 

N C 

N-tcrm inal tag ~ ._I ___ T_a_rg_c1_P_ro_tc1_·n ___ __,I +-i C-tcrm inal tag 

Figure 1.8 Showing Possible Positions of a Solubility Tags Relative to the Target 

Protein. Th e tag can be expressed on the C or N tennini of th e target protein . The -

tenninus of protein s is the most common positi on fo r a solubili ty tag. 

To be a suitable solubility partner a protein must be highly soluble in the £. coli 

cytoplasm. However, not all highly soluble proteins are affective solubility tags (Kapust 

and Waugh, 1999). It is also unlikely that all solubility tags act in the same way, 

different target and solubility tag combinations will affect the solubility of the target 

protein differently (Kapust and Waugh, 1999) . Although solubility tags are now widely 

used in recombinant systems, the mechanisms by which some of them prevent or reduce 

aggregation are not well understood due to the lack of understanding about the 

formation of protein aggregates in cells. 

The 40 k.Da maltose binding protein (MBP) (Pryor and Leiting, 1997) has been shown 

to be a very effective solubility tag. This was demonstrated in a study of the effect three 

different solubility tags had on six different target proteins, all insoluble and inactive 

when expressed in £. coli. The three solubility tags tested were Trx, MBP and 

glutathione S-transferase. The effectiveness of the solubility tag was measured by the 

solubility and activity of each target protein. The MBP was consistently found to be the 
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most effective tag at solubilising the target protein (Kupust and Waugh, 1999). These 

results have been supported by other labs (Goulding and Perry, 2003). This led the 

authors to suggest that the MBP is a passive general chaperone, binding to unfolded 

proteins to promote folding, perhaps by preventing self association, (figure 1.9). 
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Figure 1.9 A Model of the Proposed Mechanism of MBP. The sphere represents the 

MBP and the lin e and the helix represents the unfolded and fo lded protein , respecti vely. 

(Figure adapted from Kapust and Waugh. 1999) 

In support of this mechanism is the ineffectiveness of the MBP as a solubility tag when 

fused to the C-terminus of the target prote in. This arrangement resu lts in the target 

protein being synthesised and fo lding earlier as it comes of the ribosome, (G ilbert et al. 

2004), suggesting that the MBP must be fully folded to be an effective so lubility tag 

(Sachdev and Chirgwin, 1998). The MBP has also been shown to interact with un fo lded 

polypeptides in vitro, promoting fo lding of these un fo lded prote ins (Richarme and 

Caldas, 1997). Using the maltose sugar immobilised on res in, the MBP is also affect ive 

as an affinity purification system, and as an affinity tag, the MBP is typically placed at 

the C-termini of the target protein (Maina et al. , 1988; Hennig and Schafer, 1998). 

The 11 kDa thioredoxin protein is a commonly used solubility tag and dramaticall y 

increases the solubility of many recombinant proteins expressed in the £. coli cytoplasm 

(La Vallie et al. , 1993). It can be effective placed at the Nor C terminus of the target 

protein, varying from case to case, depending on the target protein. However it is most 

commonly used as a solubility tag at the N-termini of the target protein. Because 

thioredoxin lacks a convenient immobilisable small ligand, it is unsuitable for an 

' affinity purification system', therefore thioredoxin is often used in conjunction with a 
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small affin ity tag such as the His6 tag, and this thioredoxin-His construct is referred to 

as the T rx tag. 

1.7 Purification and Processing of the Recombinant Protein 

1.7.1 Poly His Tag Purification 

A poly-histidine tag is a sequence of four to ten contiguous histidines within a protein, 

which selectively binds to a Ni column via the co-ordination of the histidine imidazo le 

groups to the Ni metal. The protein is eluted by changing the pH, or adding free 

imidazo le to the chromatography buffer (Hochuli et al. , 1987). The chromatography 

res in has an attached nitrilotriacetic acid (NT A) group, ideal fo r binding metal ions with 

co-ordination numbers of six, such as Ni and Co (Hochuli et al, 1988). The His tag can 

be placed at the or C termini of the protein, depending on the structure of the target 

protein. Purification of his-tagged proteins can also allow purification under denaturing 

conditions. However, proteins with a metal cofactor bound are not recommended, as the 

potential cofactor- NTA res in interaction may interfere ·with the stab ility of the protein 

(Reviewed by Terpe, 2003). 

1.7.2 The Chitin Binding Domain 

The 5 kDa chitin-binding domain is the 51 C-terminal amino ac ids of chitinase A I from 

Bacillus circulans WL-1 2 (Watanabe et al., 1994). The chitin binding propert ies of the 

domain are exploited, and purification is achieved by using a column with immobilised 

chitin (Chong et al., 1997). 

1.7.4 Site specific Proteases 

Site specific proteases recognise a certain sequence of amino acids, cleaving the 

polypeptide. This has been exploited to allow the separation of affinity/so lubility tags 

from the target protein, (figure IO). 



8 
~ 

'-----~~ ENLYFQG --f~ ____ T_ar_gc_iP_ro_i_ci n ____ ~ 

D 
.___ __ _____.~ E L YF QG--f~ ___ r_ a_~_c1_P_ro_1c_in ____ ~ 

Figure I.IO Protease Cleavage of Solubili ty Tags. A sequence of amino acids that are the 

target for a protease (in thi s example TEV) can be in serted between the target protein and 

the tag. Incubati on with the protease separates the tag from the target protein . The protease 

must ha\·e access to the sequence so it must be on th e exterior of the prote ins structure. 
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Enterokinase is a site specific protease that cleaves after lysine at its recognision site 

Asp-Asp-Asp-Asp-Lys, and is frequently used to separate tags rrom the target protein 

(Sun et al .. 2005). In some target protein-tag fusions the enterokinase cleavage s ite is 

not access ible and cleavage can be inefficient or completely prevented. In the 

expression system of hMCM-Trx. inefficient enterokinase cleavage occurred, 

suggesting that the protease was unable to access the cleavage s ite (Janata et al .. 1997). 

The Tobacco Etch Virns Protease (TEV) protease is a 48 kDa site specific protease. 

from the tobacco etch virus (Carington and Dougherty, 1988). His-tagged TEV can be 

expressed and purified in£. coli making it a cheap and convenient source of protease. A 

TEV site, (ENL YFQG), has been engineered into the pET32a vector (Rosemary Brown, 

Pers. Comm.), to allow removal of the Trx solubility tag by digesting the purified 

protein complex with the recombinant TEV protease. This can be used as an alternative 

to the enterokinase; the differences between the two proteases may allow the TEV to 

effectively cleave the Trx tag. In addition to changing the protease, the sequence 

immediately either side of the site is also different which may allow better access for the 

TEV. 
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l.7.5 Inteins 

The use of inteins eliminates the need to incubate the recombinant protein with a 

protease to cleave the target protein from purification and/or solubility fus ion 

tags. Conventional proteases can have drawbacks as seen in the earl ier section 1.3.3 

'site specific proteases·. Access to the recognition site , protease sites in the target 

protein and further purification are required. Often addit ion or change of amino ac ids at 

the N or C terminus is necessary to generate the target sequence of the protease, 

resulting in final protein product containing several additional or changed amino acids 

and this can affect the protein activity and fo lding. The protease may require incubation 

at elevated temperatures for activity, which can degrade or denature the target protein 

(Janata et al., 1997; Humphries et al 2002). 

lnte ins perform a post translational modification, excis ing an internal polypeptide 

sequence (intein), and ligating the flankin g sequences (exte ins) with a pept ide bond 

(figure 1. 11 ). Key conserved res idues have been identified by amino ac id sequence 

alignment and then functional studies of the effects of po int mutations on cleavage to 

determine their role in the splicing react ion (Xu and Perler, 1996). 
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Figure 1.1 I Domains and Conserved Residues in lnteins. Blocks A and Bare 

important in the -tenninal splicing, and blocks F and Gare involved in the C-tenninal 

splicing. The region C to H can contain an endonuclease in some inteins. Also note the 

arrangement of the intein, N-extein and C-extein re lative to each other. Shown below are 

the highly conserved arnnio acids. 

(Figure adapted from Evans and Xu, 200 1) 

The mechanism involves a peptide bond within the protein being attacked and broken 

resulting in the formation of a thioester intermediate. This mechanism is supported by 

the formation of a branched intermediate with two N-termini (figure l. l l) (Xu et al. 
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1993). Intein activity may be compared to that of the spliceosome that removes introns 

from RNA (Evans and Xu, 2002). Comparisons can also be made with protease activity, 

as the peptide bond is broken in a similar way, using a mechanism not unlike that of the 

'catalytic triad' that many proteases use. The reaction is also analogous to the native 

peptide ligation reaction, used for assembling small synthetic peptides into larger 

synthetic proteins (Dawson et al.. 1994) 



H:-i , 
( ) I Cff : 

\I I· , r::- 111 II 
I 

I 
(_ .__ )­

~ t ' H 
~ - H 

CH 
11, - c ' 

II 
() 

.'.\/-'.:, .\t·•,I R .·.u 1;.1.:1 ~2 :1 1..:-o 

l:l t ~, 11 ... 1 J I _ 111.HJ !!J J 

0 'lH 
I I 

1, - , , H, C, 
[f3:-'·, ~ \ , H 

!IS._ 
CI I- (I 

. f . I -.:~.,,, ' ·, ..,. ,.-, H,,. 
~ H' l ' 

H I 
( 'II, 

HS, - ('' 
I 

l) 

".') _\. --\'-~,,1 ,~_-.u · a1 :1 ::. ~·-1i,..~:-~ 

l 11 tt:lfl 

<) 
I 

\ H , 

I 1,; , )' ,-; ;, 

I I 

k~~~:/ \, ' 
( H, 0 

II 
~ c, ,c.11, 

H 'l • C 
H 

l l 
I 

~:-.-;;.~:l 1: ~~_ 11. 

• I 

C 
11 . , /1 1~ 

I ', 

() (_f l, 
I 

'"'""'"1 L , ,r· '--~ ~I I ~ 

. t H-
Er- - C' -

11 
() 

'lll -

11 , , : 1/\ ;, 

fl 

() 

/ C,)' / 
!IN I 

",c} 'I I~ 

( ) 

Figure 1.12 Mechanism of the lntein See VMAI Splicing Reaction. Attack of the intein 

N-tenninal cysteine sulfhydryl group injtiates a -S acyl rearrangement, wh.i ch generates a 

thioester bond between the intein N-terminal cysteine residue and the N-extein C-tenninal 

residue. Tran s(thio)esterification of the N-extein acyl group to the C-extein cysteine form s 

the branched intennediate. Attack of an intein C-tenninal asparagine excises the intein , and 

the reaction is completed by a spontaneous S-N acyl rearrangement, regenerating a native 

peptide bond between the N- and C-extein segments. 

(Figure adapted from Evans and Xu, 200 l ) 
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The intein See VMAl is from the yeast Saccharomyces cerevisiae and was discovered 

in 1990 (Hirata et al. , 1990; Kane et al. , 1990). Researchers at New England Biolabs 

then removed endonuclease domain (figure 1.13) at the gene level and mutated key 

catalytic residues to prevent the exteins religating. Although inteins lacking the 
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endonuclease domain (mini inteins) are now known to occur naturally, the See VMAl 

intein without the endonuclease domain was artificially created, before mini inteins 

were discovered in nature. 

Domai n II 
- - - - ~.s- - - - - - - - - - - r- - - - , 

9 ... rl .. ,i, "' ~ ~ ? I 

----_••_ ------~ - --=-:' ~ -- I 

u1 

Domain I 

T~~" ~ T..:~;. 
~:..• ~. o1 

1 3 ' 4 

Figure 1.13 The Domain Structure of the Native See VMAI Intein. The circles and 

triangles represent u helices and~ strands, respecti vely Numbers identify the ten different 

~ sheets . Domain I is the nuclease domain identified by the DNA binding motifs, and 

domain II is thought to contain the protease activity. 

(F igure adapted from Duan et al. 1997) 

The changes to this intein allowed researchers at New England Biolabs to construct a 

series of vectors that contain a CBD (Watanabe et al. , 1994) as a purification tag, which 

can be removed by the See VMA I intein that is located between the tag and the protein 

of interest. The CBD is inserted into a loop of the intein, and does not affect its activity. 

The vector pTYB4 encodes a splicing defective mutant See VMA 1 intein (Asn454Ala) 

that only performs the N-terminal junction cleavage. The C-terminal splicing activity 

has been lost (Chong et al. 1996). Another vector in the series, pTYB 11 , encodes 

another splicing defective mutant See VMAI intein (His453Glu) mutation at the 

penultimate amino acid resulting in defective C-terminal splicing activity (Chong et al. 

1996). This allows the solubility tag to be removed from the N termini of the target 

protein, (figure 1.14). 
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Figure 1.14 Mechanisms of lntein-Based Protein Purification. 

(A) N-tenninal cleavage, by the modified intein . The intein-tag is fused to the C-terminus 

of the target protein at the gene level. The target is released by cleavage of the bond between 

the target protein and the intein . This is the modifi ed intein present in the pTYB4 vector. 

(8 ) Coupled C-tenninal cleavage by a different modified intein. This type of intein-tag 

allows expression and purification of the target protein with an N-tenninal affinity or 

solubili ty tag, Thi s is the modified intein present in the vector pTYB 11 . 

(Figure adapted from Evens and Xu, 2002) 
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The vectors pTYB4 and pTYBl 1 allow the separation of the target protein under 

reducing conditions (figure 1.14). The target protein, intein and any solubility or 

purification tags are bound to a purification column or beads though an affinity tag. The 
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other proteins from the expression system cell lysate are washed off in a mild buffer. 

The target protein is then removed with a reducing agent ( e.g. OTT or ~­

mercaptoethanol) that induces the intein to self cleave. The target protein is eluted from 

the column leaving the purification/solubility tags bound (Perler. 2000). Dialysis is 

necessary to remove a small peptide generated during the intcin cleavage of proteins 

expressed from the vector pTYB 11. 

The intein leaves no amino acids on the target protein. however sometimes 1-2 amino 

acids must be changed at the cleavage site on the target protein. to ensure that cleavage 

occurs when desired, and that 111 vivo cleavage is avoided. The flcxibilitv of the amino 

acids at the intein-target protein boundary means it is often possible to use amino acids 

\Vith similar properties to replace the original native amino acids. Amino acids at the 

protease sites arc very specific sequences. with little variability allowed. These amino 

acid changes. necessary to generate the protease site. can result in undesirable changes 

to the amino acids at the termini of the target protein. These amino acids may change 

the natiH: sequenc-: of the target protein and this ma\' affect the structure and/or 

function of the target protein. 



24 

1.8 Chapter Summary 

Studies of human methylmalonyl CoA mutase (hMCM) are required to better 

understand the unusual carbon skeletal rearrangement this enzyme performs, the 

catalysis involving a 8 12 derived cofactoL and the disease methylmalonic acidemia. 

1 lomology models based on the crystal structure of the a-subunit of a bacterial 

orthologue have provided a structural model. However, the decre,Lse in homology 

between the bacterial and human proteins at the N-terminus results in inaccurate models 

of this putative dimcrisation domain. Structural studies are required, and to provide a 

source of protein for these studies, an E. coli expression system is proposed. 

Expression of native h}\,1CM in E colt results in insoluble inclusion bodies. A Trx 

solubilitv tag increased the yield of soluble protein but did not allow separation from the 

tag with the enterokinasc site located between the Trx and hMCM. An alternative to 

protease separation of solubility tags is an intein cleavage system Inteins may 

circumvent the problems associated with conventi,mal 111 /rems protease removal of tags. 

1.9 Aims of this Project 

This work aimed tn develop a novel vectnr to enable expression of soluble active 

h'\1CM for structural studies. This overall goal can he subdivided into three aims: 

A. Design and construct four novel e.xpression vectors containing a solubility tag 

and an intein mediated removal nfthat tag. 

B. Clone hMCM into each of these novel vectors. 

C:. Test the solubility of protein expressed from each of these vectors with the 

insoluble protein hMCM, and determine the success of the intein mediated 

cleavage. 




